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Abstract. — By retracing research on coexistent magnitudes (grandeurs coexistantes) by Cauchy

[9, (1841)], Peano in Applicazioni geometriche del calcolo infinitesimale [48, (1887)] defines the
‘‘density’’ (strict derivative) of a ‘‘mass’’ (a distributive set function) with respect to a ‘‘volume’’ (a

positive distributive set function), proves its continuity (whenever the strict derivative exists) and
shows the validity of the mass-density paradigm: ‘‘mass’’ is recovered from ‘‘density’’ by integration

with respect to ‘‘volume’’. It is remarkable that Peano’s strict derivative provides a consistent mathe-
matical ground to the concept of ‘‘infinitesimal ratio’’ between two magnitudes, successfully used

since Kepler. In this way the classical (i.e., pre-Lebesgue) measure theory reaches a complete and
definitive form in Peano’s Applicazioni geometriche.

A primary aim of the present paper is a detailed exposition of Peano’s work of 1887 leading to

the concept of strict derivative of distributive set functions and their use. Moreover, we compare
Peano’s work and Lebesgue’s La mesure des grandeurs [35, (1935)]: in this memoir Lebesgue, mo-

tivated by coexistent magnitudes of Cauchy, introduces a uniform-derivative of certain additive set
functions, a concept that coincides with Peano’s strict derivative. Intriguing questions are whether

Lebesgue was aware of the contributions of Peano and which role is played by the notions of strict
derivative or of uniform-derivative in today mathematical practice.
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1. Introduction

By referring to Cauchy [9, (1841)] Peano introduces in Applicazioni geometriche
del calcolo infinitesimale [48, (1887)] the concept of strict derivative of set func-
tions. The set functions considered by him are not precisely finitely additive mea-
sures. The modern concept of finite additivity is based on partitions by disjoint
sets, while Peano’s additivity property coincides with a traditional supple con-
cept of ‘‘decompositions of magnitudes’’, which Peano implements in his proofs
as distributive set functions.

Contrary to Peano’s strict derivative (rapporto), Cauchy’s derivative (rap-
port di¤érentiel ) of a set function corresponds to the usual derivative of functions
of one variable. In Peano’s Theorem 7.1 on strict derivative of distributive set



functions the (physical) mass-density paradigm is realized: the ‘‘mass’’ (a dis-
tributive set function) is recovered from the ‘‘density’’ (the strict derivative)
by integration with respect to the ‘‘volume’’ (a positive distributive set function
of reference).

Peano expresses Cauchy’s ideas in a more precise and modern language and
completes the program proposed by Cauchy, who, at the end of his article [9,
(1841) p. 229], writes:

Dans un autre Mémoire nous donnerons de nouveaux développements aux
principes ci-dessus exposés [on coexistent magnitudes], en les appliquant
d’une manière spéciale à l’évalutation des longueurs, des aires et des vo-
lumes.1

Among numerous applications of Peano’s strict derivative of set functions
which can be found in Applicazioni geometriche, there are formulae on oriented
integrals, in which the geometric vector calculus by Grassmann plays an impor-
tant role. For instance, Peano proves the formula of area starting by his defini-
tion of area of a surface, that he proposed in order to solve the drawbacks of
Serret’s definition of area [62, (1879)].

The didactic value of Peano’s strict derivative of set functions is transparent:
in La mesure des grandeurs [35, (1935)] Lebesgue himself uses a similar approach
to di¤erentiation of measures in order to simplify the exposition of his measure
theory.

In Section 2, Peano’s and Lebesgue’s derivative are compared in view of the
paradigm of mass-density and of the paradigm of primitives, that motivated
mathematical research between 19 th century and the beginning of 20 th century.
In the celebrated paper L’intégration des fonctions discontinues [29, (1910)] Le-
besgue defines a derivative of s-additive measures with respect to the volume.
He proves its existence and its measurability. In the case of absolute continuity
of the s-additive measures, Lebesgue proves that the measure is given by the
integral of his derivative with respect to the volume. As it will be seen later in
details, Peano’s strict derivative of distributive set functions does not necessarily
exist and, moreover, whenever it exists, Peano’s strict derivative is continuous,
while Lebesgue’s derivative in general is not.

Section 3 presents an overview of Peano’s work on pre-Lebesgue classical
measure theory which is completed in Sections 5–6.

Section 4 is devoted to an analysis of Cauchy’s Coexistent magnitudes
[9, (1841)]2, by emphasizing the results that will be found, in a di¤erent language,
in Peano’s Applicazioni geometriche or in Lebesgue’s La mesure des grandeurs.

Section 5 concerns the concept of ‘‘distributive family’’ and of ‘‘distributive
set function’’ as presented by Peano in Applicazioni geometriche and in his
paper Le grandezze coesistenti di Cauchy [55, (1915)].

1 ½½In another memoir we will give new developments to the above mentioned statements [on

coexistent magnitudes], and we will apply them to evaluate lengths, areas and volumes.��
2From now on we refer to Cauchy’s paper Mémoire sur le rapport di¤érentiel de deux grandeurs

qui varient simultanément [9, (1841)] as to Coexistent magnitudes.
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Section 6 presents a definition of strict derivative of set functions, main results
and some applications, while in Section 7 we discuss Peano’s definition of inte-
gral of set functions and a related theorem that realizes the mentioned physical
paradigm of mass-density.

Section 8 presents the approach of Lebesgue in La mesure des grandeurs to
Cauchy’s coexistent magnitudes, leading to introduction of a new notion of de-
rivative: the uniform-derivative.

We observe that this paper is mainly historical. From a methodological point
of view, we are focussed on primary sources, that is, on mathematical facts and
not on the elaborations or interpretations of these facts by other scholars of his-
tory of mathematics. For convenience of the reader, original statements and, in
some case, terminology are presented in a modern form, preserving, of course,
their content.

Historical investigations on forgotten mathematical achievements are not
useless (from the point of view of mathematics), because some of them carry
ideas that remain innovative today. This thought was very well expressed by
Mascheroni before the beginning of the study of the geometrical problems
leading to the Geometria del compasso (1797):

[ . . . ] mentre si trovano tante cose nuove progredendo nelle matematiche,
non si potrebbe forse trovare qualche luogo ancora incognito retrocedendo?3

By respect for historical sources and for the reader’s convenience, the quotations
in the sequel will appear in the original tongue with a translation in double square
brackets, placed in footnote.

2. The physical paradigm of mass-density versus the paradigm

of primitives

In Philosophiae Naturalis Principia Mathematica (1687) the first definition con-
cerns mass and density:

Quantitas materiae est mensura ejusdem orta ex ilius densitate et magnitu-
dine conjunctim [ . . . ]. Hanc autem quantitem sub nomine corporis vel
massa in sequentibus passim intelligo.4

In this sentence Newton presents the mass-density paradigm (i.e., the mass can
be computed in terms of the density and, conversely, the density can be obtained
from the mass) as a fundament of Physics.

In Coexistent magnitudes [9, (1841)] Cauchy, with a clear didactic aim, uses
the mass-density paradigm in order to give a unitary exposition of several prob-
lems related to di¤erential calculus.

3 ½½While we can find so many new things by moving forward in mathematics, why can’t we find
some still unknown area by retroceding?��

4 ½½The quantity of matter is a measure of the matter itself, arising from its density and magnitude
conjunctly [ . . . ]. It is this quantity that I mean hereafter everywhere under the name of body or

mass.��
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From a mathematical point of view the implementation of this physical para-
digm presents some di‰culties and it does not assure a univocal answer. The first
di‰culty is in defining what is a ‘‘mass’’, the second is in choosing a procedure for
evaluating ‘‘density’’ and, finally, in determining under what condition and how
it is possible ‘‘to recover’’ the mass from the density.

All these critical aspects that we find in Cauchy [9, (1841)], are overcome in a
precise and clear way by Peano in Applicazioni geometriche [48, (1887)].

Natural properties that connect density and mass are the following:

(2.1) The density of a homogenous body is constant.
(2.2) The greater is the density, the greater is the mass.
(2.3) The mass of a body, as well as its volume, is the sum of its parts.

The realization of the physical paradigm can be mathematically expressed by
the following formula

mðAÞ ¼
Z
A

g dðvolnÞð2:4Þ

where m is the ‘‘mass’’, g is the ‘‘density’’ and voln is the n-dimensional volume.5
The properties (2.1), (2.2) and (2.3) do not allow for a direct derivation of (2.4)

without further conditions depending on the meaning of integral; for instance,
having in mind the Riemann integral, an obvious necessary condition is the
Riemann integrability of the density g.

In Peano’s Applicazioni Geometriche [48, (1887)]:

• the ‘‘masses’’ and the ‘‘volumes’’ are represented by distributive set functions, as
it will be shown in detail in §5,

• the ‘‘densities’’ (strict derivatives) are computed using a limit procedure, as we
shall see in the sequel (see formula (2.5)),

• the ‘‘mass’’ is recovered by integration using (2.4). This final step is strength-
ened by the fact that Peano’s strict derivative is continuous.

The mathematical realization of mass-density paradigm is directly connected
with mathematical paradigm of primitives, that is with the study of conditions
assuring that integration is the inverse operation of di¤erentiation.

At the beginning of the 20 th century the problem of looking for primitives is
the cornerstone of the new theory of measure, founded by Lebesgue [28, (1904)].
The problem of primitives becomes arduous when one has to pass from functions
of one variable to functions of more variables. Lebesgue in L’intégration des
fonctions discontinues [29, (1910)] overcomes these di‰culties by substituting the
integral of a generic function g with a set function m described by formula (2.4).

The paradigm of primitives gives more importance to the operations (of dif-
ferentiation and integration) than to the set functions. On the contrary, in the
mass-density paradigm the primary aim is the evaluation of the infinitesimal ratio

5 In today terminology, the realization of (2.4) is expressed by saying that g is the Radon-

Nikodym derivative of m with respect to voln.
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between two set functions (for instance, mass and volume) in order to have the
‘‘density’’ and, consequently, to recover the ‘‘mass’’ by integrating the ‘‘density’’
with respect to ‘‘volume’’. On the other hand in the paradigm of primitives the
main problem is extending of the notion of integral in order to describe a primi-
tive of a given function and, consequently, to preserve fundamental theorem of
calculus.

In Lebesgue’s works the two paradigms appear simultaneously for the first
time in the second edition of his famous book Leçons sur l’intégration et la
recherche des fonctions primitives [32, (1928) pp. 196–198]. In 1921 (see [37, vol. I,
p. 177]) Lebesgue has already used some physical concept in order to make the
notion of set function intuitive; analogously in [30, (1926)] and [32, (1928) pp.
290–296] he uses the mass-density paradigm in order to make more natural the
operations of di¤erentiation and integration. In his lectures Sur la mesure des
grandeurs [35, (1935)], the physical paradigm leads Lebesgue to an alternative
definition of derivative: he replaces his derivative of 1910 with the new uniform-
derivative (equivalent to the strict derivative introduced by Peano), thus allowing
him to get continuity of the derivative.

Before comparing Peano’s and Lebesgue’s derivative of set functions, we
recall the definitions of derivative given by Peano and Cauchy.

Peano’s strict derivative of a set function (for instance, the ‘‘density’’ of a
‘‘mass’’ m with respect to the ‘‘volume’’) at a point x is computed, when it exists,
as the limit of the quotient of the ‘‘mass’’ with respect to the ‘‘volume’’ of a cube
Q, when the supremum of the distances of the points of the cube from x tends to
0 (in symbols Q ! x). In formula, Peano’s strict derivative gPðxÞ of a mass m at
x is given by:

gPðxÞ :¼ lim
Q!x

mðQÞ
volnðQÞ :ð2:5Þ

Every limit procedure of a quotient of the form
mðQÞ

volnðQÞ with Q ! x and the point x
not necessarily belonging to Q, will be referred to as derivative à la Peano.

On the other hand, Cauchy’s derivative [9, (1841)] is obtained as the limit of
the ratio between ‘‘mass’’ and ‘‘volume’’ of a cube Q including the point x, when
Q ! x. In formula, Cauchy’s derivative gCðxÞ of a mass m at x is given by:

gCðxÞ :¼ lim
Q!x
x AQ

mðQÞ
volnðQÞ :ð2:6Þ

Every limit procedure of a quotient of the form
mðQÞ

volnðQÞ with Q ! x and the point x

belonging to Q, will be referred to as derivative à la Cauchy.
Lebesgue’s derivative of set functions is computed à la Cauchy. Notice that

Lebesgue considers finite s-additive and absolutely continuous measures as
‘‘masses’’, while Peano considers distributive set functions. Lebesgue’s deriva-
tive exists (i.e., the limit (2.6) there exists for almost every x), it is measurable
and the reconstruction of a ‘‘mass’’ as the integral of the derivative is assured
by absolute continuity of the ‘‘mass’’ with respect to volume. On the contrary,
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Peano’s strict derivative does not necessarily exist, but when it exists, it is contin-
uous and the mass-density paradigm holds.6

The constructive approaches to di¤erentiation of set functions corresponding
to the two limits (2.5) and (2.6) are opposed to the approach given by Radon

[61, (1913)] and Nikodym [44, (1930)], who define the derivative in a more ab-
stract and wider context than those of Lebesgue and Peano. As in the case of
Lebesgue, a Radon-Nikodym derivative exists; its existence is assured by assum-
ing absolute continuity and s-additivity of the measures.

In concluding this Section, let us remark that the physical properties (2.1),
(2.2) and (2.3), that stand at the basis of the mass-density paradigm, lead to the
following direct characterization of the Radon-Nikodym derivative. Let m and
n be finite s-additive measures on a s-algebra A of subsets of X and let n be
positive and m be absolutely continuous with respect to n. A function g : X ! R

is a Radon-Nikodym derivative of m with respect to n (i.e., mðAÞ ¼
Z
A

g dn for

every A a A) if and only if the following two properties hold for every real
number a:

(2.7) mðAÞb anðAÞ for every AH fgb ag and A a A,
(2.8) mðAÞa anðAÞ for every AH fga ag and A a A,

where fga ag :¼ fx a X : gðxÞa ag and, dually, fgb ag :¼ fx a X : gðxÞb ag.
These properties (2.7) and (2.8), expressed by Nikodym [44, (1930)] in terms of
Hahn decomposition of measures, are a natural translation of properties (2.1),
(2.2) and (2.3).

3. Peano on (pre-Lebesgue) classical measure theory

The interest of Peano in measure theory is rooted in his criticism of the definition
of area (1882), of the definition of integral (1883) and of the definition of derivative
(1884). This criticism leads him to an innovative measure theory, which is exten-
sively exposed in Chapter V of Applicazioni geometriche [48, (1887)].

The definition of area given by Serret in [62, (1879)] contrasted with the tra-
ditional definition of area: in 1882 Peano, independently of Schwarz, observed
(see [51, (1890)]) that the area of a cylindrical surface cannot be evaluated as
the limit of inscribed polyhedral surfaces, as prescribed by Serret’s definition.
In Applicazioni geometriche, Peano provides a consistent definition of area and
proves the integral formula of area.7

6Clearly, if Peano’s strict derivative of a finite s-additive measure exists, then it coincides with
Lebesgue derivative and the ‘‘mass’’ is absolutely continuous.

Nowadays it is not surprising that Lebesgue’s derivative can be seen as Peano’s strict derivative
by lifting both measures on a s-algebra A and A-measurable functions to measures on the Stone

space associated to A and the related continuous functions, respectively.
7This topic will be extensively analyzed in a forthcoming paper by Greco, Mazzucchi,

Pagani [19].
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Peano’s criticism of the definition of Riemann integral of a function and of its
relation with the area of the ordinate-set (i.e., hypograph of the function) [45,
(1883)], forces him to introduce outer/inner measure as the set-theoretic counter-
parts of upper/lower integral: he defines the latter in terms of infimum/supremum
(instead of limits, as done traditionally) of the Darboux sums.8 Peano, in intro-
ducing the inner and outer measure as well as in defining area [51, (1890)], is also
influenced by Archimedes’s approach on calculus of area, length and volume of
convex figures.

In 1884, by analyzing the proof of mean value theorem, given by Jordan9
in the first edition of Cours d’analyse, Peano stresses the di¤erence between dif-
ferentiable functions and functions with continuous derivative. The continuity of
the derivative is expressed by Peano in terms of the existence of the limit

lim
x;y!x
xAy

f ðxÞ � f ðyÞ
x� y

ð3:1Þ

for any x in the domain of f .10 Moreover, Peano, in his correspondence with
Jordan [46, 47, (1884)], observes that uniform convergence of the di¤erence
quotient is equivalent to the continuity of the derivative.11 This notion of contin-

8According with Letta [38, 39], the notion of negligible set is introduced after an arduous
process of investigation on ‘‘similar’’ notions related to cardinality and topology, between 1870

and 1882. Afterward, the definition of Inhalt (content) appears in the works by Stolz [64,
(1884)], Cantor [5, (1884)], Harnack [20, (1885)]. The notions of inner and outer measure are

introduced by Peano in [45, (1883) p. 446] and in [48, (1887) pp. 152–161], and later by Jordan

[24, (1892)]. In the following we will refer to the inner and to the outer measures as to Peano-Jordan

measures.
In [38] Letta appraises Peano’s contributions by the lapidary phrase:

[C]on uno sforzo di astrazione veramente notevole per il suo tempo, egli [Peano] osserva che i

concetti di lunghezza, area, volume sono altrettanti casi particolari di un unico concetto, la
cui definizione (tradotta in linguaggio moderno) può essere [ . . . ] [formulata come] funzione

additiva d’insieme.

½½With an e¤ort of abstraction, really remarkable for his epoch, he [Peano] notices that the concepts

of length, area, volume are instances of the same notion corresponding, in modern terms, to finitely
additive set function.��

9Jordan, famous geometer and algebraist, publishes only a few papers on mathematical analy-

sis. His most famous work is the Cours d’analyse, published in several editions. To our knowledge
the relationship between Peano and Jordan was good and based on reciprocal appreciation, as one

can deduce from two letters conserved in Archives de la Bibliothèque Centrale de l’Ecole Polytech-
nique (Paris).

10Later, in a paper with didactic value [53, (1892)], Peano re-proposes the distinction between
Definition (3.1) and the usual derivative of a function, and underlines the correspondence of (3.1)

with the definition of density in Physics.
Nowadays the function f is said strictly di¤erentiable at the point x if the limit (3.1) exists;

consequently, the value of the limit (3.1) is called strict derivative of f at x.
11Section 80 of Jordan’s Cours d’analyse [25, (1893) p. 68], titled ‘‘Cas où

f ðxþhÞ� f ðxÞ
h

tend

uniformément vers f 0ðxÞ’’, contains a trace of it.
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uous derivative will be the basis of Peano’s strict derivative of distributive set
functions.

Applicazioni geometriche is a detailed exposition (more than 300 pages) of sev-
eral topics of geometric applications of infinitesimal calculus.12 In Applicazioni
geometriche Peano refounds the notion of Riemann integral by means of inner
and outer measures13, and extends it to abstract measures. The development of
the theory is based on solid topological and logical ground and on a deep knowl-
edge of set theory. He introduces the notions of closure, interior and boundary of
sets.

Peano in Applicazioni geometriche [48, (1887)], and later Jordan in the paper
[24, (1892)] and in the second edition of Cours d’Analyse [25, (1893)], develops the
well known concepts of classical measure theory, namely, measurability, change
of variables, fundamental theorems of calculus, with some methodological di¤er-
ences between them.14

The mathematical tools employed by Peano were really innovative at that
time (and maybe are even nowadays), both on a geometrical and a topological
level. Peano used extensively the geometric vector calculus introduced byGrass-

mann. The geometric notions include oriented areas and volumes (called geo-
metric forms).

Our main interest concerns Chapter V of Peano’s Applicazioni geometriche,
where we find di¤erentiation of distributive set functions.

Applicazioni geometriche is widely cited, but we have the feeling that the work
is not su‰ciently known. The revolutionary character of Peano’s book is re-
marked by J. Tannery [65, (1887)]:

12As detailed in Dolecki, Greco [13], between several interesting concepts studied in Appli-

cazioni geometriche that are not directly connected with measure theory, we recall the limit of

sequences of sets (now called Kuratowski limits), the introduction of the concept of di¤erentiability
of functions (nowadays called Fréchet di¤erentiability), the definition of tangent cone (nowadays

called Bouligand cone), the necessary condition of optimality (nowadays called Fermat conditions)
and a detailed study of problems of maximun and minimun.

13The simultaneous construction of inner and outer measure is the basis of the evolution of the
theory leading to Lebesgue measure. Fortunately, Carathéodory [6, (1914)] and Hausdorff [21,

(1919)] put an end to the intoxication due to the presence of inner measure, as Carathéodory

writes [14, (2004) p. 72]:

Borel and Lebesgue (as well as Peano and Jordan) assigned an outer measure m�ðAÞ and an

inner measure m�ðAÞ to every point set A [ . . . ]. The main advantage, however, is that the new
definition [i.e., the exterior measure of Charathéodory] is independent of the concept of an

inner measure.

14 In a first paper of Jordan [24, (1892)] and in a more extensive way in his Cours d’analyse [25,
(1893)], we find several Peano’s results. There are, however, methodological di¤erences between

their approaches: Peano constructs his measure by starting from polygons, while Jordan considers
(in the 2-dimensional case) squares. The definition proposed by Peano does not have the simplicity

of that of Jordan, but it is independent of the reference frame and it is, by definition, invariant
under isometries, without any need of further proof. Moreover, Peano’s definition allows for a

direct computation of the proportionality factor appearing under the action of a‰ne transformation;
in previous works Peano had developed a formalism allowing for computation of areas of polygons

in a simple way (see [19] for details).
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Le Chapitre V porte ce titre: Grandeurs géométriques. C’est peut-être le
plus important et le plus intéressant, celui, du moins, par lequel le Livre
de M. Peano se distingue davantage des Traités classiques: les définitions
qui se rapportent aux champs de points, aux points extérieurs, intérieurs
ou limites par rapport à un champ, aux fonctions distributives (coexistantes
d’après Cauchy), à la longueur (à l’aire ou au volume) externe, interne ou
propre d’un champ, la notion d’intégrale étendue a un champ sont présen-
tées sous une forme abstraite, très précise et très claire.15

Only a few authors fully realized the innovative value of Chapter V of Appli-
cazioni geometriche. As an instance, Ascoli [1, (1955) pp. 26–27] says:

In [Applicazioni geometriche] vi sono profusi, in forma cosı̀ semplice da
parere definitiva, idee e risultati divenuti poi classici, come quelli sulla mi-
sura degli insiemi, sulla rettificazione delle curve, sulla definizione dell’area
di una superficie, sull’integrazione di campo, sulle funzioni additive di in-
sieme; ed altri che sono tutt’ora poco noti o poco studiati [ . . . ].16

Most of the modern historians are aware of the contributions to measure
theory given by Peano and Jordan concerning inner and outer measure and
measurability.17

Only a few historians mention Peano’s contributions to derivative of set func-
tions: Pesin [59], Medvedev [42] and Hawkins [22] and others.

Pesin [59, (1970) pp. 32–33], who does ‘‘not intend to overestimate the impor-
tance of Peano’s results’’, recalls some results of Peano’s work without giving
details or appropriate definitions.

Medvedev in [42, (1983)] recalls Peano’s contributions giving detailed infor-
mation both on the integral as a set function and on the Peano’s derivative.
In our opinion he gives an excessive importance to mathematical priorities
without pointing out the di¤erences between Peano’s contribution of 1887 and
Lebesgue’s contribution of 1910.18

15 ½½Chapter V is titled: Geometric magnitudes. This chapter is probably the most relevant and
interesting, the one that marks the di¤erence of the Book of Peano with respect to other classical

Treatises: definitions concerning sets of points, exterior, interior and limit points of a given set, dis-
tributive functions (coexistent magnitudes in the sense of Cauchy), exterior, interior and proper

length (or area or volume) of a set, the extension of the notion of integral to a set, are stated in an

abstract, very precise and very clear way.��
16 ½½In Applicazioni geometriche it is possible to find a clear and definitive exposition of many

mathematical concepts and results, nowadays of common knowledge: results on measure of sets,
on length of arcs, on the definition of area of a surface, on the integration on a set, on additive set

functions; and other results that are not well known [ . . . ]��
17To our knowledge the latest example of historian who forgot to quote any Peano’s contribu-

tions, is Hochkirchen [23, (2003)]. Ironically, the symbols

Z
and

Z
which Volterra (1881)

introduced for denoting lower and upper integral, were ascribed to Peano by Hochkirchen.

18Dieudonné, reviewing in [12, (1983)] the Medvedev’s paper [42, (1983)], with his usual sar-
casm denies any logical value of Peano’s definitions concerning limits and sets. Against any histor-

ical evidence, Dieudonné forgets several Peano’s papers on several notions of limit, and ignores
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Hawkins does not describe Peano’s results on di¤erentiation and integration
in detail, as they are too far from the main aim of his book, but he is aware
of Peano’s contributions to di¤erentiation of set functions [22, p. 88, 185], and
appraises Peano’s book Applicazioni geometriche:

the theory is surprisingly elegant and abstract for a work of 1887 and strik-
ingly modern in his approach [22, p. 88].

None of the historian quoted above, establishes a link between Peano’s work
on di¤erentiation of measure in Applicazioni geometriche with his paper Gran-
dezze coesistenti [55] and with Lebesgue’s comments on di¤erentiation presented
in La mesures des grandeurs [35, (1935)].

Beside Applicazioni Geometriche main primary sources on which our paper is
based are [9, 55, 29, 35, 67, 68, 16, 17].

4. Cauchy’s coexistent magnitudes

Cauchy’s seminal paper Coexistent magnitudes [9, (1841)] presents some di‰-
culties for the modern reader: the terms he introduces are rather obscure (for
instance, grandeurs, coexistantes, éléments, . . .), and the reasonings are based
on vague geometric language, accordingly to the Cauchy’s taste. Actually,
Cauchy’s aim was to make mathematical analysis as well rigorous as geometry
[8, (1821) p. ii]:

Quant aux méthodes, j’ai cherché à leur donner toute la rigueur qu’on
exige en géométrie, de manière à ne jamais recourir aux raisons tirées de
la généralité de l’algèbre.19

In his Leçons de mécanique analytique [43, (1868) pp. 172–205] Moigno, a
follower of Cauchy, reprints the paper Coexistent magnitudes. He puts into evi-
dence the vagueness of some terms of Cauchy, unfortunately without adding
any comment that may help the reader to a better understanding of Cauchy’s
paper itself.

The meaning of the terms ‘‘grandeurs’’ and ‘‘coexistantes’’ can be made precise
by analyzing the list of examples given by Cauchy. He implicitly postulates the
following properties of the ‘‘grandeurs’’:

the Formulario mathematico where Peano presents a large amount of mathematical results, includ-

ing set axiomatization, through his logical ideography. Besides, Dieudonné forgets Bourbaki’s

comments about Peano in Elements of the history of mathematics and ignores that the logical build-

ing blocks of Peano’s ideography are the atomic propositions: x a X and x ¼ y.
19 ½½About methods, I have tried to be rigorous as required in geometry, in order to avoid the

general reasonings occurring in algebra.��
Not all mathematicians at that time considered geometry as a model of rigor. Indeed Lobachev-

sky starts his famous book ‘‘Theory of parallels’’ [40, (1829) p. 11] with the following sentence:

In geometry I find certain imperfections which I hold to be the reason why this science, apart
from transition into analytics, can as yet make no advance from that state in which it has

come to us from Euclid.
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(4.1) a magnitude can be divided into finitely many infinitesimal equal elements
(using the terminology of Cauchy), where infinitesimal is related to magni-
tude and diameter;

(4.2) the ratio between coexistent magnitudes (not necessarily homogeneous) is a
numerical quantity.

Concerning the term ‘‘coexistantes’’, coexistent magnitudes are defined by
Cauchy as ‘‘magnitudes which exist together, change simultaneously and the
parts of one magnitude exist and change in the same way as the parts of the other
magnitude’’.20 Despite of the vagueness of this definition, the meaning of ‘‘coex-
istantes’’ is partially clarified by many examples of coexistent magnitudes given
by Cauchy [9, (1841) pp. 188–189], such as the volume and the mass of a
body, the time and the displacement of a moving point, the radius and the surface
of a circle, the radius and the volume of a sphere, the height and the area of
a triangle, the height and the volume of a prism, the base and the volume of a
cylinder, and so on.

Vagueness of the Cauchy’s definition of ‘‘grandeurs coexistantes’’ was pointed
out by Peano. In Applicazioni geometriche [48, (1887)] and in Grandezze co-
esistenti [55, (1915)], Peano defines them as set functions over the same given
domain, satisfying additivity properties in a suitable sense.

The primary aim of Cauchy is pedagogic: he wants to write a paper making
easier the study of infinitesimal calculus and its applications. As it is easy to
understand, Cauchy bases himself on the mass-density paradigm and introduces
the limit of the average of two coexistent magnitudes, calling it di¤erential ratio.
In a modern language we could say that the coexistent magnitudes are set func-
tions, while the di¤erential ratio is a point function. Cauchy points out that the
di¤erential ratio is termed in di¤erent ways depending on the context, namely, on
the nature of the magnitudes themselves (for instance, mass density of a body at a
given point, velocity of a moving point at a given time, hydrostatic pressure at a
point of a given surface, . . .).

Now we list the most significant theorems that are present in the paper of
Cauchy, preserving, as much as possible, his terminology.

Theorem 4.1 [9, Theorem 1, p. 190]. The average between two coexistent mag-
nitudes is bounded between the supremum and the infimum of the values of the dif-
ferential ratio.

Theorem 4.2 [9, Theorem 4, p. 192]. A magnitude vanishes whenever its di¤er-
ential ratio, with respect to another coexistent magnitude, is a null function.

20Cauchy says in [9, (1841) p. 188]:

Nous appellons grandeurs ou quantités coexistantes deux grandeurs ou quantités qui existent
ensemble et varient simultanément, de telle sorte que les éléments de l’une existent et varient,

ou s’évanouissent, en même temps que les éléments de l’autre.
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Theorem 4.3 [9, Theorem 5, p. 198]. If the di¤erential ratio between two co-
existent magnitudes is a continuous function, then the ‘‘mean value property’’ holds.21

Theorem 4.4 [9, Theorem 13, p. 202]. If two magnitudes have the same di¤er-
ential ratio with respect to another magnitude, then they are equal.

Even if Cauchy presents proofs that are rather ‘‘vanishing’’, his statements
(see theorems listed above) and his use of the di¤erential ratio allow Peano to
rebuild his arguments on solid grounds. Peano translates the coexistent magni-
tudes into the concept of distributive set functions, restating the theorems pre-
sented by Cauchy and proving them rigorously.

In Peano, the property of continuity of the di¤erential ratio (whenever it
exists) is a consequence of its definition. On the contrary, Cauchy’s definition
of di¤erential ratio does not guarantee its continuity. Cauchy is aware of the
fact that the di¤erential ratio can be discontinuous, nevertheless he thinks that,
in the most common ‘‘real’’ cases, it may be assumed to be continuous; see
[9, (1841), p. 196]:

Le plus souvent, ce rapport di¤érentiel sera une fonction continue de la
variable dont il dépend, c’est-à-dire qu’il changera de valeur avec elle par
degrés insensibles.22

and [9, (1841) p. 197]:

Dans un grand nombre de cas, le rapport di¤érentiel r est une fonction
continue [ . . . ].23

In evaluating the di¤erential ratio as a ‘‘limit of average values
mðAÞ
nðAÞ at a point

P’’, for Peano the set A does not necessarily include the point P, while for
Cauchy A includes P (as Cauchy says: A renferme le point P).

This di¤erence is fundamental also in case of linearly distributed masses. In-
deed a linear mass distribution, described in terms of a function of a real variable,
admits a di¤erential ratio in the sense of Peano if the ordinary derivative exists
and is continuous, whilst it admits a di¤erential ratio in the sense of Cauchy24
only if the function is di¤erentiable [9, (1841) p. 208]:

21Let m; n : A ! R be two magnitudes and let g be the di¤erential ratio of m with respect to n.

We say that the mean value property holds if, for any set A a A, with nðAÞA 0, there exists a point
P a A such that gðPÞ ¼ mðAÞ

nðAÞ .

22 ½½Almost always, this di¤erential ratio is a continuous function of the independent variable, i.e.,

its values change in a smooth way.��
23 ½½Almost always, the di¤erential ratio r is a continuous function [ . . . ].��
24Using the identity

f ðxþ hÞ � f ðx� kÞ
hþ k

¼
h

f ðxþhÞ� f ðxÞ
h

þ k
f ðxÞ� f ðx�kÞ

k

hþ k
for every k; h > 0

the reader can easily verify that the di¤erential ratio in the sense of Cauchy exists (i.e., the limit of
f ðxþhÞ� f ðx�kÞ

hþk
exists for k ! 0þ and h ! 0þ, with hþ k > 0) whenever f 0ðxÞ exists.
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Lorsque deux grandeurs ou quantités coexistantes se réduisent à une vari-
able x et à une fonction y de cette variable, le rapport di¤érentiel de la
fonction à la variable est précisément ce qu’on nomme la dérivée de la fonc-
tion ou le coe‰cient di¤érentiel.25

Concerning the existence of the di¤erential ratio, Cauchy is rather obscure;
indeed whenever he defines the di¤erential ratio, he specifies that ‘‘it will converge
in general to a certain limit di¤erent from 0’’. As Cauchy does not clarify the
meaning of the expression ‘‘in general’’, the conditions assuring the existence of
the di¤erential ratio are not given explicitly. On the other hand, Cauchy himself
is aware of this lack, as in several theorems he explicitly assumes that the di¤er-
ential ratio is ‘‘completely determined at every point’’.

Concerning the mass-density paradigm, in Cauchy’s Coexistent magnitudes
an explicit formula allowing for constructing the mass of a body in terms of its
density is also lacking. In spite of this, Cauchy provides a large amount of the-
orems and corollaries giving an approximate calculation of the mass under the
assumption of continuity of the density. We can envisage this approach as a
first step toward the modern notion of integral with respect to a general abstract
measure.

We can summarize further Cauchy’s results into the following theorem:

Theorem 4.5 [9, (1841) pp. 208–215]. Let us assume that the di¤erential ratio g
between two coexistent magnitudes m and n exists and is continuous. Then m can be
computed in terms of the integral of g with respect to n.

Cauchy concludes his memoir [9, (1841) pp. 215–229] with a second section
in which he states the following theorem in order to evaluate lengths, areas and
volumes of homothetic elementary figures.

Theorem 4.6 [9, Theorem 1, p. 216]. Two coexistent magnitudes are propor-
tional, whenever to equal parts of one magnitude there correspond equal parts of
the other.26

Even if the Cauchy’s paper contains several innovative procedures, to
our knowledge only a few authors (Moigno, Peano, Vitali, Picone and
Lebesgue) quote it, and only Peano and Lebesgue analyze it in details.

5. Distributive families, decompositions and Peano additivity

In his paper Le grandezze coesistenti [55, (1915)], Peano introduces a general
concept of distributive function, namely a function f : A ! B, where ðA;þÞ,

25 ½½When two coexistent magnitudes are a variable x and a function y of x, the di¤erential ratio
of the function with respect to the variable x coincides with the derivative of the function.��

26One can observe that this theorem holds true by imposing condition (4.1).
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ðB;þÞ are two sets endowed with binary operations, denoted by the same symbol
þ, satisfying the equality

f ðxþ yÞ ¼ f ðxÞ þ f ðyÞð5:1Þ

for all x, y belonging to A and, if necessary, verifying suitable assumptions.27
Peano presents several examples of distributive functions. As a special instance,
A stands for the family PðXÞ of all subsets of a finite dimensional Euclidean
space X , ‘‘þ’’ in the left hand side of (5.1) is the set-union, and ‘‘þ’’ in the right
hand side of (5.1) is the logical OR (denoted in Peano’s ideography by the same
symbol of set-union); therefore, equation (5.1) becomes:

f ðxA yÞ ¼ f ðxÞA f ðyÞ:ð5:2Þ

To make (5.2) significant, Peano chooses a family UHPðXÞ and defines
‘‘ f ðxÞ’’ as ‘‘x a U’’. Consequently (5.2) becomes:

xA y a U , x a U or y a Uð5:3Þ

for all x; y a PðX Þ. A family U satisfying (5.3) is called by Peano a distributive
family.28

Moreover, Peano considers semi-distributive families FHPðXÞ, i.e., families
of non empty sets such that

xA y a F ) x a F or y a Fð5:4Þ

for all x; y a PðXÞ.
A distributive family of subsets of X is obtained by a semi-distributive family

F by adding to F any supersets of its elements. Peano states the following
theorem, and attributes to Cantor [5, (1884) p. 454] both its statement and its
proof.

Theorem 5.1 (Cantor compactness property). Let F be a semi-distributive
family of subsets of a finite-dimensional Euclidean space, and let S be a bounded
non-empty set belonging to F. Then there exists a point x, belonging to the closure
of S, such that every neighborhood of x contains some set belonging to F.

The notion of distributive family is essential in the study of the derivation of
distributive set functions by Peano. Distributive families have been introduced
by Peano in Applicazioni geometriche in 1887. Moreover, he uses them in his
famous paper on the existence of solutions of di¤erential equations [52, (1890)
pp. 201–202] and, later, in his textbook Lezioni di analisi infinitesimale [54, (1893)

27Among distributive functions considered by Peano, there are the usual linear functions and
particular set functions. The reader has to pay attention in order to avoid the interpretation of dis-

tributive set functions as finitely additive set functions.
28This notion of distributive family will be rediscovered later by Choquet [10, (1947)], who

called it grill and recognized it as the dual notion of Cartan’s filter [7, (1937)].
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vol. 2, pp. 46–53]. The role played by this notion is nowadays recovered by
‘‘compactness by coverings’’ or by ‘‘existence of accumulation points’’.29

In proving Theorem 5.1, Peano decomposes a subset of the Euclidean space
Rn following a grid of n-intervals implemented by cutting sets along hyperplanes
parallel to coordinate axes. We may formalize this procedure in the following
way.

Let us denote by H a hyperplane of the form H :¼ fx a Rn : 3x; ei4 ¼ ag
where ei is a vector of the canonical basis of Rn and a a R. Let us denote by
Hþ and H� the two closed half-spaces delimited by H.

A family F of non empty subsets of Rn is called semi-distributive by cutting
along hyperplanes if

ABHþ a F or ABH� a F

for every A a F and for every hyperplane H of Rn of the form indicated above.
Under this restrictions a new version of Theorem 5.1 still holds:

Theorem 5.2 (Cantor compactness property by interval-decompositions).
Let F be semi-distributive by cutting along hyperplanes and let S be a bounded
non-empty set belonging to F. Then there exists a point x belonging to the
closure of S such that every neighborhood of x contains some set belonging toF.

To express additivity properties of set functions, Peano, as it was common at
his time30, uses the term decomposition. Peano writes in Applicazioni geometriche
[48, (1887) p. 164, 167]:

Se un campo A è decomposto in parti A1;A2; . . . ;An esso si dirà somma
delle sue parti, e si scriverà

A ¼ A1 þ A2 þ � � � þ An:

[ . . . ] Una grandezza dicesi funzione distributiva d’un campo, se il valore di
quella grandezza corrispondente ad un campo è la somma dei valori di essa
corrispondenti alle parti in cui si può decomporre il campo dato.31

In order to formalize in modern language both the operation of ‘‘decom-
posing’’ and his use in Peano’s works, we can pursuit a ‘‘minimal’’ way, leading

29Two examples of distributive families considered by Peano are U :¼ fAHRn : cardðAÞ ¼lg,
and Uh :¼ fAHRn : supA h ¼ supR n hg, where h : Rn ! R is a given real function.

30A similar expression is used also by Jordan [24]:

[C]haque champ E a une étendue déterminée; [ . . . ] si on le décompose en plusieurs parties
E1;E2; . . . ; la somme des étendues de ces parties est égale à l’étendue totale de E.

½½Every set E has a defined extension; [ . . . ] if E is decomposed into parts E1;E2; . . . ; the sum of the

extensions of these parts is equal to the extension of E.��
31 ½½If a set A is decomposed into the parts A1;A2; . . . ;An, it will be called sum of its parts, and it

will be denoted by A ¼ A1 þ A2 þ � � � þ An. [ . . . ] A magnitude is said to be a distributive set function

if its value on a given set is the sum of the corresponding values of the function on the parts decom-

posing the set itself.��
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to ‘‘families of interval-decompositions’’, and a ‘‘proof-driven’’ way, leading to
‘‘families of finite decompositions’’.

First, the minimal way consists in implementing the procedure of decompos-
ing by cutting along hyperplanes used by Peano in proving Theorem 5.1. More
precisely, let A be a family of subsets of the Euclidean space Rn; a finite family
fAigm

i¼1 of elements of A is called an interval-decomposition of A a A if it is
obtained by iterating the procedure of cutting by hyperplanes parallel to coordi-
nate axes. In other words, an interval-decomposition fAigm

i¼1 of a set A a A is a
finite sub-family of A defined recursively as follows:

• for m ¼ 1, A1 ¼ A;

• for m ¼ 2, there exists a hyperplane H such that A1 ¼ ABH�, A2 ¼ ABHþ

and A1;A2 a A;

• for m > 2, there exist two distinct indices i0; i1 a n such that ~AA :¼ Ai0 AAi1 a
A and the families fAi : 1a iam; iA i0; iA i1gA f ~AAg and fAi0 ;Ai1g are
interval-decompositions of A and ~AA, respectively.

The totality of these interval-decompositions will be denoted by DintðAÞ. In the
case where A is the family of all the closed bounded subintervals of a given
closed interval ½a; b� of the real line, an arbitrary interval-decomposition of an in-
terval ½a 0; b0�H ½a; b� is a family f½ai�1; ai�gm

i¼1 where a
0 ¼ a0 a a1 a � � �a am�1 a

am ¼ b 0. The totality of these interval-decompositions are denoted by Dintða; bÞ.
The second way consists in summarizing explicitly the properties of the de-

compositions themselves, as used by Peano in defining the integral and in prov-
ing related theorems32, as it will be seen in Section 7. This leads to the following
definitions of family of finite decompositions and of the related semi-distributive
family, Cantor compactness property and distributive set function.

Let A be again a family of subsets of the Euclidean space Rn and let us denote
by Pf ðAÞ the set of all non-empty finite subfamily of A. Define UðAÞ by

UðAÞ :¼
n
H a Pf ðAÞ :

[
H a A

o
:

Let D be a subset of UðAÞ; we will say that H is a D-decomposition of A if
H a D and A ¼

S
H.

Definition 5.3. DHUðAÞ is called a family of finite decompositions relative
to A if the following properties are satisfied:

(5.5) fAg a D for every A a A;
(5.6) if H and G are D-decompositions of a set A, then

fHBG : H a H;G a Gg

is a D-decomposition of A;

32See pages 165 and 186–188 of Applicazioni geometriche [48, (1887)].
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(5.7) if H and G are D-decompositions of A, then for every G a G the family

HG :¼ fHBG : H a Hg

is a D-decomposition of G;
(5.8) if H is a D-decomposition of A and, moreover, for every H a H the family

GH is a D-decomposition of H, then
[

fGH : H a Hg

is a D-decomposition of A.

Definition 5.4. A family D of finite decompositions relative to A is called in-
finitesimal if for BHA, every bounded set A a B and for every real number e > 0,
there is a D-decomposition H of A such that HHB and the diameter of every
H a H is less than e.

Definition 5.5. Let D be a family of finite decompositions relative to A.
Then a set function m : A ! R is said to be distributive with respect to D, if
j a A; mðjÞ ¼ 0 and

m
�[

H
�
¼

X
H AH

mðHÞ for every H a D:ð5:9Þ

Consequently,

Definition 5.6. Let D be a family of finite decompositions relative to A.
A family F of non empty subsets of the Euclidean space Rn is said to be semi-
distributive with respect to D, if

H a D and
[

H a F ) bH a H such that H a F:ð5:10Þ

Theorem 5.7 (Cantor compactness property by an arbitrary family of de-
compositions). Let D be an infinitesimal family of finite decompositions relative
to A and let F be a semi-distributive family with respect to D. If S is a bounded
non-empty set belonging to F, then there exists a point x belonging to the closure
of S such that every neighborhood of x contains some set belonging to F.

In the following, an expression of type ‘‘m : ðA;DÞ ! R is a distributive set
function’’ stands for ‘‘D is a family of finite decompositions relative to A and
m : A ! R is a distributive set function with respect to D.

33 In (5.11) we assume that ABHþ;ABH� a A for every A a A and hyperplane H parallel to

a coordinate axis. Hence, a set function m : A ! R is distributive with respect to DintðAÞ,
if mðAÞ ¼ mðABHþÞ þ mðABH�Þ for every A a A and hyperplane H parallel to a coordinate

axis. Inner and upper Peano-Jordan measures are both distributive in this sense, but they are not
finitely additive.
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If A is stable by finite intersections, examples of families of decompositions are
UðAÞ, and

(5.11) the family DintðAÞ of all interval-decompositions introduced above;33
(5.12) the family of all H a UðAÞ such that the interiors of two arbitrary dis-

tinct elements of H have empty intersection and every H a H is Peano-
Jordan measurable;

(5.13) the family of all H a UðAÞ such that the intersection of the closure of
two arbitrary distinct elements of H have null Peano-Jordan measure
and every H a H is bounded;

(5.14) the family of all H a UðAÞ such that two arbitrary distinct elements of H
have empty intersection.

The interval-decompositions (in particular Dintða; bÞ) occurs frequently in
Peano’s works. Distributive set functions related to the last example (5.14) are
well known as finitely additive set functions; this type of additivity, expressed in
terms of partitions of sets, was introduced for the first time in Borel [3, (1898),
pp. 46–50], and, more clearly, in Lebesgue [27, (1902), p. 6].

As far as we know, all historians interpreted Peano’s distributive set functions
as ‘‘finitely additive’’ set functions.34 For instance, in the proof of the integrabil-
ity of functions [48, (1887) p. 188], Peano uses distributivity properties of the
upper and lower integral with respect to the domain of integration; clearly neither
the upper nor the lower integral are finitely additive.

6. Peano’s strict derivative of distributive functions

and its applications

In Applicazioni geometriche [48, (1887)] Peano translates in terms of ‘‘distribu-
tive functions’’ the ‘‘magnitudes’’ of Cauchy, so that two Cauchy’s magnitudes
are ‘‘coexistent’’ if they are distributive functions with the same domain.

Peano’s distributive set functions are called positive if their values are posi-
tive. Peano’s strict derivative is defined by35

Definition 6.1. Let m; n : ðA;DÞ ! R be distributive set functions, and let n be
positive. A real function g over a set S is called a ‘‘strict derivative of m with respect

34Observe that inner and outer Peano-Jordan measures on Euclidean spaces are not finitely

additive, but they are distributive set functions with respect to the families of decomposition of
type (5.11) or (5.12). Moreover, notice that outer Peano-Jordan measure is a distributive set function

with respect to a family of decompositions of type (5.13).
35 In Peano’s words [48, (1987) p. 169]:

Diremo che, in un punto P, il rapporto delle due funzioni distributive y ed x d’un campo vale
r, se r è il limite verso cui tende il rapporto dei valori di queste funzioni, corrispondenti ad un

campo di cui tutti i punti si avvicinano indefinitamente a P.

½½Given two distributive functions y an x defined over a given set, we say that their ratio, at a given
point P, is r, if r is the limit of the ratio between the values of the two functions, taken along sets for

which all its points approach the point P.��
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to n’’ on S (denoted by
dm

dn
and termed rapporto in Applicazioni geometriche) if, for

every point x a S and for every � > 0, there exists d > 0 such that36

mðAÞ
nðAÞ � gðxÞ
����

����< � for every A a A; with nðAÞA 0; AHBdðxÞ:ð6:1Þ

It is worth noticing that the concept of strict derivative given by Peano pro-
vides a consistent mathematical ground to the concept of ‘‘infinitesimal ratio’’ be-
tween two magnitudes, successfully used since Kepler. A remarkable example
given by Peano is the evaluation of a rectifiable arc length by integrating the ‘‘in-
finitesimal arc length’’ ds. Notice that, whenever ds exists in the sense of Peano,
the corresponding integral provides the length of the arc. On the contrary, the in-
tegration of the infinitesimal arc length ds, evaluated in the sense of Lebesgue
(1910), provides the length of the arc only in case of absolute continuity of the
arc parametrization (see Tonelli [66, (1908)]).

The existence of Peano’s strict derivative is not assured in general; its charac-
terizing properties are clearly presented in Applicazioni geometriche and can be
summarized in the following theorems.

First, Peano gives a precise form to Cauchy’s Theorem 4.1, stating the fol-
lowing:

Theorem 6.2 (see Peano [48, Theorem 13, p. 170] for D ¼ Dint). Let
m; n : ðA;DÞ ! R be distributive set functions with D infinitesimal for
B :¼ fA a A : nðAÞA 0g and n positive. If S a A is a closed and bounded non-
empty set and g is the strict derivative of m with respect to n on S, then

inf
B

ga
mðAÞ
nðAÞ a sup

B

gð6:2Þ

for all A;B a A with AHBHS and nðAÞ > 0.

In the case D ¼ Dint, Peano proves this fundamental theorem by applying
Theorem 5.2 to the semi-distributive families Fa :¼ fA a A : mðAÞ > anðAÞg and
Ga :¼ fA a A : mðAÞ < anðAÞg, for real numbers a. Observe that (6.2) amounts
to (2.7)–(2.8) and also, indirectly, to (2.1)–(2.3).

In Applicazioni geometriche, Theorem 6.2 is followed by three corollaries,
which we summarize into the following:

Corollary 6.3 [48, (1987) p. 171]. Under the same hypothesis as in the previ-
ous theorem:

(6.3) if the strict derivative
dm

dn
is a constant b on S, then mðAÞ ¼ bnðAÞ, for all

A a A with AHS;

36One can note that for the definition of strict derivative at a point x, the point x itself must be an

accumulation point with respect to the family A and the measure n, that is, for all d > 0, there exists
a A a A such that nðAÞA 0 and AHBdðxÞ, where BdðxÞ denotes the Euclidean ball of center x and

radius d.
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(6.4) if the strict derivative
dm

dn
vanishes at every points of S, then mðAÞ ¼ 0, for all

A a A with AHS;
(6.5) if two distributive set functions have equal strict derivatives with respect to n

on S, then they are equal on subsets of S belonging to A.37

The following fundamental Peano’s result point out the di¤erence of Peano’s
approach with respect to both approaches of Cauchy and of Lebesgue (1910).

Theorem 6.4. Under the same hypothesis as in the previous theorem, if the strict
derivative of m with respect to n exists on S, then it is continuous on S.

The importance of these results is emphasized in Applicazioni geometriche by a
large amount of evaluations of derivatives of distributive set functions. As a con-
sequence of the existence of the strict derivative, Peano gives, for the first time,
several examples of measurable sets. The most significant examples, observations
and results are listed below.

(6.6) Measurability of the hypograph of a continuous function [48, (1887) pp.
172–174]. Let f be a continuous positive real function defined on an inter-
val ½a; b�, let A be the family of all sub-intervals of ½a; b� and let n be the
Euclidean measure on 1-dimensional intervals. Define mf : A ! R on
everyA belonging toA, by the inner (respectively, the outer) 2-dimensional
measure (in the sense of Peano-Jordan) of the positive-hypograph of f , re-
stricted to A.38 In any case, independently of the choice of inner or outer
measure, we have that mf and n are distributive set functions with respect

to Dintða; bÞ, and that
dmf
dn

ðxÞ ¼ f ðxÞ for every x a ½a; b�. From (6.5) of
Corollary 6.3 it follows that the inner measure of the positive-hypograph
of the continuous function f coincides with its outer measure; therefore it
is measurable in the sense of Peano-Jordan.

(6.7) Analogously, Peano considers continuous functions of two variables and
the volume of their positive-hypographs [48, (1887) p. 175].

(6.8) Area of a plane star-shaped subset delimited by a continuous closed curve
[48, (1887) pp. 175–176]. Consider a continuous closed curve that can
be described in polar coordinates in terms of a continuous function
r : ½0; 2p� ! Rþ, with rð0Þ ¼ rð2pÞ. Let A be the family of all subintervals
of ½0; 2p�; and for every A a A, let nðAÞ denote the Euclidean measure of
the area of the circular sector fðr cosðyÞ; r sinðyÞÞ : y a A; r a ½0; 1�g.
Moreover, let mðAÞ denote inner (or outer, indi¤erently) Peano-Jordan 2-
dimensional measure of the set fðr cosðyÞ; r sinðyÞÞ : y a A; r a ½0; rðyÞ�g.
Then the strict derivative

dm

dn
ðyÞ is equal to r2ðyÞ. From the fact that this

derivative does not depend on the choice of inner or outer measure, it

37 It is evident that properties (6.3)–(6.5) are equivalent. To prove (6.5), Peano shows that the

strict derivative of a sum of two distributive set functions is the sum of their derivatives.
38By positive-hypograph of f restricted to A we mean the set fðx; yÞ a ½a; b� � Rþ : x a A and

ya f ðxÞg, where Rþ :¼ fx a R : xb 0g.
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follows Peano-Jordan measurability of plane star-shaped sets delimited by
continuous closed curves.

(6.9) Analogously, Peano considers the volume of a star-shaped set bounded
by simple continuous closed surface [48, (1887) p. 177].

(6.10) Cavalieri’s principle between a prism and a spatial figure [48, (1887) pp.
177–179]. Consider a straight line r in the tri-dimensional space, an un-
bounded cylinder P parallel to r with polygonal section of non null area,
and a spatial figure F . Let px denote the plane perpendicular to r at the
point x a r. Assume non null area of all sections of the boundary of F per-
pendicular to r, namely

meðqF BpxÞ ¼ 0 for all x a r(*)

where me denotes 2-dimensional Peano-Jordan outer measure and qF de-
notes the boundary of F . Let A be the family of all segments of r. Given
a set A a A, let m : A ! R denote the outer (or inner, indi¤erently)
3-dimensional measure of the set

S
x AAðF BpxÞ, and nðAÞ denote

Peano-Jordan 3-dimensional measure of the set
S

x AAðPBpxÞ. The set
functions m and n are distributive with respect to the family DintðrÞ of
interval-decompositions of r and

dm

dn
ðxÞ ¼ meðF BpxÞ

meðPBpxÞ
for every x a r:

From the fact that this derivative does not depend on the choice of the
inner or outer measure involved in defining m, it follows Peano-Jordan
measurability of the spatial figure F .

(6.11) Cavalieri’s principle between two spatial figures [48, (1887) p. 180]. Con-
sider two spatial figures F and G such that all sections of their boundaries
with planes perpendicular to a given straight line r have null area. Let A
be the family of all segments of r. Given a set A a A, let mðAÞ and nðAÞ
denote outer (or inner, indi¤erently) Peano-Jordan 3-dimensional mea-
sures of the sets

S
x AAðF BpxÞ and

S
x AAðGBpxÞ, respectively. The set

functions m and n are distributive with respect to the family DintðrÞ of
interval-decompositions of r and

dm

dn
ðxÞ ¼ meðF BpxÞ

meðGBpxÞ
for every x a r:

Hence, from (6.3) it follows the classical Cavalieri’s principle: two figures
whose corresponding sections have equal areas, have the same volume.

(6.12) Cavalieri’s principle for 3 dimensional figures with respect to one dimen-
sional sections [48, (1887) p. 180]. Consider a plane p. Let A be the family
of all rectangles of p and let rx be the straight line perpendicular to p at
x a p. Moreover, consider a spatial figure F such that for any x a p

meðqF B rxÞ ¼ 0 for every x a p(**)
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where me denotes the Peano-Jordan 1-dimensional outer measure and qF
denotes the boundary of F . Given a set Q a A, let mðQÞ denote the outer
(or inner, indi¤erently) measure of the set

S
x AQðF B rxÞ, and nðQÞ denote

the elementary usual measure of Q. Then m and n are distributive with
respect interval-decompositions of rectangles of p and

dm

dn
ðxÞ ¼ meðF B rxÞ for every x a p:

(6.13) Cavalieri’s principle for 2 dimensional figures [48, (1887) p. 180]. Analo-
gously to (6.10), Peano considers Cavalieri’s principle for planar figures.

(6.14) Derivative of the length of an arc [48, (1887) p. 181]. In order to compare
the length of an arc with the length of its orthogonal projection on a
straight line r, Peano assumes that the orthogonal projection is bijective
on a segment r of r, and that the arc can be parametrized through a func-
tion with continuous non null derivative.39 Let A be the family of all
closed bounded segments of r. For every segment A a A, let mðAÞ denote
the length of the arc whose orthogonal projection over r is A and let nðAÞ
denote the length of A. Then

dm

dn
ðxÞ ¼ 1

cos yx
(***)

where yx is the angle between r and the straight line that is tangent to the
arc at the point (of the arc) corresponding to x a r.40

(6.15) Derivative of the area of a surface [48, (1887) pp. 182–184]. By adapting
the previous argument, Peano shows that the strict derivative between
the area of a surface and its projection on a plane is given by (***), where
cos y is the cosinus of the angle between the tangent plane and the projec-
tion plane.

7. Distributive set functions: integral and strict derivative

Peano introduces also the notion of integral with respect to a positive distribu-
tive set function. The proper integral of a bounded function r on a set A a A
with respect to a positive distributive set function n : ðA;DÞ ! R, is denoted by

39The requirement that the derivative of the arc with respect to a parameter be continuous and

non null is expressed by Peano in geometrical terms, namely by requiring that ‘‘the tangent straight
line exists at every point P of the arc, and it is the limit of the straight lines passing through two

points of the arc, when they tend to P’’. Peano was aware that these geometrical conditions are
implied by the existence of a parametrization with a continuous non-null derivative [48, (1987)

p. 59, 184].
40Of course, to avoid cos yx ¼ 0 along the arc, Peano assumes that the tangent straight line at

every point of the arc is not orthogonal to r.
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Z
A

r dn and is defined as the real number such that for any D-decomposition

fAigm
i¼1 of the set A, one has

Z
A

r dnb r 0
1nðA1Þ þ r 0

2nðA2Þ þ � � � þ r 0
nnðAmÞ

Z
A

r dna r 00
1 nðA1Þ þ r 00

2 nðA2Þ þ � � � þ r 00
n nðAmÞ

where r 0
1; r

0
2; . . . ; r

0
m (respectively r 00

1 ; r
00
2 ; . . . ; r

00
m), are numbers defined by

r 0
i :¼ inf

x AAi

rðxÞ and r 00
i :¼ sup

x AAi

rðxÞ;ð7:1Þ

for all i ¼ 1; . . . ;m.41
Peano defines also the lower

Z
A

r dn and the upper integral

Z
A

r dn of a

bounded function r on a set A a A by

Z
A

r dn :¼ sup s 0 and

Z
A

r dn :¼ inf s 00

where s 0 ¼ r 0
1nðA1Þ þ r 0

2nðA2Þ þ � � � þ r 0
mnðAmÞ and s 00 ¼ r 00

1 nðA1Þ þ r 00
2 nðA2Þ þ � � �

þ r 00
mnðAmÞ, where r 0

i and r 00
i are defined as in (7.1) and fAigm

i¼1 runs over
D-decompositions of A.

In Peano’s terminology, the integrals defined above are called geometric inte-
grals. Peano stresses the analogy among these integrals and the usual elementary

integral

Z b

a

f ðxÞ dx of functions f defined over intervals of R.

Using property (5.6) of D-decompositions, Peano shows that the lower inte-
gral is always less or equal than the upper integral. When these values coincide,

their common value is called a proper integral and is denoted by

Z
A

r dn.

Moreover, using properties (5.7) and (5.8) of D-decompositions, Peano shows

that the lower integral A 7!
Z
A

r dn and the upper integral A 7!
Z
A

rdn are

distributive set functions on A with respect to the same family D of decomposi-
tions [48, (1887) Theorem I, p. 187].

In case of r continuous, using the property of ‘‘infinitesimality’’ of D (see
Definition 5.4), Peano shows that the derivative of both lower and upper inte-
grals with respect to n is r [48, (1887) Theorem II, p. 189]; consequently the

41This clear, simple and general definition of integral with respect to an abstract positive distrib-
utive set function is ignored until the year 1915, when Fréchet re-discovers it in the setting of

‘‘finitely additive’’ measures [15, (1915)].
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proper integral

Z
A

r dn of a continuous r exists whenever A is closed and bounded

[48, (1887) Cor. of Theorem II, p. 189].
The definitions introduced above allow Peano to realize the mass-density

paradigm, i.e., to prove that it is possible to recover a distributive function m as
the integral of the strict derivative

dm

dn
with respect to a positive distributive func-

tion n. Peano’s results can be formulated into the following

Theorem 7.1 (Peano’s Theorem on strict derivative of distributive set
functions, see [48, (1887) Theorem 14, p. 171, Theorems II, III, p. 189]). Let
m; n : ðA;DÞ ! R be distributive set functions, with n positive and D infinitesimal.
Let S a A be a closed bounded non empty set and r : S ! R a function. The fol-
lowing properties are equivalent:

(7.2) r is the strict derivative
dm

dn
of m with respect to n on S;

(7.3) r is continuous and mðAÞ ¼
Z
A

r dn for any AHS, A a A.

Peano applies Theorem 7.1 to the list of examples of strict derivatives of dis-
tributive set functions of §6 and obtains the following results.

(7.4) Fundamental theorem of integral calculus for continuous functions [48, (1887)
pp. 191–193]. Consider a continuous function f on R and let F be a primi-
tive of f . Define m and n over the family A of closed bounded intervals
½a; b� of R by mð½a; b�Þ :¼ FðbÞ � F ðaÞ and nð½a; b�Þ :¼ b� a. Observe that
both m and n are distributive set functions with respect to DintðRÞ and

dm

dn
ðxÞ ¼ lim

a;b!x
aAb

FðbÞ � FðaÞ
b� a

¼ f ðxÞ

since F has continuous derivative.42 Therefore, by Theorem 7.1, Peano
obtains

FðbÞ � F ðaÞ ¼ mð½a; b�Þ ¼
Z
½a;b�

f dn ¼
Z b

a

f ðxÞ dx:

(7.5) Calculus of an integral as a planar area [48, (1887) pp. 193–195]. The ele-
mentary integral of a continuous positive function is Peano-Jordan measure
of the positive hypograph of the function. This is an immediate application
of Theorem 7.1 to the setting (6.6).

(7.6) Cavalieri’s formula for planar figures [48, (1887) p. 195]. Let us suppose that
CHR2, Cx :¼ fy a R : ðx; yÞ a Cg and ðqCÞx :¼ fy a R : ðx; yÞ a qCg for
every x a R. Assume that for any x the set ðqCÞx has vanishing outer mea-

42Peano observes that continuity of derivative of F is a necessary and su‰cient condition to

have the existence of dm
dn
.
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sure. As a consequence of Theorem 7.1 and the two-dimensional version of
Cavalieri’s principle (6.13) (see [48, (1887) p. 180]), it follows that the mea-
sure of the part of the figure C, bounded by the abscissas a and b, is equal
to Z b

a

meðCxÞ dx

where me denotes outer Peano-Jordan one-dimensional measure.
(7.7) Area of a plane star-shaped subset delimited by a continuous closed curve [48,

(1887) p. 199]. In the setting of example (6.8), Peano shows that the area of
the sector between the angles y0 and y1, delimited by a curve described in
polar coordinates by r, is equal to

1

2

Z y1

y0

rðyÞ2 dy:

(7.8) Cavalieri’s formula for volumes [48, (1887) p. 221]. In the setting (6.12),
let’s define Fx :¼ fðy; zÞ a R2 : ðx; y; zÞ a Fg and ðqF Þx :¼ fðy; zÞ a R2 :
ðx; y; zÞ a qFg. Assume that for any x, the set ðqFÞx has vanishing outer
measure. From Theorem 7.1, Peano shows that the volume of the part of
the figure F , delimited by the planes x ¼ a and x ¼ b, is equal to

Z b

a

meðFxÞ dx

where me denotes outer Peano-Jordan two-dimensional measure.

8. Coexistent magnitudes in Lebesgue and Peano’s derivative

Lebesgue gives a final pedagogical43 exposition of his measure theory in La
mesure des grandeurs [35, (1935) p. 176], by referring directly to Cauchy’s Coex-
istent magnitudes:44

La théorie des grandeurs qui constitue le précédent chapitre avait été
préparée par des recherches de Cauchy, sur ce qu’il appelait des grandeurs

43Lebesgue says in [33, (1931) p. 174]:

[ . . . ] depuis trente ans [d’enseignement] [ . . . ] on ne s’étonnera pas que l’idée me soit venue
d’écrire des articles de nature pédagogique; si j’ose employer ce qualificatif que su‰t ordi-

nairement pour faire fuir les mathématiciens. ½½[ . . . ] in the thirty years [of teaching] [ . . . ] it is
not at all surprising that the idea should occur to me of writing articles on a pedagogical vein;

if I may use an expression which usually puts mathematicians to flight. (transl. May [36,
(1966) p. 10])��

44The five parts of the essay La mesure des grandeurs have been published in L’Enseignement

mathématique during the years 1931–1935. An english translation Measure and the Integral of La
mesure des grandeurs is due to Kenneth O. May [36, (1966)].
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concomitantes [sic], par les travaux destinés à éclaircir les notions d’aire, de
volume, de mesure [ . . . ].45

Lebesgue is aware of the obscurity of the concepts that are present in
Cauchy’s Coexistent magnitudes, starting by the meaning of the term magnitude
itself. In this respect, in order to put on a solid ground the ideas of Cauchy,
Lebesgue was compelled to pursuit an approach similar to that Peano: in fact
he defines a ‘‘magnitude’’ as a set function on a family of sets A, requires infin-
itesimality of A (in the sense that every element of A can be réduit à un point par
diminutions successives), and additivity properties that he express in La mesure
des grandeurs [34, (1934) p. 275] in these words:

Si l’on divise un corps C en un certain nombre de corps partiels
C1;C2; . . . ;Cp, et si la grandeur G est, pour ces corps, g d’une part,
g1; g2; . . . ; gp d’autre part, on doit avoir: g ¼ g1 þ g2 þ � � � þ gp.46

In La mesure des grandeurs Lebesgue considers the operations of integration
and di¤erentiation by presenting these topics in a new form with respect to his
fundamental and celebrated paper L’intégration des fonctions discontinues [29,
(1910)].

Lebesgue theory of di¤erentiation of 1910 concerns absolutely continuous
s-additive measures on Lebesgue measurable sets. On the contrary, twenty-five
years later in La mesure des grandeurs of 1935

• s-additive set functions are replaced by continuous47 additive48 measures;

45 ½½The theory of magnitudes forming the subject of the preceding chapter was prepared by

researches of Cauchy on what he called concomitant magnitudes, by studies destined to clarify the
concepts of area, volume, and measure [ . . . ] (transl. May [36, (1966) p. 138])��

46 ½½If a body C is partitioned into a certain number of sub-bodies C1;C2; . . . ;Cp and if for these
bodies the magnitude G is g on the one hand and g1; g2; . . . ; gp on the other, we must have

g ¼ g1 þ g2 þ � � � þ gp. (transl. May [36, (1966) p. 129])��
Lebesgue observes that in order to make this condition rigorous, it would be necessary to give

a precise meaning to the words corp and partage de la figure totale en parties [34, (1934) p. 275–
276]. Moreover he observes that diviser un corps may be interpreted in di¤erent ways [34, (1934)

p. 279].
47 It is not easy to give in a few words a definition of the concept of continuity according to

Lebesgue: such a continuity is based on a convergence of sequences of sets that in the relevant
cases coincides with the convergence in the sense of Hausdor¤. We recall that a sequence of sets

Dn converges to D in the sense of Hausdor¤ if for all � > 0 there exists n0 such that Dn HB�ðDÞ
and DHB�ðDnÞ for all n > n0, where B�ðAÞ :¼ fx a Rn : there exists a a A such that kx� ak < �g.
Therefore, a set function f is said to be continuous if for any Dn and D Peano-Jordan measurable
sets, we have that limn!l f ðDnÞ ¼ f ðDÞ, whenever Dn converges to D in Hausdor¤ sense.

48Lebesgue writes in [35, (1935) p. 185]:

[ . . . ] nous supposerons cette fonction [ f ] additive, c’est-a-dire telle que, si l’on divise D en
deux domaines quarrables D1 et D2 on ait f ðDÞ ¼ f ðD1Þ þ f ðD2Þ.

½½[ . . . ] let us assume that this function is additive; that is, it is such that, if we partition D into

two quadrable domains D1 and D2, we have f ðDÞ ¼ f ðD1Þ þ f ðD2Þ. (transl. May [36, (1966)
p. 146])��
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• absolutely continuous measures become set functions with bounded-derivative49
(à nombres dérivés bornés);

• Lebesgue measurable sets are replaced by Jordan-Peano measurable subsets of
a given bounded set.

Let K be a bounded closed subset of the Euclidean space Rn, let AK be the
family of Jordan-Peano measurable (quarrables) subsets of K and let V be a
positive, continuous, additive set function on AK with bounded-derivative. Then
Lebesgue introduces a definition of derivative. The uniform-derivative (dérivée à
convergence uniforme) j of a set function f with respect to V , is defined as the
function j : K ! R such that, for every � > 0, there exists h > 0 such that

f ðDÞ
VðDÞ � jðxÞ
����

����< �ð8:1Þ

for all x a K and D a AK with x a DHBhðxÞ. It is clear that Lebesgue’s new
notion of uniform-derivative is strictly related to Peano’s one. In fact, Lebesgue
observes that the uniform-derivative is continuous whenever it exists; moreover,
he defines the integral

Z
K

j dVð8:2Þ

of a continuous function j with respect to V . His definition of integral [35, (1935)
pp. 188–191] is rather intricate with respect to that of Peano.

It is worthwhile noticing that Lebesgue recognizes the relevance of the notion
of an integral with respect to set functions. Lebesgue, not acquainted with pre-
vious Peano’s contributions, assigns the priority of this notion to Radon [61,
(1913)]. On the other hand, Lebesgue notices that the integral with respect to
set functions was already present in Physics50 and express his great surprise in
recovering in Stieltjes’s integral [63, (1894)] an instance of integral with respect
to set functions; Lebesgue writes [30, (1926) p. 69–70]:

Mais son premier inventeur, Stieltjès, y avait été conduit par des recherches
d’analyse et d’arithmétique et il l’avait présentée sous une forme purement
analytique qui masquait sa signification physique; sı̀ bien qu’il a fallu beau-
coup d’e¤orts pour comprendre et connaı̂tre ce qui est maintenant évident.
L’historique de ces e¤orts citerait les nom de F. Riesz, H. Lebesgue, W. H.

49A set function f has a bounded-derivative with respect to Peano-Jordan n-dimensional measure
voln if there exists a constant M such that j f ðDÞjaM volnðDÞ for any Peano-Jordan measurable set

D. A set function with bounded-derivatives is called uniformly Lipschitzian by Picone [60, (1923)
vol. 2, p. 467].

50Lebesgue gives several examples of this. For instance, the evaluation of the heath quantity,
necessary to increase the temperature of a body, as integral of the specific heath with respect to the

mass.
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Young, M. Fréchet, C. de la Vallé-Poussin; il montrerait que nous avons
rivalisé en ingéniosité, en perspicacité, mais aussi en aveuglement.51

The first important theorem presented by Lebesgue is the following

Theorem 8.1. Let K be a bounded closed subset of Rn, j : K ! R a continuous
function and V a positive additive continuous set function with bounded-derivative.

Then the integral D 7!
Z
D

j dV with D a A is the unique additive set function with

bounded-derivative which has j as uniform-derivative with respect to V .52

The main applications of this theorem, given by Lebesgue in La mesure des
grandeurs [35, (1935) p. 176], concern:

(8.3) the proof that multiple integrals can be given in terms of simple integrals;
(8.4) the formula of change of variables;53
(8.5) several formulae for oriented integrals (Green’s formula, length of curves

and area of surfaces).

The uniform-derivative defined by Lebesgue is, as observed above, a contin-
uous function, and coincides exactly with Peano’s strict derivative. Through a
di¤erent and more di‰cult path54 than Peano’s one, Lebesgue rediscovers the
importance of the continuity of the derivative. In Lebesgue’s works there are
no references to the contributions of Peano concerning di¤erentiation of set
functions.

Several years before La mesure des grandeurs of 1935, Lebesgue in [30,
(1926)] outlines his contribution to the notion of integral. In the same paper
he mentions Cauchy’s Coexistent magnitudes in the setting of derivative of
measures. Moreover he cites Fubini’s and Vitali’s works of 1915 and 1916
(published by Academies of Turin and of Lincei) in the context of the general
problem of primitive functions.

More precisely, in 1915, the year of publication of Peano’s paper Le gran-
dezze coesistenti [55], Fubini [16, 17, (1915)] and Vitali [67, 68, (1915, 1916)]

51 ½½But its original inventor, Stieltjes, was led to it by researches in analysis and theory of number

and he presented it in a purely analytical form which masked its physical significance, so much so
that it required a much e¤ort to understand and recognizes what is nowadays obvious. The history

of these e¤orts includes the works of F. Riesz, H. Lebesgue, W. H. Young, M. Fréchet, C. de la
Vallé-Poussin. It shows that we were rivals in ingenuity, in insight, but also in blindness. (transl.

May [36, (1966) p. 190])��
52The proof is rather lengthy, as Lebesgue included in it the definition of integral as well as the

theorem of average value.
53Lebesgue uses the implicit function theorem.

54The exposition of 1935 is elementary, but more lengthy and di‰cult than those presented by
Lebesgue in 1910. Surprisingly, the terms domain, decomposition, limit, additive, continuous are used

by Lebesgue in a supple way.
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introduce a definition of derivative of ‘‘finitely additive measures’’55, oscillating
themselves between definitions à la Cauchy and à la Peano.

Vitali, in his second paper [68], refers to the Coexistent magnitudes of
Cauchy, and presents a comparison among the notions of derivative given by
Fubini, himself, Peano and the one of Lebesgue of 1910, emphasizing the con-
tinuity of the Peano’s strict derivative. Vitali writes in [68, (1916)]:

Il Prof. G. Peano nella Nota citata [Le grandezze coesistenti ] e in un’altra
sua pubblicazione anteriore [Applicazioni geometriche], si occupa dei teo-
remi di Rolle e della media e ne indica la semplice dimostrazione nel caso
in cui la derivata [della funzione di insieme f ] in P sia intesa come il limite

del rapporto di
f ðtÞ
t
, dove t è un campo qualunque che può anche non con-

tenere il punto P.
L’esistenza di tale simile derivata finita in ogni punto porta difatti la

continuità [della derivata medesima].56

This proves that since 1926 Lebesgue should have been aware of Peano’s
derivative and of its continuity.57

Undoubtably, the contributions of Peano and Lebesgue have a pedagogical
and mathematical relevance in formulating a definition of derivative having the

55Fubini’s first paper [17] is presented by C. Segre at the Academy of Sciences of Turin on
January 10, 1915. In the same session, Peano, Member of the Academy, presents a multilingual dic-

tionary and a paper written by one of his students, Vacca. Segre, on April 11, 1915, presents, as a

Member, a second paper of Fubini [16] to Accademia dei Lincei. In the session of the Academy of
Turin of June 13, 1915, Peano presents his paper Le grandezze coesistenti. Moreover Segre presents

two papers by Vitali [67, (1915)] and [68, (1916)] to Academy of Turin on November 28, 1915 and
to Academy of Lincei on May 21, 1916, respectively.

There is a rich correspondence between Vitali and Fubini. In the period March–May 1916
Fubini sends three letters to Vitali (transcribed in Selected papers of Vitali [69, pp. 519–520]),

concerning di¤erentiation of finitely additive measures and related theorems. In particular Fubini
suggests Vitali to quote Peano’s paper [55, (1915)] and to compare alternative definitions of deriv-

ative. In Selected papers of Vitali it is also possible to find six letters by Peano to Vitali. Among
them, there is letter of March 21, 1916 concerning Cauchy’s coexistent magnitudes; Peano writes:

Grazie della sua nota [67, (1915)]. Mi pare che la dimostrazione che Ella dà, sia proprio quella
di Cauchy, come fu rimodernata da G. Cantor, e poi da me, e di cui trattasi nel mio articolo,

Le grandezze coesistenti di Cauchy, giugno 1915, e di cui debbo avere inviato copia.

[[Thanks for your paper [67, (1915)]. In my opinion your proof coincides with the one given by
Cauchy, as formulated by Cantor and by myself in my paper ‘‘Coexistent magnitudes of Cauchy’’

(June 1915), that I sent you.]]
To our knowledge, Fubini [16, 17, (1915)] and Vitali [67, 68, (1915, 1916)] are not cited by

other authors, with the exception of Banach [2, (1924) p. 186], who refers to Fubini [16, (1915)].
56 ½½Prof. Peano, in the cited Paper [Le grandezze coesistenti ] and in a previous publication [Appli-

cazioni geometriche] deals with Rolle’s and mean value theorems, pointing out a simple proof, valid
in the case in which the derivative [of the set function f ], in a given point P, is the limit of the ratio
f ðtÞ
t

, where t is a set that might not contain the point P.��
57We can ask how much Lebesgue was aware of the contributions of Peano. In many historical

papers the comment of Kennedy [26, (1980) p. 174], a well known biographer of Peano, occurs:

Lebesgue acknowledged Peano’s influence on his own development.
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property of continuity whenever it exists. Surprisingly these contributions are not
known.

Rarely the notion of derivative of set functions is presented and used in educa-
tional texts.

An example is provided by Lezioni di analisi matematica of Fubini. There are
several editions of these Lezioni: starting by the second edition [18, (1915)], Fu-
bini introduces a derivative à la Peano of additive set functions in order to build
a basis for integral calculus in one or several variables. Nevertheless, in his Le-
zioni, Fubini assumes continuity of its derivative as an additional property. Iron-
ically, Fubini is aware of continuity of Peano’s derivative, whenever it exists;
this is clear from two letters of 1916 that he sent to Vitali [69, p. 518–520]; in
particular, in the second letter, about the Peano’s paper Grandezze coesistenti
[55, (1915)], he writes:

Sarebbe bene citare [l’articolo di] Peano e dire che, se la derivata esiste e
per calcolarla in [un punto] A si adottano anche dominii che tendono ad
A, pur non contenendo A all’interno, allora la derivata è continua.58

The notion of derivative of set function is also exposed in the textbooks Le-
zioni di analisi infinitesimale of Picone [60, (1923) vol. II, p. 465–506], in Lezioni
di analisi matematica of Zwirner [70, (1969), pp. 327–335] and in Advanced Cal-
culus of R. C. and E. F. Buck [4, (1965)]. In the book of Picone, a definition
of derivative à la Cauchy of ‘‘additive’’ set functions is given;59 it represents an
improvement of Cauchy, Fubini and Vitali definitions. Of course, his deriva-
tive is not necessarily a continuous function. Whenever the derivative is contin-
uous, Picone states a fundamental theorem of calculus, and applies it to the
change of variables in multiple integrals. In the book of Zwirner the notion of
derivative à la Peano of set functions is introduced, without mentioning Peano

and, unfortunately, without providing any application. In the third book, R. C.
and E. F. Buck introduce in a clear way a simplified notion of the uniform-
derivative of Lebesgue (without mentioning him), and they apply it to obtain
the basic formula for the change of variables in multiple integrals.

In our opinion Peano’s influence on Lebesgue is relevant but sporadic. After a reading of
Lebesgue’s works, we have got the feeling that his knowledge of Peano’s contributions was re-

stricted to the two papers on Peano’s curve [50, (1890)] and on the definition of area [51, (1890)].

Surprisingly enough, Lebesgue ignores the geometric calculus of Grassmann (and its revisitation
operated by Peano [49, (1888)]) and the Peano’s achievements on Peano-Jordan measure theory

[48, (1887)].
58 ½½It would be important to cite the paper of Peano, saying that, whenever the derivative exists

and its evaluation is performed by considering domains that approach A, without requiring that the
point A belongs to the domains themselves, then the derivative is continuous.��

59Significant instances of additive set functions in the sense of Picone are outer measure of
Peano-Jordan on all subsets of Rn and lower/upper integrals of functions with respect to arbitrary

domain of integration [60, (1923) vol. II, p. 356–357, 370–371]. The family of decompositions that
leads to the notion of additive set function in the sense of Picone is clearly defined on page 356–357

of his book [60] and includes the family of decompositions (5.12) and (5.13).
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9. Appendix

All articles of Peano are collected in Opera omnia [58], a CD-ROM edited by
C. S. Roero. Selected works of Peano were assembled and commented in Opere
scelte [56] by Cassina, a pupil of Peano. For a few works there are English
translations in Selected Works [57]. Regrettably, fewer Peano’s papers have a
public URL and are freely downloadable.

For reader’s convenience, we provide a chronological list of some mathemati-
cians mentioned in the paper, together with biographical sources.

Html files with biographies of mathematicians listed below with an asterisk
can be attained at University of St Andrews’s web-page

http://www-history.mcs.st-and.ac.uk/history/{Name}.html

Kepler, Johannes (1571–1630)*
Cavalieri, Bonaventura (1598–1647)*
Newton, Isaac (1643–1727)*
Mascheroni, Lorenzo (1750–1800)*
Cauchy, Augustin L. (1789–1857)*
Lobachevsky, Nikolai I. (1792–1856)*
Moigno François N. M. (1804–1884), see Enc. Italiana, Treccani, Roma,
1934
Grassmann, Hermann (1809–1877)*
Serret, Joseph A. (1819–1885)*
Riemann, Bernhard (1826–1866)*
Jordan, Camille (1838–1922)*
Darboux, Gaston (1842–1917)*
Stolz, Otto (1842–1905)*
Schwarz, Hermann A. (1843–1921)*
Cantor, Georg (1845–1918)*
Tannery, Jules (1848–1910)*
Harnack, Carl (1851–1888), see May [41, (1973) p. 186]
Stieltjes, Thomas J. (1856–1894)*
Peano, Giuseppe (1858–1932)*, see [26]
Young, William H. (1863–1942)*
Segre, Corrado (1863–1924)*
Vallée Poussin (de la), Charles (1866–1962)*
Hausdorff, Felix (1868–1942)*
Borel, Emile (1871–1956)*
Vacca, Giovanni (1872–1953)*
Carathéodory, Constantin (1873–1950)*
Lebesgue, Henri (1875–1941)*
Vitali, Giuseppe (1875–1932)*
Fréchet, Maurice (1878–1973)*
Fubini, Guido (1879–1943)*
Riesz, Frigyes (1880–1956)*
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Tonelli, Leonida (1885–1946)*
Picone, Mauro (1885–1977), see http://web.math.unifi.it
Ascoli, Guido (1887–1957), see May [41, (1973) p. 63]
Radon, Johann (1887–1956)*
Nikodym, Otton (1887–1974)*
Bouligand, George (1889–1979), see http://catalogue.bnf.fr
Banach, Stefan (1892–1945)*
Kuratowski, Kazimierz (1896–1980)*
Cassina, Ugo (1897–1964), see Kennedy [26, (1980)]
Cartan, Henri (1904–2008)*
Dieudonné, Jean A. E. (1906–1992)*
Choquet, Gustave (1915–2006), see Gazette des Math. v111:74–76, 2007
May Kenneth O. (1915–1977), see [11, p. 479]
Medvedev Fëdor A. (1923–1993), see [11, p. 482]
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[20] A. Harnack. Über den Inhalt von Punktmengen. Mathematische Annalen, 25:241–
250, 1885.
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[28] H. Lebesgue. Leçons sur l’intégration et la recherche des fonctions primitives. Gauthier-
Villars, Paris, 1904.
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