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Abstract. — The main results concerning Mackey convergent sequences are extended to the con-

text of topological modules, including a characterization of bornological topological modules.
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In his important work [5], Mackey introduced the notion of a Mackey convergent
sequence in a locally convex space and characterized bornological locally convex
spaces by means of that notion. The notion of bornologicalness appeared explic-
itly for the first time in an important work of Bourbaki [2], where it is observed
that a space is bornological if and only if any linear mapping on it transforming
bounded sets into bounded sets is continuous. A lucid presentation of the basic
facts about the subject may be found in Grothendieck’s book [3].

In this paper we define the notion of Mackey convergence in the context of to-
pological modules over metrizable topological rings and prove that the basic facts
about Mackey convergence may be extended to this general setting. The main re-
sult obtained here is a characterization of bornological topological modules show-
ing that the approaches of Mackey and Bourbaki remain equivalent in our case.

Throughout this paper R shall denote a metrizable topological ring with a
non-zero identity element such that the product of two arbitrary neighborhoods
of 0 in R is a neighborhood of 0 in R, and all topological R-modules under con-
sideration shall be unitary left topological R-modules.

Remark 1. If S is a topological ring with a non-zero identity element such that
0 a S�, where S� is the multiplicative group of all invertible elements of S, then
the product of two arbitrary neighborhoods of 0 in S is a neighborhood of 0 in S.
In particular, this property holds if ðS; jj � jjÞ is a seminormed ring ([7], Definition
16.8) with a non-zero identity element such that there exists a l a S� with
jjljj < 1, and hence if ðK; j � jÞ is a non-trivially valued division ring. On the other
hand, the product of two neighborhoods of 0 in the metrizable topological ring
Zp of p-adic integers is a neighborhood of 0 in Zp, although 0 B Z�

p .

Definition 2. Let E be a topological R-module and ðxnÞn AN a sequence in
E. We shall say that ðxnÞn AN converges to 0 in the Mackey sense, and write



ðxnÞn AN !M 0, if there exist a null sequence ðlnÞn AN in R and a null sequence
ðynÞn AN in E such that xn ¼ ln yn for all n a N.

Proposition 3. Let ðxnÞn AN be a sequence in a topological R-module E and con-
sider the following conditions:

(a) ðxnÞn AN !M 0;
(b) there exists a bounded subset B of E satisfying the following property: for each

neighborhood W of 0 in R there exists an n0 a N such that xn a WB for all
nb n0;

(c) ðxnÞn AN ! 0 in E.

Then (a) and (b) are equivalent, and (b) implies (c).

Proof. (a) implies (b): By hypothesis, there are a null sequence ðlnÞn AN in
R and a null sequence ðynÞn AN in E such that xn ¼ ln yn for all n a N. Put
B ¼ fyn; n a Ng, which is a bounded subset of E by Theorem 15.4 of [7], and
let W be an arbitrary neighborhood of 0 in R. Then there exists an n0 a N such
that ln a W for all nb n0, and hence xn a WB for all nb n0. This proves (b).

(b) implies (c): Let U be an arbitrary neighborhood of 0 in E. By the bounded-
ness of B, there exists a neighborhood W of 0 in R such that WBHU and, by
hypothesis, there exists an n0 a N such that xn a WB for all nb n0. Thus xn a U
for all nb n0. Therefore ðxnÞn AN ! 0 in E, proving (c).

(b) implies (a): Let W0 IW1 I � � �IWn IWnþ1 I � � � be a countable funda-
mental system of neighborhoods of 0 in R. We claim that there exists a sequence

ðmiÞi AN of natural numbers such that mi > mi�1 (m�1 ¼ 0) and xn a ðWiÞ2B for
all nbmi. To justify the existence of ðmiÞi AN we shall argue by induction, as fol-
lows. First, since ðW0Þ2 is a neighborhood of 0 in R, there is an integer m0 > 0
such that xn a ðW0Þ2B for all nbm0. Second, let s be an integerb 0 and sup-
pose that integers mi (0a ia s) satisfying the required properties have been
constructed. Then, since ðWsþ1Þ2 is a neighborhood of 0 in R, there is an in-
teger msþ1 > ms such that xn a ðWsþ1Þ2B for all nbmsþ1. Thus the existence
of ðmiÞi AN is justified. Finally, for i a N and mi a n < miþ1 we can write

xn ¼ lð1Þn lð2Þn zn, where lð1Þn ; lð2Þn a Wi and zn a B. It is clear that ðlð1Þn Þnbm0
and

ðlð2Þn Þnbm0
converge to 0 in R. Then ðlð2Þn znÞnbm0

converges to 0 in E and, conse-

quently, ðxnÞn AN !M 0, proving (a).
This completes the proof.

Before proceeding, let us recall a known example of a null sequence which
does not converge to 0 in the Mackey sense.

Example 4. Let X be an arbitrary infinite-dimensional Banach space and let
X 0 be its topological dual. By the Josefson-Nissenzweig theorem [4, 6], there is
a sequence ðjnÞn AN in X 0 such that jjjnjj ¼ 1 for all n a N, and ðjnÞn AN ! 0 in
ðX 0; sðX 0;X ÞÞ. If ðlnÞn AN is an arbitrary null sequence of strictly positive real
numbers, then the sequence ðjn=lnÞn AN is not bounded in ðX 0; sðX 0;X ÞÞ because
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jjjn=lnjj ¼ 1=ln for all n a N. Therefore ðjnÞn AN does not converge to 0 in the
Mackey sense in the space ðX 0; sðX 0;X ÞÞ, which is not metrizable.

Proposition 5. Let E and F be two topological R-modules and u : E ! F an
R-linear mapping. Then the following conditions are equivalent:

(a) for every bounded subset B of E, uðBÞ is a bounded subset of F;
(b) for every sequence ðxnÞn AN in E converging to 0 in the Mackey sense,

ðuðxnÞÞn AN converges to 0 in the Mackey sense;
(c) for every sequence ðxnÞn AN in E converging to 0 in the Mackey sense,

ðuðxnÞÞn AN converges to 0 in F;
(d) for every sequence ðxnÞn AN in E converging to 0 in the Mackey sense,

ðuðxnÞÞn AN is bounded.

Proof. First, (b) implies (c) by Proposition 3, (c) implies (d) because every null
sequence is bounded, and (a) implies (d) by Proposition 3 and the fact that every
null sequence is bounded.

Let W0 IW1 I � � �IWn IWnþ1 I � � � be a countable fundamental system
of neighborhoods of 0 in R.

Now, we claim that (d) implies (a). Indeed, assume there exists a bounded sub-
set B of E such that uðBÞ is not bounded. Since each ðWnÞ3 is a neighborhood
of 0 in R, there exists a neighborhood V of 0 in F such that WnuððWnÞ2BÞ ¼
ðWnÞ3uðBÞQV for all n a N. Thus for each n a N there are lð1Þn ; lð2Þn a Wn and
zn a B so that Wnuðlð1Þn lð2Þn znÞQV for all n a N. As we have already observed,

ðlð1Þn lð2Þn znÞn AN !M 0; but ðuðlð1Þn lð2Þn znÞÞn AN is not bounded.
Finally, let us prove that (d) implies (b). Indeed, let ðxnÞn AN be a sequence in

E such that ðxnÞn AN !M 0 and let B be a bounded subset of E as in condition
(b) of Proposition 3. By arguing as in the proof of Proposition 3, with ðWiÞ4 in
place of ðWiÞ2, we obtain a sequence ðmiÞi AN of natural numbers such that
mi > mi�1 (m�1 ¼ 0) and xn a ðWiÞ4B for nbmi. Therefore we can write xn ¼
lð1Þn lð2Þn lð3Þn lð4Þn zn for nbm0, where ðlð1Þn Þnbm0

, ðlð2Þn Þnbm0
, ðlð3Þn Þnbm0

and ðlð4Þn Þnbm0

are null sequences in R and ðznÞnbm0
is a sequence in B. Since ðlð4Þn znÞnbm0

! 0 in

E, ðlð3Þn lð4Þn znÞnbm0
!M 0, and hence ðuðlð3Þn lð4Þn znÞÞnbm0

is bounded by hypothesis.

Consequently, ðuðxnÞÞn AN !M 0 since uðxnÞ ¼ lð1Þn ðlð2Þn uðlð3Þn lð4Þn znÞÞ for nbm0 and

ðlð2Þn uðlð3Þn lð4Þn znÞÞnbm0
! 0 in F .

This completes the proof.

Proposition 6. Let E be a metrizable topological R-module such that the prod-
uct of any neighborhood of 0 in R by any neighborhood of 0 in E is a neighborhood

of 0 in E. If ðxnÞn AN ! 0 in E, then ðxnÞn AN !M 0.

Proof. Let W0 IW1 I � � �IWn IWnþ1 I � � � (resp. U0 IU1 I � � �IUn I
Unþ1 I � � �) be a countable fundamental system of neighborhoods of 0 in R
(resp. of 0 in E). Since WiUi is a neighborhood of 0 in E for all i a N, we can
argue as in the proof of Proposition 3 to construct a sequence ðmiÞi AN of natural
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numbers so that mi > mi�1 (m�1 ¼ 0) and xn a WiUi for nbmi. Hence we can
write xn ¼ ln yn for nbm0, where ðlnÞnbm0

! 0 in R and ðynÞnbm0
! 0 in E.

Therefore ðxnÞn AN !M 0, as was to be shown.

The condition concerning product of neighborhoods of 0 is essential for the
validity of Proposition 6, as the following example shows.

Example 7. Let S be a ring with an identity element 1A 0 endowed with the
discrete topology. Let I be a non-empty countable set and consider the product
topological ring S 0 ¼ SI . Note that S 0 is metrizable, discrete if I is finite and non-
discrete if I is infinite. Fix an element j a I and let pj : ðliÞi A I a S 0 7! lj a S. Let
E be the product topological group SN endowed with the following law:

ððliÞi A I ; ðxkÞk ANÞ a S 0 � E 7! ðljxkÞk AN a E:

Then E is a metrizable topological S 0-module. Note that W ¼ p�1
j ðf0gÞ is a

neighborhood of 0 in S 0, V ¼ E is a neighborhood of 0 in E, butWV ¼ f0g is not
a neighborhood of 0 in E. If ðxnÞn AN is a sequence in E such that ðxnÞn AN !M 0,
then there are a null sequence ðlnÞn AN in S 0 and a null sequence ðynÞn AN in E
such that xn ¼ ln yn for all n a N. But, since S is equipped with the discrete
topology, there is an m a N so that pjðlnÞ ¼ 0 for nbm, and hence xn ¼ 0 for
nbm. For each n ¼ 1; 2; . . . , let zn ¼ ð0; 0; . . . ; 0

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n times

; 1; 1; 1; . . .Þ a E. Obviously,

ðznÞnb1 ! 0 in E and, by what we have just observed, ðznÞnb1 does not converge
to 0 in the Mackey sense.

Our final result is a characterization of bornological topological R-modules [1]
which incorporates the approaches of Mackey and Bourbaki.

Theorem 8. For a topological R-module E, consider the following conditions:

(a) E is bornological;
(b) for each topological R-module F , each R-linear mapping from E into F which

transforms bounded sets into bounded sets is continuous;
(c) for each semimetrizable topological R-module F , each R-linear mapping from

E into F which transforms bounded sets into bounded sets is continuous;
(d) for each topological R-module F , each R-linear mapping from E into F which

transforms sequences converging to 0 in the Mackey sense into sequences con-
verging to 0 in the Mackey sense is continuous;

(e) for each topological R-module F , each R-linear mapping from E into F which
transforms sequences converging to 0 in the Mackey sense into null sequences is
continuous;

(f ) for each topological R-module F , each R-linear mapping from E into F which
transforms sequences converging to 0 in the Mackey sense into bounded se-
quences is continuous;

(g) for each topological R-module F , each set of R-linear mappings from E into F
which transforms bounded sets into bounded sets is equicontinuous.
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Then conditions (a), (b), (d), (e), (f ) and (g) are equivalent. In addition, if
0 a R�, then all conditions are equivalent.

Proof. The equivalence among (b), (d), (e) and (f ) follows from Proposition 5.
Obviously, (g) implies (b). The equivalence between (a) and (b) and the fact that
(a) implies (g) follow from the theorem established in [1].

Clearly, (b) implies (c). So it remains to prove that (c) implies (b) under the
assumption that 0 a R�. Indeed, let W0 IW1 I � � �IWn IWnþ1 I � � � be a
countable fundamental system of neighborhoods of 0 in R. Let F be an arbitrary
topological R-module and u : E ! F an R-linear mapping which transforms
bounded sets into bounded sets. Let V be an arbitrary symmetric neighbor-
hood of 0 in F and let V1 be a symmetric neighborhood of 0 in F such that
V1 þ V1 HV . Choose a neighborhood T2 of 0 in R, T2 HW2, and a symmetric
neighborhood V2 of 0 in F , V2 HV1, so that T2V2 HV1, and choose a symmetric
neighborhood V3 of 0 in F so that V3 þ V3 HT2V2BV2. Now, let T4 be a neigh-
borhood of 0 in R, T4 HW4, and V4 a symmetric neighborhood of 0 in F ,
V4 HV3, so that T4V4 HV3. Let V5 be a symmetric neighborhood of 0 in F so
that V5 þ V5 HT4V4BV4. By induction, we construct a sequence ðT2nÞnb1 of
neighborhoods of 0 in R and a sequence ðVnÞn AN of symmetric neighborhoods
of 0 in F , with V0 ¼ V , such that T2n HW2n, V2n HV2n�1, T2nV2n HV2n�1 and
V2nþ1 þ V2nþ1 HT2nV2nBV2n for all nb 1. We claim that the filter base B ¼
fV1;V3;V5; . . .g on F satisfies conditions (ATG 1), (ATG 2), (TMN 1), (TMN
2) and (TMN 3) of Theorem 12.3 of [7]. In fact, (ATG 1) holds because
V2nþ1 þ V2nþ1 HV2n HV2n�1 for all nb 1, (ATG 2) holds because every element
of B is symmetric, and (TMN 1) holds because T2nV2nþ1 HT2nV2n HV2n�1 for
all nb 1. Now, let y0 a F and n a N be arbitrary. Since V2nþ1 is a neighbor-
hood of 0 in F , there is a neighborhood W of 0 in R such that Wy0 HV2nþ1,
and (TMN 2) holds. Finally, let l0 a R and nb 1 be arbitrary. Since
fW2;W4;W6; . . .g is a fundamental system of neighborhoods of 0 in R, there is
an integer m > n such that l0T2m HT2n. Thus l0V2mþ1 H l0T2mV2m HT2nV2n H
V2n�1, and (TMN 3) holds. Therefore, by the theorem just mentioned, there exists
a unique R-module topology t on F for which B is a fundamental system of
neighborhoods of 0. Let G be the topological R-module ðF ; tÞ, which is semime-
trizable because B is countable. Since u : E ! G transforms bounded sets into
bounded sets, then it is continuous by hypothesis. Consequently, u�1ðV1Þ is a
neighborhood of 0 in E, and hence u�1ðVÞ is a neighborhood of 0 in E because
V IV1. Therefore u : E ! F is continuous, proving (b).

This completes the proof of the theorem.
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