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1. Introduction

Functions of bounded variation, whose introduction in [13] was based on the heat
semigroup, are by now a well-established tool in Euclidean spaces, and more gen-
erally in metric spaces endowed with a doubling measure, see e.g. [6] and the
references there. Applications run from variational problems with possibly dis-
continuous solutions along surfaces and geometric measure theory (see [3] and
the references there) to renormalized solutions of ODEs without uniqueness (see
[1]). More recently, the theory has been extended to infinite dimensional settings
(see [16, 17, 4, 5], aiming to apply the theory to variational problems (see [14,
18]), infinite dimensional geometric measure theory (see [15]), ODEs (see [2] for
the Sobolev case), as well as stochastic di¤erential equations (see [11, 12]).

If the ambient space is a Hilbert space X endowed with a Gaussian measure g,
then, beside the Malliavin calculus, on which the above quoted papers are based,
an approach based on the infinite dimensional analysis as presented in [10] is
possible. As in the case of Sobolev spaces, this approach turns out to be similar
but not equivalent to the other, and a smaller class of BV functions is obtained.
The aim of this paper is to deepen this analysis, mainly in connection with the
Ornstein-Uhlenbeck semigroup Rt studied in [10] whose invariant measure is g,
which enjoys stronger regularizing properties compared to the operator Pt of the
Malliavin calculus. We prove that, for u a L1ðX ; gÞ, the property of having mea-
sure derivatives in a weak sense (i.e., of being BV ) is equivalent to the bounded-
ness of a (slightly enforced) Sobolev norm of the gradient of Rtu. This regularity
result on Rtu, for u a BV , is used as a tool, but can be interesting on its own.

2. Notation and preliminaries

Let X be a separable real Hilbert space with inner product 3� ; �4 and norm j � j,
and let us denote by BðX Þ the Borel s-algebra and by BbðX Þ the space of



bounded Borel functions; since X is separable, BðXÞ is generated by the cylin-
drical sets, that is by the sets of the form E ¼ P�1

m B with B a BðRmÞ, where
Pm : X ! Rm is orthogonal (see [19, Theorem I.2.2]). The symbol Ck

b ðXÞ de-
notes the space of k times continuously Fréchet di¤erentiable functions with
bounded derivatives up to the order k, and the symbol FCk

b ðX Þ that of cylindrical
Ck

b ðX Þ functions, that is, u a FCk
b ðXÞ if uðxÞ ¼ vðPmxÞ for some v a Ck

b ðRmÞ.
We also denote by MðX ;YÞ the set of countably additive measures on X with
finite total variation with values in a separable Hilbert space Y , MðXÞ if Y ¼ R.
We denote by jmj the total variation measure of m, defined by

jmjðBÞ :¼ sup
Xl
h¼1

jmðBhÞjY : B ¼
[l
h¼1

Bh

( )
;ð2:1Þ

for every B a BðX Þ, where the supremum runs along all the countable disjoint
unions. Notice that, using the polar decomposition, there is a unit jmj-measurable
vector field s : X ! Y such that m ¼ sjmj, and then the equality

jmjðXÞ ¼ sup

Z
X

3s; f4djmj; f a CbðX ;YÞ; jfðxÞjY a 1 Ex a X

� �

holds. Note that, by the Stone-Weierstrass theorem, the algebra FC1
b ðX Þ of C1

cylindrical functions is dense in CðKÞ in sup norm, since it separates points, for
all compact sets KHX . Since jmj is tight, it follows that FC1

b ðXÞ is dense in
L1ðX ; jmjÞ. Arguing componentwise, it follows that also the space FC1

b ðX ;Y Þ of
cylindrical functions with a finite-dimensional range is dense in L1ðX ; jmj;YÞ. As
a consequence, s can be approximated in L1ðX ; jmj;YÞ by a uniformly bounded
sequence of functions in FC1

b ðX ;Y Þ, and we may restrict the supremum above to
these functions only to get

jmjðX Þ ¼ sup

Z
X

3s; f4djmj; f a FC1
b ðX ;Y Þ; jfðxÞjY a 1 Ex a X

� �
:ð2:2Þ

We recall the following well-known result (see for instance [5]): given a sequence
of real measures ðmjÞ on X and an orthonormal basis ðejÞ, if

sup
m

jðm1; . . . ; mmÞjðXÞ < l;ð2:3Þ

then the measure m ¼
P

j mjej belongs to MðX ;XÞ.
Let us come to a description of the di¤erential structure in X . We refer to [10]

for more details and the missing proofs. By Na;Q we denote a non degenerate
Gaussian measure on ðX ;BðX ÞÞ of mean a and trace class covariance operator
Q (we also use the simpler notation NQ ¼ N0;Q). Let us fix g ¼ NQ, and let ðekÞ
be an orthonormal basis in X such that

Qek ¼ lkek; Ekb 1;
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with lk a nonincreasing sequence of strictly positive numbers such thatP
k lk < l. Set xk ¼ 3x; ek4 and for all kb 1, f a CbðX Þ, define the partial de-

rivatives

Dk f ðxÞ ¼ lim
t!0

f ðxþ tekÞ � f ðxÞ
t

ð2:4Þ

(provided that the limit exists) and, by linearity, the gradient operator
D : FC1

b ðXÞ ! FCbðX ;XÞ. The gradient turns out to be a closable operator
with respect to the topologies LpðX ; gÞ and LpðX ; g;X Þ for every pb 1, and we
denote by W 1;pðX ; gÞ the domain of the closure in LpðX ; gÞ, endowed with the
norm

jjujj1;p ¼
�Z

X

juðxÞjp dgþ
Z
X

�Xl
k¼1

jDkuðxÞj2
�p=2

dg
�1=p

;

where we keep the notation Dk also for the closure of the partial derivative oper-
ator. For all j, c a C1

b ðXÞ we haveZ
X

cDkj dg ¼ �
Z
X

jDkc dgþ 1

lk

Z
X

xkjc dg:

and this formula, setting D�
kj ¼ Dkj� xk

lk
j, readsZ

X

cDkj dg ¼ �
Z
X

jD�
kc dg:ð2:5Þ

Notice that Q1=2 is still a compact operator on X , and define the Cameron-
Martin space

H ¼ Q1=2X ¼ fx a X : by a X with x ¼ Q1=2yg ¼ x a X :
Xl
k¼1

jxkj2

lk
< l

( )
;

endowed with the orthonormal basis ek ¼ l
1=2
k ek relative to the norm jxjH :¼�P

k
jxk j2
lk

�1=2
. The Malliavin derivative of f a C1

b ðXÞ is defined by

qek f ðxÞ ¼ lim
t!0

f ðxþ tekÞ � f ðxÞ
t

ð2:6Þ

(provided that the limit exists) and turns out to be a closable operator as well (see
[7] or apply (2.8) below) with respect to the topology LpðX ; gÞ for every pb 1.
We denote by ‘H f the gradient and by D1;pðX ; gÞ the domain of its closure in
LpðX ; gÞ, endowed with the obvious norm. As a consequence of the relation

ek ¼ l
1=2
k ek we have also

qek ¼ l
1=2
k Dk;ð2:7Þ
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so that W 1;pðX ; gÞHD1;pðX ; gÞ, since j‘H f jH ¼
�P

k lkjDk f j2
�1=2

. By (2.7) and
(2.5) the integration by parts formula corresponding to the Malliavin calculus
reads Z

X

cqkj dg ¼ �
Z
X

jqkc dgþ
Z
X

1ffiffiffiffiffi
lk

p xkjc dg:ð2:8Þ

There exist infinitely many Ornstein-Uhlenbeck semigroups having g as invariant
measure. Let us choose the one corresponding to the stochastic evolution equa-
tion

dX ¼ AX dtþ dWðtÞ; X ð0Þ ¼ x a Xð2:9Þ

where A :¼ � 1
2Q

�1 is selfadjoint and

3W ðtÞ; z4 ¼
Xl
k¼1

WkðtÞzk; z a X ;

with ðWkÞk AN sequence of independent real Brownian motions. We have
Aek ¼ �akek, where

ak ¼ 1

2lk
:

The transition semigroup corresponding to (2.9) is given by

Rt f ðxÞ ¼
Z
X

f ðyÞ dNetAx;Qt
ðyÞ ¼

Z
X

f ðetAxþ yÞ dNQt
ðyÞ; f a BbðX Þ;ð2:10Þ

where

Qt ¼
Z t

0

e2sA ds ¼ � 1

2
A�1ð1� e2tAÞ:

Therefore NQt
! NQ ¼ g weakly as t ! l, so that g is invariant for Rt. More-

over, for every kb 1, v a C1
b ðX Þ, from (2.10) we get

DkRtvðxÞ ¼ e�akt

Z
X

DkvðetAxþ yÞ dNQt
ðyÞ ¼ e�aktRtDkvðxÞ;

whence, since Rt is symmetric, we deduce that for every u a L1ðX ; gÞ and
j a FC1

b ðXÞ the equalityZ
X

RtuD
�
kj dg ¼ e�akt

Z
X

uD�
kRtj dgð2:11Þ
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holds. In fact, if u is bounded, by [10, Theorem 8.16] we know that Rtu a Cl
b ðX Þ

for every t > 0, and then for every j a C1
b ðXÞ we haveZ

X

RtuD
�
kj dg ¼ �

Z
DkðRtuÞj dg ¼ �e�akt

Z
X

RtDkuj dg

¼ �e�akt

Z
X

DkuRtj dg ¼ e�akt

Z
X

uD�
kRtj dg:

In the general case u a L1ðX ; gÞ we use the density of C1
b ðX Þ in L1ðX ; gÞ, as both

sides in (2.11) are continuous with respect to L1ðX ; gÞ convergence in u.
By a standard duality argument we can define a linear contraction operator

R�
t : MðXÞ ! L1ðX ; gÞ characterized by:

Z
X

R�
t mj dg ¼

Z
X

Rtj dm; j a BbðXÞ:ð2:12Þ

To see that this is a good definition, using Hahn decomposition we may as-
sume with no loss of generality that m is nonnegative. Under this assumption,
we notice that ðjiÞHBbðX Þ equibounded and ji " j, with j a BbðX Þ, impliesZ
X

Rtji dm "
Z
X

Rtj dm, hence Daniell’s theorem (see e.g. [8, Theorem 7.8.1])

shows that j 7!
Z
X

Rtj dm is the restriction to BbðXÞ of j 7!
Z
X

j dm� for a suit-

able (unique) nonnegative m� a MðX Þ. In order to show that R�
t mf g, take a

Borel set B with gðBÞ ¼ 0. Then

ðR�
t ÞmðBÞ ¼

Z
X

wB dR
�
t m ¼

Z
X

RtwB dm;

but RtwBðxÞ ¼ NetAx;Qt
ðBÞ and since NetAx;Qt

f g (see [12, Lemma 10.3.3]) we
have RtwBðxÞ ¼ 0 for all x and the claim follows. Finally, since Rt1 ¼ 1 we obtain
that m�ðX Þ ¼ mðX Þ, hence R�

t is a contraction. It is also useful to notice that R�
t is

contractive on vector measures as well. In fact, Rt is a contraction in Cb, hence
j3R�

t m; f4j ¼ j3m;Rtf4ja 3jmj; jfj4 for every j a CbðXÞ. Since for every vector
measure n the minimal positive measure s such that j3n; f4ja 3s; jfj4 for all j
is jnj, taking n ¼ R�

t m we conclude.

3. Functions of bounded variation

In the present context it is possible to define functions of bounded variation, as
it has been done, using the Malliavin derivative, in [16], [17] and [4], [5], and to
relate BV functions to the Ornstein-Uhlenbeck semigroup Rt. According to [5],
in order to distinguish the two notions of BV functions, we keep the notation
BVðX ; gÞ for the functions coming from the ‘H operator and use the notation
BVX ðX ; gÞ for those coming from D.
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Definition 3.1. A function u a L1ðX ; gÞ belongs to BVX ðX ; gÞ if there exists
nu a MðX ;X Þ such that for any kb 1 we haveZ

X

uðxÞDkjðxÞ dg ¼ �
Z
X

jðxÞ dnuk þ
1

lk

Z
X

xkuðxÞjðxÞ dg; j a FC1
b ðX Þ;

with nuk ¼ 3nu; ek4X . If u a BVX ðX ; gÞ, we denote by Du the measure nu, and by
jDuj its total variation.

According to (2.2), for u a BVX ðX ; gÞ the total variation of Du is given by

jDujðX Þ ¼ sup

Z
X

u
X
k

D�
kfk

" #
dg; f a FC1

b ðX ;XÞ; jfðxÞja 1 Ex a X

( )
:ð3:1Þ

Obviously, if u a W 1;1ðX ; gÞ then u a BVX ðX ; gÞ and jDujðX Þ ¼
Z
X

jDuj dg.

Recalling that u a BVðX ; gÞ if there is a finite measure Dgu ¼ ðDk
g uÞk a

MðX ;X Þ such thatZ
X

uðxÞqkjðxÞ dg ¼ �
Z
X

jðxÞ dDk
g uþ

1ffiffiffiffiffi
lk

p
Z
X

xkuðxÞjðxÞ dg;

j a FC1
b ðXÞ; kb 1;

it is immediate to check that BVX ðX ; gÞ is contained in BVðX ; gÞ and that

Dk
g u ¼ l

1=2
k nuk ; Ekb 1:ð3:2Þ

The next proposition provides a simple criterion, analogous to the finite-
dimensional one, for the verification of the BVX property.

Proposition 3.2. Let u a L1ðX ; gÞ and let us assume that

RðuÞ :¼ sup
m

sup

Z
X

Xm
k¼1

uD�
kjk dg : jk a C1

b ðX Þ;
Xm
i¼1

j2
k a 1

( )
< l:ð3:3Þ

Then u a BVX ðX ; gÞ and jDujðXÞaRðuÞ.

Proof. Fix kb 1, set Xk ¼ fx a X : x ¼ sek; s a Rg, X?
k ¼ fx a X : 3x; ek4 ¼

0g, and define

VkðuÞ :¼ sup

Z
X

u qkf� 1ffiffiffiffiffi
lk

p f

� 	
dg : f a C1

c ðX Þ; jfðxÞja 1 Ex a X

� �
;

VkðuÞ :¼ sup

Z
X

u Dkf� 1

lk
f

� 	
dg : f a C1

c ðX Þ; jfðxÞja 1 Ex a X

� �
:
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For y a X?
k , define the function uyðsÞ ¼ uðyþ sekÞ, s a R, and notice that

VkðuÞ ¼
ffiffiffiffiffi
lk

p
VkðuÞ, so that by [5, Theorem 3.10] we have

VkðuÞ ¼
Z
X?

k

VðuyÞ dg?ðyÞ;

where V denotes the 1-dimensional variation of uy and we have used the factori-
zation g ¼ g1 n g? induced by the orthogonal decomposition X ¼ Xk aX?

k .
Since VkðuÞaRðuÞ we haveZ

X?
k

VðuyÞ dg?ðyÞ < l:

It follows that for g?-a.e. y a X?
k the function uy has bounded variation in R. By

a Fubini argument, based on the factorization g ¼ g1 n g?, the 1-dimensional in-
tegration by parts formula yields that the measure Dku coincides with Duy n g?,
i.e.,

DkuðAÞ ¼
Z
X?

k

DuyðAyÞ dg?ðyÞ

(where Ay :¼ fs : yþ sek a Ag is the y-section of a Borel set A) provides the de-
rivative of u along ek. Notice that Dku is well defined, since we have just proved

that

Z
X?

k

jDuyjðRÞ dg? is finite.

Now, setting mk ¼ Dku, by the implication stated in (2.3) we obtain that
jDujðXÞaRðuÞ. r

The next theorem characterizes the BV class in terms of the semigroup Rt: no-
tice that the functions Rtu, for u a BVðX ; gÞ, turn out to be slightly better than
W 1;1ðX ; gÞ, since not only jDRtuj, but also je�tADRtuj is integrable.

Theorem 3.3. Let u a L1ðX ; gÞ. Then, u a BVX ðX ; gÞ if and only if Rtu a
W 1;1ðX ; gÞ, je�tADRtuj a L1ðX ; gÞ for all t > 0 and

lim inf
t#0

Z
X

je�tADRtuj dg < l:ð3:4Þ

Moreover, if u a BVX ðX ; gÞ we have DRtu ¼ e�tAR�
t Du,Z

X

je�tADRtuj dga jDujðX Þ; Et > 0ð3:5Þ

and

lim
t#0

Z
X

je�tADRtuj dg ¼ jDujðXÞ:ð3:6Þ
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Proof. Let u a BVX ðX ; gÞ. We use (2.11) to deduceZ
X

RtuD
�
kj dg ¼ �e�akt

Z
X

Rtj dDku Ej a FC1
b ðXÞ; t > 0:

According to (2.12), this implies that DkRtu ¼ e�aktR�
t Dku a L1ðX ; gÞ. Therefore,

as R�
t is a contractive semigroup also on vector measures,Z

X

je�tADRtuj dg ¼
Z
X

jR�
t Duj dga jDujðX Þ

for every t > 0 and (3.5) follows.
Conversely, let us assume that Rtu a W 1;1ðX ; gÞ for all t > 0 and that the

lim inf in (3.4) is finite. We shall denote by Pm : X ! Rm the canonical projec-
tion on the first m coordinates and we shall actually prove that u a BVX ðX ; gÞ
and

jDujðX Þa sup
m

lim inf
t#0

Z
X

jPmDRtuj dgð3:7Þ

under the only assumption that the right hand side of (3.7) is finite. Indeed, fix an
integer m and notice that an integration by parts gives

sup

Z
X

Xm
k¼1

RtuD
�
kjk dg : jk a C1

b ðXÞ;
Xm
i¼1

j2
k a 1

( )
a

Z
X

jPmDRtuj dg;

so that passing to the limit as t # 0 and taking the supremum over m we obtain

RðuÞa sup
m

lim inf
t#0

Z
X

jPmDRtuj dg;

withR defined as in (3.3). Therefore we obtain the inequality (3.7) by Proposition
3.2. Finally (3.6) follows combining (3.5) with (3.7). r

Remark 3.4. (1) Notice that the inclusion BVX ðX ; gÞHBVðX ; gÞ allows us to
exploit the results in [5] in order to prove one implication in the above theorem,
while the other one uses the strong regularizing properties of the semigroup Rt.
Anyway, we have tried to keep the use of the results in the above quoted paper
to a minimum, and in fact only Theorem 3.10 in [5] has been used in the proof
of Proposition 3.2. It is most likely possible to give a proof completely indepen-
dent from [5], but some of the arguments therein should be rephrased and proved
again, basically along the same lines.

(2) The argument used in the proof of the theorem shows that DkRtu a
L1ðX ; gÞ for all t > 0, kb 1 and finiteness of the right hand side of (3.7) su‰ces
to conclude that u a BVX ðX ; gÞ. Furthermore, combining (3.5) and (3.7) we ob-

tain that

Z
X

jDRtuj dg ! jDujðX Þ as t # 0, as well.
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(3) By the same argument as [5] one can use (2) to conclude that the measures
e�tADRtug are equi-tight as t # 0; hence, they converge (componentwise) to Du
not only on FC1

b ðXÞ but also on C0
b ðX Þ.

We recall also that both Sobolev and BV spaces in the present context are
compactly embedded into the corresponding Lebesgue spaces. The following
statement is proved in [5, Theorem 5.3], see also [9] for the case 1 < p < l.

Theorem 3.5. For every pb 1, the embedding of W 1;pðX ; gÞ into LpðX ; gÞ is
compact. The embedding of BVX ðX ; gÞ into L1ðX ; gÞ is also compact.

References

[1] L. Ambrosio: Transport equation and Cauchy problem for BV vector fields, Invent.
Math. 158 (2004), 227–260.

[2] L. Ambrosio - A. Figalli: On flows associated to Sobolev vector fields in Wiener

spaces, J. Funct. Anal. 256 (2009), 179–214.

[3] L. Ambrosio - N. Fusco - D. Pallara: Functions of bounded variation and free dis-

continuity problems. Oxford Mathematical Monographs, 2000.

[4] L. Ambrosio - S. Maniglia - M. Miranda Jr - D. Pallara: Towards a theory of

BV functions in abstract Wiener spaces, Evolution Equations: a special issue of Physica
D, 239 (2010), 1458–1469.

[5] L. Ambrosio - S. Maniglia - M. Miranda Jr - D. Pallara: BV functions in ab-

stract Wiener spaces, J. Funct. anal., 258 (2010), 785–813.

[6] L. Ambrosio - M. Miranda Jr - D. Pallara: Special functions of bounded variation

in doubling metric measure spaces, in: D. Pallara (ed.), Calculus of Variations:
Topics from the Mathematical Heritage of Ennio De Giorgi, Quaderni di Matematica,
vol. 14 (2004), Dipartimento di Matematica della seconda Università di Napoli, 1–45.
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