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ABSTRACT. — We study existence and uniqueness, nonexistence and nonuniqueness of nonnegative
solutions to a semilinear parabolic equation with inverse-square potential. Analogous existence and
nonexistence results for the companion elliptic equation were proved in [4]. Concerning nonunique-
ness, we extend the results proved in [16] for the case without potential.
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1. INTRODUCTION
We investigate existence and uniqueness of nonnegative solutions to the problem

u—Au——Su=u" mnQx(0,T)=:Qr

N
(1.1) u=0 in 9Q x (0, T]
u = uy in Q x {0}.

Here 5 0 is an open bounded subset of R” (n > 3) with smooth boundary J€,
v>1landce (0,¢), ¢ := (”742) being the best constant in the Hardy inequality.
We always suppose uy > 0. Special attention will be paid to nonexistence and
nonuniqueness phenomena.

Let us motivate our interest in the above problem and outline our results.

(i) The Schrodinger operator with inverse-square potential

|x]
has a number of peculiar features, which have attracted much attention [1], [9],
[10], [19]. Accordingly, semilinear elliptic and parabolic problems where it ap-
pears, or related to it, have been widely investigated in recent years (in particular,
see [2]{4], [6], [8], [14], [18]-{21]).
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Consider a realization H of the operator (1.2) in L?(R") with domain
Cy (Q\{0}). It is known that

(a) His essentially self-adjoint if and only if ¢ < ¢o;
(b) H = 0if ¢ < ¢y, but H not semibounded if ¢ > ¢

(see [1] and references therein). By these spectral properties, an extension of H
will generate a contraction semigroup in L?(R") if and only if ¢ < ¢y. Hence the
Cauchy problem for the parabolic equation

(1.3) v,:AzH—%v.
| x]

is expectedly well-posed for ¢ < ¢, but ill-posed for ¢ > cy.
This point was addressed in the pioneering paper [2], where nonnegative solu-
tions of the equation

c
(1.4) vt—Av—Wv:f

were studied; here /' = f(x,7), f > 0 is a given integrable function. It turned out
that nontrivial nonnegative solutions of (1.4) (defined in a suitable weak sense)
do exist when ¢ < ¢y. However, no such a solution, even in the weakest possible
sense, can exist if ¢ > ¢o.

Interestingly, the above nonexistence result is related with the lack of regular-
ity at the origin of solutions of (1.4)—an effect of the strongly singular potential
Vix) = ﬁ Observe preliminarly that equation (1.3) admits the explicit solution

1.5 oy
(1.5) V(XJ»C)*W ;
where

Iy =24(c) =2 —n+2\/co—c
is the largest root of the equation
(1.6) P H2n—2)0+4c=0 (ce(0,c).

Therefore the solution (1.5) exhibits a standing singularity at x = 0, in contrast
with the case ¢ = 0 (yet in agreement with the sharp estimates of the heat kernel
associated with (1.3); see [13], [15]). More generally, let ¢ < ¢y and v > 0 solve the
Cauchy problem for equation (1.4), with Cauchy data vy > 0, v9 # 0 or f >0,
f # 0. Then, as proven in [2], for any ¢ € (0,7) and R > 0 there exists C > 0
such that

(1.7) v(x, 1) > C|x|'1*/2 if |x] <R te(eT).
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The above inequality is easily understood considering radial stationary supersolu-
tions of (1.4). In fact, if v = k|x|* (k > 0) satisfies

c

—Av — 3

v >0,
|x]

then there holds

(1.8) {> 4+ (n—2u+4ctk|x]" <0 = a< >

Inequality (1.7) can be regarded as a necessary condition for existence. A fur-
ther necessary condition is

T—¢ X
(1.9) / F(x, 0)|x| = dxdr < oo
0 [x|<R

for any ¢, R as above (see [2]). Using (1.7) and (1.9), nonexistence for ¢ > ¢ can
be heuristically explained as follows. Let v be a nontrivial nonnegative solution
when ¢ > ¢, then it also solves the Cauchy problem for the equation

c c—c
vt—Av——Ozvz—zo+f.
|x] [ x]

Hence there holds inequality (1.9), which now reads

T—e¢ _
/ / ¢ jov—l—f(x,t) Ix|*72 dx dr < oo
0 J<r | |x]

(observe that A, /2 =2 — n for ¢ = ¢p). However, condition (1.7) then implies

T—e¢ v R
/ / —2|x|(2_")/2dxdt2 (T—2s)/ rldr = o,
0 Jix<r x| 0

a contradiction.

(ii) In the light of the above remarks, nonexistence results can be expected also
for the semilinear parabolic equation

(1.10) —Au——u=u"
|x]

which appears in (1.1). It is obviously so for ¢ > ¢). However, nonexistence can
be expected in this case even if ¢ < ¢y, provided that the exponent v is “too
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large”. In fact, this happens for the semilinear elliptic equation associated with

(1.1), namely
(1.11) —Av——v=0".

As proven in [4], the value
4

Z

vi=vi(e):=1+

is a dividing line with respect to existence or nonexistence of nonnegative solu-
tions to equation (1.11) (see [4, Theorems 1.1 and 1.2]; observe that 1, — 0,
thus v, — oo as ¢ — 07). Concerning nonexistence, we prove below that a simi-
lar situation holds for problem (1.1) (see Subsection 3.1 and Section 4, in partic-

ular Theorem 3.9, Theorems 4.2 and 4.3).

This nonexistence result is again made plausible by a heuristic argument, if we
consider radial stationary supersolutions. In fact, let v = k|x|” (k > 0) be a super-

solution of (1.10). Then we have

—{o® + (n— 2o+ dctk|x|* 7 = kx|,

which requires

2
ae—2<av & a>-
v—1
Hence the compatibility condition
A 2
% > — v —1 v < Vi

(see (1.8)) arises as a necessary condition for existence.

Let us observe that inequalities (1.7) and (1.9) with /' = u" give the necessary

condition for existence

-1+ 2n
v - —7
|4+

as is easily checked. However, our nonexistence results improve on this condition,

since v, < —1 +%.
+

(iii) Beside nonexistence, we also address nonuniqueness of nonnegative solutions
of problem (1.1) (see Subsection 3.2). Let us recall that the initial-boundary value

problem

v, =Av+ "2 in B x (0, 7]

(1.12) v=0 on 0B x (0,T]

V=19 in B x {0},
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(B denoting the unit ball in R") is known to have more than one solution for in-
finitely many vy € L"/"=2)(B) (see [16]). A related nonuniqueness result holds for
the linear problem

:Au—i—ﬁv in B x (0,7]

(1.13) v=0 on dB x (0, T]
v =1y in B x {0}
(see [12, Theorem 4.2], [21]).

Theorem 3.13 below generalizes this nonuniqueness result to the case ¢ # 0,

pointing out the role of the exponent |2” (see Remark 3.15). Here

(1.14) do=i(c)=2—-n-2q—¢

denotes the smallest root of equation (1.6). Observe that for any ¢ € (0, ¢y) there
holds /4 < 4y < 0 and

(1.15) lre(2—n0), i€ (2(2—n),2—n);
moreover,

2n n

I S
SO n-2

To investigate existence and uniqueness we make use of the results proved in
[22], regarding problem (1.1) as an abstract Cauchy problem (see (3.1)). To this
purpose we need estimates of the semigroup generated by a realization of the
operator A + 2 in some suitable Lebesgue space. Such estimates, which are of

independent 1nterest are proved in Section 2. Let us mention that they cannot be
derived from the heat kernel estimates proved in [13].

Nonexistence is studied by two different methods. When ¢ € (0,¢p) and v > v,
we adapt a method used in [20] for the elliptic case. On the other hand, in the
limiting cases ¢ € (0, ¢, v> v, or ¢ € (0,¢p), v = v, we generalize some results
in [18]. It should be noted that the notion of solution used in [18] was stronger,
whereas our concept of solution is the weakest possible (see Definition 4.1).

2. SEMIGROUP ESTIMATES

We make use of the Lebesgue spaces L7 (Q) = L?(Q, dx), LY (Q) = L?(Q, |x|" dx)
(p e [l,00],4 € (2—n,0)); their norms will be denoted by |-, and |-, re-
spectively.

It is known that the change of unknown u — v :=
equation

i —4— formally recasts the

(2.1) u,—Au—%u—O in Q x (0,7)
X
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into the equation

1
(2.2) v, = — div(|x|"Vv) in Q x (0, T)

x|

with A = .. Equation (2.2) is the heat equation for the weighted Laplacian
. ;i
A, = — div(|x|"V )
|x]

on the weighted manifold (Q, |x]’1 dx). This operator is properly defined in the
weighted space L(Q), 4 € (2—n,0) as follows. Denote by H| ,(Q) the closure
of Cy”(Q\{0}) in the norm '

1/2
(2.3) v— o = {/ (IVo]* + v¥)|x]* dx}
* Q

(since 4 > 2 — n, this is also the closure of C;°(Q) in the same norm). Then the
weighted Laplacian A; (complemented with Dirichlet homogeneous boundary
conditions) is defined in L?(Q) as the opposite of the generator of the symmetric
form in L3(Q):

(2.4) Aoy, 03] = / Vo1 Va|x|* dx
o
with domain D(#;) := H, ;(Q). Therefore,
D(A;) = {ve H,(@)] L div(l Vo) € L3(@)}

Ayv =L div(|x|*Vv) for any v € D(A)).

Jx|*

(2.5)

Here use is made of the equality

1
/ Vo Vo |x|* dx = — T div(|x|*Vvy) v |x|* dx,
Q

a|x|*

which holds for any v; € H] ;(Q), v € D(A;), and of general characterization re-
sults (e.g., see [11, Theorem VI.2.1]). We shall denote by {e*},. , the contrac-
tion holomorphic semigroup generated by A; in L3(Q). -

The Schrodinger operator H = —A — %, ¢ € (0, ¢y) (with Dirichlet homoge-

[x
neous boundary conditions) is similarly defined in L?(Q) as the generator of the
symmetric form

c
Huy,up) = /Q (Vu1Vu2 — Wuluz) dx
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with domain D(#) := H} (Q), namely

D(H) := {u e HI(Q)|Au+ Sue L2(Q)}

Il

Hu:= —Au—-<u foranyue D(H).

||

(2.6)

In view of the Hardy inequality, the form 2# is nonnegative and Cj°(Q\{0}) is
a core for it. The operator H is nonnegative and self-adjoint, so that —H is the
generator of a contraction holomorphic semigroup {e '} _ on L?*(Q).

The relationship between equations (2.1), (2.2) can now be made rigorous.
Consider the unitary map

27) @:L2(Q) —LAQ), (D))= x*Pelx)  (ve L2 (Q).
Define the nonnegative, self-adjoint operator
H, =®"HD
in Li(Q). Clearly,
el = @*eH'd  forany >0,

{e~#1},., denoting the semigroup on L;(Q) generated by —H, . It is easily
checked that H,, = —A;, (e.g., see [15]). Then the above equalities read

(2.8) A =0 (Ao,
]
(2.9) el = @ ®  forany r > 0.

The link (2.9) between the semigroups {2}, and {e~7'},_, will be used
in the following. In the next two propositions we recall some properties of these
semigroups (see [7], [15], [21]), concerning in particular their extensions to differ-
ent Lebesgue spaces.

PROPOSITION 2.1. For any A € (2 — n,0) the semigroup {e*'},., on L}(Q):
(1) is positivity preserving,
(i) can be extended to LY for any p € [1, w0|. Moreover, there exists w € R such

that

(2.10) le™g],, < eIgl,; (pell,ocli>0);
(ili) is ultracontractive. In fact, there exists Cy > 0 such that

(2.11) e, , < CirPe g,

Jorany ¢ € L}, t >0, x > max{w,0}.
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PROPOSITION 2.2. Let ¢ € (0,¢p). Then the semigroup {e~"'} . in L*(Q) can be

extended to a contraction semigroup in L?(Q), for any p € [2(’372) , oo).

]

PROOF. Observe that

2(n—2) c 1 1 (c€10,co)),

2.12 > < <

Then the claim follows from [21, Proposition 11.1] and subsequent Remarks. 0O
For the above extension we will use the same notation {e~/'},_ ; already used
in L?(Q).
Let us prove the following result.
PrOPOSITION 2.3. Let A€ (2—n,0). Then there exists a positive function

Kl(xv Y, t) = Kl(y7x7 [)(X,y € Q;t > 0): Kl(','at) € LOO(Q X Q) fOV any t> O;
such that

(213) (€ 9)() = [ K081 dy
Sor any t > 0, for almost every x € Q and any ¢ € L (Q), p € [1, o).
PrOOE. If p >2, equality (2.13) follows from Proposition 2.1-(iii) by the

Dunford-Pettis theorem. Let p € [1,2); take a sequence {¢,,} = L3(Q) such
that ¢,, — ¢ in L7 (Q). We have

oMt /K; DB dy

P

R R I
Q

< "eA/:[¢ - eA;Vt¢m”p,/l +

P

< TIg— gl s + H PR I

p,i
<eTlg =gl (s Kl ([l ax) 6= gl
(x,)€QxQ
Letting m — oo in the above inequality, the conclusion follows. O

Now we address the following

PrOPOSITION 2.4. Let A€ (2—n,0),1 < p <q < oo. Then for any T > 0 there
exists Cy, > 0 such that

(2.14) %91, < Cor™ DUV DY|, - (1€ (0,T))

for any ¢ € LY(Q).



ON A SEMILINEAR PARABOLIC EQUATION WITH INVERSE-SQUARE POTENTIAL 367

ProOOF. Using the interpolation inequality, inequality (2.10) with p =1 and
(2.11), we obtain for any ¢ € [1, o0]

1 ot opl=1 1-1/q9 xT ,~(n —
le® 9], , < le™ gl et g " < € T AA=Va g,

By the above inequality, inequality (2.10) with p = ¢ and the Riesz-Thorin theo-

rem, we obtain (2.14) with C, := C}/7~"/%¢eT O
Define
2(n=2)+piy - 2(n-2)
(2.15) B=plep) =] 22 LPE [ 7] ’2]
1 if pe(2,00).

LEMMA 2.5. Let pe | 222 o). If ¢ € LP(Q), then y == |x| /%4 e LV/F(Q).
AN .

PrOOF. Observe that f > 1; moreover, p > (I ‘> =2 > 1. We have

R L i1 ti-pp o 7
||w||p/ﬁ,,z+={ NI wx} ={ [ oo dx}

If p > 2, the conclusion follows from the above inequality. Otherwise, by the
Holder inequality

. Blp
{/ ‘¢(x)|p//f|x|ﬂ+(1fp/2/f) dx}
Q
v Gop-nya-n) ;7
s{ / ¢<x>|"dx} { [ e dx} — G4l

Hence the result follows. 0

=

A representation of the semigroup {e~*'},_, similar to (2.13) for the semi-
group {e®},_, is the content of the following

PROPOSITION 2.6. Let ¢ € (0,¢g). Define
(2.16) K(x,p,0) = (x| [y) Ko, (x, 3, 0) (x, 7 € Q1> 0),

where K denotes the heat kernel in (2.9) with A = .. Then
(2.17) (e M) (x / K(x,y,0)¢(y)dy

for any t > 0, for almost every x € Q and any ¢ € L?(Q), p € [%, oo).
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To prove Proposition 2.6 we need a preliminary result. Set

218) .q) 1 if g €[l1,2]
2.18 y=9(¢,9) =4 2(n-2)+q/, 2(n—2)
A i ae (2T,
(B
(2.19) ate.p.q) =5~ 7)

(when unimportant, we shall disregard the dependence of a on ¢ and write
a(p,q) = a(c, p.q)).

REMARK 2.7. It is easily checked that

(a) the map a(-, p,q) is nondecreasing;
(b) the map a(c, -, q) is decreasing;
(c) the map a(c, p,-) is increasing.

LEMMA 2.8. Let

2(n—2 2(n—2
(n )<qu<(T/1|)
+

(2.20)

Then for any T > 0 there exists a constant C4 > 0 such that

/ KC. 7, 08(3) dy
Q

forany ¢ € LP(Q).

(2.21)

< G Dgl, (1€ (0,T))
q

PROOF. Observe that:

()y<1and |<q<(‘)|):>/>1

(ii) by Lemma 2 SpelP(Q) == |x] " pe Li/ﬂ(Q).

Then by equality (2.16) and Lemma 2.3 we have

(2.22) / K(x, 3, 04(3) dy = x| / K, (6, 3, 0(3) dy

= |x[* (B ) (x),
whence

) | [ ke s a] ={ [ wepe )"

1/q
5 Ay - yn Jgt
—{ [ ety e dx} < Myl 5
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where
. 1/q
M, = {ma_x |x|(ﬂ+/2)(q2)} if g e[1,2],
xeQ

or

;u_;'_ 1 o }(l—y)/q ) 2(1’1 _ 2)
M = —q — Ay )Ss|x]" x| dx fge(2,——).

Since by assumption ¢ < 2(\?:\2) )

(2.14) and Lemma 2.5 we obtain

it is easily seen that% > /5; . Hence by inequality

(224) ey, < MR < ORI g)

From (2.23) and (2.24) the conclusion follows with Cy := C,C3 M. O
Now we can prove Proposition 2.6.

PROOF OF PROPOSITION 2.6. If p € [2, ), equality (2.17) follows from (2.7),
(2.9)and (2.13). If p € [2“’*2) ,2), let ¢ € LP(Q), {4, } = L*(Q) such that ¢,, — ¢

12|

as m — oo in L?(Q). Then for any z > 0

e g — X
y /Q K(x, y,04(y) dy

p

R — /Q K(x,y,)¢(y)dy

= ||€7Ht¢ - eiHr¢m "p +

p

<16 uly + | [ KG30(6,00) - 6000

< {1+ G P} |p — 4,

P

here use of Proposition 2.2 and of (2.21) has been made (observe that Z(I’Z? > 2

for any ¢ € (0, ¢p)). Letting m — oo in the above inequality the conclusion fol-
lows. O

The next proposition is an immediate consequence of Proposition 2.6 and
Lemma 2.8.

PROPOSITION 2.9. Let inequality (2.20) be satisfied. Then for any T > 0 there
exists a constant C4 > 0 such that

(2.25) e~ 91, < Car " DIg], (1€ (0,T))

Sor any ¢ € LP(Q), with a(p, q) defined by (2.19).
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3. EXISTENCE AND NONUNIQUENESS RESULTS
3.1. Existence

To address problem (1.1) we shall think of it as an abstract Cauchy problem,
namely

3.1) {u’—i—Hu:uV in (0,7)

u(0) = u,

where H is the operator introduced in Section 2 (in particular, see definition (2.6),
Proposition 2.2 and following remarks).

Let us make the following
DErFINITION 3.1. Let uy € L?(Q) with p € 2(";]2) , oo), upy>0, v>1 By a

mild solution to problem (1.1) in L?(Q) we mean any nonnegative function
ue C([0,T); LP(Q)) n C((0, T); L™ (Q)) n L'((0, T); LP*(Q)) such that

t
u(t) = e Mug +/ e HI=9y" (s)ds  for any t € [0, T).
0
Define

(3.2) b(e, p,q) = ﬁ [1 —ale, p, )],

where a(p, q) is defined by (2.19). As for a(p, ¢), we usually write b(p, ¢) instead
of b(c, p,q). Concerning existence of solutions to problem (1.1), let us prove the
following preliminary result.

ProroSITION 3.2. Let c € (0,¢p), v>1. Let the following assumptions be
satisfied:

2(n—2 2(n—2)
3.3 <p<pr< ——-—,
(33) 2] %)
(3.4) 0 <a(p,pv) <1,
(3-3) 0 <b(p,pv) <a(p,pv).

Moreover, let there exist p € (p, pv) such that

(3.6) a(p, pv) = b(p, pv)-

Then for any uy € LP(Q), uy > 0 there exists a unique mild solution of problem
(1.1) in L?(Q).
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PrOOF. Let us show that under the present assumptions the existence results in
[22] (in particular, [22, Theorem 2]) apply to the abstract Cauchy problem (3.1).
Consider the map

J=L"Q) - L(Q), u—Ju) :=u".
For any ¢,y € L?"(Q) such that |¢|,, <7, |{|,, <7 (r > 0), there holds
17(9) = JW)l, < 1(r)ld —vl,,

with / : R, — R, such that
(3.7) 1(r) = O(|x|"™") = O(|x| 1= 4PPDBPP)y - ag s o0
(see (3.2)). On the other hand,
e since p € (p, pv) and (3.3) holds, by Proposition 2.9 we obtain

(3.8) le™uol,, < Cat™ PP Juo],,

for any uy € L7(Q);
e there holds

(3.9) lim sup PP e My, = 0.

t—0

In fact, let {ug,,} be any sequence in LP"(Q) such that ug,, — up in L?(Q)
2(n-2)
|21
of contractions in L?'(Q). Using this fact and inequality (2.25) with p = p,

q = pv, we obtain

as m — oo. Since pv >

(see (3.3)), {e~"},., is a continuous semigroup

limsup 77|~ g, < Timsup "7 {le™ ™ (uo — uo,m)l,, + e~ tto,ml,}
+ +

t—0 t—

< Gy limsup PPN PP ug — w5 + [0, ml p }
—0+

= Caluo — uo, 3

here use of (3.6) and of the left inequality in (3.5) has been made. Sending
m — oo we have (3.9).

In view of (3.7)—(3.9), we can apply Theorem 2 in [22]. Hence the conclusion
follows. O

REMARK 3.3. As ¢ — 0", the limiting form of conditions (3.3)-(3.5)is 1 < p <
pv < oo and

(3.10)
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n(v—1)

As for equality (3.6), it is satisfied by p = = . Then in this limiting case Prop-
osition 3.2 reduces to [22, Theorem 1], showing that for any uy € L""~1/"(Q),
uy > 0 the problem

u;—Au=u" in Qr
u=0 in 0Q x (0,7
u =1 in Q x {0}.

has a unique mild solution in L?(Q).

Let us consider for completeness the simpler case when condition (3.5) is not
satisfied. In this case we have the following existence result.

ProPOSITION 3.4. Let ¢ € (0,¢9), v > 1. Let inequality (3.3) be satisfied, and

1
(3.11) 0 <a(p,pv) <;<b(p,pv).

Then for any uy € L?(Q), up > 0 there exists a unique mild solution of problem
(1.1) in L7 (Q).

PRrROOF. Inequality (3.11) implies that
/OC p V@)=l g o o
1

Then the conclusion follows from [22, Theorem 2-(a)]. O

|-
This is made below for p = 2 (see Theorem 3.5). Since the semigroup {e #'},_
is holomorphic in L?(Q), in this case the mild solution is classical, i.e,
ue CY(0,7); L*(Q)) n C((0,T); D(H)) (D(H) being defined in (2.6)) and sys-
tem (3.1) is satisfied.

Propositions 3.2 and 3.4 can be directly applied for any given p € [2(;1—2) , oo).

THEOREM 3.5. (i) Let

4(n — 2+i+)

(3.12) l<v<l+—r—

Then for any uy € L*(Q), up > 0 there exists a unique classical solution of problem
(1.1) in L*(Q).

(i) Let
n(n—2) 1
(3.13) o] Uk
(3.14) v 14284y

n(n —2)
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If n = 3, assume also

(3.15) v<1+w
n|i|
Let
. n[ 1 n|As| -
3.16 == — .
(3.16) p 2[\/—1 4(n—2+i+)}

Then for any ug € LP(Q), ug > 0 there exists a unique classical solution of problem
(1.1) in L*(Q).

PRrOOF. It is easily seen that

(-2 1 _ 1 nin—-2) 1
a) =P s (1-)) e =TS

It is also easily checked that inequality (3.12) ensures condition (3.11) with p = 2.
Therefore by Proposition 3.4 for any uy € L*(Q), up > 0 there exists a unique
mild solution of problem (1.1) in L2(Q).

Similarly, inequalities (3.13)—(3.14) (and (3.15) if n = 3) ensure conditions
(3.4), (3.5) with p =2. The value p defined by (3.16) is the unique solution of
(3.6) with p = 2. Hence by Proposition 3.2 for any uy € L?(Q), uyp > 0 there exists
a unique mild solution of (1.1) in L?*(Q).

It remains to prove that in any event the above solution is classical (recall that
p > 2, thus L?(Q) = L*(Q)). To this purpose, observe that by [22, Theorem 2J:

(a) in case (i) there exists k| > 0 such that
lu"(6)], < kit foranyte (0,7) (r>0);
(b) in case (ii) there exists k; > 0 such that
lu*(2)], < kt™™ forany e (0,T).

Therefore in case (i) the function 7 — |u"(7)], is integrable with exponent £ > 1
for any p € (av, 1) (observe that av < 1 by assumption (3.12)). Similarly, in case
(ii) the same function is integrable with exponent £ > 1 for any p € (bv,1) (in
fact, it is easily checked that the assumption (3.14) ensures by < 1). As a conse-
quence, since the semigroup {e~'},_ is holomorphic in L?(Q), by [17, Theorem

4.3.1] the function u": (0, T) — L?*(Q) is Holder continuous in [¢, T') for any
& > 0 (with exponent < in case (i), % in case (ii)). Then the conclusion follows by

[17, Corollary 4.3.3]. ]

In the general case it is interesting to investigate which restriction on p, v de-
rive from the compatibility of conditions (3.3)—(3.6) of Proposition 3.2 (a similar
but simpler study can be made for conditions (3.3)—(3.11) of Proposition 3.4; we
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omit the details). This is the content of Theorem 3.9, whose proof requires the
preliminary Lemmata 3.6, 3.7 and 3.8.

The conditions (3.3)—(3.6) depend on the quantities n, ¢, p, v—or, alterna-
tively, on n, ¢, p and ¢ := pv. In the following we suppose n > 3 arbitrarily fixed,
and investigate the compatibility of (3.3)—(3.6) as depending on p, ¢, regarding
c € (0,¢p) as a parameter.

Set

I:= 2n 2)72(11 2) , D:={(p,q) el xI|p<q}.
2] |24

Observe that the interval / and the set D depend on n and c¢. In particular, the
measure of 7 is a decreasing function of ¢ and 7 = (1, 00) for ¢=0, I =0 for
Cc = (.

Concerning condition (3.4) we have the following

LemMaA 3.6. Let ¢ € (0,¢p). For any (p,q) € D there holds a(c, p,q) > 0. More-
over, there exists a nonempty subset Dy < D, D depending on n and c, such that
a(e, p,q) < 1 for any (p,q) € D1. More precisely, there holds

Dy :={(p,q) e D|p_(c) <p<pylc),p<qg<t(c,p)}
where p, and t are as follows.

(i) If n=3,4, then p, = p
exists a unique root p = (

2(n—=2)\ _npp) _
(3.17) a(c,p7 ] ) =2, =1
Thereholdsp—ﬁlfn—3 p=2ifn=4.
The function © = t(c, p) is implicitly deﬁned by the equation
(3.18) a(e,p,q) =1

forany p € (2("1]2) ,13), and t = 2(|

L(e) = 2(|) = for any c e (0,¢co). In these cases there
) € I of the equation

2(n72)) )

241

-2 -
ﬂ ‘)foranype(p,
(i) The same situation prevails if n > 5 and ¢ € (0, ¢] with

20 —2) 8n—2
P (2 ) (2 %m
n n

however, p =% in this case.
If n>5and c € (¢,c), there holds

. b, (c) = 2n|A |
Pa = Pl = 0 0 2(n + ) oo — ¢
and the function t is defined by (3.18) in (p_(c), p,.(c)).
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In all cases the function t is continuous, nondecreasing with respect to p
(increasing when defined by (3.18)) and nonincreasing with respect to c.

Concerning condition (3.5) the following holds.

LEmMmA 3.7. Let ¢ € (0,¢9). For any (p,q) € Dy there holds b(c,p,q) > 0.
Moreover, there exists a nonempty subset D, < Dy, D, depending on ¢, such that
b(e,p,q) < alc, p,q) for any (p,q) € Dy. More precisely, there holds

Dy :={(p.q) € Di|p- < p <piple,p) <q<t(e,p)),

where p_ and the function t are as in Lemma 3.6, and p’ and the function p are as

follows.

(i) If either n = 3,4 and c € (0,¢y), orn = 5 and ¢ € (0, ¢] (with ¢ defined in Lemma
3.6), p; is the unique solution of the equation

2('1—2))52!3(19): |4+]
|2+] 2 p 2n=2)7

(3.19) a(c,p,

If n=23, then p} < %. If n>4, then pi = ,/"(‘Zj). In all cases there holds
p < p3. p being defined in Lemma 3.6.

(1) The function p = p(c, p) is implicitly defined by the equation

(3.20) a(e,p,q) =b(c,p,q) (p e (p_,pi))

1t is continuous, increasing with respect to p and nonincreasing with respect to c.
As for condition (3.6), we have:

LemMA 3.8. Let ¢ € (0,¢y). Then there exists a nonempty subset D3y = D,, D3 de-
pending on ¢, such that for any (p,q) € D3 there exists a unique p = p(c) € (p,q)
satisfying

(3.21) a(e, p,q) = b(c, p,q).
More precisely, there holds

D3 = {(paq) € D2 |p<C,p) <g< O'(C,p)},
where:

(i) the function p is as in Lemma 3.7;
(i) the function o = a(c, p) is implicitly defined by the equation

a(e,q,q) = b(c,p,q) (pe(p_,pl))

It is continuous, increasing with respect to p and nonincreasing with respect to c.
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In view of the above lemmata, conditions (3.3)—(3.6) are satisfied for any cou-
plev > 1, p > 1 such that (p, pv) € Ds3. Therefore we have the following existence
result.

THEOREM 3.9. Letc e (0,co). Let p_ = p_(c), pi = p’(c) and the functions p, o
be defined as in Lemmata 3.6-3.8. Assume

p_<p<pi, p_;p)<v<_o—(p).

Then for any ug € L?(Q), ug > 0 (with p = p(c,v) defined by equation (3.6)) there
exists a mild solution of problem (1.1) in LP(QQ).

REMARK 3.10. Observe that p,(c) — 2 as ¢ — ¢;, so that the assumptions of
Theorem 3.9 cannot be satisfied for ¢ > ¢(. This is in agreement with the nonexis-
tence result in [2, Theorem 2.2].

We complete this subsection by proving Lemmata 3.6-3.8.

PrOOF OF LEMMA 3.6. (a) A simple calculation shows that

n| |

(3.22) AP P) =30 =270

1 —12)' (ce(0,¢c),pel).

Since p <g¢ in D and a(c,p,-) is increasing (see Remark 2.7), there holds
a(e, p,q) > 0 for any (p,q) € D, c € (0,¢).
(b) Tt is immediately seen that:

e there holds

( ’Z(n—Z) 2(n—2)

n
|/17| Y |/"L+| ):7> 1 (66(0700));

2

e for any fixed ¢ € (0,¢y) the function p — a(c, p, p) takes its maximum for

p= 2(";:‘2 ) and there holds

(3.23) a(c’2(n—2) 2(n—2)):a(c72(n—2) 2(n—2))

PN PPN
n|A
:4(}1|_+|2) (CG (0700))'
It is also easy to check that the inequality
(3.24) nad

4(n—2)
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is satisfied for any ¢ € (0,¢g) if n = 3,4, or for any ¢ € (0,¢) if n > 5 (observe that
¢ < ¢ in the latter case). It is easily seen that in these cases there exists a unique
root p € I of equation (3.17), and

4+L/1 if n=3,
p=<2 if n=4,
2 if n>5.

Observe that p < 2 if n = 3, whereas for n > 5 there holds p <2
c € (0,¢) (see (3.24)).
On the other hand, if n > 5 and ¢ € [¢, ¢p) there holds

2 if and only if

a(C,p7p)<l <~ p—(c)<p<ﬁ+(c)7

and

Then the conclusion follows easily from Remark 2.7 by the Implicit Function
Theorem. |

>0 for any

PROOF OF LEMMA 3.7. Observe preliminarly that b(c,p,q)
(0,¢o)). Further

¢
(p,q) € Dy, since in this set a(c, p,q) <1 by Lemma 3.6 (c €
observe that

q
b(@P»Q)_a(CvP,q):_ A(Cvpvq%
q—p
where

P
A(Cap7Q) = a(c,p,q) - a

Clearly,

b(c,p,q) <ale,p,q) < A(c,p,q) >0,

and the function 4 has the same monotonicity properties as a.
In view of Lemma 3.6-(iii), we have

p__tmep)—p
w(e,p) e p)

A(c,p,z’(c,p)) = a(c,p,r(c,p)) - >0 (C € (07 CO))‘

Moreover, the function p — A(c, p, p) = a(c, p, p) — 1 takes its maximum for

2(|" 2 and there holds
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A(c, 2(n—2) 2(n— 2)) _ A(c, 2(r|zi—|2) ’2(1|1/1—|2))
+ +
n|i+|

:4(11—2)_1 (c € (0,¢p)).

Hence the proof of Lemma 3.6 shows that:

e ifn=23,4and c € (0,¢], orn>5and c € (0,¢],
A(e,p,p) <0 forany pel (ce(0,c));
e ifn>5andce (¢ ),

A(e,p,p) <0 & p_(c)<p<po)
In addition, equation (3.19) is equlvalent to A(c P, (ﬂz) = 0. It is easily seen
that it has a unique solution p; with the asserted properties when ¢ € (0, cp) if
n =3, or when ¢ € (0,¢) if n > 4. In this connection, observe that if n > 4

b= n(n—2)<2(n—2) o <o
" |24] |2+] '

In all cases there holds 4 (c, ﬁ’2(|),11 ‘2

A(e, -, q).

In the light of the above remarks, the conclusion follows from the monoto-
nicity properties as A by the Implicit Function Theorem. O

) > 0, thus p < p} by the monotonicity of

PrOOF OF LEMMA 3.8. In view of Lemma 3.7, there holds b(c, p,q) < a(c, p,q)
for any (p,q) € D;. Therefore, since a(c, -, g) is decreasing, a solution p € (p, q)
of equation (3.21) exists if and only if

(3.25) b(e,p,q) > ale,q,q).

Let us show that the above inequality is satisfied for a suitable subset D3 < D».
Set

B(c,p,q) = b(c,p,q) —alc,q,q9) ((p,q) € Da).

Observe that
Dy={(p.q) e D1|t ' (c.q) < p<p'(c.9)}-

When p = 77 !(c, q) we have

B(C? 171(67 Q),Q) = b(C, 771(63 Q>>q) - a(QQaQ) = —a(c, q, Q> <0,
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for b(c,771(c,q),q) = 0 (see (3.18)). On the other hand,
(C, q)? q) - a(c, q, q)
(C7 pil (C, q)? q) - a(c, q, q) > 0>
since
b(c,p ' (c,q),q) = ale,p”"(¢,q9), q)

(see (3.20)), a(c, -, q) is decreasing and p~'(c,q) < q.

In view of the above remarks and of the increasing character of B(c, -, ¢), fo
any g € (p(p_),p(p,)) there exists a unique p = /h(c,q) € (v"'(c,q),p~"(c,q)
such that

B(c,h(c,q),q) =0,  B(c,p,q) >0 < pe(hlc,q),p " (c,q))

)

Then in the set

D5 := {(p,q) e D, |q € (/7(137)7/7@+))>P € (h(C,q),p_l(C,q))}

inequality (3.25) is satisfied. Since D3 = D5, there also holds b(c, p,q) < a(c, p,q
for any (p,¢q) € Ds. Therefore for any (p, q) € D; there exists a unique p = p(c) €
(p, q) satisfying (3.21), and the first statement holds true.

Let us prove that A(c,-) is increasing, and /(-, ¢) nondecreasing; then the re-
maining statements will follow defining o(c, -) := h~!(c,-). Since by definition

B(th(caq)aQ) = b(C,h(C, Q),CI) - a<c7q7CI) =0

and B(c,-,q) is increasing, the first claim follows from the Implicit Function
Theorem, if we prove that B(c, p,-) is decreasing. This is immediate if ¢ > 2,
for b(c, p,-) is decreasing and %a(c, ¢,q) > 0 in this case (see (3.22)). If ¢ <2, a
direct calculation using (3.22) and the definition of b(c, p, ¢) shows that

0 n

—B(c < ——.

3 (¢, P, q) 7
Hence the first claim follows in this case, too. The last claim concerning the mo-
notonicity of /(-, g) also follows from the Implicit Function Theorem and the fact
that B(c, -, q) is increasing whereas a(-, p,q) is nondecreasing (see Remark 2.7),
thus B(-, p, ¢) is nonincreasing. This completes the proof. O

3.2. Nonuniqueness
In the following we denote by Cf;l(U ) (U < R"™!) the space of functions of

class C* with respect to x and C! with respect to .
Let us make the following definitions.
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DEerINITION 3.11. (i) By a weak solution of the equation

(3.26) u, — Au— #u =u" inQr
X

we mean any nonnegative function ue L) (Qx1[0,T)) such that |‘—‘2 €
L, .(Q % [0,T)) and there holds g

(3.27) —//Qru{CI—I—AC—i—ﬁC} dxdz—//ru"édxdz

for any v € (0,T) and any test function { € C;?,'I(QT), {(-,1) € C(Q) for any
te[0,7], {(-,7) = 0.

(i) Let up e L} .(Q). By a weak solution to problem (1.1) we mean any
nonnegative function ue C([0,T); L} (Q))nL} (Qx[0,T)) such that # €
L} (Q % [0,T)), which is smooth out of the origin for any t € (0, T|, vanishes on
0Q x (0, T and satisfies

(3.28) —//Qru{l,—kAC—kszi} dxdt—/QuoC(x,O)dx—i—//quCdxdz

for any v € (0,T) and any test function { € Cf,"l(@f), {(-,1) € CF(Q) for any
te[0,7], {(-,7) = 0.

DEFINITION 3.12. (i) By a weak stationary solution of equation (3.26) we mean
any nonnegative function u € L} (Q) such that 5 € L}, (Q) and there holds

Ix]

(3.29) —/u An+—5n dx:/u”ndx
Q | x| Q

Sor any test function n € Ci°(Q).
(i) By a weak stationary solution of problem (1.1) we mean any weak station-

ary solution of equation (3.26) which is smooth out of the origin and vanishes on
0Q x (0, T1.

In the following of this subsection we take QQ = B, B denoting the unit ball in
R". By strengthening the assumptions of Theorem 3.9, we can prove the follow-
ing nonuniqueness result.

THEOREM 3.13. Let ¢ € (0,¢9), v € (1,v_], and the assumptions of Theorem 3.9
be satisfied. Moreover, let

2n
7]

(3.30) p<p< < pv

(where p = p(c,v) is defined by equation (3.6) and |/._| = |i_|(c)). Then for some
uy € LP(B), uy = 0 there exist two weak solutions of problem (1.1) from the space
C([0, T}; L7 (B)).
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PROOF. As observed in [20], for any ¢ € (0, cp) and v € (1, v_] there exists a weak

stationary solution i of problem (1.1) such that @(x) ~ |x|*/* as |x| — 0. It is
easily checked that & € L9(B) if and only if ¢ € (1, lf”‘) thus @ € L”(B)\L""(B)
by assumption (3.30).

On the other hand, let # denote the mild solution of problem (1.1) in L?(B)
with Cauchy data uy = u, which exists by Theorem 3.9. It is shown below that
u is also a weak solution. Since u € C([0, T']; L?"(B)), it cannot coincide with .
Hence the conclusion follows.

To complete the proof, let # be the mild solution referred to above. Then, in
view of [22, Theorem 2-(vii)], there exists C; > 0 such that

(3.31) th(””’”)u(t)ﬂpv <(C; foranyte (0,7).

Since 0 < b(p, pv) < 1, we obtain

T
/ Ju(1)],, dt < Cs
0

with G, := C lleh;p;:j Since by assumption (3.30)
. 2n n

we obtain easily

(3.32) //Q “‘(xl D dxdt < C,

(pv—1)/pv
where (3 := Cz( / | /) dx) " Moreover, inequality (3.31) also im-
plies Q

(3.33) // u(x, )" dxdt < Cy

with Cy := CIV*1C2|Q|<1’71)V/"; here use of the inequality b(p, pv)v < 1 (or equiva-
lently b(p, pv) < a(p, pv)) has been made. By (3.32)—(3.33) the conclusion fol-
lows. O

The compatibility of conditions of Theorem 3.13 can be investigated as al-
ready done for those of Proposition 3.2. However, this leads to a complicated
set of constraints for p, v and ¢. Therefore we limit ourselves to consider suffi-
ciently small values of ¢, proving the following result.

THEOREM 3.14. Let p > 1, v > 1 satisfy

(3.34) v<%<pv<n(v—l)min{l,§}.
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Then there exists ¢ € (0, co) such that for any ¢ € (0, ¢) the assumptions of Theorem
3.13 are satisfied. Therefore for any ¢ € (0,¢) and for some uy € L?(B) (p depend-
ing on ¢), up = 0 there exist two weak solutions of problem (1.1) from the space
c((0, T}; L' (B)).

PRrROOF. Tt has been already observed that inequality (3.10), namely

corresponds to (3.4)—(3.5) when ¢ = 0; moreover p(0,v) :”(V—;l) (see Remark

3.3). Similarly, the limiting form of (3.30) as ¢ — 07 is

n(v—1) n
3.35 <
(335) P<—F5— < —5=<p

It is easily seen that the inequalities in (3.34) imply (3.10) and (3.35) (with strict
inequality). In fact,

-1
oy < =BT ><ﬁ;

° )< 2<pv:>”(1 D < p;
J pv<n(v—l min{1,}} = p <

( (1)

(in this connection, observe that 2 < v < -5 is compatible if n = 3).
Therefore all conditions of Theorem 3 13 are satisfied at ¢ = 0 with strict in-
equality. Since they depend on ¢ continuously, the conclusion follows. |

REMARK 3.15. Set
(3.36) vo=v_(c):=14++—
Observe that

n n+2
1<m< _<f2<11+ (66(0760))’

) n
Iim v_ = )
c—0t n—2

It was conjectured in [20] that the problem

Au—Wu—u in Bx (0, 7]

(3.37) u="0 in 0B x (0,7
u = o in Bx {0}
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has two weak solutions from u € C([0, 7]; L' (B)). In this connection, observe
that:

(i) if (3.34) holds, the assumptions of Theorem 3.13, yet with (3.30) replaced by
(3.38) p<p<v_<pv,

are still satisfied. This depends on the fact that

2n n
lim v_(c) = 1i = .
Jm-te) = I e T a2
However, the conclusion of Theorem 3.14 is more precise, for v_(c) < | ,1,2’(161)\ for

any ¢ € (0, ¢);

20
=k
recover the case p = v_ if (3.30) were replaced by (3.38). In fact, the argument
used in [16] in the limiting case ¢ = 0—namely, to prove nonuniqueness in
C([0, T]; L"/"=2)(B)) of solutions to the problem

(ii) in Theorem 3.14 we cannot recover the limiting case p = nor could we

u, — Au= w2 in B x (0,T]
u=20 in 0B x (0, T
U=y in B x {0},
makes use of the boundedness of the solution for any ¢ € (0, 7]. On the other

hand, it is known that every weak solution of problem (3.37) diverges at the
origin at least as |x|)'*/2 [2].

4. NONEXISTENCE RESULTS

Set 0, := (Q\{0}) x [0,7] (z € [0, T]). Let us make the following definition.

DEFINITION 4.1. Let ug € L}, .(Q\{0}). By a very weak solution to problem
(1.1) we mean any smooth nonnegative function ue C([0,T); L} (Q\{0})) N
L} .(Qr), which vanishes on 0Q x (0,T] and satisfies equality (3.28) for any
1€ (0,T) and any test function (€ Cf;l(Qr), {(-,t) e CF(Q\{0}) for any
te0,7], {(-,7) = 0.

Concerning nonexistence of very weak solutions to problem (1.1), we shall
prove the following result.

THEOREM 4.2. Let ¢ € (0,¢], v> vy, or ¢ € (0,¢p), v=v.. Suppose that

(4.1) lim iglf[|x|7<y+‘z*‘/2)uo(x)] >0 for somey < 0.

Then no very weak solution to problem (1.1) exists.
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Theorem 4.2 follows from the results proven in [18], if a stronger concept of
solution is used (see [18] for details). The concept of solution used above is the
weakest possible. In this respect, Theorem 4.2 is the parabolic counterpart of the
elliptic nonexistence result in [4].

Observe that by assumption (4.1) there exist k > 0, » > 0 such that for any

x| < r there holds ug(x) > k|x|”t* V2 1 |y| > n +‘ :| this implies uo ¢ L} .(Q),

whereas assumption (4.1) is compatible with u € L1 ( ) if [y <n +‘ LA di-
rect proof of nonexistence of very weak solutions, 1f up e L (Q), is the content
of the following theorem.

THEOREM 4.3. Let c € (0,¢0), v > vy. Let ug € L} (Q), ug >0, ug # 0. Then no
very weak solution to problem (1.1) exists.

4.1. Proof of Theorem 4.2
If we introduce the new unknown v(x, 7) := |x]| A+/2 u(x, t), problem (1.1) reads:

v — Av _%OC’ Vo) = |x|((v71)/2)).+vv in Or

(4.2) v="0 in 9Q x (0, T]
V=19 in Q x {0},

where vo(x) := \x|;'*/ up(x) and ¢-,-> denotes the scalar product in R". Very

weak solutions of problem (4.2) are defined exactly as those of problem (1.1)
(see Definition 4.1), yet with equality (3.28) replaced by

(4.3) —//fué,dxdt—//TU{AC—Mdiv(ﬁZ)}dxdt
:/Qvo(x)é’(x,O)dx—i—// x| 22 dx d.

It is easily seen that u is a very weak solution of problem (1.1) if and only if
v= |x|“/ 2u is a very weak solution of problem (4.2).

To prove Theorem 4.2 we modify the proof given in [18] in a suitable way, by
making a proper choice of the test function { in inequality (4.3). For this purpose
some preliminary remarks are needed.

LetQ; = Q be any neighbourhood containing the origin, 0 < ¢ < 7, # > 2¢ so
small that 4, , := {x € R" |e < |x| <5} = Q\{0}. For r € [¢,#] define

do(r) = (r" =n°)",

where o € (1 +1,2) and o < 0 will be fixed later. Define also

()= () (relen),
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where ¢ € C*([0,%]) is nondecreasing, such that
} 0 ifse(0,1)
#s) = {1 if se(2,9).
Finally, set
(r) =g (g (1) (r € [e,n]),

where p is a real parameter to be chosen later, and

(4.4) ) =U(xl) (v e d,y).

It is immediately seen that the function ¢ has the following properties:
(i) there holds

d¢ d¢

{e)=L(n) = &) =—-() =0;

(i) there ex1sts a sequence {(;} = C;°(4,,), {x = 0 for any k, such that {; — ¢
in W P(A &y) forany p e (l,ﬂ)

In fact, claim (i) follows from the very deﬁnmon of {. Concerning (ii), observe
that € CJ(Ay) 0 W*P(A,,), thus { € Wy (A,,) for any p € (1,55); then the
claim follows.

The proof of Theorem 4.2 makes use of the following

PROPOSITION 4.4. Let v be a very weak solution to problem (4.2). Let either of
the following assumptions be satisfied:

(i) p<2-—n<if,0<0;
(i) p=Ay>2-—n6=2—n—p.

Then for any 0 < & < n, n sufficiently small and any © € (0, T) there holds:

Y =D/ v

A( nmAJ| (. 1E(x) dx
- T‘L’— p 7" Do (1xDv(x X
- A( om/mu 2o, 1) d

A..]

+ﬁ’/or(r— 0! dt/A

where > max{1,-}, the function { is defined in (4.4) and

v(x, ) (x) dx — rﬁ/ vo(x)C(x) dx,

&n As. n

46 r) =1 w0 G g B e e
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PRrOOE. Let 7 € (0, T}; set

o Ja@=0f ifre(0,7)
) _{0 if re (7, T),

with f > max{1,-15}. Let {{4} < C5°(4..,), (& = 0 for any k, such that {; — {

in W;”(A4,,), pe(l,55). Choosing C(x 1) = & (x)@(1) in (4.3), then sending
k — oo we obtain:

(4.7) /O T(T—t)ﬁdl /A | DR (D E(x) dx
g [T e pp ;
8 =0 dt/A o, )E(x) dx

_/0T<T_ [)ﬂd[/A v(x, t){Af—)%div(&f)}dx

e

—Tﬂ/A vo(x)(x) dx.

e

An elementary calculation shows that

48) AZ— i 55E) = W G
where
(4.9) Y(r) = V"”Z—f( ) — A" 2L(r)
Defining
Yy = (r) = V’H%[Vﬂ ho(r)] = 2" 2P o(r) (r € [e,7])
we obtain
(4.10) V) = gy + 7 g,

From (4.7)—(4.10) the conclusion immediately follows, if we prove the following

CLAIM. Let either assumption (1)—(ii) be satisfied. Then there exists 1, > 0 (de-
pending on p, o) such that for any n < n, there holds

dys, .
v >0 in(en).
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To prove the Claim, observe that
2 dy _ _
(ra _ ’70) o Y 1 _ a(a _ 1)0_2rn+p+20 3 + (ra— _ na)rnﬂﬂra 3
r

x{aa[(p—h)%—n—i—p—i—a—ﬂ

T (-2t p—2) [1 - (;)'”} }

as an elementary calculation shows. It is easily checked that the right-hand side of
the above equality is nonnegative, if either assumption (i) or (ii) is satisfied. Then
the Claim and the conclusion follow. O

Proposition 4.4 allows us to to prove Theorem 4.2, repeating the argument
used in [18, Theorem 2.7]. We outline the proof for convenience of the reader.

PRrROOF OF THEOREM 4.2. (i) Let u be any very weak solution of problem (1.1),
and v = |x|“/ 2 the corresponding very weak solution to problem (4.2). Arguing
as in [18, Proposition 4.2], from inequality (4.5) we obtain for any ¢ € (0,7) suffi-
ciently small and any 7 € (0, T

(4.11) /OT(T—Z)ﬁdt{/A

< M:Pc (s,n){Cl (e, 77)1/("71)171/("71) + Gy(e)T

- / 0o (3)E() dx}
Ag.ﬂ

with some constant M = M(f,v) > 0. Here

/A B v—1

(4.12) Ci(en) = {/ r\ﬂ+\/2+ﬂflc(r) dr} ’

(4.13) Cy(e) ;:/ |x|—(n—1)wH)C
Ar.‘2r.

v(x, (x) dx}

&1

AL (WD) i,

where v/ := %=1 (observe that y(|x|) = 0 if [x| > 2¢).
In view of the definition of the function {, we have

v—1
Cl(e, }7) < {/”r)~+|/2+p+a+nl dr} ’
&

thus by monotonicity

Iim C; (8, ;7) < [(1;7(“+\/2+/)+0+n)(v—1)

e—0t
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for some K; > 0. Moreover, arguing as in [18, Proposition 3.4, we obtain for
some constant K, > 0

Cs(e) < K> Ce?,
where

- 7 Al
(4.14) 0:=n+p+o 2+2(V71)(V vy).

(i1) In the following we choose the parameters p, o of the test function  as in
Proposition 4.4. More precisely, we assume

(@ p<2—-no<0ifv>vy or
(b) p=Ay>2—-no=2—-n—pifv=v,.

Observe that the choice ¢ = ¢y is allowed in case (a), but forbidden in case (b).

By Proposition 4.4 and the first sentence of this proof, in both cases inequality
(4.11) holds, thus we take its limit as ¢ — 0". To this purpose, observe prelimi-
narly that for any 7 € [0, ]

lim dx—/ |x\"+”[ |X|)‘ };(x,z)dx

e—0t Ag

by monotonicity, due to the choice of the function . In view of assumption
(4.1), there exist k > 0 and #; > 0 such that for any |x| <# < #; there holds
vo(x) > k|x|”. Hence

/B |xﬂ+a[1 B (%)J}vo(x) . k/onryﬂ'*”"‘ {1 - (}7)5] i

n

where B, := {x € R"||x| <n}. If y < =2, the integral in the right-hand side of
the above inequality diverges. On the other hand, if y > —2 we obtain:

la|
/ | |p+o[ |X|) } O(X)dx2K3ny+p+a+n

for some K3 > 0.
(iii) Assume first v > v.. We claim that in this case the above choice (a) of the

parameters p, o is consistent with the inequality 6 > 0. If so, letting ¢ — 0" in in-
equality (4.11) gives

(4.15) /0 r—tﬁdt{/ I W[ |x|) }v(x,t)dx}v

< M‘L‘ n (144 1/2+p+o+n) V{,L. (v—1) _K377}'+i+/2}
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for any 7 € (0, T), if y > —2. In this case the right-hand side of the above inequal-
ity is negative for any t > 7, = 7.(5) := K;("fl);y(uﬁ/z*}')(”*1); since 7,(57) — 0T as
n — 0T, the conclusion follows in this case. On the other hand, if y < —2 the
right-hand side of inequality (4.15) tends to —oo as ¢ — 07, thus a contradiction
follows in this case, too. This proves that v = 0, thus u = 0. By the arbitrariness
of u the conclusion follows in this case.

To prove the above claim, observe that the requirement 6 > 0 reads

p+a>2—n+

2( _ 1) (V - V+)
(see (4.14)), whereas the choice (a) implies
pt+o<2—n.

The above inequalities are compatible since v > v,. This completes the proof in
the present case.

(iv) Finally, let v=v;. Choosing the parameters p, ¢ as in (b) gives
p+o+n=2 thus 0 =0. Taking the limit of inequality (4.15) as ¢ — 0" now
we obtain

(4.16) A z—zﬂm{/’|vﬂ{ |ﬂ)]v@ﬁﬁk¥

< M0 {f(n,7) — Kan’ %},
where
f(’?»T) — ]721//(»'71)1,71/(\)71) +K2‘L’.
It is easily seen that the function f(7,-) has a unique minimum 7, = 7, () :=

(v—1K;]” =D/ n [0, T]; moreover, f(y,7.) =vKyt,. Then by inequality
(4.16) there holds

(4.17) lA'v4ﬁm{/ll“ﬂ MY}“%ﬁy

< M/,L_/)’+2’,/2v{K2 _K3}7y}

for some M’ > 0. Since y < 0 and 7.(n) — 0" as 7 — 0T, the conclusion follows
also in this case. This completes the proof. O

4.2. Proof of Theorem 4.3

The proof of Theorem 4.3 makes use of the following

PROPOSITION 4.5. Let 0 < ¢ < co, v>v,. Suppose ug € L} (Q). Then every
very weak solution to problem (1.1) is also a weak solution.
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To prove Proposition 4.5 we need two preliminary results.

LEMMA 4.6. Let u be a very weak solution of the problem

{utAug in Qr

(4.18) u=0 in 0Q x (0,7)

u=u in Q x {0},

with g € L}, (Qx[0,T)), up € L}, (Q). Suppose that 2 eLl (Qx[0,T)). Then
u is a weak solution to problem (4.18).

PrROOF. By assumption we have

(4.19) —// u{f,+Af}dxdt:/Quof(x,O)dan//fgCAdxdt

for any 7 € (0,7) and any test functlon le Cftl(Q ), (1) € Cy (Q\{0}) for
any 1€ (0,7, {(-,7)=0. Let CEC?, (0., ¢, )GCSO( ) for any ¢ € [0,1],
(-, 7) = 0. Set y,(x) == yx(k|x|) (k € N), where y € C*((0,0)), 0 < y < 1 and

(s) = 0, if sel0,1]
AT, i se 2, 00).

Choosing £ = {;, = Cyp n (4.19) gives

—// u)(k[C,+AC]dxdt—2// udV¢, V> dx dt
QT QT
—// uCA)(kdxdt—// gC)(kdxdt—i—/uo(x)kadx
T QT Q

for any 7 € (0, T'). This yields the conclusion as k — oo, if we prove that

lim // ulV¢,Vy, > dxdt = lim // ulAy; dx dt =
k== JJo. k= JJo,

This follows from the inequalities

// [u| [Vy | [VC ] dx dt < Ck// |u| dx dt
0 0J{1/k<|x|<2/k}
£4C// 2dxdt
{1/k<|x|<2/k} |X]
// |u| |C| | Ay | dx dt < Ck? // |u| dx dt
0 0J{1/k<|x|<2/k}

<4C / / 2 dxdr
0J{1/k<|x|<2/k} |X]|
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(which hold for some C > 0), for by assumption —* G L) .(Q x[0,T)). Hence the

conclusion. O

Lemma 4.7. Let 0<c<cy, v>1. Let u be a very weak solution to problem
(1.1). Then both 2 and u belong to L}, (Q x [0, T)).

Proor. Consider the family of functions

o= {567 4720 s,
0 ifr=20

where ¢ € Ci°([0, c0)) satisfies:

e 0<¢<1in(0,00),£&(0)=1,£=0in[l,0);
e &' <0,">01in (0,0).

Then for any ¢ > 0

e 0<¢é,<1,6=0inB,, ¢ — 1ase— 0 foranyr > 0;

o |V&| = (n—2)e"2r!"¢&'| — 0 as & — 0, uniformly on the compact subsets
of Q\{0};

o AZ, = (n—2)2202p20-m¢" > 0 in Q.

Moreover, take 7 € C*(Q) such that 0 <# <1, =1 in B, for some & > 0,

n =0 on 0Q.
Observe that .7 € Cy°(Q\{0}), thus we can choose

1) = (=& (0m(x) ((x,0) € 0,)

with > ¥+ in (3.28) (see Definition 4.1). We obtain

<5//T 0" ‘émdxdz

_// ulr= 0 AE, + &EAn + 2(VE, Vipy] dx di
<p [ wte— i miva

/ /Q\Bp v — 0)F[&,An + 2{VE,, V)] dx di

gﬂ// u(t — 0P e pdx di +
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for some C; > 0. On the other hand,

@21)  pu(r— 0 en =ul(z = ) "B — (G T

1 v/ (v— —v/(v—
< (o= 0 e+ I e iy,

here the inequality 0 < &, < 1 has been used. From (4.20)—(4.21) we obtain

v—l// T—lﬁégl’[dXdl‘f'C// (t—1) fgﬂdxdt<C2

for some C; > 0. In view of the Fatou lemma, letting ¢ — 0 in the above inequal-

ity gives
-1
vv // u”(r—t)ﬁndxdl—i—c// #(T—Z)ﬁndxdtscz
: L |x

whence the conclusion easily follows. |

We can now prove Proposition 4.5.

PROOF OF PROPOSITION 4.5. Let u be a very weak solution to problem (1.1). In

view of Lemma 4.7, g := @u + u” belongs to L}, .(Q x [0, T)). Then by Lemma
4.6 u is a weak solution to problem (1.1), and the result follows. |

Finally, let us prove Theorem 4.3.

PROOF OF THEOREM 4.3. Define

(4.22) Vo 1=

A
|2+|7 Y=k —2 (keN).

We shall prove that the sequence {y,} is increasing and diverging as k — oo. In
fact, observe that

Nn—r=0-17p-2>0
since by assumption v > v,. Moreover, assuming
= V1= =Dy —2>0

for some k € N, we have

Vet ===y —=2> =Dy — 2.
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Then, by induction, we have that {y, } is increasing. Suppose that / := hm 7 € R.
Then from (4.22) we get

2 A
el

since v > v4. On the other hand, / > y, := #, since the sequence {y, } is increas-
ing. The contradiction proves that / = oo B
As a consequence, there exists a unique k € N such that y; >n—2 and

Vi <n— 2. We shall prove the following

CLAIM. Let there exists a very weak solution u to problem (1.1). Then for any

j=1,...,k—1 there exist C; > 0, R; > 0 such that
(4.23) u(x,t) > Ci(t—¢)|x|”” fora.e. (x,1) € Bg x (¢,T) (e€(0,7)).

From the above claim the result follows plainly. In fact, inequality (4.23) with
j =k — 1 implies

u'(x, 1) = CF (11— e)'|x| 7% forae. (x,1) € Br. x (&, T).

Since 7z =n—2 by definition, there holds |x| 7% ¢ L'(Bg_ ), hence u¢
L"(Br. % (&71)) (t € (& T)). On the other hand, by Proposition 4.5 u is a weak
solution’ to problem (1.1), thus u e L} .(Q;) for any 7 € (0,T) (see Definition
3.11). This is a contradiction, since Bg. X (¢,7) = Q: (1 € (¢,T)). Hence the
conclusion follows.

It remains to prove the claim. To this purpose, recall that for any fixed
Re (0,1) and ¢ € (0, T') there exists Cyp > 0 such that

(4.24) u(x, 1) > Colx|*/* forae. x e By x [¢,T]
(see [2, Theorem 2.2]). Set

|x|% — R ) _
— T (=l k-

Uj(x) :=
(observe that U; > 0 for any j, for yy > 0, yr_; <n —2and {y,} is increasing). It
is easily checked that U; satisfies

4.25 — | UAndxdt = x| 772y dx
( ) AY n
Br

Bg

forany n e C*(Br),7>0,7=00n0Bg (j=1,...,k—1).
Fix any 7 € (¢, T). Under the present assumptions every very weak solution u
to problem (1.1) is also a weak solution (see Proposition 4.5). Therefore, we can
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choose in (3.28) a test function { € Cf;l(E’R x [e,1]), { =0, {=01in 0Bg X [¢,1],
{(-,7) = 0. In view of (4.24), this yields

/ST/I;RZ‘(C’+AC+I)CCIZC) dxdt:/BRuoc(x,O)dx+/lRuvcdxdz

> C) / x| 42 dx dt

¢J Bp

=y / / x| 2 dx dt,
& BR

whence

(4.26) —/7 u(l, + Al dxdt > COV/ x| 72 dox d.
& BR BR

Define forany j=1,...,k —1

v

b= 0(t_8>(T—8)yj(n—2—yj)+1

Observe that

with

Vj(” -2- V/) v

K; = .
T (T —e)y(n—2—y)+1 0

Let us first prove inequality (4.23) for j = 1. By equality (4.25) we have

(4.27) —// u1(§ + Al dxdt = — K, // (t—e)Ui({ + Al) dx dt
&J Bg &J Bp
_ K // U + (1 = &) x| dxdr
& BR
‘ 1
<K // {74— t—s} x| dxdr
: B 1(n—2—=71) ( il
<C) / x| 2 dx dr.
& BR
Inequalities (4.26) and (4.27) imply

—/T (u—u)({ + Al dxdt > 0
¢J B
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—namely, u — u; is a weak supersolution of the problem

uy—Au=0 1in Bg x (¢,T)
{u =0 in (0Bgr x (&,T)) v (Br % {¢})

Then by comparison principles we have
u>uy ae.inBgx(eT).

This proves the claim for j = 1, by a proper choice of the constant C; > 0 and
R, = R. The argument can be iterated for the remaining values of j. Hence the
claim follows, and the proof is complete. O
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