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Abstract. — We present some regularity results on equilibrium configurations for a variational

model introduced to describe the epitaxial growth of an elastic film over a thick flat substrate when
a lattice mismatch between the two materials is present. We also give a su‰cient condition for local

minimality based on second variation and apply it to determine analitycally the critical threshold for
the local minimality of the flat configuration.
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1. The energy functional

We present some recent results on the equilibrium configurations of a free bound-
ary problem introduced by Spencer and Terso¤ ([8]) to describe the epitaxial
growth of a thin film on a thick rigid substrate. In their model only three-
dimensional morphologies with a planar symmetry are considered, thus leading
to a two-dimensional problem. The region occupied by the film is denoted by

Wh ¼ fz ¼ ðx; yÞ a R2 : 0 < x < b; 0 < y < hðxÞg;

where h : ½0; b� ! ½0;lÞ and its graph Gh represents the profile of the film.
Denoting by u : Wh ! R2 the planar displacement of the film and by

EðuÞ ¼ 1

2
ð‘uþ ‘TuÞ

the symmetric part of the gradient of u, the energy associated to a smooth config-
uration ðh; uÞ is given by

Gðh; uÞ ¼
Z
Wh

mjEðuÞj2 þ l

2
ðdiv uÞ2

� �
dzþ sfH

1ðGhÞ;

where m and l are the Lamé coe‰cients of the film, sf is a positive constant
depending on the surface tension acting on the profile, which up to a rescaling



we may assume to be equal to 1, and H1 denotes the one-dimensional Hausdor¤
measure.

In order to find equilibrium configurations one tries to minimize G among
all configurations ðh; uÞ such that hð0Þ ¼ hðbÞ, uðx; 0Þ ¼ e0ðx; 0Þ for 0 < x < b,
e0 > 0, uðb; yÞ ¼ uð0; yÞ þ e0ðb; 0Þ for 0 < y < hð0Þ, satisfying the volume con-
straint jWhj ¼ d > 0.

However, a minimizing sequence for this problem may converge just to a
lower semicontinuous function with bounded variation h. Thus the limit profile,
beside vertical jumps, may contain also ‘cuts’ corresponding to points x where
hðxÞ is strictly less than the left and right limits hðx�Þ e hðxþÞ.

Denote by X the class of all limits of sequences of smooth configurations
ðhn; unÞ whose energies are equibounded. Then one can prove (see [1]) that this
class consists precisely of all configurations such that h : R ! ½0;lÞ is a lower
semicontinuous, b-periodic function with bounded variation in ð0; bÞ, and u a
H 1ðWh;R

2Þ satisfies the Dirichlet condition uðx; 0Þ ¼ e0ðx; 0Þ and the periodicity
condition uðb; yÞ ¼ uð0; yÞ þ e0ðb; 0Þ.

Thus, one may define the energy of a configuration in X by a standard ‘re-
laxation’ procedure. It was proved by Bonnetier and Chambolle in [1] (see also
[3] for a slightly di¤erent model) that the relaxed energy associated to each pair
ðh; uÞ a X is given by

Fðh; uÞ ¼
Z
Wh

mjEðuÞj2 þ l

2
ðdiv uÞ2

� �
dzþH1ðGhÞ þ 2H1ðShÞ;

where h�ðxÞ ¼ minfhðx�Þ; hðxþÞg, hþðxÞ ¼ maxfhðx�Þ; hðxþÞg, and

Gh ¼ fðx; yÞ : 0a x < b; h�ðxÞa ya hþðxÞg;
Sh ¼ fðx; yÞ : 0a x < b; hðxÞa y < h�ðxÞg:

Notice that due to the approximation with smooth functions the vertical cuts are
counted twice in the above representation formula.

As a consequence we have the following existence result.

Theorem 1. The constrained minimum problem

minfF ðg; vÞ : ðg; vÞ a X ; jWgj ¼ dgð1Þ

has a solution for all d > 0.

2. Regularity of equilibrium configurations

We now discuss the regularity properties of local and global minimizers of the
constrained problem (1). By a local minimizer for F we mean an admissible con-
figuration ðh; uÞ a X such that

F ðh; uÞ < F ðg; vÞð2Þ
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for every configuration ðg; vÞ a X such that 0 < dHðGh ASh;Gg ASgÞ < d for
some d > 0 and jWgj ¼ jWhj.

Recall that if A, B are any two sets in R2 their Hausdor¤ distance is defined
by setting dHðA;BÞ ¼ inffe > 0 : BHNeðAÞ and AHNeðBÞg, where NeðAÞ de-
notes the e-neighborhood of A. Notice that the use of dH to measure the distance
between the two profiles is due to the presence of vertical cuts. The latter would
not be seen by other possible distances like the L1 or the Ll norm of h� g. No-
tice also that if h is continuous, requiring that dHðGh ASh;Gg ASgÞ is small is
equivalent to require that supfjhðxÞ � gðxÞj : 0a xa bg is small.

A su‰ciently smooth local minimizer ðh; uÞ a X satisfies the following set of
Euler–Lagrange equations:

mDuþ ðlþ mÞ‘ðdiv uÞ ¼ 0 in Wh;

sðuÞ½n� ¼ 0 on GhB fy > 0g;
sð0; yÞ½n� ¼ �sðb; yÞ½n� for 0 < y < hð0Þ ¼ hðbÞ;
k þ mjEðuÞj2 þ l

2 ðdiv uÞ
2 ¼ const on GhB fy > 0g;

8>>><
>>>:

ð3Þ

where sðuÞ ¼ mð‘uþ ‘TuÞ þ lI div u, n is the exterior normal to Wh and k is the
curvature of Gh.

Before stating the regularity result proved in [3] we need one more definition.
We say that Gh has an inward cups at ðx; h�ðxÞÞ, x a ½0; bÞ, if h�ðxÞ ¼ hðxÞ and
h 0ðxþÞ ¼ �h 0ðx�Þ ¼ þl. The set of cusp points is denoted by Sh; c.

Theorem 2 (Regularity of local minimizers). Let ðh; uÞ a X be a local mini-
mizer for F. Then,

(i) there are at most finitely many cusp points and vertical cuts in Gh, i.e.,

cardðfx a ½0; bÞ : ðx; yÞ a Sh ASh; c for some yb 0gÞ < þl;

(ii) GhnðSh ASh; cÞ is the union of finitely many C1 arcs;
(iii) GhnðSh ASh; cÞB fðx; yÞ : y > 0g is of class C1;a for all a a ð0; 1=2Þ;
(iv) let A :¼ fx a R : hðxÞ > 0 and his continuous at xg. Then A is an open set,

dense in fh > 0g, and h is analytic in A.

Statement (ii) in Theorem 2 implies in particular the zero contact angle condi-
tion at the interface between film and substrate, i.e., h 0ðxÞ ¼ 0 for all x a ½0; bÞ
such that ðx; 0Þ B Sh ASh; c.

Notice also that if h > 0, Gh is of class C
1;a for some a a ð0; 1Þ, and ðh; uÞ a X

satisfies the first three equations in (3), standard elliptic regularity implies (see e.g.

[4, Proposition 8.9]) that u a C1;aðWhÞ. Moreover, if also (3)4 holds, the results
proved in [7, Sez. 4.2] yield that h is analytic.

Finally, we point out that in [3] a slightly di¤erent model and a slightly
stronger notion of local minimality are considered. However, the regularity re-
sults proved therein do apply also to the model discussed here.
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The proof of Theorem 2 is rather long. Here, we just sketch the main steps and
ideas. All details can be found in [3].

The first step toward regularity is to remove the constraint jWhj ¼ d by show-
ing that if ðh; uÞ is a local minimizer, then ðh; uÞ is also a local minimizer of the
penalized functional

ðg; vÞ a X 7! Fðg; vÞ þLj jWgj � dj;

for some su‰ciently large L > 0. This allows us to use a wider range of variations
thus showing that Wa

h , the set obtained by b-periodic extension of Wh in the
horizontal direction, satisfies a uniform interior ball condition. To be precise,
one proves that given a su‰ciently small % > 0, for all z0 a qWa

h there exists an
open disk B%ðzÞHWa

h such that qB%ðzÞB qWa
h ¼ fz0g.

In fact, assume that the boundary of the disk B%ðzÞHWa
h intersects qWa

h at
two points ðx1; y1Þ, ðx2; y2Þ. To fix the ideas, take 0a x1 < x2 < b. Then, denote
by ~hh the function coinciding with h in ½0; bÞn½x1; x2� and defined in ðx1; x2Þ as the
function whose graph is the segment with endpoints ðx1; y1Þ e ðx2; y2Þ. Notice
that if ðh; uÞ satisfies the local minimality condition (2) for some d > 0, then there
exists %0 > 0 such that dHðGh ASh;G~hh AS~hhÞ < d for all % a ð0; %0Þ. A comparison
of the energies yields

½F ðh; uÞ þLj jWhj � dj� � ½Fð~hh; uÞ þLj jW~hhj � dj�b ðL� lÞ �LjDj;

where l is the length of the segment from ðx1; y1Þ to ðx2; y2Þ, L is the length of the
subarc of Gh connecting these two points and D is the region bounded by the two
curves. From the isoperimetric inequality

L� lb
k

%
jDj;

where k > 0 is a universal constant, we conclude, by the minimality of u, that %
must be necessarily larger than or equal to k=L.

The uniform interior ball condition implies in turn that qWa
h has (locally)

finitely many cuts and cusps. Moreover, outside these singular points qWa
h is the

union of (locally) finitely many graphs of Lipschitz functions having left and right
derivatives at every point which are left and right continuous, respectively (see
[2]).

To show that there are no corner points away from the singular points, thus
proving that GhnðSh ASh; cÞ is a C1 manifold, we argue by contradiction. In fact,
if Gh had a corner at z0 ¼ ðx0; y0Þ, the classical estimates by Grisvard ([6]) on the
singularities of solutions to linear systems of elasticity in domains with corners,
combined with a blow-up argument, would imply that there exist r0;C0 > 0
such that for all 0 < ra r0

Z
Brðz0ÞBWh

jDuj2 dzaC0r
2b;
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for some b > 1=2. Given this estimate, one could extend u to the whole disk
Br0ðz0Þ in such a way that the resulting function ~uu satisfies for all 0 < ra r0

Z
Brðz0Þ

jD~uuj2 dzaC1r
2b;ð4Þ

with C1 not depending on r. Thus, given a su‰ciently small r, let ðx1; y1Þ,
ðx2; y2Þ a qWa

h B qBrðz0Þ be two points such that x1 < x0 < x2 and qWa
h B

ððx1; x2Þ � RÞHBrðz0Þ. Defining ~hh as before and comparing the energies at the
two configurations ðh; uÞ, ð~hh; ~uuÞ, one easily gets from (4) and from the fact that
b > 1=2,

½F ðh; uÞ þLj jWhj � dj� � ½F ð~hh; ~uuÞ þLj jW~hhj � dj�b 2rð1� sinðQ0=2ÞÞ þ oðrÞ;

where Q0 is the angle formed by the left and right tangents at z0. Thus, the local
minimality of ðh; uÞ implies that Q0 ¼ p and z0 is not a corner point.

The proof of statement (iii) of Theorem 2 combines in similar way elliptic
regularity results and variational arguments, while (iv) follows from the general
results proved in [7].

3. Second variation and minimality

We now come to the qualitative properties of equilibrium configurations. The
results we present here are proved in [4]. A first problem discussed in that paper
is to determine su‰cient conditions for the local minimality of an admissible
configuration, based on a suitable notion of second variation for F .

To this aim, given a pair ðh; uÞ a X , with h a C2ð½0; b�Þ, we say that ðh; uÞ is
a critical point for F if it satisfies the system of Euler–Lagrange equations (3).
Notice that the flat configuration of volume d

hC
d

b
; u0ðx; yÞ :¼ e0 x;

�l

2mþ l
y

� �
;

is always a critical point.
Let us now introduce the notion of second variation of F for a configuration

ðh; uÞ a X , with h a Clð½0; b�Þ, h > 0, where u is the corresponding elastic equi-
librium, i.e., the minimum of the elastic energy in Wh, under the periodicity and
boundary conditions indicated in the previous section.

Given a variation j a H 1ð0; bÞ, jð0Þ ¼ jðbÞ, with
Z b

0

j dx ¼ 0, we set for jtj

small enough ht :¼ hþ tj and denote by ut the corresponding elastic equilibrium.
Notice that ðht; utÞ a X and that jWhj ¼ jWht j. Then, the second variation of F at
ðh; uÞ along the direction j is defined as

q2Fðh; uÞ½j� :¼ d 2

dt2
F ðht; utÞjt¼0:
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We say that the second variation at ðh; uÞ is positive definite if q2F ðh; uÞ½j� > 0 for
all jA 0.

Theorem 3. Let ðh; uÞ a X be a critical point for F , with h a Clð½0; b�Þ and
h > 0, such that the second variation of F is positive definite at ðh; uÞ. Then ðh; uÞ
is a local minimizer.

To the best of our knowledge this result is the first local minimality criterion
based on the second variation for a free boundary problem. Indeed, we think
that many of the ideas used in [4] can be used to deal with similar variational
problems.

The representation formula for the second variation of F has a rather compli-
cate expression (see [4, Theorem 3.2]), which simplifies a lot in the case of flat
configuration. In fact, given d > 0, one has that for every j a H 1ð0; bÞ, jð0Þ ¼

jðbÞ, with
Z b

0

j dx ¼ 0,

q2F ðd=b; u0Þ½j� ¼ �2

Z
R

QðEðvjÞÞ dzþ
Z b

0

j 02 dx;

where R ¼ ð0; bÞ � ð0; d=bÞ and vj is the solution of the system

ð2mþ lÞ
q2v1j

qx2
þ m

q2v1j

qy2
þ ðlþ mÞ

q2v2j

qxqy
¼ 0 in R;

m
q2v2j

qx2
þ ð2mþ lÞ

q2v2j

qy2
þ ðlþ mÞ

q2v1j

qxqy
¼ 0 in R;

8>>>><
>>>>:

satisfying the periodicity condition vjðb; yÞ ¼ vjð0; yÞ þ e0ðb; 0Þ and the bound-
ary conditions

qv1j

qy
þ
qv2j

qx
¼ 4ðmþ lÞe0

2mþ l
j 0; l

qv1j

qx
þ ð2mþ lÞ

qv2j

qy
¼ 0 on fy ¼ d=bg;

vj ¼ 0 on fy ¼ 0g:

8><
>:

The solution vj can be explicitely determined by Fourier series expansion (see [5]
and [4]), thus obtaining an explicit formula for q2Fðd=b; ue0Þ. To this aim, we set

np :¼
l

2ðlþ mÞ ; t :¼ e0
4mðmþ lÞ
2mþ l

and introduce the function J : ð0;lÞ ! ð0;lÞ defined as

JðyÞ :¼ yþ ð3� 4npÞ sinh y cosh y

4ð1� npÞ2 þ y2 þ ð3� 4npÞ sinh2 y
:

The quantity np is known as the Poisson modulus of the elastic material.
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Proposition 4. Given d > 0, for any j a H 1ð0; bÞ, jð0Þ ¼ jðbÞ, with
Z b

0

j ¼ 0,
we have

q2Fðd=b; ue0Þ½j� ¼
X
n AZ

n2jnj�n 1� t2ð1� npÞbJð2pnd=b2Þ
2pmn

� �
;

where the jn’s are the Fourier coe‰cients of j in the interval ð0; bÞ.

By combining the minimality criterion stated in Theorem 3 with the explicit
formula provided by the previous proposition, we immediately get the necessary
and su‰cient conditions for the local minimality of the flat configuration con-
tained in Theorem 5 below. But first we need to introduce the Grinfeld function
K defined for yb 0 as

KðyÞ :¼ max
n AN

1

n
JðnyÞ:

It can be shown ([4, Corollary 5.3]) that

K is strictly increasing and continuous; KðyÞaCy and lim
y!þl

KðyÞ ¼ 1;

for a suitable constant C.

Theorem 5. Let dloc : ð0;þlÞ ! ð0;þl� be defined as dlocðbÞ :¼ þl, if 0 <
ba p

4
2mþl

e2
0
mðmþlÞ , and as the unique solution of the equation

K
2pdlocðbÞ

b2

� �
¼ p

4

2mþ l

e20mðmþ lÞ
1

b
;

otherwise. Then, the flat configuration ðd=b; u0Þ is a local minimizer for F whenever
0 < d < dlocðbÞ.

The value dloc is a critical threshold: in fact, if d > dlocðbÞ, there exists
ðg; vÞ a X, with jWgj ¼ d and dHðGd=b;Gg ASgÞ arbitrarily small, such that
Fðg; vÞ < F ðd=b; u0Þ.

Notice that if 0 < ba p
4

2mþl

e2
0
mðmþlÞ then the above theorem implies that the flat

configuration is always a local minimizer.
While Theorem 5 gives the precise threshold for the local minimality of the flat

configuration, next result is more qualitative but deals with the stronger notion of
global minimality. Together with other qualitative properties of non flat mini-
mizers also this result is proved in [4].

Theorem 6. For the flat configuration ðd=b; u0Þ the two follwing properties hold.

(i) For every b > 0, there exists 0 < dglobðbÞa dlocðbÞ (see Theorem 5) such that
ðd=b; u0Þ is a global minimizer if and only if 0 < da dglobðbÞ. Moreover, if
0 < d < dglobðbÞ, then ðd=b; u0Þ is the unique global minimizer.

347equilibrium configurations of epitaxially strained thin films



(ii) There exists 0 < bcrit a
p
4

2mþl

e2
0
mðmþlÞ such that dglobðbÞ ¼ þl if and only if 0 <

ba bcrit, i.e., the flat configuration ðd=b; u0Þ is the unique global minimizer for
all d > 0 if and only if 0 < ba bcrit.
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