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Abstract. — The boundary value problem for semilinear parabolic stochastic equations of the

form dX � DX dtþ bðX Þ dt C
ffiffiffiffi
Q

p
dWt, where Wt is a Wiener process and b is a maximal monotone

graph everywhere defined, is well posed.
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1. Introduction

Consider the stochastic di¤erential equation

dX � DX dtþ bðX Þ dt C
ffiffiffiffi
Q

p
dWt in ð0;TÞ � O ¼ QT ;

Xð0Þ ¼ x in O;

X ¼ 0 on ð0;TÞ � qO ¼ ST :

ð1Þ

Here, O is an open and bounded subset of Rd with smooth boundary qO, db 1,
and Wt is a cylindrical Wiener process in L2ðOÞ ¼ H defined by

Wt ¼
Xl
k¼1

ekðxÞbkðtÞ; x a O; tb 0;

where fbkgk are mutually independent Brownian motions on a probability space
fW;F;Pg and fekg is an orthonormal basis in H. The operator Q a LðH;HÞ is
self–adjoint, positive and of finite trace.

Finally, b : R ! 2R is a maximal monotone graph (see [1]) everywhere defined
on R.

The main result of this note is that, under suitable assumptions on Q (see (H1)
below), equation (1) has a unique strong(mild) solution (Theorem 2). A similar
result was proven in [2] for the stochastic porous media equation.

Compared with standard existence theory for equation (1) (see [3], [4]), where
the main assumption is that b is continuous, monotonically increasing, here b
might be multivalued and, therefore, discontinuous. Also, as seen later on, b
might be a time dependent function b ¼ bðt; �Þ measurable in t a ½0;T �:

Moreover, our existence results apply to multivalued graphs b everywhere de-
fined on R. Such a graph (multivalued) arises naturally when in equation (1) the



function b is monotonically increasing and discontinuous in frjglj¼1. Then, one
redefines b by

~bbðrÞ ¼ bðrÞ for rA rj; ~bbðrjÞ ¼ ½bðrjÞ; bðrj þ 0Þ�

and get a maximal monotone graph ~bb. So, one might say that the existence result
established here in Theorem 2 below applies as well to discontinuous monotoni-
cally increasing besides continuous functions b.

We shall denote by CW ð½0;T �;HÞ the space of all adapted processes X a
Cð½0;T �;L2ðW;F;P;HÞÞ; H ¼ L2ðOÞ and by L2

W ð0;T ;H 1
0 ðOÞÞ the space of all

adapted processes X a L2ð0;T ;L2ðW;F;P;H 1
0 ðOÞÞ (see [3]). Here, H 1

0 ðOÞ is the
standard Sobolev space.

We denote also by WA the stochastic convolution

WAðtÞ ¼
ð t

0

e�Aðt�sÞ ffiffiffiffi
Q

p
dWs; tb 0;

where A ¼ �D, DðAÞ ¼ H 1
0 ðOÞBH 2ðOÞ. We recall that WAðtÞ is a Gaussian

process and EðjWAðtÞj2� < l, Etb 0 (see [3], p. 21).

2. The main result

The following hypotheses will be assumed.

(H1) WAð� ; �Þ is continuous on ½0;T � � O, P-a.s..
(H2) b : R ! 2R is a maximal monotone graph such that DðbÞ ¼ R.

Here, DðbÞ ¼ fr a R; bðrÞA jg:
In particular, hypotheses (H2) holds if b is a monotonically nondecreasing and

continuous function.
As regards hypotheses (H1), we refer to [3], Theorem 2.13, for su‰cient con-

ditions on Q under which it holds.

Definition 1. By strong (or mild) solution to equation (1) we mean a process
X a Cð½0;T �;HÞ which satisfies

X ðtÞ ¼ e�Atx�
ð t

0

e�Aðt�sÞhðsÞ dsþWAðtÞ; P-a:s:; t a ½0;T �;ð2Þ

where h a L1ðð0;TÞ � O�WÞ is such that

hðt; xÞ a bðX ðt; xÞÞ; a:e: ðt; xÞ a QT ; P-a:s:ð3Þ

Theorem 2. Under hypotheses (H1), (H2), for each x a H ¼ L2ðOÞ there is a
unique strong solution X to equation (1), such that

X a L2
W ð½0;T �;H 1

0 ðOÞÞ;ð4Þ
jðXÞ; j �ðhÞ a L1ðð0;TÞ � O�WÞ:ð5Þ
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Here, j is the subpotential associated with b, i.e., qj ¼ b and j � is the conjugate of
j. (See the notation below.)

3. Proof of Theorem 2

Existence. By using a standard device, we shall reduce equation (1) to the
random di¤erential equation

yt � Dyþ bðyþWAÞ C 0; ðt; xÞ a QT ¼ ð0;TÞ � O;

yð0; xÞ ¼ xðxÞ; x a O;

y ¼ 0 on ð0;TÞ � qO ¼ ST ;

ð6Þ

where y ¼ X �WA and yt ¼
q

qt
y.

We fix o a W and approximate (6) by

ðyeÞt � Dye þ beðye þWAÞ C 0; ðt; xÞ a QT ;

yeð0; xÞ ¼ xðxÞ; in O;

y ¼ 0 on ST ;

ð7Þ

where be ¼
1

e
ð1� ð1þ ebÞ�1Þ is the Yosida approximation of b (see, e.g., [1]).

Since be is Lipschitzian, equation (7) has a unique solution

ye a Cð½0;T �;L2ðOÞÞBL2ð0;T ;H 1
0 ðOÞÞffiffi

t
p

ðyeÞt a L2ð0;T ;L2ðOÞÞ;
ffiffi
t

p
ye a L2ð0;T ;H 2ðOÞÞ:

Denote by j : R ! R the subpotential function corresponding to b, that is qj ¼ b,
where qj is subdi¤erential of b (see, e.g., [1], p. 53). Let j � be the conjugate of j,
that is,

j �ðpÞ ¼ supfp � r� jðrÞ; r a Rg

and recall that p a qbðrÞ if and only if

jðrÞ þ j �ðpÞ ¼ rp:ð8Þ

We have also be ¼ ‘je, where

jeðrÞ ¼ inf
jr� sj2

2e
þ jðsÞ; s a R

( )
ð9Þ

¼ 1

2e
jð1þ ebÞ�1

r� rj2 þ jðð1þ ebÞ�1
rÞ; Er a R:
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Multiplying (7) by ye and integrating on ð0;TÞ � O, we obtain that

1

2
jjyeðtÞjj2L2ðOÞ þ

ð t

0

jjyeðsÞjj2H 1
0
ðOÞ dsþ

ð t

0

ð
O

jeðye þWAÞ ds dxð10Þ

a
1

2
jjxjj2L2ðOÞ þ

ð t

0

ð
O

jeðWAÞ ds dxaC; Et a ½0;T �:

Hence, on a subsequence e ! 0, we have

ye ! y� weakly in L2ð0;T ;H 1
0 ðOÞÞ and weak-star in Llð0;T ;L2ðOÞÞ:ð11Þ

Also, by (9)P(10), we see that, for e ! 0,

ð1þ ebÞ�1ðye þWAÞ ! y� þWA weak-star in Llð0;T ;L2ðOÞÞ:ð12Þ

By (8), we have

j �ðbeðye þWAÞÞ þ jðð1þ ebÞ�1ðye þWAÞÞ
¼ ðbeðye þWAÞÞð1þ ebÞ�1ðye þWAÞa beðye þWAÞðye þWAÞ:

This yieldsð
QT

j �ðbeðye þWAÞÞ dx dta
ð
QT

beðye þWAÞye dx dtð13Þ

�
ð
QT

beðye þWAÞWA dx dt

¼ � 1

2
jjyeðTÞjj2L2ðOÞ þ

1

2
jjxjj2L2ðOÞ � jjyejj2L2ð0;T ;H 1

0
ðOÞÞ

�
ð
QT

beðye þWAÞWA dx dt:

Since DðbÞ ¼ R, we have that

lim
jrj!l

j �ðrÞ
jrj ¼ þl:ð14Þ

Then, by (14) we obtain that for each n there is Cn > 0 such that

j �ðbeðye þWAÞÞb njbeðye þWAÞjð15Þ
a:e: on fðx; tÞ; jbeðye þWAÞðx; tÞjbCng:

We shall use this to prove that fbeðye þWAÞge>0 is weakly compact in L1ðQTÞ.
To this purpose, it su‰ces to show thatð

QT

jbeðye þWAÞj dx dtaC; Ee > 0;ð16Þ
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and that, for each d > 0, there is Cd such that for any measurable subset Q� HQT

with the Lebesgue measure mðQ�ÞaCd, we haveð
Q�

jbeðye þWAÞj dx dta d; Ee > 0;ð17Þ

(Cd independent of eÞ.
Estimate (16) follows by (13) and (15). As regards (17), we start from the in-

equalityð
Q�

jbeðye þWAÞj dx dta
ð
Q�B½jbeðyeþWAÞjbn�

jbeðye þWAÞj dx dt

þ nmðQ�Þa 1

n

ð
Q�

j �e ðbeðye þWAÞÞ dx dtþ nmðQ�Þ

a
1

n
jjWAjjLlðQT Þjjbeðye þWAÞjjL1ðQT Þ a

C

n
þ nmðQ�Þ:

(Here, we have used (13), (15), (16) and (H1).)

Hence, for nb
d

2C
and mðQ�Þa d

2n
, we obtain (17), as claimed.

Then, by the Pettis theorem, fbeðye þWAÞge>0 is weakly compact in L1ðQTÞ
and so, on a subsequence, again denoted e, we have

beðye þWAÞ ! h weakly in L1ðQTÞ:ð18Þ

Inasmuch as fbeðye þWAÞg is bounded in L1ðQTÞ, it follows by (7) that fyeg is
compact in Cð½0;T �;L1ðOÞÞ and, therefore, for e ! 0,

ye ! y� strongly in Cð½0;T �;L1ðOÞÞð19Þ

and

y�
t � Dy� þ h ¼ 0 in QT ;

y�ð0Þ ¼ x; y�ðtÞ a H 1
0 ðOÞ; a:e: t a ½0;T �:

ð20Þ

In order to conclude the proof of existence for equation (6), it remains to be
proven that

hðt; xÞ a bðy�ðt; xÞ þWAðt; xÞÞ; a:e: ðt; xÞ a QT :ð21Þ

To this end, we start from the inequalityð
Q0

beðye þWAÞðye þWA � zÞ dx dtð22Þ

b

ð
Q0

jeðye þWAÞ dx dt�
ð
Q0

jeðzÞ dx dt; Ez a LlðQ0Þ;

for any measurable subset Q0 HQT .
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On the other hand, by (19), by Egorov Theorem, it follows that for each d > 0
there is Qd HQT such that mðQTnQdÞa d and ye ! y� uniformly on Qd as
e ! 0. Taking Q0 ¼ Qd in (22), we obtain

ð
Qd

hðy� þWA � zÞ dx dtb
ð
Qd

ð jðy� þWAÞ � jðzÞÞ dx dt; Ez a LlðQdÞ:

The latter implies by a standard device the pointwise inequality

hðy� þWA � zÞb jðy� þWAÞ � jðzÞ; a:e: in Qd; Ez a R;

and, therefore, h a qjðy� þWAÞ ¼ bðy� þWAÞ, a.e. in Qd, and since d is arbi-
trary, we obtain (21), as claimed.

Now, it is clearly seen that X ðtÞ ¼ yðtÞ þWA is a solution to (1) in the sense
made precise in Definition 1. (The fact that the process X ðtÞ ¼ lim

e!0
yeðtÞ þWAðtÞ

is adapted is obvious because so is XeðtÞ ¼ yeðtÞ þWAðtÞ.) By (10) and (13), it is
also easily seen that jðXÞ; j �ðhÞ a L1ðð0;TÞ � O�WÞ. This completes the proof
of the existence.

Uniqueness. It is immediate, because if Xi, i ¼ 1; 2, are solutions to (1) in
the above sense, then yi ¼ Xi �WA, i ¼ 1; 2, are P-a.s. solutions to equation (6),
which clearly has a unique solution by monotonicity of b.

Remark 3. Theorem 2 remains true for time dependent maximal monotone
graphs b ¼ bðt; �Þ which satisfy the following assumptions.

(H2) 0 For almost all t a ð0;TÞ, bðt; �Þ : R ! 2R is maximal monotone, measurable
in t and for each M > 0 there is CM independent of t such that

jbðt; rÞjaCM a:e: t a ð0;TÞ; Er a ½�M;M�:ð23Þ

If b is independent of t, (H2) 0 is implied by (H2). The proof is exactly the same as
that of Theorem 2.
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