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Mathematical Analysis — Variational methods for singular Liouville equations, by
Andrea Malchiodi.

Abstract. — In this note we consider a singular Liouville equation on compact surfaces, arising

from the study of Chern-Simons vortices. Using improved versions of the Moser-Trudinger inequal-
ity and a min-max scheme, we prove existence of solutions in cases with lack of coercivity. Full

details and further references can be found in the forthcoming paper [17].
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1. Introduction

On a compact orientable surface S with metric g we study the problem

�Dgu ¼ r
� hðxÞe2uR

S hðxÞe2u dVg

� 1
�
� 2paðdp � 1Þ;ð1Þ

where r is a positive parameter, h : S ! R a smooth positive function, ab 0 and
p a S. This equation has interest in physical models like the abelian Chern-
Simons-Higgs theory and the Electroweak theory, see [11], [13], [14], [15]. We
also refer to [20], [22] and the bibliographies therein for a more recent and com-
plete description of the subject.

Most of the existing literature concerns asymptotic analysis or compactness of
solutions, while relatively few results are available about existence of solutions. In
[6], [12] some perturbative results are given, providing solutions of multi-bump
type for special values of the parameter r. Our goal is to describe a global vari-
ational theory for the equation, which relies on improved Moser-Trudinger in-
equalities and min-max methods.

With a change of variables of the form

u 7! uþ a log distðx; pÞ near pð2Þ

one can ransform (1) into the equivalent problem

�Dguþ hr ¼ r
~hhðxÞe2uR

S
~hhðxÞe2u dVg

on S;ð3Þ



where

~hh > 0 on Snfpg; ~hhðxÞU distðx; pÞ2a near p;ð4Þ

and where hr is a function satisfying

Z
S

hr dVg ¼ r;ð5Þ

which is a necessary condition for the solvability of (3), as one can see using inte-
gration by parts.

Equation (3) has variational structure and the Euler-Lagrange functional is
the following

IrðuÞ ¼
Z
S

j‘guj2 dVg þ 2

Z
S

hru dVg � r log

Z
S

~hhðxÞe2u dVg; u a H 1ðSÞ:ð6Þ

The logarithmic term in the functional can be controlled by Moser-Trudinger
type inequalities. In presence of a singular term ~hh as in (4), the value of the best
constant was found in [21], see also [4], and the result under interest is reported in
Proposition 2.1. From that result it turns out that Ir is bounded from below if
r < 4p, and that 4p is a threshold value, in the sense that for larger values of r
the functional does not have a finite lower bound. However one can still hope
to find critical points of saddle type, using for example min-max schemes: using
variational methods we prove the following results (which are particular cases of
the results obtained in [17]).

Theorem 1.1. Suppose a a ð0; 1� and that r a ð4p; 4pð1þ aÞÞ. Then if SVS2

problem (1) is solvable.

Theorem 1.2. Suppose a a ð0; 1Þ and that r a ð4pð1þ aÞ; 8pÞ. Then (1) is
always solvable.

Remark 1.3. The assumption that SVS2 in Theorem 1.1 is somehow natural,
since in [2] it is shown (via a Pohozaev identity) that on the standard sphere
ðS2; g0Þ (1) has no solution for r a ð4p; 4pð1þ aÞÞ, a > 0. An explanation of the
role of this condition in our proof is given below.

One common tool for applying variational arguments in Liouville type equa-
tions is some kind of improvement of the Moser-Trudinger inequality. A classical
example is a result by J. Moser, [18], in which he considered the case of the stan-
dard sphere. Assuming that u is an even function on S2, he showed that the con-
stant in (10) can be taken to be 1

8p and he found applications in prescribing even
functions as Gauss curvatures on S2. A more general improvement was obtained
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by T. Aubin in [1], still in the case of the standard sphere. He conspired balanced
metrics, namely those for which the conformal factor e2u satisfies

Z
S2

xie
2u dVg0 ¼ 0; i ¼ 1; 2; 3;ð7Þ

where the functions xi are the restrictions of the Euclidean coordinates to S2,
embedded canonically into R3. In this case, Aubin showed that in the Moser-
Trudinger inequality one can take any constant which is larger than 1

8p . Applica-
tions were found for example in [4] where rather general conditions were given
for prescribing the Gauss curvature on the sphere. An even more general im-
provement, which includes Aubin’s one as a particular case, was obtained by
W. Chen and C. Li in [5], where it was shown that if the conformal volume
spreads into two distinct regions (separated by a fixed positive distance) of any
given surface, then the best constant in the embedding reduces by nearly a factor
two, see Proposition 2.2 below. Some applications were found in [7] to produce
solutions of the regular Liouville equation, see also [8], [9] and [16] for further
progress on this direction.

We will describe next a new improvement of the Moser-Trudinger inequality
obtained in [17], which applies to the study of (1). To explain the spirit of the im-
provement we consider Proposition 2.1: if a is negative the best constant is larger
than 1

4p , but if a is positive (as in our case) the best constant is simply 1
4p , as for

the standard Moser-Trudinger inequality.
One can easily see this testing the inequality on a standard bubble, namely a

function of the form

jl;xðyÞ ¼ log
l

1þ l2distðx; yÞ2
;ð8Þ

with center point x di¤erent from p. This function realizes the best constant in the
regular case (in the limit l ! l), and for the above choice of x there is basically

no e¤ect from the vanishing of ~hh somewhere on S. On the other hand, in [10] it
was shown that for any a > �1 there exists Ca such that

log

Z
B

jxj2ae2ðu�uÞ dVg a
1

4ð1þ aÞp

Z
B

j‘guj2 dxþ Ca; u a H 1
r ðBÞ:

In the latter formula B stands for the unit ball of R2 and H 1
r denotes the space of

radial functions of class H 1 in B.
The improvement in [17] basically substitutes the symmetry requirement with

a condition on the center of mass of the function ~hhe2u, which holds for a family of
functions in H 1ðSÞ with codimension 2. Some more details are given in the com-
ments after Proposition 3.2, but we can roughly state that if the center of mass
of ~hhe2u coincides with the singularity p then the constant in (10) can be taken to
be 1

4pð1þaÞ . The proof of this statement, which is not reported here for reasons of
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brevity, requires di¤erent arguments from Aubin’s and Chen-Li’s. The main new
feature of our improvement is that it is scaling invariant, and in a sense what mat-
ters to get a better constant is the closeness to p of the center of mass to ~hhe2u,
compared to its scale of concentration.

To prove existence we look at the structure of very negative sublevels of Ir.
From Proposition 2.2 one deduces that if r < 8p and if IrðuÞ is su‰ciently nega-
tive, then ~hhe2u should be concentrated near at most one point of S. Under the
assumptions of Theorem 1.1, namely for r < 4pð1þ aÞ, we learn from the im-
proved inequality that if IrðuÞ is negative then ~hhe2u should not be too concen-
trated near p. It is then natural to define a projection C : fIr a�Lg ! Snfpg
which associates to u the center of mass of ~hhe2u.

Viceversa, it is possible to construct a map from Snfpg into arbitrarily low
sublevels of Ir using the above functions jl;x: one finds that Irðjl;xÞ ! �l
uniformly for x in any compact set of Snfpg. Furthermore, one has that x 7!
jl;x 7! Cðjl;xÞ is a map homotopic to the identity. Using this fact and the non
contractibility of Snfpg (for S2S2) we use a min-max scheme which provides
existence of solutions. The details are described in Section 3.

In the case of Theorem 1.2, for r > 4pð1þ aÞ, the improved inequality does
not give any new information, and the map C is now with values in S, including
possibly also p. On the other hand, one can use test functions like

ja;l;xðyÞ ¼ log
laþ1

ð1þ ðldistðx; yÞÞ2ð1þaÞÞ
;ð9Þ

to repeat the above argument substituting Snfpg with the whole surface S, which
is always non contractible.

In Section 2 we collect some preliminary results on the Moser-Trudinger in-
equality and a known improvement, together with some compactness results. In
Section 3 we then illustrate the new improved inequality from [17] and the min-
max scheme which is used to prove existence.

Acknowledgements. The author has been supported by the project FIRB-Ideas Analysis and

Beyond.

2. Preliminary facts

In this section we fix the notation and recall some useful known results, concern-
ing Moser-Trudinger type inequalities and compactness results.

We write distðx; yÞ to denote the distance between two points x; y a S. More-
over, the symbol BrðpÞ denotes the open metric ball of radius r and center p.
H 1ðSÞ is the Sobolev space of the functions on S which are in L2ðSÞ together
with their first derivatives. The symbol jj � jj will denote the norm of H 1ðSÞ. If

u a H 1ðSÞ, u ¼ 1

jSj

Z
S

u dVg stands for the average of u.
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Large positive constants are always denoted by C, and the value of C is
allowed to vary from formula to formula and also within the same line. When
we want to stress the dependence of the constants on some parameter (or para-
meters), we add subscripts to C, as Cd, etc.. Also constants with this kind of
subscripts are allowed to vary.

We begin by recalling the Moser-Trudinger inequality, and some if its vari-
ants. The Moser-Trudinger inequality asserts that, on a compact surface S

log

Z
S

e2ðu�uÞ dVg a
1

4p

Z
S

j‘uj2 þ Cg for all u a H 1ðSÞ:

In presence of a singular term, the value of the best constant was derived by
M. Troyanov, who obtained the following result.

Proposition 2.1 ([21]). Let a > �1, and let ~hh : S ! R be as in (4). Then one has
the inequality

log

Z
S

~hhðxÞe2ðu�uÞ dVg a
1

4pminf1; 1þ ag

Z
S

j‘uj2 þ C~hh;gð10Þ

for all u a H 1ðSÞ.

As one can see, if a < 0 the constant in front of the Dirichlet energy is worse
than the standard one 1

4p . However, if a > 0 the inequality does not improve in
general. Below, we will show that this happens indeed for suitable functions u.

The next result, proved in [5], states that if the function ~hhe2u is spread into two
distinct regions of S, then the constant in the Moser-Trudinger inequality can be
basically divided by two. The presence of the singular function ~hh only requires
obvious modifications compared to the regular case.

Proposition 2.2 ([5]). Let S be a compact surface, and ~hh as in (4), with a > 0.
Let W1, W2 be subsets of S with distðW1;W2Þb d0 for some d0 > 0, and fix
g0 a

�
0; 12

�
. Then, for any e > 0 there exists a constant C ¼ Cðe; d0; g0Þ such that

log

Z
S

~hhðxÞe2ðu�uÞ dVg aC þ 1

8p� e

Z
S

j‘guj2 dVg

for all functions u a H 1ðSÞ satisfying
R
Wi

~hhðxÞe2u dVgR
S
~hhðxÞe2u dVg

b g0; i ¼ 1; 2:ð11Þ

A useful corollary of this result in the following one: for the proof see [5] or [7].
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Corollary 2.3. Suppose r < 8p. Then, given any e; r > 0 there exists L ¼
Lðe; rÞ > 0 such that

IrðuÞa�L )
R
BxðrÞ

~hhðxÞe2u dVgR
S
~hhðxÞe2u dVg

> 1� e for some x a S:

We conclude this section by mentioning a compactness result obtained in [3],
proved though blow-up analysis of solutions.

Theorem 2.4 ([3]). Let S be a compact surface, and let ui solve (3) with r ¼ ri,

ri ! r, with a > 0 and p a S. Suppose that

Z
W

e2ui aC1 for some fixed C1 > 0.

Then along a subsequence uik one of the following alternative holds:

(i) uik is uniformly bounded from above on S;

(ii) maxS

�
uik �

1

2
log

Z
S

~hhe2uik
�
! þl and there exists a finite blow-up set S ¼

fq1; . . . ; qlg a S such that
(a) for any s a f1; . . . ; lg there exist xs

k ! qs such that uikðxs
kÞ ! þl and

uik ! �l uniformly on the compact sets of SnS,
(b) rik

~hhe
2uikR

S
~hhe

2uik dVg

*
P l

s¼1 bsdqs in the sense of measures, with bs ¼ 4p for

qsA fpg, or bs ¼ 4pð1þ aÞ if qs ¼ p. In particular one has that

r ¼ 4pnþ 4pð1þ aÞ;

for some n a NA f0g, and r > 0.

From the above result we obtain immediately the following corollary.

Corollary 2.5. Suppose we are in the above situation, and that

r a ð4p; 8pÞ; rA 4pð1þ aÞ:

Then the solutions of (3) stay uniformly bounded in C2ðSÞ.

3. Proof of the theorems

We begin by considering some test functions on which the functional attains
arbitrarily negative values.

Proposition 3.1. Let jl;x be as in (8). Then for r > 4p one has

Irðjl;xÞ ! �l as l ! þl

uniformly for x in any compact set of Snfpg.
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Proof. First of all we notice that, working in geodesic coordinates at x, the fol-
lowing estimates can be easily derived

Z
S

e2jl; x dVg bC�1 uniformly for x a S:

Therefore, if x belongs to a compact set K JSnfpg, by (4) we also have that

log

Z
S

~hhe2jl; x dVg b�CK uniformly for x a S:

Fixing a small number d, we notice that

jl;xðyÞa log l in BdðxÞ;

and that

jjl;xðyÞ þ log ljaCd in SnBdðxÞ:

From the latter two formulas we deduce

Z
S

jl;x dVg ¼ �ð1þOðdÞÞ log lþOdð1Þ as l ! þl:

It remains to estimate the Dirichlet energy: by elementary calculations one finds
the estimate

j‘jl;xðyÞjamin Cl;
2

distðx; yÞ

� �

for some large constant C. Dividing the Dirichlet integral into the ball B1=lðxÞ
and its complement one then finds

Z
S

j‘jl;xj
2
dVg a 8p log l� ð1þOðdÞÞ log lþOdð1Þ as l ! þl:

From the last formulas it follows that

Irðjl;xÞa ð8p� 2rþOðdÞÞ log lþOdð1Þ þOKð1Þ as l ! þl;

which concludes the proof. r

We next state, without proof, the following result, yielding continuous (and non
trivial if SVS2) maps from low sublevels of Ir into the pointed surface Snfpg.

Proposition 3.2. Suppose r a ð4p; 4pð1þ aÞÞ. Then there exists L > 0 and a
map C : fIr a�Lg ! Snfpg with the following property. If jl;x is as in (8), then
one has Cðjl;xÞ ! x as l ! þl uniformly on the compact sets of Snfpg.
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We notice that for C to be well defined on the sublevel fIr a�Lg we are using
Proposition 3.1. The fact that C has values into Snfpg is one of the main novel-
ties in [17], and relies on a new improved Moser-Trudinger inequality. The way
to prove it is to construct a sort of barycentric map b when ~hhe2u is mostly concen-
trated near p. To do this, one first finds a scale of concentration for any point x
finding an annulus (with a fixed ratio of the radii) for which the integrals of ~hhe2u

on the components of its complement coincide. We then look at the points where
these integrals are maximal possible. If some of these are su‰ciently close to p (at
a proper scale), then the improvement holds true.

We next define the min-max scheme which is needed to prove Theorem 1.1.
Consider the compact set St :¼ SnBtðpÞ, and fix L so large that the map C in
Proposition 3.2 is well defined on fIr a�Lg. We then define the set

Ll ¼ fjl;x : x a Stg:

Next, we consider the topological cone over St

ŜSt ¼ ðSt � ½0; 1�Þ=ðSt � f1gÞ;

where we are identifying all points in St � f1g. Finally, we introduce the family
of continuous maps

Hl;r ¼ fh : ŜSt ! H 1ðSÞ : hðyÞ ¼ jl;x for every x a Stg;

and the number

Hl;r ¼ inf
h AHl

sup
z A ŜSt

IrðhðzÞÞ:

We have the following result.

Proposition 3.3. Under the assumptions of Theorem 1.1, if l is su‰ciently large
the number Hl;r is finite.

Proof. If L is as in Proposition 3.2 and if l is so large that
supx ASt

Irðjl;xÞa�2L, we show that Hl;r > � 3
2L. In fact, suppose by contra-

diction that there exists a map h0 such that

h0 a Hl;r and sup
z A ŜSt

Irðh0ðzÞÞa� 3

2
L:ð12Þ

Then Proposition 3.2 applies and gives a continuous map Fl;r : ŜSt ! St defined
as the composition

Fl;r :¼ Tt �C � h0;

where Tt is a retraction of Snfpg to St.
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Since h0 a Hl;r, and hence it coincides with jl; � on qŜStUSt, by Proposition
3.2 we deduce that

Fl;r is homotopic to IdjSt
:ð13Þ

On the other hand, if we let $ run between 1 and 0, and we consider the maps
Fl;rj�; t¼$ : St ! St, we obtain a homotopy between the identity on St and a con-
stant map. Since by our assumptions St is non contractible, we obtain a contra-
diction. This proves the desired statement. r

Proof of Theorem 1.1. To check that Hl;r is a critical level, one can use a
monotonicity method introduced by Struwe, see [19], and which has been used
extensively in the study of Liouville type equations. We consider a sequence
rn ! r and the corresponding functionals Irn . All the above estimates and results
can be worked out for Irn as well with minor changes.

We then define the min-max value ~HHl;r :¼
Hl; r

r
, which corresponds to the

functional
Ir
r
. It is immediate to see that

r 7! ~HHl;r is monotone:

This implies that the map r 7! Hl;r is almost everywhere di¤erentiable. Reason-
ing as in [7], from the di¤erentiability one finds that there exists a subsequence of
ðrnÞn such that Irn has a solution un at level Hl;rn . Then, applying Theorem 2.4
and passing to a further subsequence, we obtain that un converges to a critical
point u of Ir at level Hl;r. r

Proof of Theorem 1.2. In the existence argument for the previous theorem
we substitute the set St with the whole surface S. The main change which is
needed is the counterpart of Proposition 3.1. If one chooses the test function in
(9) then the following estimate for the gradient holds true

j‘ja;l;xðyÞjamin Cl;
2ð1þ aÞ
distðx; yÞ

� �

for some large constant C. Using estimates similar to the above ones one gets

Irð‘ja;l;xÞa ð8pð1þ aÞ2 � 2ð1þ aÞrþOðdÞÞ log lþOdð1Þ as l ! þl:

If r > 4pð1þ aÞ then Irð‘ja;l;xÞ ! �l as l ! þl uniformly for x a S. Then
the above argument goes through with minor modifications. r
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