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Partial Di¤erential Equations — A sharp Liouville theorem for elliptic operators1,
by Enrico Priola and Feng-Yu Wang, communicated on 12 November
2010.

Abstract. — We introduce a new condition on elliptic operators L ¼ 1
2sþ b � ‘ which ensures

the validity of the Liouville property, i.e., all smooth bounded solutions to Lu ¼ 0 on Rd are con-
stant. Such condition is sharp when d ¼ 1. We extend our Liouville theorem to more general second

order operators in non-divergence form assuming a Cordes type condition.
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1. Introduction

Let

L ¼ 1

2

Xd
i; j¼1

qijðxÞDij þ
Xd
i¼1

biðxÞDi

be a uniformly elliptic second order di¤erential operator on Rd with continuous
coe‰cients qij and bi (here Dij ¼ q2

qxiqxj
and Di ¼ q

qxi
, 1a i; ja d). Recall that a

smooth real function u on Rd is called L-harmonic if Lu ¼ 0 holds on Rd . An
operator L is said to possess the Liouville property when all bounded L-harmonic
functions are constant (or, equivalently, when a two-sided Liouville theorem
holds for L). Such property is also of interest for the study of non-linear PDEs
of the formsuþ FðuÞ ¼ 0 (see e.g. [1, 2]).

There are a plenty of results on the Liouville property. Let l0 > 0 be the
ellipticity constant of L. A typical condition implying the Liouville property is
the following (see e.g. [3, 6, 7]):

1

2l0
jjqðxÞ � qðxþ hÞjj2 þ 23bðxþ hÞ � bðxÞ; h4a 0; x; h a Rdð1:1Þ

(given a d � d real matrix A, we denote by jjAjj its Hilbert-Schmidt norm;
moreover 3� ; �4 is the Euclidean inner product in Rd ). However this is not com-
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pletely satisfactory for two reasons. The first one is that when bðxÞ is constant the
matrix qðxÞ must be constant as well. This is a restriction since it is known that
the Liouville property holds when b is constant and qðxÞ is variable (this is a
standard consequence of [5, Corollary 4.1]).

The second weak point of (1.1) is that when qðxÞ is the identity, i.e., we are
considering L0 ¼ 1

2Dþ b � ‘, such hypothesis is not optimal even when d ¼ 1.
The aim of this note is to find out a sharp and easy to check criterion ensuring
the Liouville property for L0. Our condition is sharp when d ¼ 1; indeed if this
does not hold one can construct counterexamples of operators L0 without the
Liouville property.

We prove our Liouville type theorem in the more general setting of elliptic
operators L, with qðxÞ variable, imposing an additional Cordes type condition
(see [4]). Our proof requires the coupling method of [6] (possible extensions of
this method are given in [8] and [9]).

To explain the motivation of our desired condition for the Liouville property,
let us start with a one-dimensional example

L0 ¼
1

2

d2

dx2
þ x

2þ x2

�
dþ 2

logð2þ x2Þ

� d

dx
;

where d is a constant. It is easy to see that a harmonic function of L0 has the form

uðxÞ ¼ c1 þ c2

Z x

0

dr

ð2þ r2Þd log2ð2þ r2Þ
; x a R;

where c1, c2 are constants. Thus, all bounded harmonic functions are constant if
any only if d < 1=2: In order to reduce this condition to a usual monotonicity
condition on the drift bðxÞ ¼ x

2þx2

�
dþ 2

logð2þx2Þ
�
, we note that (using also that b

is odd)

lim
s!l

sup
jx�yj¼s

ðx� yÞðbðxÞ � bðyÞÞ ¼ lim
s!l

sðbðs=2Þ � bð�s=2ÞÞ ¼ 4d:

Then the statement can be reformulated as all bounded L0-harmonic functions
are constant if and only if

lim
s!l

sup
jx�yj¼s

ðx� yÞðbðxÞ � bðyÞÞ < 2:

In general, let e.g. L0 ¼ 1
2Dþ b � ‘ on Rd , we may wish to prove the Liouville

property of L0 under the following hypothesis

lim sup
s!l

sup
jx�yj¼s

3x� y; bðxÞ � bðyÞ4 < 2:ð1:2Þ

This follows immediately from our main result.
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2. Main theorem

We prove a Liouville type theorem for bounded space-time harmonic functions.
Recall that a smooth function u on ½0;lÞ � Rd is called space-time harmonic
for L, if qtuþ Lu ¼ 0 holds. To state our main result, we make the following
assumptions.

(H) (i) The coe‰cients bðxÞ and qðxÞ are continuous, and, for any l > 0,
oðsÞ :¼ supjx�yjasfljjqðxÞ � qðyÞjj2 þ 23x� y; bðxÞ � bðyÞ4g satisfies

Z 1

0

oðsÞ
s

ds < l;

(ii) there exist two constants 0 < l0 < L0 such that

l0jhj2 a
Xn

i; j¼1

qijðxÞhihj aL0jhj2; x; h a Rd :

Theorem 2.1. Assume (H). If

lim sup
s!l

sup
jx�yj¼s

3x� y; bðxÞ � bðyÞ4 < 2l0 �
d

2
ðL0 � l0Þ;ð2:1Þ

then any bounded space-time harmonic function for L is constant.

Proof. We will suitably apply [6, Theorem 3.6]. To this purpose, we have to
consider a coupling for L. By (2.1) we may take constants m; s0 > 0 and s1 a R
such that m < l0 and

sup
jx�yj¼s

3x� y; bðxÞ � bðyÞ4a s1 < 2m� 1

2
dðL0 � mÞ; sb s0:ð2:2Þ

Define a symmetric positive definite matrix sðxÞ, such that sðxÞ2 þ mI ¼ qðxÞ,
x a Rd . Clearly we have s2ðxÞb ðl0 � mÞI . We construct a coupling as in Section
3.1 of [6], replacing the ellipticity constant l0 with m (note that under our assump-
tions the associated di¤usion process does not explode). Applying [6, Lemma 3.3]
we deduce that

jjsðxÞ � sðyÞjj2 a 1

4ðl0 � mÞ jjqðxÞ � qðyÞjj2; x; y a Rd :

Combining this with (H)(i) for l ¼ 1
4ðl0�mÞ , we obtain

jjsðxÞ � sðyÞjj2 þ 23x� y; bðxÞ � bðyÞ4aoðjx� yjÞ for x; y a Rd ; andð2:3Þ Z s0

0

oðsÞ
s

ds < l:
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On the other hand, since sðxÞ2 a ðL0 � mÞI , we have 0a sðxÞa ðL0 � mÞ1=2I ,
for any x a Rd . Thus

�ðL0 � mÞ1=2I a sðxÞ � sðyÞa ðL0 � mÞ1=2I ; x; y a Rd :

We deduce that 0a ðsðxÞ � sðyÞÞ2 a ðL0 � mÞI and so

jjsðxÞ � sðyÞjj2 ¼ Tr½ðsðxÞ � sðyÞÞ2�a dðL0 � mÞ; x; y a Rd :

Combining this with (2.2) we obtain

jjsðxÞ � sðyÞjj2 þ 23x� y; bðxÞ � bðyÞ4a 2s1 þ dðL0 � mÞ ¼: s2 < 4m;

jx� yjb s0:

From this and (2.3) we conclude that

jjsðxÞ � sðyÞjj2 þ 23x� y; bðxÞ � bðyÞ4a jx� yjgðjx� yjÞ; x; y a Rd

holds for

gðsÞ :¼ oðsÞ
s

1½0; s0�ðsÞ þ
s2

s
1ðs0;lÞ; s > 0:

Since by (H)

c :¼
Z s0

0

gðsÞ ds < l;

we have

Z l

0

exp
�
� 1

4m

Z r

0

gðsÞ ds
�
dr

b

Z l

1

exp
�
� 1

4m

Z s0

0

gðsÞ ds
�
exp

�
� 1

4m

Z r

s0

gðsÞ ds
�
dr

b e�c1

Z l

1

s�s2=½4m� ds ¼ l

since s2 < 4m. Applying [6, Theorem 3.6], we get the assertion. r
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