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Abstract. — The paper’s aim is to develop a theory in which the concept of Brody hyperbolicity

of a complex space (cfr. [2]) is interpreted in terms of homotopy-theoretic structures. We contend
that this interplay will be particularly useful if implemented by applying homotopy-theoretical tech-

niques and constructions to get information on hyperbolic spaces. Imitating the construction of
homotopy groups, we will define holotopy groups that will be able to tell apart di¤erent complex

structures. From our point of view, the most important feature of these groups is that they vanish

in a certain range if evaluated on a Brody hyperbolic complex space (see Theorem 4.1), providing
therefore a way to reduce the proof of non hyperbolicity of a complex space to the existence of a

nonzero holotopy class in these groups.
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1. Introduction

The paper’s aim is to develop a theory in which the concept of Brody hyperbol-
icity of a complex space (cfr. [2]) is interpreted in terms of homotopy-theoretic
structures, therefore opening an entirely new link between two, a priori com-
pletely di¤erent, branches of mathematics. Based on our current understanding,
we contend that this interplay will be particularly useful if implemented by apply-
ing homotopy-theoretical techniques and constructions to get information on
hyperbolic spaces rather then following the opposite path. Imitating the construc-
tion of homotopy groups, we will define holotopy groups that will be able to tell
apart di¤erent complex structures. From our point of view, the most important
feature of these groups is that they vanish in a certain range if evaluated on a
Brody hyperbolic complex space (see Theorem 4.1), providing therefore a way
to reduce the proof of non hyperbolicity of a complex space to the existence of
a nonzero holotopy class in these groups. This suggests the relevance of finding
techinques to compute classes in such groups. We expect them to follow from
general results concerning abstract homotopy theory of model categories. In our
manuscript, we get some results which relate holotopy groups with homotopy
groups; for instance, by general nonsense, we show that suitably defined fibra-
tions induce long exact sequences of holotopy groups and construct a topological
realization functor (see Section 5) which induces an homomorphism from the
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holotopy groups of a complex space to the homotopy groups of the underlying
topological space. Such homomorphism in general is neither injective nor surjec-
tive and its image are the homotopy classes which have a ‘‘complex geometric
origin’’.

We define holotopy groups as the Hom pointed sets of pointed morphisms
between objects which play the role of spheres and a complex space X in an ap-
propriate category H�. Abstract homotopy theory prescriptions require the initial
category to have certain structures that the category S of complex spaces with
holomorphic functions does not have. Hence we perform suitable adjustments
and extensions in order to obtain a category DopFTðSÞ which is endowed of
such structures and we can appropriately localize. The idea is to ‘‘add’’ the in-
verse to the canonical map p : C! pt along with all its base changed maps by
specifying an appropriate model structure on DopFTðSÞ, using the techniques
developed by Morel-Voevodsky in [6]. The associated homotopy category H
is the analogue of the (unstable) homotopy category T of topological spaces
(whose objects are compactly generated locally Hausdor¤ topological spaces)
where homotopy groups pnðX ; xÞ may be described as HomT� ððSn; ptÞ; ðX ; xÞÞ,
T� being the pointed version of T and Sn the n-th dimensional sphere. The
fact that any class in pnðX ; xÞ may be represented by a continuous function
ðSn; ptÞ ! ðX ; xÞ does no longer hold for holotopy groups: there are not enough
morphisms in DopFTðSÞ to represent all the classes in holotopy groups. To get
holotopy groups as quotient sets of HomHolo

�
sets, we must replace X with a

weakly equivalent object ~XX a DopFTðSÞ, which in general will not be a complex
space, satisfying a certain condition. The key remark is that such condition is the
Brody hyperbolicity of ~XX , when ~XX happens to be a complex space (see Corollary
3.1). Because of this, we will call Brody hyperbolic any object in DopFTðSÞ sat-
isfying such property. The correspondence X c ~XX is functorial and satisfies a
universal property among hyperbolic objects, hence ~XX can be considered as an
hyperbolic model of X and as such will be called in our paper.

2. Basic constructions

2.1. Sheaves and simplicial objects: the categories FTðSÞ and DopFTðSÞ

Let S be the category of complex spaces (or schemes of finite type over a noe-
therian scheme B). We would like to create a category from S where the complex
space C becomes isomorphic to a point in a compatible way to how we get the
unstable homotopy category from the category of topological spaces. From the
point of view of homotopy theory, S has some problems: it is not closed under
(finite) colimits and, when a colimit does exist in S, its underlying set may be too
di¤erent from the colimit of the underlying sets or even topological spaces. More-
over, no useful model structure on S to achieve this task is known. We therefore
follow the route set forth by Morel and Voevodsky in [6] and let ST be the site of
complex spaces with the strong topology (or that of schemes of finite type over a
noetherian scheme B of finite dimension, endowed with a Grothendieck topology
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which is weaker or as fine as the quasi compact flat topology). We denote by
FTðSÞ the category sheaves of sets on ST where morphisms are maps of sheaves
of sets. Let YðX Þ :¼ HomSð�;X Þ. The functorial equality

HomSðA;BÞ ¼ HomFunðSop;SetsÞðYðAÞ;YðBÞÞ

is known as Yoneda Lemma. The Yoneda embedding is a faithfully full functor
Y : S ,! FunðSop;SetsÞ and HomSð�;XÞ is a sheaf for the topology T .

The category FTðSÞ is complete and cocomplete i.e. has limits and colimits.
In particular it possesses two canonical objects: an initial sheaf j, the sheaf that
associates the empty set to any element of the site, except the sheaf that associates
the empty set to any element of the site, except for the initial object of the site ST

to which it associates the one point set and the final sheaf, which we will denote
as pt.

In the sequel we will work with the category DopFTðSÞ of simplicial ob-
jects in FTðSÞ (cfr. [8] for the basic properties of this subject). A simplicial
object X in FTðSÞ is a sequence fXigib0 of objects of FTðSÞ with a sequence
qn
i : Xn ! Xn�1 of morphisms for nb 1, i ¼ 0; 1; . . . ; n called faces and a se-
quence sn

i : Xn ! Xnþ1 of morphisms for nb 0, i ¼ 0; 1; . . . ; n called degenera-
tions, satisfying appropriate compatibility conditions (cfr. [8]).

A morphism f : X! Y of two simplicial objects X ¼ fXigib0, Y ¼ fYigib0

of FTðSÞ is a sequence f figib0 of morphisms fi : Xi ! Yi commuting with the
face and boundary operators. In DopFTðSÞ we can retrieve the site ST fully
faithfully embedded as the simplicially constant objects represented by X a ST :
given X a ST we will denote by the same symbol the constant (or discrete) sim-
plicial object defined as Xi ¼ X , qn

i ¼ sn
i ¼ IdX , for every i, n.

2.2. Simplicial localization

The following will give DopFTðSÞ a model stucture in the sense of Quillen ([7]).
A morphism f : G!F of simplicial sheaves is a weak equivalence if for every

point x of a complex space or a scheme over B, fx : Gx !Fx is a weak equiva-
lence of simplicial sets (Gx and Fx being the respective stalks over x of F and G).

An injective morphism f : X! Y is said to be a simplicial cofibration.
A lifting in a commutative square of morphisms

A ���!q X?
?
?
y j

?
?
?
y f

B ���!r Y

ð1Þ

is a morphism h : B! X which makes the diagram commutative. In such situa-
tion we say that j has the left lifting property with respect to f and f has the right
lifting property with respect to j.

A morphism f : X! Y is called a fibration if all diagrams (1) admit a lifting,
for all acyclic cofibrations j (cofibration and weak equivalence simultaneously).
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An object X of DopFTðSÞ

1) is called cofibrant if j! X is a cofibration;
2) is called fibrant if X! pt is a fibration.

The classes of weak equivalences, cofibrations and fibrations give DopFTðSÞ a
structure of simplicial model category as shown in [5]. Under these assumptions,
there exists a localization Hs of D

opFTðSÞ with respect of the weak equivalences.
The same constructions as for DopFTðSÞ can be performed for the pointed

category Dop
� FTðSÞ associated to DopFTðSÞ obtaining a homotopy category

Hs�. D
op
� FTðSÞ is the category Dop

� FTðSÞ whose objects are the pairs ðX; xÞ
where X a DopFTðSÞ and x : pt! X is a morphism; a morphism of pairs
ðX; xÞ ! ðY; yÞ is a morphism f : X! Y such that f � x ¼ y. Let us fix some
notation. If X and Y are pointed simplicial sheaves the sheaf X4Y is, by defini-
tion, the colimit of

pt ���! X
?
?
?
y

Y

pointed by the image of pt.
The pointed simplicial sheaf XbY is defined by X�Y=X4Y.
The simplicial pointed constant sheaf S1

s is defined by D½1�=qD½1� where qD½1� is
the simplicial subsheaf of D½1� costisting of the union of the images of the face
morphisms of D½1�. For n a N we set Sn

s ¼ S1
s b � � �

n bS1
s .

3. Hyperbolicity

3.1. A‰ne localization

Starting from Hs we give D
opFTðSÞ a new model structure whose weak equiva-

lences contain p : C! pt, and are in a sense the ‘‘smallest’’ class including all
the base changements of p, as well. Such weak equivalences which are written in
terms of morphisms in Hs are based on the following notion of C-locality.

A simplicial sheaf X a DopFTðSÞ is said to be C-local if the projection
Y� C! Y induces a bijection of sets

HomHs
ðY;XÞ ! HomHs

ðY�A1;XÞ

for every Y a DopFTðSÞ.
A morphism f : X! Y is called:

1) a C-weak equivalence if, for every C-local simplicial sheaf Z a DopFTðSÞ

f � : HomHs
ðX;ZÞ ! HomHs

ðY;ZÞ

is a bijection;
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2) a C-cofibration if it is injective;
3) a C-fibration if all diagrams (1) admit a lifting, where j is any C-cofibration

and C-weak equivalence.

An object X of DopFTðSÞ is called

1) C-fibrant if the canonical morphism X! pt is an a‰ne fibration;
2) C-cofibrant if j! X a C-cofibration.

The structures listed above endow DopFTðSÞ of a model structure, which will
be called C-model structure or a‰ne model structure (cfr. [6, Theorem 3.2]). The
localized category with respect of the C-weak equivalences is denoted as H and
its pointed version as H�.

Remark 3.1. The a‰ne localization functor DopFTðSÞ !H factors as

DopFTðSÞ !Hs !H;

where the first functor is the simplicial localization and the second is the identity
on objects. However, the functor Hs !H is not an equivalence of categories.
The same classes of pointed morphisms give Dop

� FTðSÞ a model structure.
As a particular case of [7, Proposition 4 0] we have the following result: if

j : Y! X is a C-cofibration then, for every simplicial pointed sheaf Z, the mor-
phism j induces long exact sequence of pointed sets and groups

HomH� ðY;ZÞ  j
�

HomH�ðX;ZÞ  p
�
HomH� ðX=Y;ZÞð2Þ

 HomH�ðYbS1
s ;ZÞ  

j �

HomH� ðXbS1
s Þ

 p
�
HomH�ðX=YbS1

s ;ZÞ . . .

where X=Y is the object making the following square cocartesian:

Y ���!j X?
?
?
y

?
?
?
yp

pt ���! X=Y:

ð3Þ

3.2. Hyperbolic simplicial sheaves

C-local simplicial sheaves X are said to be hyperbolic. A hyperbolic resolution of
X is a morphism of simplicial sheaves r : X! ~XX where ~XX is a hyperbolic simpli-
cial sheaf and r is an a‰ne weak equivalence.

A hyperbolic resolution functor is a pair ðI; rÞ where I is a functor

DopFTðSÞ ! DopFTðSÞ
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and r is a natural transformation Id! I such that every morphism X! IðXÞ is
a hyperbolic resolution. We have the following, fundamental

Theorem 3.1. There exists a hyperbolic resolution functor ðIp; rÞ with the fol-
lowing properties:

1) for every X a DopFTðSÞ the simplicial sheaf IpðXÞ is hyperbolic and (simpli-
cially) fibrant;

2) r is a C-equivalence and a cofibration;
3) let Hs;C be the full subcategory in Hs of C-local (hyperbolic) objects. Ip sends a

C-weak equivalence to a simplicial weak equivalence, hence it induces a functor
L : Hs !Hs;C that factors as Hs !H!Hs;C, where the first functor is the
identity on objects;

4) the canonical immersion I : Hs;C ,!Hs is a right adjoint of L.

Furthermore, Hs;C is a category equivalent to H.

This is a consequence of the Bousfield framework [1] for localizing model cat-
egories. For more details about this result as stated here see [6].

Given X ¼ X a FT , IpðXÞ is the hyperbolic simplicial sheaf associated to the
simplicially constant sheaf X .

The morphism r : X! IpðXÞ is universal in the category H (respectively in
the categoryHs): for any hyperbolic objectY and morphism f : X! Y inH (re-
spectively in the category Hs), there exists a unique morphism ~ff : IpðXÞ ! Y in
Hs factoring f as ~ff � r.

As a consequence we get that if X and Y are sheaves with Y hyperbolic and
f : X ! Y is a morphism of sheaves, then the composition ~ff � r is a morphism
of sheaves and the commutativity of the diagram

X ���!r IpðX Þ
?
?
?
y f

Y

ð4Þ
 �

��
���

~ff

is in the category of sheaves, i.e. it is strictly commutative and not only ‘‘up to
homotopy’’ in Hs.

3.3. Hyperbolicity and Brody hyperbolicity

The concept of hyperbolicity as introduced above is the same as Brody hyperbol-
icity for a simplicial sheaves represented by a complex space X . This is a conse-
quence of the following crucial

Theorem 3.2. A sheaf X a FTðSÞ is hyperbolic if and only if the projection
U � C! U induces a bijection

HomFT ðSÞðU ;XÞ ! HomFT ðSÞðU � C;X Þ
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for every object U a ST . Moreover, under this hypothesis, for every Y a FTðSÞ
there exists a bijection

HomHðY ;X ÞGHomHs
ðY ;X ÞGHomFT ðSÞðY ;X Þ:ð5Þ

Corollary 3.1. Let X be a complex space, C a closed complex subspace of X.
Then X is hyperbolic modulo C in the sense of Brody (cfr. [4]) if and only if X=C is
a hyperbolic sheaf.

If X is a simplicial sheaf, Y , Y 0 hyperbolic complex spaces such that

IpðXÞ ¼ ½Y �H ¼ ½Y 0�H:

then Y 0 and Y are isomorphic complex spaces. In particular, if X is a complex
space and IpðXÞ is represented by a hyperbolic complex space Y , then Y is
unique up to biholomorphisms. In general we cannot hope to have hyperbolic
complex spaces in the class of a simplicial sheaf or even of a complex space: in
the next section we will show that IpðPnÞ cannot be C-weakly equivalent to a
hyperbolic complex space.

In some cases, we can extend some results known for hyperbolic complex
spaces to hyperbolic sheaves: e.g. it can be proved that if F if a hyperbolic sheaf
then

HomFT ðSÞðCPn;F Þ ¼ FðptÞ

for any nb 1. In other words, any sheaf map from CPn to a hyperbolic sheaf F
must be constant.

4. Holotopy groups

Let ST denote the site of complex spaces endowed with the strong topology. A
simplicial object of ST is, by definition, a simplicial complex space. A rather nat-
ural modification of the definition of homotopy enables us to attach to every sim-
plicial sheaf on ST two families fppar

i; j ðXÞgi; j, fp iper
n;mðz1; z2ÞðXÞgm;n of sets which,

for positive simplicial degrees, have a canonical group structure and are invariant
under biholomorphisms. We will use these groups in Section 6.

The holotopy groups are refinements of homotopy groups in a precise sense:
there are homomorphisms from them to the homotopy groups of the topological
realizations (see Section 5) and there are holomorphic functions between complex
spaces whose topological realizations are homotopy equivalences, while not being
isomorphisms on holotopy groups. A simple example is the embedding D� ,! C �

of the punctured disk in the punctured complex line: the holotopy groups in pos-
itive degrees of D� are all zero since it is hyperbolic (see Theorem 4.1), whereas
ppar
1;0ðC �; xÞ contains a nontrivial holotopy class, namely the identity (see just

below the definition of this holotopy group).
It would be interesting to find such examples in the compact case.
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Define the parabolic circle S1
par by

S1
par ¼ C=ð0q 1Þ;

and the hyperbolic circle S1
iperðz1; z2Þ by

S1
iperðz1; z2Þ ¼ D=ðz1 q z2Þ

where DHC is the unit disc and z1A z2 two points of D. (The quotients defining
parabolic and hyperbolic circles are taken in the categoryFTðSÞ, even though the
set theoretic quotients have a complex structure (cfr. [3])). Set Sn

par, S
n
iperðz1; z2Þ the

sheaves S1
parb � � �

n bS1
par, S

1
iperðz1; z2Þb � � �

n bS1
iperðz1; z2Þ respectively.

Given a simplicial sheaf X on ST the sets

ppar
i; j ðX; xÞ ¼ HomH� ððC�Þ

bjbSi�j
par ; ðX; xÞÞ for ib jb 0;ð6Þ

p iper
n;mðz1; z2ÞðX; xÞ ¼ HomH�ðSn

iperðz1; z2ÞbSm
par; ðX; xÞÞ for n;mb 0;ð7Þ

are called respectively parabolic holotopy pointed sets of X (or groups in the case
they are) and hyperbolic holotopy pointed sets of X (or groups in the case they
are).

As a consequence of the long exact sequence (2), we can prove that the sets
ppar
i; j , p

iper
n;m have a canonical group structure for i > j > 0 and m > 0.

From our point of view, the most important feature of these groups is that
they vanish in a certain range if evaluated on a Brody hyperbolic complex space:

Theorem 4.1. Let X be a hyperbolic sheaf. Then the groups ppar
i; j ðX ; xÞ,

p iper
n;mðX ; xÞ vanish for i � j > 0 and any m > 0.

Remark 4.1. To relate holotopy groups of a complex space X with morphisms
in DopFTðSÞ it is necessary to replace X with its hyperbolic model IpðX Þ. Then
pi; jðX ; xÞ will be a quotient of the set HomDop

� FT ðSÞðS i; j;IpðX ÞÞ, where S i; j is a
pointed model of the relevant sphere.

5. The topological realization functor

The objects in H can be compared with the topological spaces, objects of the
(unstable) homotopy category H top of topological spaces (i.e. the localization of
the category of topological spaces with respect to the usual weak equivalences).
Indeed we can prove that there exists a functor tolo : H!H top which extends
the functor associating the underlying topological space to a complex space. In
the algebraic case it extends the corresponding functor which associates to an
algebraic variety over C the topological space of its Zariski closed points. More
precisely, let r : S!T be the functor sending a complex space to its underlying
topological space. Then tolo is a functor satisfying the following properties:

(1) if X a DopFTðSÞ is a simplicial set, then the class toloðX Þ can be represented
by the geometric realization jX j;
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(2) if F is the sheaf HomSð�;XÞ, where X a S, then toloðFÞ can be represented
by rðXÞ;

(3) tolo commutes with direct products and homotopy colimits.

In particular,

toloðSn
parÞG toloðSn

iperÞGSn

and

toloððC�ÞbjbSi�j
par ÞG toloððC�ÞbjbS

i�j
iper ÞGSi:

Therefore, for any complex space X , we obtain homomorphisms pi; jðX ; xÞ !
piðrðX Þ; rðxÞÞ induced by the topological realization functor. Such homomor-
phisms are not injective nor surjective, in general, however, sometimes they are
useful to show that some holotopy class is nonzero.

6. Some applications

In this last section we are going to consider few applications of the theory
developed so far. We will begin with examples of complex spaces that are not
C-weakly equivalent to any complex hyperbolic space.

We will say that a complex space is weakly hyperbolic if it is C-weakly equiv-
alent to a Brody hyperbolic complex space.

A preliminary result is the following:

Lemma 6.1. The pointed simplicial sheaf C�bS1
par is canonically weakly equiva-

lent to CP1.

Then we can prove that

Theorem 6.1. For any n > 0, CPn is not weakly hyperbolic. In other words, CPn

cannot be represented in H by a Brody hyperbolic complex space.

Proof. In view of Theorem 4.1, it is su‰cient to show that

ppar

2;1ðCPn;lÞ ¼ HomH� ðC�bS1
par; ðCPn; flgÞÞA0

or equivalently, by Lemma 6.1, that

HomH� ðP1; ðCPn; flgÞÞA 0:

Our candidate to represent a nonzero class is the canonical embedding
i : CP1 ,! CPn.

Let jCPnj be the underlying topological space of CPn. The topological real-
ization yields a group homomorphism

t : ppar

2;1ðCPn;lÞ ! p2ðjCPnj;lÞ:
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toloðiÞ : CP1 ,! CPn is the canonical inclusion and not null homotopic, since
jCPnj is obtained by jCP1j by attaching cells of dimension 4 and above, hence it
is a homotopy equivalence up to dimension 2 and in particular

toloðiÞ� : Z ¼ p2ðjCP1j;lÞ ! p2ðjCPnj;lÞ

is an isomorphism. In conclusion t½i�A 0, thus ½i�A 0 a ppar

2;1ðCPn;lÞ. r

The following proposition describes a characteristic that a weakly hyperbolic,
non Brody hyperbolic complex spaces X must have:

Proposition 6.1. Let X be a complex space and p : ~XX ! X a covering holo-
morphic function. Assume that X is weakly hyperbolic and let f : C! X be a
nonconstant holomorphic function. Then for any lifting ~ff of f to ~XX, ~ff ðCÞ contains
just one point in each fiber of p or equivalently pj ~ff ðCÞ is a biholomorphism for any
such f and ~ff .

Proof. Let X be weakly hyperbolic. Assume, by contradiction, that there exist
a nonconstant holomorphic function f : C! X and a lifting ~ff : C! ~XX such
that aA b a p�1ðxÞ, x a X , a; b a ~ff ðCÞ. For the purposes of this proof, we can
assume that ~ff ð0Þ ¼ a and ~ff ð1Þ ¼ b. Then we have the following commutative
diagram:

C ���!
~ff ~XX?

?
?
yq

?
?
?
yp

C=ð0q 1Þ :::::::::

ba

X

ð8Þ

where a sends the class of f0g q f1g to x a X . We have that ½a�A 0 a ppar
1;0ðX ; xÞ.

Indeed, ½a top�A0 a p1ðX top; xÞ. Consider the composition

½0; 1� !g C=ð0q 1Þ !a
top

X top;

where g is a path from 0 to 1 in C. If a top � g is not homotopic to a constant
relatively to f0; 1g, then a top is not homotopic to a constant. But, by construction,
a top � g lifts uniquely to a path in ~XX top starting from a and ending at b, hence
a top � g cannot be homotopic to a constant relatively to f0; 1g. This shows that
p1ðX top; xÞA 0 which is absurd since X is weak hyperbolic. r

The Proposition 6.1 in particular implies the following

Corollary 6.1. Any complex space X whose universal covering space is Cn for
some nb 1, is not weakly hyperbolic.

Proof. Let p : Cn ! X be the universal covering of X . Let aA b a p�1ðxÞ,
x a X . A complex line lHCn passing through a, b provides a homorphic map
f : C! X which does not satisfy the conclusion of Proposition 6.1. r
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Knowing that a nonzero holotopy group implies that the complex space is not
(weakly) hyperbolic, we may ask if the opposite implication holds, as well. In
general the answer is negative; however, by a di¤erent rephrasing of the previous
proposition, we conclude:

Proposition 6.2. Let X be a non Brody hyperbolic complex space admitting a
covering p : Y ! X with a fiber p�1ðxÞ intersecting the image of C! Y in at least
two distinct points. Then ppar

1;0ðX ; xÞA 0.
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