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ABSTRACT. — The boundary value problem for semilinear parabolic stochastic equations of the
form dX — AX dt + B(X) dt 3 \/OdW,, where W, is a Wiener process and f is a maximal monotone
graph everywhere defined, is well posed.
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1. INTRODUCTION
Consider the stochastic differential equation

dX — AX dt+ B(X)dt>+/QdW, in(0,T)x 0= Qr,
(1) X(0)=x in 0,
X=0 on (0,7) x 00 = Zr.

Here, ( is an open and bounded subset of R¢ with smooth boundary 00, d > 1,
and W, is a cylindrical Wiener process in L?(() = H defined by

W= e@B(), el 120,
k=1

where {f, }, are mutually independent Brownian motions on a probability space
{Q, 7 ,P} and {e;} is an orthonormal basis in H. The operator Q € L(H, H) is
self—adjoint, positive and of finite trace.

Finally, f : R — 2% is a maximal monotone graph (see [1]) everywhere defined
on R.

The main result of this note is that, under suitable assumptions on Q (see (H1)
below), equation (1) has a unique strong(mild) solution (Theorem 2). A similar
result was proven in [2] for the stochastic porous media equation.

Compared with standard existence theory for equation (1) (see [3], [4]), where
the main assumption is that f is continuous, monotonically increasing, here
might be multivalued and, therefore, discontinuous. Also, as seen later on, f
might be a time dependent function f# = f(z, -) measurable in ¢ € [0, T.

Moreover, our existence results apply to multivalued graphs ff everywhere de-
fined on R. Such a graph (multivalued) arises naturally when in equation (1) the
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function £ is monotonically increasing and discontinuous in {rj}fil. Then, one
redefines f by '

B(r) = B(r) forr#r,  Blry) = [Blr). flr; +0)]

and get a maximal monotone graph £. So, one might say that the existence result
established here in Theorem 2 below applies as well to discontinuous monotoni-
cally increasing besides continuous functions /.

We shall denote by Cy/([0, T]; H) the space of all adapted processes X e
C([0, T); L*(Q, #,P,H)), H= L*(0) and by L3,(0,T; H}(0)) the space of all
adapted processes X € L*(0, T; L*(Q, 7, P, H}(0)) (see [3]). Here, HJ(0) is the
standard Sobolev space.

We denote also by W4 the stochastic convolution

13
Wal1) :J eI Qaws, 120,
0

where 4 = —A, D(A) = H}(0) n H*(0). We recall that W,(t) is a Gaussian
process and E(|W(1)]*] < o0, Vi > 0 (see [3], p. 21).

2. THE MAIN RESULT
The following hypotheses will be assumed.

(H1) Wy(-,) is continuous on [0, T] x O, P-a.s..
(H2) 8 : R — 2R is a maximal monotone graph such that D(f}) = R.

Here, D(p) = {r € R; B(r) # 0}.

In particular, hypotheses (H2) holds if f is a monotonically nondecreasing and
continuous function.

As regards hypotheses (H1), we refer to [3], Theorem 2.13, for sufficient con-
ditions on Q under which it holds.

DEFINITION 1. By strong (or mild) solution to equation (1) we mean a process
X e C([0, T|; H) which satisfies

13
(2) X(t) =ex —J A= y(s)ds + Wy(t), P-as., tel0,T],
0

where 7 € L'((0, T) x O x Q) is such that

(3) n(t, &) e p(X(t,8)), ae. (t,¢) € Qr, P-as.

THEOREM 2. Under hypotheses (H1), (H2), for each x € H = L*(0) there is a
unique strong solution X to equation (1), such that

(4) X e Liy (10, T]; Hy (0)),
(5) J(X), 75 () € L'((0,T) x 0 x Q).
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Here, j is the subpotential associated with £, i.e., j = ff and j* is the conjugate of
Jj. (See the notation below.)
3. PROOF OF THEOREM 2

EXISTENCE. By using a standard device, we shall reduce equation (1) to the
random differential equation

=N +py+Wy)30, (,E)eQr=(0,T)x0,
(6) 1(0,¢) = x(¢), ¢e,
y=0 on (0,7) x 00 = X7,

0
where y =X — Wy andy,:Ey.

We fix @ € Q and approximate (6) by

(yS)t_Ay8+ﬂs(y8+ WA)EO, (lvé) € QTv
(7) y:(0,¢) = x(¢), in 0,
y=0 onXyp,

where f, = é(l —(1+¢B)7") is the Yosida approximation of f (see, e.g., [1]).

Since f, is Lipschitzian, equation (7) has a unique solution

ye € C([0, T); L*(0)) n L*(0, T; Hy (0))
Vi(y:), € L*(0,T; L*(0)), iy, € L*(0,T; H*(0)).

Denote by j : R — R the subpotential function corresponding to f3, that is dj = f3,
where 0; is subdifferential of f (see, e.g., [1], p. 53). Let j* be the conjugate of j,
that is,

J*(p) =sup{p-r—j(r);re R}
and recall that p € df(r) if and only if
®) Jr) +Jj (p) = rp.

We have also 8, = Vj,, where

r—s*

©) Je(r) = inf{ 5y T/ e R}

() P (B, e R
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Multiplying (7) by y. and integrating on (0, 7') x (/, we obtain that

1 t t )
10 51O+ | Oy dst [ | i wadsae
t

1
< ¥l +J L J(Wa)dsdé < C, Vie|0,T).

0

Hence, on a subsequence ¢ — 0, we have
(11) y, — y* weakly in L*(0, T; H} (¢)) and weak-star in L™ (0, T; L*()).
Also, by (9)~(10), we see that, for ¢ — 0,
(12) (1 +¢f) "(yo+ Wy) — y* 4+ W4 weak-star in L= (0, T; L*(0)).
By (8), we have
T (Belye+ Wa)) + (1 +eB)" (e + W)
= (B(ye + Wa) (L 6B)™ (vt Wa) < B,(ve + Wa) (v + Woa).

This yields

3) | J s waacas | s wondéd

Or

— ﬂs(yg—F WA)WA dédt
Or

1
2 2 2
=73 |ye(T) HLl((a) + B ||x||L2(co) - ||ys||L2(0, T, H}(0))

— | B(ye+ WH)W4dEdt.

or
Since D(ff) = R, we have that
(14) Jim J|(|r) = +oo.
rl—oo I

Then, by (14) we obtain that for each n there is C, > 0 such that

(15) T (Be(ye + Wa)) = nlB,(ye + Wa)
a.e.on {(&,0);[B,(ve + Wa)(&, 0)| = Gy}

We shall use this to prove that {f,(y. + W)}, is weakly compact in L'(Q7).
To this purpose, it suffices to show that

(16) j Bt W) dédi < C, V>0,
Or
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and that, for each 0 > 0, there is Cs such that for any measurable subset Q* < QOr
with the Lebesgue measure m(Q*) < Cs, we have

(17) [, 0 waazar<a, oo
Q*

(Cs independent of ¢).
Estimate (16) follows by (13) and (15). As regards (17), we start from the in-
equality

j B,y + W) dédr < j B.(va+ W)\ dE di
0 O N [|B(yetWa)|=n]

Q) < L] (v Wa)dedr - (@)

1 c .
< ﬁ” Wal = onIB:(ye + Wa)l 1o,y < ;Jrnm(Q )-

(Here, we have used (13), (15), (16) and (H1).)

Hence, for n > % and m(Q*) < 2, Ve obtain (17), as claimed.
n
Then, by the Pettis theorem, {B,(y. + W)}, is weakly compact in L'(Qr)
and so, on a subsequence, again denoted ¢, we have

(18) P.(ye+ Wy) —n weakly in LI(QT).

Inasmuch as {f,(y. + W,)} is bounded in L'(Qr), it follows by (7) that {y,} is
compact in C([0, T]; L'(©)) and, therefore, for ¢ — 0,

(19) ye — y* strongly in C([0, T]; L'(0))
and

Ay =0 in Or,
(20) Y —Ay 41 Or

y(0)=x, »p*(t)e H(0), ae. tel0,T].

In order to conclude the proof of existence for equation (6), it remains to be
proven that

(21) n(t,8) € B(y*(1,8) + Wal(1,Q)), ae. (1,$) € Or.

To this end, we start from the inequality

(22) jQ B (et W)yt Wi — ) dE di

> J Je(ye + Wy) dé dt — J Je(2)dédt, Yz e L™ (Qp),
Qo Qo

for any measurable subset Oy < QOr.
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On the other hand, by (19), by Egorov Theorem, it follows that for each d > 0
there is Qs < Qr such that m(Q7\Qs) <6 and y, — y* uniformly on Qs as
¢ — 0. Taking Qy = Qs in (22), we obtain

JQ‘n(y* + Wy—z)dédt > JQ‘(j(y* + Wy) — j(z)dédt, Yze L*(Qys).

The latter implies by a standard device the pointwise inequality
N+ Wa—2) > (0" + W) — j(2), ae.in Qs Vz e R,

and, therefore, n € Jj(y* + Wy) = p(y* + W4), a.e. in Qs, and since o is arbi-
trary, we obtain (21), as claimed.

Now, it is clearly seen that X (¢) = y(¢) + W is a solution to (1) in the sense
made precise in Definition 1. (The fact that the process X (z) = lin% Ve(2) + Wy (1)

is adapted is obvious because so is X,(¢) = y.(f) + W4(t).) By (10) and (13), it is
also easily seen that j(X), j*(n) € L'((0,T) x O x Q). This completes the proof
of the existence.

UNIQUENESS. It is immediate, because if X;, i = 1,2, are solutions to (1) in
the above sense, then y; = X; — Wy, i = 1,2, are P-a.s. solutions to equation (6),
which clearly has a unique solution by monotonicity of /.

REMARK 3. Theorem 2 remains true for time dependent maximal monotone
graphs f§ = (¢, -) which satisfy the following assumptions.

(H2)" For almost all t € (0,T), B(t,-) : R — 2R is maximal monotone, measurable
in t and for each M > 0 there is Cyy independent of t such that

(23) B(t,r)| < Cy ae. te(0,T), Vre [-M, M.

If § is independent of ¢, (H2)" is implied by (H2). The proof is exactly the same as
that of Theorem 2.
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