Rend. Lincei Mat. Appl. 21 (2010), 405–[414](#page-9-0) DOI 10.4171/RLM/580

Probability Theory $-BV$ functions in a Hilbert space with respect to a Gaussian measure, by Luigi Ambrosio, Giuseppe Da Prato and Diego Pallara, communicated on 24 June 2010.

Abstract. — Functions of bounded variation in Hilbert spaces endowed with a Gaussian measure γ are studied, mainly in connection with Ornstein-Uhlenbeck semigroups for which γ is invariant.

KEY WORDS: Gaussian measures, BV functions, Ornstein-Uhlenbecks semigroups.

AMS Subject Classification: 26A45, 28C20, 46E35, 60H07.

1. Introduction

Functions of bounded variation, whose introduction in [\[13\]](#page-8-0) was based on the heat semigroup, are by now a well-established tool in Euclidean spaces, and more generally in metric spaces endowed with a doubling measure, see e.g. [\[6](#page-8-0)] and the references there. Applications run from variational problems with possibly discontinuous solutions along surfaces and geometric measure theory (see [\[3\]](#page-8-0) and the references there) to renormalized solutions of ODEs without uniqueness (see [\[1\]](#page-8-0)). More recently, the theory has been extended to infinite dimensional settings (see [[16](#page-9-0), [17,](#page-9-0) [4, 5](#page-8-0)], aiming to apply the theory to variational problems (see [[14](#page-8-0), [18](#page-9-0)]), infinite dimensional geometric measure theory (see [\[15\]](#page-8-0)), ODEs (see [\[2\]](#page-8-0) for the Sobolev case), as well as stochastic differential equations (see $[11, 12]$ $[11, 12]$ $[11, 12]$ $[11, 12]$).

If the ambient space is a Hilbert space X endowed with a Gaussian measure γ , then, beside the Malliavin calculus, on which the above quoted papers are based, an approach based on the infinite dimensional analysis as presented in [[10](#page-8-0)] is possible. As in the case of Sobolev spaces, this approach turns out to be similar but not equivalent to the other, and a smaller class of BV functions is obtained. The aim of this paper is to deepen this analysis, mainly in connection with the Ornstein-Uhlenbeck semigroup R_t studied in [[10](#page-8-0)] whose invariant measure is γ , which enjoys stronger regularizing properties compared to the operator P_t of the Malliavin calculus. We prove that, for $u \in L^1(X, y)$, the property of having measure derivatives in a weak sense (i.e., of being BV) is equivalent to the boundedness of a (slightly enforced) Sobolev norm of the gradient of R_t u. This regularity result on $R_t u$, for $u \in BV$, is used as a tool, but can be interesting on its own.

2. Notation and preliminaries

Let X be a separable real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $|\cdot|$, and let us denote by $\mathcal{B}(X)$ the Borel σ -algebra and by $B_b(X)$ the space of

bounded Borel functions; since X is separable, $\mathcal{B}(X)$ is generated by the cylindrical sets, that is by the sets of the form $E = \prod_{m=0}^{-1} B$ with $B \in \mathcal{B}(\mathbb{R}^m)$, where $\Pi_m : X \to \mathbb{R}^m$ is orthogonal (see [[19](#page-9-0), Theorem I.2.2]). The symbol $C_b^k(X)$ denotes the space of k times continuously Fréchet differentiable functions with bounded derivatives up to the order k, and the symbol $\mathcal{F}C_b^k(X)$ that of cylindrical $C_b^k(X)$ functions, that is, $u \in \mathcal{F}C_b^k(X)$ if $u(x) = v(\Pi_m x)$ for some $v \in C_b^k(\mathbb{R}^m)$. We also denote by $\mathcal{M}(X, Y)$ the set of countably additive measures on X with finite total variation with values in a separable Hilbert space Y, $\mathcal{M}(X)$ if $Y = \mathbb{R}$. We denote by $|\mu|$ the total variation measure of μ , defined by

(2.1)
$$
|\mu|(B) := \sup \left\{ \sum_{h=1}^{\infty} |\mu(B_h)|_Y : B = \bigcup_{h=1}^{\infty} B_h \right\},
$$

for every $B \in \mathcal{B}(X)$, where the supremum runs along all the countable disjoint unions. Notice that, using the polar decomposition, there is a unit $|\mu|$ -measurable vector field $\sigma : X \to Y$ such that $\mu = \sigma |\mu|$, and then the equality

$$
|\mu|(X) = \sup \biggl\{ \int_X \langle \sigma, \phi \rangle d|\mu|, \phi \in C_b(X, Y), |\phi(x)|_Y \le 1 \,\,\forall x \in X \biggr\}
$$

holds. Note that, by the Stone-Weierstrass theorem, the algebra $\mathcal{F}C_b^1(X)$ of C^1 cylindrical functions is dense in $C(K)$ in sup norm, since it separates points, for all compact sets $K \subset X$. Since |µ| is tight, it follows that $\mathcal{F}C_b^1(X)$ is dense in $L^1(X, |\mu|)$. Arguing componentwise, it follows that also the space $\mathcal{F}C_b^1(X, Y)$ of cylindrical functions with a finite-dimensional range is dense in $L^1(X, |\mu|, Y)$. As a consequence, σ can be approximated in $L^1(X, |\mu|, Y)$ by a uniformly bounded sequence of functions in $\mathcal{F}C_b^1(X, Y)$, and we may restrict the supremum above to these functions only to get

$$
(2.2) \quad |\mu|(X) = \sup \biggl\{ \int_X \langle \sigma, \phi \rangle d|\mu|, \phi \in \mathcal{F}C_b^1(X, Y), |\phi(x)|_Y \le 1 \,\,\forall x \in X \biggr\}.
$$

We recall the following well-known result (see for instance [\[5\]](#page-8-0)): given a sequence of real measures (μ_i) on X and an orthonormal basis (e_i) , if

$$
\sup_m |(\mu_1,\ldots,\mu_m)|(X) < \infty,
$$

then the measure $\mu = \sum_j \mu_j e_j$ belongs to $\mathcal{M}(X, X)$.

Let us come to a description of the differential structure in X. We refer to [\[10\]](#page-8-0) for more details and the missing proofs. By $N_{a,0}$ we denote a non degenerate Gaussian measure on $(X, \mathcal{B}(X))$ of mean a and trace class covariance operator Q (we also use the simpler notation $N_Q = N_{0,Q}$). Let us fix $\gamma = N_Q$, and let (e_k) be an orthonormal basis in X such that

$$
Qe_k = \lambda_k e_k, \quad \forall k \ge 1,
$$

 $\sum_{k} \lambda_k < \infty$. Set $x_k = \langle x, e_k \rangle$ and for all $k \ge 1$, $f \in C_b(X)$, define the partial dewith λ_k a nonincreasing sequence of strictly positive numbers such that rivatives

(2.4)
$$
D_k f(x) = \lim_{t \to 0} \frac{f(x + te_k) - f(x)}{t}
$$

(provided that the limit exists) and, by linearity, the gradient operator $D: \mathcal{F}Cl_{b}(X) \to \mathcal{F}C_{b}(X,X)$. The gradient turns out to be a closable operator with respect to the topologies $L^p(X, \gamma)$ and $L^p(X, \gamma, X)$ for every $p \ge 1$, and we denote by $W^{1,p}(X, \gamma)$ the domain of the closure in $L^p(X, \gamma)$, endowed with the norm

$$
||u||_{1,p} = \left(\int_X |u(x)|^p \, dy + \int_X \left(\sum_{k=1}^\infty |D_k u(x)|^2\right)^{p/2} \, dy\right)^{1/p},
$$

where we keep the notation D_k also for the closure of the partial derivative operator. For all $\varphi, \psi \in C_b^1(X)$ we have

$$
\int_X \psi D_k \varphi \, d\gamma = - \int_X \varphi D_k \psi \, d\gamma + \frac{1}{\lambda_k} \int_X x_k \varphi \psi \, d\gamma.
$$

and this formula, setting $D_k^* \varphi = D_k \varphi - \frac{x_k}{\lambda_k} \varphi$, reads

(2.5)
$$
\int_X \psi D_k \varphi \, d\gamma = - \int_X \varphi D_k^* \psi \, d\gamma.
$$

Notice that $Q^{1/2}$ is still a compact operator on X, and define the Cameron-Martin space

$$
H = Q^{1/2}X = \{x \in X : \exists y \in X \text{ with } x = Q^{1/2}y\} = \left\{x \in X : \sum_{k=1}^{\infty} \frac{|x_k|^2}{\lambda_k} < \infty\right\},
$$

endowed with the orthonormal basis $\varepsilon_k = \lambda_k^{1/2} e_k$ relative to the norm $|x|_H := (\sum_k \frac{|x_k|^2}{\lambda_k})^{1/2}$. The Malliavin derivative of $f \in C_0^1(X)$ is defined by λ_k $1^{1/2}$. The Malliavin derivative of $f \in C_b^1(X)$ is defined by

(2.6)
$$
\partial_{\varepsilon_k} f(x) = \lim_{t \to 0} \frac{f(x + t \varepsilon_k) - f(x)}{t}
$$

(provided that the limit exists) and turns out to be a closable operator as well (see [\[7\]](#page-8-0) or apply (2.8) below) with respect to the topology $L^p(X, \gamma)$ for every $p \geq 1$. We denote by $\nabla_H f$ the gradient and by $D^{1,p}(X, \gamma)$ the domain of its closure in $L^p(X, \gamma)$, endowed with the obvious norm. As a consequence of the relation $\varepsilon_k = \lambda_k^{1/2} e_k$ we have also

$$
(2.7) \t\t\t \partial_{\varepsilon_k} = \lambda_k^{1/2} D_k,
$$

so that $W^{1,p}(X, \gamma) \subset \mathbb{D}^{1,p}(X, \gamma)$, since $|\nabla_H f|_H = (\sum_k \lambda_k |D_k f|^2)^{1/2}$. By (2.7) and (2.5) the integration by parts formula corresponding to the Malliavin calculus reads

(2.8)
$$
\int_X \psi \partial_k \varphi \, d\gamma = - \int_X \varphi \partial_k \psi \, d\gamma + \int_X \frac{1}{\sqrt{\lambda_k}} x_k \varphi \psi \, d\gamma.
$$

There exist infinitely many Ornstein-Uhlenbeck semigroups having γ as invariant measure. Let us choose the one corresponding to the stochastic evolution equation

$$
(2.9) \t dX = AX dt + dW(t), \t X(0) = x \in X
$$

where $A := -\frac{1}{2}Q^{-1}$ is selfadjoint and

$$
\langle W(t), z \rangle = \sum_{k=1}^{\infty} W_k(t) z_k, \quad z \in X,
$$

with $(W_k)_{k \in \mathbb{N}}$ sequence of independent real Brownian motions. We have $Ae_k = -\alpha_k e_k$, where

$$
\alpha_k=\frac{1}{2\lambda_k}.
$$

The transition semigroup corresponding to (2.9) is given by

$$
(2.10) \quad R_t f(x) = \int_X f(y) \, dN_{e^{tA}x, Q_t}(y) = \int_X f(e^{tA}x + y) \, dN_{Q_t}(y), \quad f \in B_b(X),
$$

where

$$
Q_t = \int_0^t e^{2sA} ds = -\frac{1}{2} A^{-1} (1 - e^{2tA}).
$$

Therefore $N_{Q_t} \to N_Q = \gamma$ weakly as $t \to \infty$, so that γ is invariant for R_t . Moreover, for every $k \geq 1$, $v \in C_b^1(X)$, from (2.10) we get

$$
D_k R_t v(x) = e^{-\alpha_k t} \int_X D_k v(e^{tA} x + y) dN_{Q_t}(y) = e^{-\alpha_k t} R_t D_k v(x),
$$

whence, since R_t is symmetric, we deduce that for every $u \in L^1(X, y)$ and $\varphi \in \mathcal{F}C_b^1(X)$ the equality

(2.11)
$$
\int_X R_i u D_k^* \varphi \, d\gamma = e^{-\alpha_k t} \int_X u D_k^* R_i \varphi \, d\gamma
$$

holds. In fact, if u is bounded, by [[10,](#page-8-0) Theorem 8.16] we know that $R_t u \in C_b^{\infty}(X)$ for every $t > 0$, and then for every $\varphi \in C_b^1(X)$ we have

$$
\int_X R_t u D_k^* \varphi \, d\gamma = -\int D_k(R_t u) \varphi \, d\gamma = -e^{-\alpha_k t} \int_X R_t D_k u \varphi \, d\gamma
$$
\n
$$
= -e^{-\alpha_k t} \int_X D_k u R_t \varphi \, d\gamma = e^{-\alpha_k t} \int_X u D_k^* R_t \varphi \, d\gamma.
$$

In the general case $u \in L^1(X, \gamma)$ we use the density of $C_b^1(X)$ in $L^1(X, \gamma)$, as both sides in (2.11) are continuous with respect to $L^1(X, \gamma)$ convergence in u.

By a standard duality argument we can define a linear contraction operator $R_t^* : \mathcal{M}(X) \to L^1(X, \gamma)$ characterized by:

(2.12)
$$
\int_X R_t^* \mu \varphi \, d\gamma = \int_X R_t \varphi \, d\mu, \quad \varphi \in B_b(X).
$$

To see that this is a good definition, using Hahn decomposition we may assume with no loss of generality that μ is nonnegative. Under this assumption, we notice that $(\varphi_i) \subset B_b(X)$ equibounded and $\varphi_i \uparrow \varphi$, with $\varphi \in B_b(X)$, implies Z $\int_X R_t \varphi_i d\mu \uparrow$ $\ddot{}$ $\left[\begin{array}{cc} R_t \varphi \, d\mu, \end{array} \right]$ hence Daniell's theorem (see e.g. [\[8](#page-8-0), Theorem 7.8.1]) shows that $\varphi \mapsto$ Z $\int_{X} R_t \varphi \, d\mu$ is the restriction to $B_b(X)$ of $\varphi \mapsto$ $\ddot{}$ \boldsymbol{X} φ d μ^* for a suitable (unique) nonnegative $\mu^* \in \mathcal{M}(X)$. In order to show that $R_t^* \mu \ll \gamma$, take a Borel set B with $\gamma(B) = 0$. Then

$$
(R_t^*)\mu(B) = \int_X \chi_B dR_t^* \mu = \int_X R_t \chi_B d\mu,
$$

but $R_t \chi_B(x) = N_{e^{tA}x, Q_t}(B)$ and since $N_{e^{tA}x, Q_t} \ll \gamma$ (see [[12](#page-8-0), Lemma 10.3.3]) we have $R_t \chi_B(x) = 0$ for all x and the claim follows. Finally, since $R_t 1 = 1$ we obtain that $\mu^*(X) = \mu(X)$, hence R_t^* is a contraction. It is also useful to notice that R_t^* is contractive on vector measures as well. In fact, R_t is a contraction in C_b , hence $|\langle R_t^*\mu, \phi\rangle| = |\langle \mu, R_t\phi \rangle| \le \langle |\mu|, |\phi| \rangle$ for every $\phi \in C_b(X)$. Since for every vector measure v the minimal positive measure σ such that $|\langle v, \phi \rangle| \le \langle \sigma, |\phi| \rangle$ for all φ is $|v|$, taking $v = R_t^* \mu$ we conclude.

3. Functions of bounded variation

In the present context it is possible to define functions of bounded variation, as it has been done, using the Malliavin derivative, in [\[16](#page-9-0)], [[17\]](#page-9-0) and [\[4\]](#page-8-0), [[5\]](#page-8-0), and to relate BV functions to the Ornstein-Uhlenbeck semigroup R_t . According to [\[5\]](#page-8-0), in order to distinguish the two notions of BV functions, we keep the notation $BV(X, \gamma)$ for the functions coming from the ∇_H operator and use the notation $BV_X(X, \gamma)$ for those coming from D.

DEFINITION 3.1. A function $u \in L^1(X, \gamma)$ belongs to $BV_X(X, \gamma)$ if there exists $v^u \in \mathcal{M}(X, X)$ such that for any $k \geq 1$ we have

$$
\int_X u(x)D_k\varphi(x)\,d\gamma = -\int_X \varphi(x)\,d\nu_k^u + \frac{1}{\lambda_k}\int_X x_k u(x)\varphi(x)\,d\gamma, \quad \varphi \in \mathcal{F}C_b^1(X),
$$

with $v_k^u = \langle v^u, e_k \rangle_X$. If $u \in BV_X(X, \gamma)$, we denote by Du the measure v^u , and by $|Du|$ its total variation.

According to (2.2), for $u \in BV_X(X, \gamma)$ the total variation of Du is given by

$$
(3.1) \quad |Du|(X) = \sup \left\{ \int_X u \left[\sum_k D_k^* \phi_k \right] dy, \phi \in \mathcal{F}C_b^1(X, X), |\phi(x)| \le 1 \,\,\forall x \in X \right\}.
$$

Obviously, if $u \in W^{1,1}(X, \gamma)$ then $u \in BV_X(X, \gamma)$ and $|Du|(X) = \int_X$ $|Du| d\gamma$.

Recalling that $u \in BV(X, \gamma)$ if there is a finite measure $D_{\gamma}u = (D_{\gamma}^{k}u)_{k}$ $\mathcal{M}(X,X)$ such that

$$
\int_X u(x)\partial_k \varphi(x) \, d\gamma = -\int_X \varphi(x) \, dD_\gamma^k u + \frac{1}{\sqrt{\lambda_k}} \int_X x_k u(x) \varphi(x) \, d\gamma,
$$
\n
$$
\varphi \in \mathcal{F}C_b^1(X), \, k \ge 1,
$$

it is immediate to check that $BV_X(X, \gamma)$ is contained in $BV(X, \gamma)$ and that

$$
(3.2) \t\t D_{\gamma}^{k} u = \lambda_{k}^{1/2} v_{k}^{u}, \quad \forall k \ge 1.
$$

The next proposition provides a simple criterion, analogous to the finitedimensional one, for the verification of the BV_X property.

PROPOSITION 3.2. Let $u \in L^1(X, \gamma)$ and let us assume that

$$
(3.3) \quad \mathcal{R}(u) := \sup_m \sup \left\{ \int_X \sum_{k=1}^m u D_k^* \varphi_k \, d\gamma : \varphi_k \in C_b^1(X), \sum_{i=1}^m \varphi_k^2 \le 1 \right\} < \infty.
$$

Then $u \in BV_X(X, \gamma)$ and $|Du|(X) \leq \mathcal{R}(u)$.

PROOF. Fix $k \geq 1$, set $X_k = \{x \in X : x = \text{se}_k, s \in \mathbb{R}\}, X_k^{\perp} = \{x \in X : \langle x, e_k \rangle =$ 0 , and define

$$
V_k(u) := \sup \left\{ \int_X u \left(\partial_k \phi - \frac{1}{\sqrt{\lambda_k}} \phi \right) dy : \phi \in C_c^1(X), |\phi(x)| \le 1 \,\forall x \in X \right\},\
$$

$$
\mathscr{V}_k(u) := \sup \left\{ \int_X u \left(D_k \phi - \frac{1}{\lambda_k} \phi \right) dy : \phi \in C_c^1(X), |\phi(x)| \le 1 \,\forall x \in X \right\}.
$$

For $y \in X_k^{\perp}$, define the function $u_y(s) = u(y + s e_k)$, $s \in \mathbb{R}$, and notice that For $y \in X_k$, define the function $u_y(s) = u(y + s e_k)$, $y_k(u) = \sqrt{\lambda_k} \mathcal{V}_k(u)$, so that by [[5](#page-8-0), Theorem 3.10] we have

$$
\mathscr{V}_k(u) = \int_{X_k^\perp} \mathscr{V}(u_y) \, d\gamma^\perp(y),
$$

where $\mathscr V$ denotes the 1-dimensional variation of u_y and we have used the factorization $\gamma = \gamma_1 \otimes \gamma^{\perp}$ induced by the orthogonal decomposition $X = X_k \oplus X_k^{\perp}$. Since $\mathscr{V}_k(u) \leq \mathcal{R}(u)$ we have

$$
\int_{X_k^\perp} \mathscr{V}(u_y)\,d\gamma^\perp(y)<\infty.
$$

It follows that for γ^{\perp} -a.e. $y \in X_k^{\perp}$ the function u_y has bounded variation in R. By a Fubini argument, based on the factorization $\gamma = \gamma_1 \otimes \gamma^{\perp}$, the 1-dimensional integration by parts formula yields that the measure $D_k u$ coincides with $Du_y \otimes \gamma^{\perp}$, i.e.,

$$
D_k u(A) = \int_{X_k^\perp} Du_y(A_y) \, dy^\perp(y)
$$

(where $A_y := \{s : y + \textit{se}_k \in A\}$ is the y-section of a Borel set A) provides the derivative of u along e_k . Notice that $D_k u$ is well defined, since we have just proved nvaar
that $\int_{X_k^\perp} |Du_y|(\mathbb{R}) d\gamma^\perp$ is finite. Now, setting $\mu_k = D_k u$, by the implication stated in (2.3) we obtain that $|Du|(X)\leq \mathcal{R}(u).$

The next theorem characterizes the BV class in terms of the semigroup R_t : notice that the functions $R_t u$, for $u \in BV(X, \gamma)$, turn out to be slightly better than $W^{1,1}(X, \gamma)$, since not only $|DR_i u|$, but also $|e^{-tA}DR_i u|$ is integrable.

THEOREM 3.3. Let $u \in L^1(X, \gamma)$. Then, $u \in BV_X(X, \gamma)$ if and only if $R_t u \in$ $W^{1,1}(X,\gamma)$, $|e^{-tA}DR_tu| \in L^1(X,\gamma)$ for all $t > 0$ and

(3.4)
$$
\liminf_{t\downarrow 0} \int_X |e^{-tA}DR_t u| \, d\gamma < \infty.
$$

Moreover, if $u \in BV_X(X, \gamma)$ we have $DR_i u = e^{-tA} R_i^* Du$,

(3.5)
$$
\int_X |e^{-tA}DR_tu| \, dy \le |Du|(X), \quad \forall t > 0
$$

and

(3.6)
$$
\lim_{t \downarrow 0} \int_X |e^{-tA}DR_t u| \, d\gamma = |Du|(X).
$$

PROOF. Let $u \in BV_X(X, \gamma)$. We use (2.11) to deduce

$$
\int_X R_t u D_k^* \varphi \, d\gamma = -e^{-\alpha_k t} \int_X R_t \varphi \, dD_k u \quad \forall \varphi \in \mathcal{F}C_b^1(X), \ t > 0.
$$

According to (2.12), this implies that $D_k R_l u = e^{-\alpha_k t} R_l^* D_k u \in L^1(X, \gamma)$. Therefore, as R_t^* is a contractive semigroup also on vector measures,

$$
\int_X |e^{-tA}DR_tu| \, dy = \int_X |R_t^*Du| \, dy \le |Du|(X)
$$

for every $t > 0$ and (3.5) follows.

Conversely, let us assume that $R_t u \in W^{1,1}(X, \gamma)$ for all $t > 0$ and that the lim inf in (3.4) is finite. We shall denote by $\Pi_m : X \to \mathbb{R}^m$ the canonical projection on the first m coordinates and we shall actually prove that $u \in BV_X(X, \gamma)$ and

(3.7)
$$
|Du|(X) \leq \sup_m \liminf_{t \downarrow 0} \int_X |\Pi_m DR_t u| \, d\gamma
$$

under the only assumption that the right hand side of (3.7) is finite. Indeed, fix an integer m and notice that an integration by parts gives

$$
\sup\left\{\int_X\sum_{k=1}^m R_t u D_k^* \varphi_k d\gamma : \varphi_k \in C_b^1(X), \sum_{i=1}^m \varphi_k^2 \le 1\right\} \le \int_X |\Pi_m DR_t u| d\gamma,
$$

so that passing to the limit as $t \downarrow 0$ and taking the supremum over m we obtain

$$
\mathcal{R}(u) \leq \sup_{m} \liminf_{t \downarrow 0} \int_{X} |\Pi_{m}DR_{t}u| d\gamma,
$$

with R defined as in (3.3) . Therefore we obtain the inequality (3.7) by Proposition 3.2. Finally (3.6) follows combining (3.5) with (3.7).

REMARK 3.4. (1) Notice that the inclusion $BV_X(X, \gamma) \subset BV(X, \gamma)$ allows us to exploit the results in [[5\]](#page-8-0) in order to prove one implication in the above theorem, while the other one uses the strong regularizing properties of the semigroup R_t . Anyway, we have tried to keep the use of the results in the above quoted paper to a minimum, and in fact only Theorem 3.10 in [[5](#page-8-0)] has been used in the proof of Proposition 3.2. It is most likely possible to give a proof completely independent from [\[5](#page-8-0)], but some of the arguments therein should be rephrased and proved again, basically along the same lines.

(2) The argument used in the proof of the theorem shows that $D_k R_t u \in$ $L^1(X, \gamma)$ for all $t > 0, k \ge 1$ and finiteness of the right hand side of (3.7) suffices to conclude that $u \in BV_X(X, \gamma)$. Furthermore, combining (3.5) and (3.7) we ob- $\frac{1}{100}$ tain that $\frac{1}{100}$ $\int_X |DR_i u| \, d\gamma \to |Du|(X)$ as $t \downarrow 0$, as well.

(3) By the same argument as [5] one can use (2) to conclude that the measures $e^{-tA}DR_t u\gamma$ are equi-tight as $t \downarrow 0$; hence, they converge (componentwise) to Du not only on $\mathcal{F} C_b^1(X)$ but also on $C_b^0(X)$.

We recall also that both Sobolev and BV spaces in the present context are compactly embedded into the corresponding Lebesgue spaces. The following statement is proved in [5, Theorem 5.3], see also [9] for the case $1 < p < \infty$.

THEOREM 3.5. For every $p\geq1$, the embedding of $W^{1,p}(X, \gamma)$ into $L^p(X, \gamma)$ is compact. The embedding of $BV_X(X, \gamma)$ into $L^1(X, \gamma)$ is also compact.

REFERENCES

- [1] L. AMBROSIO: Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004), 227–260.
- [2] L. AMBROSIO A. FIGALLI: On flows associated to Sobolev vector fields in Wiener spaces, J. Funct. Anal. 256 (2009), 179–214.
- [3] L. AMBROSIO N. FUSCO D. PALLARA: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000.
- [4] L. Ambrosio S. Maniglia M. Miranda Jr D. Pallara: Towards a theory of BV functions in abstract Wiener spaces, Evolution Equations: a special issue of Physica D, 239 (2010), 1458–1469.
- [5] L. Ambrosio S. Maniglia M. Miranda Jr D. Pallara: BV functions in abstract Wiener spaces, J. Funct. anal., 258 (2010), 785–813.
- [6] L. AMBROSIO M. MIRANDA JR D. PALLARA: Special functions of bounded variation in doubling metric measure spaces, in: D. PALLARA (ED.), Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, Quaderni di Matematica, vol. 14 (2004), Dipartimento di Matematica della seconda Universita` di Napoli, 1–45.
- [7] V. I. Bogachev: Gaussian Measures. American Mathematical Society, 1998.
- [8] V. I. BOGACHEV: Measure Theory, vol. 2. Springer, 2007.
- [9] A. CHOJNOWSKA-MICHALIK B. GOLDYS: Symmetric Ornstein-Uhlenbeck semigroups and their generators, Probab. Theory Related Fields 124 (2002), 459–486.
- [10] G. DA PRATO: An introduction to infinite-dimensional analysis, Springer, 2006.
- [11] G. Da Prato J. Zabczyk: Stochastic equations in infinite dimensions, Cambridge U. P., 1992.
- [12] G. DA PRATO J. ZABCZYK: Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series, 293, Cambridge U. P., 2002.
- [13] E. DE GIORGI: Su una teoria generale della misura $(r 1)$ -dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. (4) 36 (1954), 191–213, and also Ennio De Giorgi: Selected Papers, (L. AMBROSIO - G. DAL MASO - M. FORTI - M. MIRANDA - S. SPAGNOLO EDS.) Springer, 2006, 79–99. English translation, Ibid., 58–78.
- [14] E. De Giorgi: Su alcune generalizzazioni della nozione di perimetro, in: Equazioni differenziali e calcolo delle variazioni (Pisa, 1992), G. Buttazzo - A. Marino - M. V. K. MURTHY EDS, Quaderni U.M.I. 39, Pitagora, 1995, 237–250.
- [15] D. FEYEL A. DE LA PRADELLE: Hausdorff measures on the Wiener space, Potential Anal. 1 (1992), 177–189.
- [16] M. Fukushima: BV functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174 (2000), 227–249.
- [17] M. FUKUSHIMA M. HINO: On the space of BV functions and a Related Stochastic Calculus in Infinite Dimensions, J. Funct. Anal., 183 (2001), 245–268.
- [18] M. Ledoux: The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, 2001.
- [19] N. N. VAKHANIA V. I. TARIELADZE S. A. CHOBANYAN: Probability distribution in Banach spaces, Kluwer, 1987.

Received 30 April 2010,

and in revised form 11 June 2010.

Luigi Ambrosio - Giuseppe Da Prato Scuola Normale Superiore Piazza dei Cavalieri, 7, 56126 Pisa, Italy l.ambrosio@sns.it g.daprato@sns.it

Diego Pallara Dipartimento di Matematica ''Ennio De Giorgi'' Universita` del Salento, C.P. 193, 73100, Lecce, Italy diego.pallara@unisalento.it