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Abstract. — Let M�
2 be the Igusa compactification of the Siegel modular variety of degree 2 and

level 2. In earlier work with R. Lee, we carefully investigated this variety. Subvarieties Dl (compac-
tification divisors) and HD (Humbert surface of discriminant 1) play a prominent role in its structure;

in particular their fundamental classes span H4ðM�
2 ;ZÞ. We return to this variety and consider an-

other class of subvarieties Kh (Humbert surfaces of degree 4), which we investigate with the help of

involutions on M�
2. We carefully describe these subvarieties and consider the representations of their

fundamental classes in terms of the fundamental classes of the subvarieties Dl and HD. The space
M�

2 is also known in a di¤erent context. It can also be described as the space M0; 6 of stable curves

of genus 2 with ordered Weierstrass points. In this context the divisors Kh are what have come to be
known as Keel-Vermeire divisors.
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Let S2 denote Siegel space of degree two, i.e. the space of symmetric 2-by-2 com-
plex matrices with positive definite imaginary part. Let Spð4;ZÞ be the group of
4-by-4 matrices that preserves the usual symplectic form on Z4. Then Spð4;ZÞ
acts on S2 on the left by
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:

Note that �I acts trivially so that this action factors through the projective group
PSpð4;ZÞ. For any subgroup G of finite index of Spð4;ZÞ we may consider the
restriction to G of this action, and in particular we may consider G ¼ GðnÞ, the
principal congruence subgroup of level n. Then the quotient MG ¼ GnS2, which
for G ¼ GðnÞ we denote by Mn, is a moduli space of principally polarized Abelian
surfaces with a level G structure (for G ¼ GðnÞ this is a level n structure). This
space has a compactification M�

G (or M�
n ) first constructed by Igusa [3], though

nowadays best understood as an example toroidal compactification. For nb 2
M�

n is a nonsingular projective variety.
In a series of papers, [5, 6, 7, 8], R. Lee and the author investigated the space

M�
2 and considered various related matters. We will not restate our results here,

but rather restate them when we need them below.
We now return to this space with another objective in mind. Our objec-

tive here is to investigate a family of divisors on this threefold that we de-



note by Kh, and our approach to these divisors is by considering involutions on
M�

2.
We thus begin this paper in Section 1 by giving enough background on M�

2
to get us started. We then, in Section 2, have an algebraic interlude in which we
consider involutions in PSpð4;ZÞ. In Section 3 we return to geometry and care-
fully describe the complex surfaces Kh in Theorem 3.2. In Section 4, and in par-
ticular in Theorem 4.12, we show how to express the homology class represented
by Kh in H4ðM�

2;ZÞ in terms of the homology classes represented by complex sur-
faces HD and Dl that we showed in our earlier work span H2ðM�

2;ZÞ. Here h, D,
and l run over indexing sets that we will describe below.

As a consequence, we show in Corollary 4.14 that Kh cannot be represented
as a nonnegative integral linear combination of the classes HD and Dl, and in
Theorem 4.15 we strengthen that to show that Kh cannot be represented as a non-
negative rational linear combination of these classes.

Finally, In Section 5 we discuss the relationship between M�
2 and another

space M0;6, the moduli space of stable curves of genus two with ordered Weier-
strass points. When our results are carried over into M0;6, our divisors Kh are
what have come to be known as Keel-Vermeire divisors, and we are happy to
acknowledge that in this context Corollary 4.14 is due to them. In view of the
considerable interest in doing computations in this space, we have tried in this
paper to give explicit methods and results useful for computation rather than
the minimum we need to get by.

A few words about notation and terminology: We will denote subvarieties
and the homology classes they represent by the same symbol. We will denote
complex curves/2-dimensional homology classes by lower case letters and com-
plex surfaces/4-dimensional homology classes by upper case letters. Also, we
will use tlBHD, for example, to denote the geometric intersection of these two
varieties and tl �HD for their intersection number, and we will feel free to pass
between the two.

Finally, we will remark that because of our geometric approach, it is most nat-
ural for us to work in homology, but for M�

2 homological and algebraic equiva-
lence of divisors are identical.

1. Background on M�
2

In this section we describe salient features of M�
2. We refer the reader to [5, 6, 8]

for more details. In addition, [2] provides a careful and extensive description of
the compactification procedure.

We let V ¼ Z4 be the space of row vectors equipped with the nonsingular
form 3ðx1; x2; x3; x4Þ; ðy1; y2; y3; y4Þ4 ¼ ðx1y3 � x3y1Þ þ ðx2y4 � x4y2Þ. We let
Spð4;ZÞ be the symplectic group, the group of 4-by-4 integral matrices preserving
this form, where Spð4;ZÞ acts on V on the left by gðvÞ ¼ vg�1. This descents to
an action of Spð4;Z=2ZÞ ¼ Spð4;ZÞ=Gð2Þ on V ¼ V n ðZ=2ZÞ preserving 3 ; 4,
which is the above form taken modulo 2.

We begin by describing the quotient Tits building T of V , which is the quo-
tient of the Tits building T of V by the action of Gð2Þ. (The expert will recognize
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that we are taking advantage of some simplifications due to the fact that we are
working mod 2.)

T is a bipartite graph, with two kinds of vertices, l-vertices and h-vertices.
Here l is a line through the origin, so is specified by a nonzero point in V , and
h is an isotropic plane, i.e., a plane through the origin that is totally isotropic with
respect to the form 3 ; 4. Then h contains three lines, say l1, l2, and l3, and we
write h ¼ l1bl2.

T has 15 l vertices and 15 h vertices. There is an edge joining l to h if l a h.
Then every h contains 3 l’s and every l is contained in 3 h’s, so every vertex of T
has valence 3 and T has a total of 45 edges. We say that two distinct vertices of
T are nearby if there is a path in T of length two joining them, i.e., l1 and l2 are
nearby if there is an h with l1 a h and l2 a h, and h1 and h2 are nearby if there
is an l with l a h1 and l a h2. Given a fixed l vertex, there are 6 nearby l
vertices, and given a fixed h vertex, there are 6 nearby h vertices. The action
of Spð4;Z=2ZÞ on V induces an action on T, and this action is transitive on
l-vertices, on h-vertices, and on edges.

In the compactification M�
2 we have 15 corank 1 boundary components fDlg,

and 15 corank 2 boundary components fChg. They are each permuted transi-
tively by the action of Spð4;Z=2ZÞ, so are mutually isomorphic in each case,
and so it su‰ces to describe one of each.

We begin with Dl, and for the sake of definiteness take l ¼ ð1; 0; 0; 0Þ, which
we henceforth abbreviate as l ¼ ð1000Þ (and similarly for all l and for all h). This
comes from the stabilizer of the line generated byeð1; 0; 0; 0Þ in V (there is an
ambiguity of sign). The stabilizer Pðeð1; 0; 0; 0ÞÞ in Gð2Þ consists of matrices of
the form

e m s n

0 a � b

0 0 e 0

0 c � d

0
BBB@

1
CCCA

where a b
c d

� �
a G1ð2Þ, the principal congruence subgroup of level 2 in SLð2;ZÞ,

e ¼e1, and m; n; s a 2Z, and the entries � are determined by the condition that
this matrix be symplectic.

There is a homomorphism, given by the notation, of this group to the group of
matrices of the form

e m n

0 a b

0 c d

0
@

1
A

satisfying the same congruence conditions.
We think of the associated corank 1 boundary component as the component

given by ‘‘t1 ¼ il’’ (this can be made precise) and then the above element acts
on C�S1 ¼

�
z
t

� �
¼
�
t2
t3

��
by
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(compare [2, Proposition 3.100 and Proposition 3.102]).
We observe that this action covers the usual action of G1ð2Þ on S1, the upper

half plane, by fractional linear transformations. The quotient B� ¼ G1ð2ÞnS1 is
P1 � 3 points. Then we see that the quotient D� ¼ Pðeð1; 0; 0; 0ÞÞnC�S1 is a
fiber space over B�. Examining the fiber over a point represented by t a S1,
we see that it is a Kummer curve, i.e., it is the quotient of C by the lattice
fmtþ n jm; n a 2Zg, which is an elliptic curve, and then furthermore by the in-
volution z 7! �z of this elliptic curve. (A Kummer curve is P1, but has moduli
because it has four distinguished points that are the images of the four fixed
points of the involution.) D� is an open Kummer modular surface, and there is
a compactification D of D� extending the projection D� ! B�:

D� K��! D???y
???y

B� K��! B:

B is P1, obtained by adding to B� its three cusps. D is a nonsingular surface, but
as a fibre space it is singular, with the fibers over the cusps being two P1’s inter-
secting transversely. (This construction is very analogous to the construction of
the well-known elliptic modular surfaces [9].) As an abstract complex surface,
Dl ¼ D.

Now for the corank 2 boundary components. There are much more subtle to
obtain, but much easier to describe. For any isotropic plane h, Ch is a configura-
tion of three P1’s as in the letter Y , i.e., the three P1’s are mutually disjoint except
for a common triple point (at which their tangent spaces span the tangent space
of M�

2). We call this triple point the deepest point of Ch.
The relation between these two sorts of boundary components is that DlBCh

is nonempty if and only if l a h (i.e., if there is an edge in T joining l to h). In
this case, on the one hand DlBCh is one of the exceptional fibers over a cusp
in Dh, consisting of two P1’s, and on the other hand DlBCh consists of two of
the ‘‘arms’’ of the Y in Ch. In particular, we see that if l1 a h and l2 a h, then
Dl1 BDl2 is one arm of the Y in Ch, i.e., is a single P1, which we denote sl1;l2 .
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(Thus if l1; l2, and l3 are the three lines in h, the three P1’s in Ch are sl1;l2 , sl1;l3 ,
and sl2;l3 , and the deepest point in h is the triple intersection Dl1 BDl2 BDl3 .)
We also see that every Dl contains 3 deepest points, the intersection of the two
P1’s in each of its three exceptional fibers.

Next we describe the Humbert surfaces fHDg of discriminant 1 in M�
2. (In our

previous work we simply referred to them as the Humbert surfaces, as they were
the only ones that appeared.) Again we begin with the indexing set. We call
D ¼ fd; d?g a nonsingular pair, (in our previous work we called it a pair of ani-
sotropic planes) where d and d? are both planes in V , with the restriction of
the form 3 ; 4 to each of these planes nonsingular, and with each of d and d?

the orthogonal complement of the other, in which case it follows that V is the
orthogonal direct sum of d and d?. Let us take D ¼ fð1000Þbð0010Þ; ð0100Þb
ð0001Þg. Then D is the image of a pair of subspaces in V , obtained by regarding
the entries of D as integers rather than integers modulo 2, and the corresponding
subgroup of Gð2Þ consists of matrices of the form

a1 0 b1 0

0 a3 0 b3

c1 0 d1 0

0 c3 0 d3

0
BBB@

1
CCCA;

with
�
ai bi
ci di

�
a G1ð2Þ for i ¼ 1; 3.

These matrices stabilize the subspace S1 �S1 ¼
��

t1 0
0 t3

�
a S2

�
and the above

matrix acts on S1 �S1 by

t1 0

0 t3

� �
7! ða1t1 þ b1Þ=ðc1t1 þ d1Þ 0

0 ða3t3 þ b3Þ=ðc3t3 þ d3Þ

� �

and so we see that the quotientH � ¼ ðG1ð2ÞnS1Þ � ðG1ð2ÞnS1Þ ¼ B� � B� HM2.
Then H � HHHM�

2 where H ¼ B� B (¼ P1 � P1 as an abstract surface). (It is
not obvious that this is the compactification of H � in M�

2 but this turns out to be
true.) Again Spð4;ZÞ acts transitively on fDg, and there are 10 of these, so the
fHDg are all mutually isomorphic, and are isomorphic to H.

Finally, HDBDl is nonempty exactly when l a D, by which we mean l a d or
l a d?. For fixed D this occurs for 6 values of l, and the intersection is P1 � cusp
or cusp� P1 in HD, and for fixed l this occurs for 4 values of D, and the intersec-
tion is a section of the singular fiber space D ! B, these sections extending over
the cusps.

We shall let D ¼
S

l Dl and H1 ¼
S

DHD.

2. Involutions in PSpð4;ZÞ

We now consider involutions in PSpð4;ZÞ. By [10], every involution in PSpð4;ZÞ
is conjugate in PSpð4;ZÞ to one of the following two:
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j1 ¼e

1

�1

1

�1

0
BBB@

1
CCCA; j2 ¼e

1 1

�1 �1

1

�1

0
BBB@

1
CCCA:

(Since we are in PSpð4;ZÞ, j1 and j2 are only defined up to sign. We will choose
the positive sign to obtain representatives.) We observe that j1 a Gð2Þ but
j2 B Gð2Þ.

Our first step is to obtain a finer classification.
We remind the reader of our conventions:
We let V ¼ Z4 and VQ ¼ Z4 nQ ¼ Q4. We have the nonsingular symplectic

form 3 ; 4 on VQ preserved by Spð4;QÞ. We regard V as a space of row vectors
and we let Spð4;ZÞ act on the left on V by gðvÞ ¼ vg�1.

Recall that a sublattice W of V is pure if W ¼ ðW nQÞBV , i.e., if nw a W
for some n a Z, nA 0, implies w a W .

Definition 2.1. An ordered pair ðW 1;W 2Þ (resp. a pair fW 1;W 2g) of sublat-
tices of V is Q-nonsingular if W 1 and W 2 are each pure sublattices of V of rank
2, the restrictions of 3 ; 4 to W 1

Q ¼ W 1 nQ and to W 2
Q ¼ W 2 nQ are each

nonsingular, W 1
Q and W 2

Q are orthogonal with respect to 3 ; 4, and hence
VQ ¼ W 1

Q aW 2
Q. The discriminant of ðW 1;W 2Þ (or fW 1;W 2g) is the cardinality

of the quotient V=ðW 1 aW 2Þ.

Theorem 2.2. Up to conjugation by Gð2ÞHPSpð4;ZÞ:

(1) The single conjugacy class of j1 in PSpð4;ZÞ splits into 10 conjugacy classes
j1;D naturally indexed by nonsingular pairs D.

(2) The single conjugacy class of j2 in PSpð4;ZÞ splits into 15 conjugacy classes
j2;h naturally indexed by isotropic planes h.

Proof. Our analysis here follows the analysis in [2], except that here we are in
the principally polarized case, so that the distinction between ‘‘short’’ and ‘‘long’’
vectors in [2] no longer exists.

By [2, Lemma 5.2] there is a 1-1 correspondence

fa a Spð4;QÞ j a2 ¼ 1; aAe1g $ fðVþ;V�Þ a Q-nonsingular ordered pairg;

where Vþ ¼ Vþ
Q BV and V� ¼ V�

Q BV , given by

a $ ðVþ
Q ¼ ðþ1Þ eigenspace of a;V�

Q ¼ ð�1Þ eigenspace of aÞ;

and furthermore by [2, Proposition 5.9] this correspondence is equivariant in the
sense that for any a and for any g a Spð4;QÞ,

ðVþ
QðgðaÞÞ;V�

QðgðaÞÞÞ ¼ ðgðVþ
Q ðaÞÞ; gðV�

Q ðaÞÞÞ

where gðaÞ ¼ gag�1 and gðVe
QðaÞÞ ¼ Ve

QðaÞg�1.
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Then we immediately obtain a 1-1 correspondence

fa a PSpð4;QÞ j a2 ¼ 1; aAe1g $ ffVþ;V�g a Q-nonsingular pairg

as the action of �I a Spð4;QÞ interchanges the ðþ1Þ and ð�1Þ eigenspaces.
Specializing to a a PSpð4;ZÞ, we see from [2, Proposition 5.11] that there are

two possibilities for the quotient V=ðVþðaÞaV�ðaÞÞ: either this quotient is f0g,
in which case fVþðaÞ;V�ðaÞg has discriminant 1, or this quotient is isomorphic
to ðZ=2ZÞa ðZ=2ZÞ, in which case fðVþðaÞ;V�ðaÞÞg has discriminant 4. Clearly
the discriminant of fðVþðaÞ;V�ðaÞÞg is an invariant of the conjugacy class of a
in PSpð4;ZÞ.

In particular we observe that for the involution j1,

Vþð j1Þ ¼ ð1; 0; 0; 0Þbð0; 0; 1; 0Þ and V�ð j1Þ ¼ ð0; 1; 0; 0Þbð0; 0; 0; 1Þ;

so fVþð j1Þ;V�ð j1Þg has discriminant 1, and for the involution j2,

Vþð j2Þ ¼ ð2; 0; 0; 1Þbð0; 0; 1; 0Þ and V�ð j2Þ ¼ ð0; 2; 1; 0Þbð0; 0; 0; 1Þ;

so fVþð j2Þ;V�ð j2Þg has discriminant 4.
Thus we see that the classification of involutions in PSpð4;ZÞ up to conjugacy

is the same as the classification of Q-nonsingular pairs of discriminants 1 and 4 of
V up to linear transformation.

Following the argument of [2, Proposition 5.22] we may show that there
is an element g of PSpð4;ZÞ that takes any Q-nonsingular pair of discriminant
1 to fðVþð j1ÞÞ; ðV�ð j1ÞÞg and any Q-nonsingular pair of discriminant 4 to
fVþð j2Þ;V�ð j2Þg, merely recovering Ueno’s result. But of course we are inter-
ested here in the finer classification up to the action of Gð2Þ. Now for any vector
ðx1; x2; x3; x4Þ a V , if ðy1; y2; y3; y4Þ ¼ ðx1; x2; x3; x4Þg�1, then yi Cxi ðmod2Þ.
Thus a necessary condition for two involutions a and a 0 of PSpð4;ZÞ to be equiv-
alent under conjugation by Gð2Þ is that we must have VeðaÞCVeða 0Þ ðmod2Þ,
where by this congruence we mean that we must be able to choose a basis for
each of these lattices so that the vectors in the basis are congruent ðmod2Þ. But
the proof of [2, Proposition 5.22] shows that this necessary condition is su‰cient
as well.

Examining fVþð j1Þ;V�ð j1Þg we see that these subspaces reduced mod 2 form
a nonsingular pair, so the conjugates of j1 modGð2Þ are in 1-1 correspondence
with nonsingular pairs D, i.e., are appropriate elements j1;D for each D.

Examining fVþð j2Þ;V�ð j2Þg we see that these two subspaces reduce to the
same subspace mod 2, and that this subspace is an isotropic subspace h, so that
conjugates of j2 modGð2Þ are in 1-1 correspondence with isotropic subspaces h,
i.e., are appropriate elements j2;h for each h.

Finally, we have already given the cardinalities of fDg and for fhg, and
indeed they are listed explicitly in [7], but let us indicate how to count the ele-
ments of these sets anyway. Let VZ=2Z ¼ ðZ=2ZÞ4 and note that PSpð4;Z=2ZÞ ¼
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Spð4;Z=2ZÞ acts transitively on flg ¼ VZ=2Z � fð0; 0; 0; 0Þg, a set of cardinality
24 � 1 ¼ 15.

Consider l0 ¼ ð1000Þ. Let D ¼ fd; d?g. If l a D, then l a d or d?. For the
sake of definiteness, let l a d. Then d must have a unique vector of the form
ð0; x2; 1; y2Þ with x2 and y2 arbitrary, and there are four choices, so we count a
total of 15 � 4 ¼ 60 lines in all the D’s. (Note d determines d? so there are no fur-
ther choices.) But each plane d and d? contains 3 lines, so each D contains 6 lines
and then there are 60=6 ¼ 10 D’s. On the other hand, if l a h, then h must have a
unique nonzero vector of the form ð0; x2; 0; y2Þ, and there are three choices, so we
count a total of 15 � 3 ¼ 45 lines in all the h’s. But each plane h contains 3 lines
and then there are 45=3 ¼ 15 h’s. r

Following the notation of the proof of Theorem 2.2, we make the following
definition.

Definition 2.3. The discriminant of an involution a a PSpð4;ZÞ, aAe1, is the
discriminant of the pair fVþðaÞ;V�ðaÞg.

Corollary 2.4. Each involution j1;D has discriminant 1 and each involution j2;h
has discriminant 4.

3. Description of the complex surfaces Kh

Our goal in this section is to define and describe the surfaces Kh in M�
2 that are

our main focus of interest in the paper. But we begin by recalling some properties
of the surfaces HD that we have already seen.

Theorem 3.1. Fix a nonsingular pair D, and let j ¼ j1;D be the associated invo-
lution of discriminant 1. The action of j on S2 fixes (pointwise) a Humbert surface
of discriminant 1. The compactification of its image in M�

2, denoted HD, has the
following properties:

(1) HDBDl is nonempty if and only if l a D (i.e., if and only if l a d or l a d?,
where D ¼ fd; d?g), in which case HDBDl is a section of Bl. For fixed D,
this is the case for 6 values of l, and for fixed l this is the case for 4 values of
D. If l is fixed, these 4 sections are the images of the points of order 1 or 2 in
each fiber.

(2) HDBCh is nonempty if and only if there is some l with l a D and l a h, in
which case HDBCh is a single point. For fixed D, this is the case for 9 values
of h, and for fixed h this is the case for 6 values of D.

Proof. This is well known, and we are merely stating it for completeness and
ease of reference, and also for comparison with Theorem 3.2. But we shall make
a few observations.
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We observe that if we choose

j ¼

1

�1

1

�1

0
BBB@

1
CCCA

then j t1 t2
t2 t3

� 	
¼ t1 �t2

�t2 t3

� 	
, so j fixes t1 0

0 t3

� 	n o
, which by [1, Definition 3.1.7], is a

Humbert surface of discriminant 1.
We are claiming in the statement of the theorem that, in case l a D, not only

is HDBD�
l a section over B�

l , but that this section extends over the cusps. This
is a familiar fact for elliptic modular surfaces, cf. [9], and the situation here is
analogous.

We refer the reader to [6] or [8] for a picture of this situation. r

Theorem 3.2. Fix an isotropic plane h and let j ¼ j2;h be the associated involu-
tion of discriminant 4. The action of j on the three-fold M�

2 fixes (pointwise) a
complex surface Kh, a Humbert surface of discriminant 4. This surface Kh has the
following properties:

(1) If l a h (which occurs for three values of l), KhBDl is a double section of Bl,
i.e., a branched double cover of the base curve Bl.
(a) The intersection of Kh with each general fiber is two points.
(b) Let h ¼ fl1; l2; l3g with l1 ¼ l. In the exceptional fiber DlBCh ¼ sl1;l2 A

sl1;l3 , Kh intersects each of the P1’s sl1;l2 and sl1;l3 in a single point.
(c) Let l a fh1; h2; h3g with h1 ¼ h. In the exceptional fibers DlBCh2 and

DlBCh3 , Kh passes through the deepest point that is the intersection of
the two P1’s in that exceptional fiber. Thus these two points are the branch
points of the double cover KhBDl ! Bl.

(d) KhB ðDlBH1Þ is empty.
(2) If h ¼ fl1; l2; l3g, then the intersection KhBCh is three points, one in each of

the P1’s sl1;l2 , sl1;l3 , and sl1;l2 and sl2;l3 in Ch. Also, KhB ðChBH1Þ is empty.
(3) Let h 0 be nearby h. Then if l a h, h 0 ¼ fl; l 0; l 00g for some lines l 0, l 00. The

intersection KhBCh 0 is the entire P1 sl 0;l 00 . (Note that this P1 contains a deep-
est point as in 1(c).) Also, KhB ðCh 0 BH1Þ is two points in this P1. There are
six such values of h 0.

(4) Let l 0 be nearby l. Then l 0 a h 0 for some h 0 nearby h. The intersection KhBDl 0

is a P1 sl 0;l 00 in an exceptional fiber over Bl 0 . Also, KhB ðDl 0 BH1Þ is two
points in this P1. (These intersections are the same intersections as in (3).)
There are six such values of l 0.

(5) If l 00 B h and l 00 B h 0 for any h 0 nearby h, then KhBDl 00 is empty. If h 00Ah and
h 00 is not nearby h, then KhBCh 00 is empty. There are eight such values of l 00

and eight such values of h 00.

Proof. Since all the involutions j2;h are congruent under the action of Gð1Þ ¼
Spð4;ZÞ, there is an automorphism of M�

2 taking any surface Kh to any other,

423involutions, humbert surfaces, and divisors on a moduli space



so it su‰ces to prove this for a single value of h. We first take h ¼ h1 ¼
ð0010Þbð0001Þ and then

j ¼ j2;h ¼

�1 0 0 1

0 1 �1 0

0 0 �1 0

0 0 0 1

0
BBB@

1
CCCA:

Explicit computation then shows that

j
t1 t2

t2 t3

� �
¼ t1 1� t2

1� t2 t3

� �
for

t1 t2

t2 t3

� �
a S2

so j fixes the surface

t1 1=2

1=2 t3

� �
 �
HS2;

obviously a complex surface, and from [1, Definition 3.1.7] we see that this is a
Humbert surface of discriminant 4. Then j descends to an involution on M2 fix-
ing the image of this surface, which we denote by K ¼ Kh, under the projection
S2 ! M2 ¼ Gð2ÞnS2. Furthermore, the compactification process is equivariant
so the action of j extends to an action on M�

2.
A key point to note is that the action of j is equivariant with respect to the

indexing: For any corank 1 boundary component l, the image of Dl under j is
DjðlÞ, and similarly for corank 2 boundary components. In particular, we first
choose l ¼ l1 ¼ ð0010Þ, and then we have that jðlÞ ¼ l, so j leaves Dl invariant
(though certainly not pointwise fixed), and also jðhÞ ¼ h, so j leaves Ch invariant
(though again not pointwise fixed).

Now M�
2 is a nonsingular complex variety, and j acts smoothly, indeed ana-

lytically, on M�
2, and hence any component of the fixed point set of j, or of the

restriction of j to Dl, will be a smooth, and indeed analytic subvariety.
The analysis of j on D�

l is not di‰cult, as the toroidal compactification pro-
cess for a corank 1 open boundary component is relatively straightforward. Re-
call our discussion in Section 1. Very roughly speaking, if P is the subgroup of
Gð2Þ stabilizing a neighborhood N of the inverse image in S2 of this boundary
component, which we can think of as

��
t1 t2
t2 t3

��� Imðt1Þg 0
�
, then we can think

of this boundary component as
��

t2
t3

�
¼
�
il t2
t2 t3

��
and

�
t1 t2
t2 t3

�
a P 0nN approaches�

t2
t3

�
a C�S1 by letting t1 approach il, where P 0 is an appropriate subgroup

of P. We then take a further quotient to obtain a neighborhood of D�
l in M�

2.
In this description, the action of j on M2 extends to the action on D�

l given by�
t2
t3

�
!

�
1�t2
t3

�
, where here we are looking at representatives, since D�

l is a quotient

of C�S1, and so we see that points represented by
�
1=2
t3

�
are fixed, as are the

points represented by
�
1=2þt3

t3

�
, since the image of this point,

�
1=2�t3

t3

�
, is equivalent

to it modulo 2Zþ 2t3Z. This can all be made absolutely precise, but we prefer
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not to do so here, for reasons of brevity, and because this description, while
enlightening, is mostly superfluous to our needs. But see [2, Proposition 3.102].

However, the toroidal compactification process for corank 2 boundary com-
ponents is far from straightforward, and an analysis of j there would involve
not only a careful development of that compactification but also a careful local
analysis of j as well. (The compactification process is thoroughly described in [2]
and the reader can see what is involved.)

Thus instead we choose an approach that avoids almost any sort of local anal-
ysis, whether for corank 1 or corank 2 boundary components.

Our approach is based on the following very simple topological fact, which we
will use repeatedly: An orientation preserving involution on the two-sphere S2

fixes either exactly two points or all of S2. We call this Fact I.
Let us now get to work. We could proceed with our choice of h (and hence

j ¼ j2;h) and l as above, but we shall instead change to h ¼ h1 ¼ ð1000Þbð0100Þ,
giving

j ¼ j2;h ¼

1 0 0 0

0 �1 0 0

0 �1 1 0

1 0 0 �1

0
BBB@

1
CCCA

and l ¼ ð1000Þ. This is purely for convenience (for ourselves and for the reader).
These were the choices of l and h we made in [6], and this enables us to use the
indexing in the figures in that paper. As the reader will see, our arguments heavily
use the indexing, and so if our indexing here were di¤erent than our indexing
there, everyone would become hopelessly confused. (We did not begin with this
choice of l and h as we wished to begin with an element j of Spð4;ZÞ whose
action on S2 was transparent, as was our original action, while this new value
of j has the lower left hand 2-by-2 block nonzero, a situation everyone who
works on Siegel space tries to avoid whenever possible, for good reason.) Again
we set K ¼ Kh for this value of h.

To accompany the following argument we refer the reader to [6, Figure 1].
We begin by noting that j leaves each fiber of D�

l invariant. (This is the only
fact from the above description of the corank 1 compactification process that we
need.) We have observed that j is equivariant with respect to the indexing, and
direct computation shows that, in the notation of [6], j interchanges D1 and D2,
and also D3 and D4. Thus jðHD1

BDlÞ ¼ HD2
BDl, etc. In particular, since each

HDi
BDl intersects every general fiber, and the curves HDi

BDl are pairwise
disjoint, no general fiber is entirely fixed. Hence by Fact I, the intersection of K
with every general fiber of D�

l is two points, i.e., KBD�
l is a double section, un-

branched over B�
l .

Now to analyze the exceptional fibers. We note that in the exceptional fiber
indexed by h, the equivariance of the indexing shows that j leaves each of
s1000;0100 and s1000;1100, the two P1’s in ChBDl, invariant, and hence their inter-
section, which is a single point, invariant and hence fixed.
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Now neither of these two P1’s is pointwise fixed, again because each of them is
intersected by a pair of HD’s that are interchanged, so by Fact I the action of j
must fix exactly one other point in each, and so KhB s1000;0100 and KhB s1000;1100
are each a single point. Hence KhBDl ! Bl is not branched here.

Now for the other two exceptional fibers. In each of these, j interchanges the
two P1’s: s1000;0001 and s1000;1001, and also s1000;0101 and s1000;1101. So the only fixed
point of j on each of these fibers is the single intersection point s1000;0001B s1000;1001
and s1000;0101B s1000;1101 on each. Kh must pass through each of these points (and
no other points in these exceptional fibers). Hence KhBDl ! Bl is branched at
both of these points.

Finally, since no HDi
BDl contains any fixed point of j, it cannot intersect

KhBDl.
Thus we have proved all parts of (1). For the further edification of the reader,

we draw the schematic diagram of KhBDl that we have just shown to be true.

Next let us deal with the corank 2 boundary component Ch. This consists of
three P1’s meeting at a single point. They are sl1;l2 , sl1;l3 , and sl2;l3 , where l1, l2,
and l3 are the three lines in h, l1 ¼ ð1000Þ, l2 ¼ ð0100Þ, l3 ¼ ð1100Þ. In our anal-
ysis of Dl1 , we have just found KhB sl1;l2 and KhB sl1;l3 . They are each a single
point. Performing the same analysis for Dl2 would show that KhB sl1;l2 is a single
point (again), and that KhB sl2;l3 is a single point (and then the analysis for Dl3

would again recover the two intersection points KhB sl1;l3 and KhB sl2;l3 ). Fur-
thermore, we have already seen that none of these points lie on any HD. Thus
we have proven (2).

Now let us consider a nearby cusp component Ch 0 . We take h 0 ¼ ð1000Þb
ð0001Þ so that the three lines in h 0 are l1 ¼ ð1000Þ, l4 ¼ ð0001Þ, and l5 ¼ ð1001Þ.
Then jðl1Þ ¼ l1, jðl4Þ ¼ l5, and jðl5Þ ¼ l4. Hence j interchanges the P1’s sl1;l4
and sl1;l5 , and since they are disjoint except for the deepest point, no point other
than possibly the deepest point can be in the fixed set Kh. Now by the same argu-
ment, jðsl4;l5Þ ¼ sl4;l5 so this P1 is invariant. We must analyze the action on this
P1. We know already that the deepest point on this P1 is fixed as this is one of the
branch points of KhBDl ! Bl that we have seen already. Now sl4;l5 is inter-
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sected by HD for two values of D, namely D ¼ D 0 ¼ fð1110Þbð0001Þ; ð1001Þb
ð0011Þg and D ¼ D 00 ¼ fð0110Þbð0001Þ; ð1001Þbð0010Þg. But jðD 0Þ ¼ D 0 and
jðD 00Þ ¼ D 00, so j also fixes the two points sl4;l5 BHD 0 and sl4;l5 BHD 00 of sl4;l5 .
Thus j fixes at least three points of sl4;l5 so by Fact I j must leave sl4;l5 pointwise
fixed, proving (3).

As for (4), we take l 0 ¼ l4, so jðl4Þ ¼ l5 ¼ l 00. Then any point in Dl 0 fixed by
j must be in Dl 0 B jðDl 0 Þ ¼ Dl 0 BDl 00 ¼ sl 0;l 00 . But we have just seen in (3) that in
fact this entire P1 is fixed.

As for (5), for any value of l 00 other than those considered above, Dl 00 B
jðDl 00 Þ ¼ Dl 00 BDjðl 00Þ is empty, so Dl 00 cannot contain any point of the fixed set
Kh. For any value of h 00 other that those considered above, jðh 00ÞAh 00, and since
the corank 2 boundary components are pairwise disjoint, we certainly have that
Ch 00 B jðCh 00 Þ ¼ Ch 00 BCjðh 00Þ is empty, so Ch 00 cannot contain any point of the fixed
set Kh, completing the proof. r

As we have observed, Dl is a Kummer modular surface. The fiber over a
general point t a B�

l (more precisely, in the equivalence class of t a S1 under
the action of G1ð2Þ) is the quotient of the elliptic curve C=ð2Za 2tZÞ by the
involution z 7! �z. This involution has four fixed points, the points of order 1
or 2. There are 12 ¼ 42 � 4 points of order 4 on this elliptic curve, and they are
interchanged pairwise by this involution, so their images in the quotient are six
distinct points. An analysis of the degeneration in the exceptional fibers over the
cusps in Bl shows that, in each cusp, four of these points remain distinct while the
other two ‘‘collapse’’ into the deepest point.

Corollary 3.3. Fix a line l and let h1, h2, h3 be the three isotropic planes with
l a hi, i ¼ 1; 2; 3. Then Kh1 BD�

l , Kh2 BD�
l , and Kh3 BD�

l together form a six-
section over B�

l consisting of the six points in each fiber over a general point t that
are the images of the points of order 4 in C=ð2Za 2tZÞ under the involution
z 7! �z. Consequently, the intersection of the curves Kh1 BDl and Kh2 BDl is a
single point, a deepest point in an exceptional fiber that is the branch point of the
double cover Khi BDl ! Bl that they have in common.

Proof. We see immediately from the proof of Theorem 3.2 that, in the notation
of that proof, setting h1 ¼ h, Kh1 BD�

l ¼ KhBD�
l contains the point that is the

image of 1=2 a C=ð2Za 2tZÞ in each general fiber, and that is a point of order
4. It is easy to see that it contains the image of 1=2þ t as well. Then, with proper
ordering, Kh2 BD�

l contains the image of t=2 and 1þ t=2, and Kh3 BD�
l contains

the image of 1=2þ t=2 and 3=2þ t=2, and these are all six such points. Conse-
quently, fKhi BD�

lg are pairwise distinct, so the only possible intersections of
Khi BDl with Khj BDl, iA j, occur in exceptional fibers.

But similarly, this can only occur if Khi BDl and Khj BDl both pass through a
deepest point in an exceptional fiber, and that only occurs at the unique branch
point they both have in common. r

Remark 3.4. This corollary provides another proof that KhBD�
l and HDBD�

l

are disjoint for l a h and l a D, as HDBD�
l is a point of order 1 or 2 in every
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fiber C=ð2Zþ 2tZÞ and that is distinct from a point of order 4. Then a local anal-
ysis around the cusps shows that KhBDl and HDBDl remain disjoint.

Remark 3.5. Kh is not the entire fixed point set of the involution j2;h. As we see
from the proof of Theorem 3.2, j2;h also has the deepest point of Ch as an isolated
fixed point.

The relationship between D and h in Theorem 3.2(2) will turn out to be impor-
tant to us, and so we make an explicit definition.

Definition 3.6. Let D be a nonsingular pair and let h be an isotropic plane.
We write DP h if there is a line l with l a D and l a h, and DS h otherwise.

Having explicitly found the curve KhBDl in Dl for l a h, it is natural to ask
for its homology class.

The analog of the following lemma is true for any line l and for any three dis-
tinct isotropic planes h1, h2, h3 with l a hi, i ¼ 1; 2; 3. We state it in this one case
for convenience.

Lemma 3.7. Let h1 ¼ ð1000Þbð0100Þ, h2 ¼ ð1000Þbð0001Þ, and h3 ¼ ð1000Þb
ð0101Þ. Then the intersections Kh1 BDð1000Þ, Kh2 BDð1000Þ, and Kh3 BDð1000Þ are

all homologous in Dð1000Þ. The homology class uð1000Þ they represent is given by

uð1000Þ ¼ �tð1000Þ þ sð1000Þ; ð0100Þ þ sð1000Þ; ð0001Þ þ sð1000Þ; ð0101Þ þ 2mð1000Þbð0010Þ:

Also, this class has self-intersection number u2ð1000Þ ¼ 1 in Dð1000Þ. Here tð1000Þ
denotes the class of the general fiber of Dð1000Þ ! Bð1000Þ.

Proof. First we remind the reader that mð1000Þbð0010Þ ¼ HD1
BDð1000Þ where

D1 ¼ fð1000Þbð0010Þ; ð0100Þbð0001Þg.
We begin by recalling [6, Proposition 2.3.1]: H2ðDð1000Þ;ZÞ has basis

fmð1000Þbð0010Þ; sð1000Þ; ð0100Þ; sð1000Þ; ð0001Þ; sð1000Þ; ð0101Þ; sð1000Þbð1100Þg and each of these

classes has self-intersection number �1. We have that tð1000Þ ¼ sð1000Þ; ð0100Þ þ
sð1000Þ; ð1100Þ and so we also have the basis fmð1000Þbð0010Þ; sð1000Þ; ð0100Þ; sð1000Þ; ð0001Þ;
sð1000Þ; ð0101Þ; tð1000Þg and it will be convenient for us to use this latter basis. We note

t2ð1000Þ ¼ 0.

Now consider the involution

j ¼ j2;h1 ¼

�1 0 0 0

0 1 0 0

0 �1 �1 0

1 0 0 1

0
BBB@

1
CCCA:

This involution fixes Kh1 and leaves Dð1000Þ invariant. Thus the restriction of j to
Dð1000Þ, which we denote by i, is an involution of Dð1000Þ fixing u ¼ Kh1 BDð1000Þ.
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We have the induced map on homology. Hence i� : H2ðDð1000Þ;QÞ !
H2ðDð1000Þ;QÞ, with i�ðuÞ ¼ u in homology. Now we can easily compute i�. The
action of i� is given by its action on the subscripts:

i�ðmð1000Þbð0010ÞÞ ¼ mð1000Þbð0110Þ

i�ðsð1000Þ; ð0100ÞÞ ¼ sð1000Þ; ð0100Þ

i�ðsð1000Þ; ð0001ÞÞ ¼ sð1000Þ; ð1001Þ ¼ tð1000Þ � sð1000Þ; ð0001Þ:

i�ðsð1000Þ; ð0101ÞÞ ¼ sð1000Þ; ð1101Þ ¼ tð1000Þ � sð1000Þ; ð0101Þ

i�ðtð1000ÞÞ ¼ tð1000Þ:

We need to compute the homology class mð1000Þbð0110Þ and this was done in the
proof of [6, Proposition 2.3.1]:

mð1000Þbð0110Þ ¼ mð1000Þbð0010Þ � tð1000Þ þ sð1000Þ; ð0001Þ þ sð1000Þ; ð0101Þ:

(The classes mð1000Þbð0010Þ and mð1000Þbð0110Þ were denoted in [6] by HD1
and HD2

respectively. As we remarked in [8, Remark 2.7], the statement and the proof of
[6, Proposition 2.3.1] are correct but the proof contained a misprint in that the
term sð1000Þ; ð0001Þ was inadvertently omitted.)

Since i�ðuÞ ¼ u, u must be in the þ1 eigenspace of i�, and computation with
the above basis shows that the þ1 eigenspace of i� is 3 dimensional with basis
ftð1000Þ; sð1000Þ; ð0100Þ; sð1000Þ; ð0001Þ þ sð1000Þ; ð0101Þ þ 2mð1000Þbð0010Þg.

Thus

u ¼ atð1000Þ þ bsð1000Þ; ð0100Þ þ gðsð1000Þ; ð0001Þ þ sð1000Þ; ð0101Þ þ 2mð1000Þ; ð0010ÞÞ;

with the coe‰cients yet to be determined. We determine these coe‰cients by
taking intersection numbers:

2 ¼ u � tð1000Þ ¼ að0Þ þ bð0Þ þ gð0þ 0þ 2ðþ1ÞÞ
1 ¼ u � sð1000Þ; ð1100Þ ¼ að0Þ þ bð1Þ þ gð0þ 0þ 2ð0ÞÞ
0 ¼ u �mð1000Þbð0010Þ ¼ að1Þ þ bð1Þ þ gð1þ 1þ 2ð�1ÞÞ

with solution a ¼ �1, b ¼ 1, g ¼ 1, yielding the expression for u given in the
statement of the lemma.

A priori we should call this class uh1;l (for l ¼ ð1000Þ) as it depends on h1.
But we see that the expression we have obtained is symmetric in the cusps, so
the classes uh1;l, uh2;l and uh3;l are all equal in homology, and so we are justified
in just denoting this class by ul.

Finally, given our expression for ul and our knowledge of intersection and
self-intersection numbers of the homology classes in this expression, it is routine
to compute u2l . r

We have a project underway with J. W. Ho¤man to analyze Humbert surfaces
in Siegel modular thresholds. Humbert surfaces of square discriminant D2 are
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fixed points of involutions in Spð4;QÞ, and their behavior in Siegel modular vari-
eties ðGðNÞnS2Þ� (GðNÞ being the principal congruence subgroup of level N) is
dependent on what common factors D and N have. Our work in [2] was not in
the principally polarized case with full level structure, but rather in the case of
ð1; pÞ polarization with level structure of canonical type with p odd, but the fact
that N ¼ D ¼ 2 here in type II, while D ¼ 2 is prime to 1 � p ¼ p there, is respon-
sible for much of the di¤erence in behavior. (The type I cases, with D ¼ 1, are
very analogous here and there.)

4. The homology class represented by Kh

Up until now, we have used the natural indexing from the symplectic group to
index the various subvarieties of M�

2, with the indexes transforming in the natural
way under the action of PSpð4;Z=2ZÞ. But PSpð4;Z=2ZÞ is isomorphic to the
symmetric group S6, and indeed isomorphic by an (almost canonical) isomor-
phism. In the remainder of this paper we shall use the indexing coming from S6,
as doing so makes it much easier to follow the various combinatorial arguments.
The isomorphism between PSpð4;Z=2ZÞ and S6 was given in [7], and we now re-
call the results of that paper. We consider that S6 acts on the set f1; 2; 3; 4; 5; 6g
by permutations in the natural way. We have [7, Theorem 4.5]:

Theorem 4.1. Let S6 act on the set f1; 2; 3; 4; 5; 6g in the natural way, and let
PSpð4;Z=2ZÞ act on ðZ=2ZÞ4 in the natural way. Then there is an isomorphism
h : S6 ! PSpð4;Z=2ZÞ inducing permutation isomorphisms of the following sets:

(a) fmonads fagg $ fspreads of lines sg
(b) fduads fa; bgg $ flines lg
(c) fduadic synthemes ffa; bg; fc; dg; fe; f ggg $ fisotropic planes hg
(d) ftriadic synthemes ffa; b; cg; fd; e; f ggg $ fnonsingular pairs Dg.

(The names of the objects on the left were introduced by Sylvester in 1844.)
Here we understand distinct letters to refer to distinct elements of f1; . . . ; 6g.
Also, this permutation isomorphism reflects inclusions:

(a) If l $ fi; jg and h $ ffa; bg; fc; dg; fe; f gg, then fi; jg ¼ fa; bg; fc; dg, or
fe; f g if and only if l a h.

(b) If l $ fi; jg and D ¼ ffa; b; cg; fd; e; f gg, in which case, recalling that D ¼
fd; d?g, so that d ¼ fa; b; cg and d? ¼ fd; e; f g, or vice-versa, then l a D if
and only if l a d, i.e., fi; jgH fa; b; cg, or l a d?, i.e., fi; jgH fd; e; f g.

(c) If D ¼ ffa; b; cg; fd; e; f gg and h ¼ ffp; qg; fr; sg; ft; ugg, then DP h, i.e.,
there exists a line l with l a D and l a h, if and only if there is an fi; jg
with fi; jg ¼ fp; qg; fr; sg, or ft; ug, and fi; jgH fa; b; cg or fi; jgH fd; e; f g.

This isomorphism is canonical up to renumbering of f1; . . . ; 6g (the obvious
indeterminacy) and up to the outer automorphism of S6, but with respect to the
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latter we have made the ‘‘right’’ choice. Otherwise, all the identifications given
above would change.

Henceforth, for clarity, we will drop the commas and braces in our symmetric
group indexing of lines, isotropic planes, and nonsingular pairs.

With this language in hand, we proceed.
We have the following theorem from [6]:

Theorem 4.2. (1) The homology groups HiðM�
2;ZÞ are free Abelian of rank

1; 0; 16; 0; 16; 0; 1 for i ¼ 0; . . . ; 6.
(2) The classes fDlg (15 classes) and fHDg (10 classes) span H4ðM�

2;ZÞ.
(3) The classes fDl1 BDl2g and fDlBHDg span H2ðM�

2;ZÞ.

In that paper we further determined the homology groups HiðM�
2;QÞ as rep-

resentation spaces of S6. Using the usual Young diagram notation, H4ðM�
2;QÞ ¼

2½6� þ ½51� þ ½42�. (Here ½6� is the trivial 1 dimensional representation, ½51� has
dimension 5, and ½42� has dimension 9.) Also, the (permutation) representation
of S6 on the vector space with basis fDlg is ½6� þ ½51� þ ½42� and on fHDg is
½6� þ ½42�. Thus we see that the space of relations between fDlg and fHDg in
M�

2, i.e., the kernel of the map

0
l

H4ðDl;QÞa 0
D

H4ðHD;QÞ ! H4ðM�
2;QÞ

is a 9 dimensional vector space that is isomorphic to the irreducible representa-
tion ½42� of S6. We will explicitly determine this kernel. In order to do so we
need an explicit generating set for H2ðM�

2;QÞ. In fact, we can extract a generat-
ing set for H2ðM�

2;ZÞ from the classes given by the above theorem, but since we
will only be using this set to compute intersection numbers with 4 dimensional
classes, it is easiest to use a di¤erent generating set for H2ðM�

2;QÞ.
To that end, we introduce two new sorts of 2-dimensional homology classes.

Definition 4.3. For a line l, the homology class tl is the class of a general
fiber of Dl.

Note that any general fiber is homologous to the sum of the two P1’s in any
exceptional fiber of Dl.

Thus if l ¼ ðabÞ and h ¼ ðab; cd; ef Þ, then tðabÞ ¼ sðabÞ; ðcdÞ þ sðabÞ; ðef Þ.

Definition 4.4. For a nonsingular pair D ¼ fd; d?g, the homology class nD is
the sum nD ¼ md þmd? of generators of H2ðHD;ZÞ.

Thus if D ¼ ðabc; def Þ, then nðabc;def Þ ¼ mðabcÞ þmðdef Þ.

We have the following intersection numbers:

Lemma 4.5. The following intersection numbers are correct:

(a) sðabÞ; ðcdÞ �Dðef Þ ¼ 1
(b) sðabÞ; ðcdÞ �DðabÞ ¼ �1
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(c) sðabÞ; ðdeÞ �Hðabc;def Þ ¼ 1
(d) mðabcÞ �DðdeÞ ¼ 1
(e) mðabcÞ �DðabÞ ¼ 0
(f ) mðabcÞ �Hðabc;def Þ ¼ �1
(g) all other intersection numbers of classes sð�Þ; ð�Þ or mð�Þ with classes Dð�Þ or

Hð�;�Þ are 0.

Proof. This follows directly from the computations in [6] and is explicitly stated
as [8, Lemma 2.10]. r

Corollary 4.6. The following intersection numbers are correct:

(a) tðabÞ �DðabÞ ¼ �2
(b) tðabÞ �Hðabc;def Þ ¼ 1
(c) nðabc;def Þ �DðabÞ ¼ 1
(d) nðabc;def Þ �Hðabc;def Þ ¼ �2
(e) all other intersection numbers of classes tð�Þ or nð�;�Þ with classes Dð�Þ or

Hð�;�Þ are 0.

Proof. Some of these simply follow from the fact that the relevant intersections
are a transverse point or empty, but in any case all of these follow from Lemma
4.5 and the equations (in homology) tðabÞ ¼ sðabÞ; ðcdÞ þ sðabÞ; ðef Þ and nðabc;def Þ ¼
mðabcÞ þmðdef Þ. r

Lemma 4.7. The homology group H2ðM�
2;QÞ has basis given by the 15 classes

ftlg and the 1 class
P

D nD.

Proof. From Corollary 4.6 we have that tl �Dl ¼ �2 and tl �Dl 0 ¼ 0 for
l 0A l. Thus we immediately see that the classes ftlg are linearly independent.
(The matrix with entries tl �Dl 0 is a 15-by-15 matrix that is �2 times the identity
matrix, which is nonsingular.) The class

P
D nD is acted on trivially by S6, so we

need only check its independence from
P

l tl, which is a generator of the 1 di-
mensional subspace of the vector space generated by ftlg that is acted on trivially
by S6.

Again from Corollary 4.6 we have that
P

l tl �
P

l Dl ¼ 15ð�2Þ ¼ �30 andP
D nD �

P
D HD ¼ 10ð�2Þ ¼ �20. Furthermore,

P
l tl �

P
D HD ¼ 15ð4Þ ¼ 60, as

each tl has intersection number 1 with 4 HD’s, and
P

D nD �
P

l Dl ¼ 10ð6Þ ¼
60, as nD ¼ md þmd? and each md has intersection number 1 with 3 Dl’s. But
then the matrix

�30 60

60 �20

 �

is nonsingular, completing the proof. r

Actually, in our computations of intersection numbers, we will always (except
in the following lemma) be using the individual classes nD, rather than just their
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sum
P

D nD, as in almost all cases the only way to find intersection numbers withP
D nD is to find the individual intersection numbers with each nD and then add

them.

Lemma 4.8. The kernel of the map

0
l

H4ðDl;QÞa 0
D

H4ðHD;QÞ ! H4ðM�
2;QÞ

is spanned by

2ðHðabc;def Þ �Hðabd; cef ÞÞ � ½ðDðadÞ þDðbdÞ þDðceÞ þDðcf ÞÞ
� ðDðacÞ þDðbcÞ þDðdeÞ þDðdf ÞÞ�

as ða; b; c; d; e; f Þ runs over the permutations of ð1; 2; 3; 4; 5; 6Þ.

Proof. We know that this space is 9 dimensional and in fact as a representation
space of S6 is ½42�. In this case it is automatically orthogonal to any other irreduc-
ible representation of S6, and in particular to the fixed class

P
D nD. Thus we need

only to check orthogonality with all tl’s.
But it is easy to compute from Corollary 4.6 that 2ðHðabc;def Þ �Hðabd; cef ÞÞ has

intersection number �2 with each of the classes tðadÞ, tðbdÞ, tðceÞ, tðcf Þ, intersection
number þ2 with each of the classes tðacÞ, tðbcÞ, tðdeÞ, tðdf Þ, and intersection number
0 with the remaining 7 tl’s. However, we immediately see from Corollary 4.6
that the class ðDðadÞ þDðbdÞ þDðceÞ þDðcf ÞÞ � ðDðacÞ þDðbcÞ þDðdeÞ þDðdf ÞÞ has
exactly the same intersection numbers with each of the tl’s. r

Remark 4.9. Since the representation of S6 on fHDg is ½6� þ ½42�, any relation
must lie in the subspace orthogonal to ½6�, i.e., in the subspace where the sum of
the coe‰cients is 0, and we see that is the case. Since the representation of S6

on fDlg is ½6� þ ½51� þ ½42�, any relation must lie in the subspace orthogonal to
½6� þ ½51�. This subspace is the permutation representation on spreads, i.e., the
permutation representation on the individual letters fa; b; c; d; e; f g, and so the
sum of the coe‰cients of the terms involving each of these letters must be 0, and
we see that this is the case as well.

Now we come to the consideration of the classes Kh.

Definition 4.10. Let Kh ¼
P

l ah;lDl þ
P

D bh;DHD. Then this expression for

Kh has D-weight A ¼
P

l ah;l and H-weight B ¼
P

D bh;D.

A priori, the D-weight and H-weight depend on the particular expression for
Kh, but in fact they do not. This follows from Lemma 4.8, where we see that ev-
ery relation in H4ðM�

2Þ has both D-weight 0 and H-weight 0. But independently
of that lemma we have the following more precise result.

Lemma 4.11. For any fixed h, every expression Kh ¼
P

l ah;lDl þ
P

D bh;DHD

has D-weight A ¼ 3 and H-weight B ¼ 2.
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Proof. Consider a single expression as in the statement of the lemma. Note that
the action of any element g of the symmetric group S6 takes the coe‰cient ah;l
to agðhÞ;gðlÞ and takes the coe‰cient bh;D to bgðhÞ;gðDÞ. In particular, g takes this

expression for Kh to an expression for Kh 0 , h 0 ¼ gðhÞ, of the same weight.
Now let us consider the images of this expression under all elements of the

symmetric group, and add them. Since there are 15 di¤erent values of h, the sta-
bilizer of any single value of h is a subgroup of index 15 and hence order 48 of S6.
Similarly, the stabilizer of any single value of l is a di¤erent subgroup of index 15
and hence order 48 of S6, and the stabilizer of any single value of D is a subgroup
of index 10 and hence order 72 of S6. We obtain:

X
g AS6

KgðhÞ ¼
X
g AS6

agðhÞ;gðlÞDgðlÞ þ
X
g AS6

bgðhÞ;gðDÞHgðDÞ

48
�X

h 0

Kh 0

	
¼ 48

�X
l

ah;l

	�X
l

Dl

	
þ 72

�X
D

bh;D

	�X
D

HD

	

¼ 48A
�X

l

Dl

	
þ 72B

�X
D

HD

	
:

Let us first intersect this relation with a single general fiber tl0 . There are three
values of h 0 for which Kh 0 intersects D�

l0
, and in each of these cases the intersection

is a double section, i.e., intersects the general fiber in two points. Hence the left
hand side is 48 � 3 � 2. Now D�

l0
BD�

l is empty for lA l0, and we have shown in
Corollary 4.6 that Dl0 � tl0 ¼ �2, so that the first term on the right hand side is
48 � 1 � ð�2ÞA. There are four values of D for which HD intersects D�

l0
, and in

each of these cases the intersection is a section, i.e., intersects the general fiber in
a single point. Hence the second term on the right hand side is 72 � 4 � 1 � B.

Thus we obtain the equation

288 ¼ �96Aþ 288B:

Let us now intersect this relation with a single class nD0
in HD0

, for some fixed
D0. Recall that nD0

¼ md0 þmd?0
where D0 ¼ fd0; d?0 g, and the classes md0 and md?0

are represented by curves that are entirely contained in D ¼
S

l Dl.
We have seen in Theorem 3.1 that for fixed HD0

, there are six values of h 0 for
which HD0

BKh 0 BD is nonempty (in fact, for which HD0
BKh 0 is nonempty, but

we do not need this), and this intersection is a single point. Moreover, since, for
proper choice of l, md0 ¼ DlBHD0

, and this intersection point is a transverse
triple point of Dl, HD0

, and Kh 0 , we have an intersection number 1 ¼ md0 BKh 0 .
Similarly we have 1 ¼ md?0

BKh 0 , so nD0
BKh 0 ¼ 2 for these six values of h 0, and

nD0
BKh 0 ¼ 0 for the other nine values of h 0. Thus the left hand side is 48 � 6 � 2.
There are six values of l for which HD0

BDl is nonempty. For three of these
values we have md0 BDl ¼ 1 and md?0

BDl ¼ 0 and for the other three values we

have md0 BDl ¼ 0 and md?0
BDl ¼ 1, so in any case nd0 BDl ¼ 1 for these values
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of l and 0 otherwise (Lemma 4.5), so the first term on the right hand side is
48 � 6 � 1 � A.

Since the surfaces HD are pairwise disjoint, the only possible contributions
to nD0

BHD occurs when D ¼ D0. But then md0 BHD0
¼ md?0

BHD0
¼ �1 so

nD0
BHD0

¼ �2 (Corollary 4.6). Thus the second term on the right hand side is
72 � 1 � 1ð�2ÞB.

Thus we obtain the equation

576 ¼ 288A� 144B:

Solving this pair of linear equations yields A ¼ 3, B ¼ 2. r

Guided by Lemma 4.11, we look for an expression for Kh which reflects the
geometry of M�

2. We note that l a h for three values of l, while DP h for six
values of D and DS h for four values of D. This leads us to conjecture the for-
mula in the following theorem, which we can then verify.

Theorem 4.12. For any fixed h,

Kh ¼
X
la h

Dl þ
X
DPh

HD �
X
DSh

HD:

Proof. We verify that this formula is correct by showing that the left hand side
and the right hand side have the same intersection numbers with each tl0 and each
nD0

.
We begin with the classes tl0 . There are two cases: l0 a h and l0 B h. First sup-

pose l0 a h, e.g., l0 ¼ ðabÞ. Then for the left hand side, KðabÞðcdÞðef Þ � tðabÞ ¼ 2 as
KðabÞðcdÞðef Þ is a double section in Dab. For the first term on the right hand side,
tðabÞ �Dab ¼ �2 (by Corollary 4.6) and tðabÞ �DðpqÞ ¼ 0 for ðpqÞA ðabÞ, in partic-
ular for ðpqÞ ¼ ðcdÞ and ðpqÞ ¼ ðef Þ. For the last two terms, tðabÞ � nðpqr; stuÞ ¼ 1
for ðpqr; stuÞ a fðabc; def Þ; ðabd; cef Þ; ðabe; cdf Þ; ðabf ; cdeÞg and 0 otherwise, and
for each of these four values of D we have DP h. Then we have the equality
2 ¼ �2þ ð4� 0Þ. Next suppose l0 B h, e.g., l0 ¼ ðacÞ. Then for the left hand
side, KðabÞðcdÞðef Þ � tðacÞ ¼ 0. For the first term on the right hand side, tðacÞ �DðabÞ
¼ tðacÞ �DðcdÞ ¼ tðacÞ �Dðef Þ ¼ 0. For the last two terms, tðacÞ � nðpqr; stuÞ ¼ 1 for
ðpqr; stuÞ a fðabc; def Þ; ðacd; bef Þ; ðace; bdf Þ; ðacf ; bdeÞg and 0 otherwise, and of
these four values of D, we have DP h for two of them and DS h for the other
two. Then we have the equality 0 ¼ 0þ ð2� 2Þ.

Now for the classes nðpqr; stuÞ. Again there are two cases to consider. First
we consider nðabc;def Þ ¼ mðabcÞ þmðdef Þ. For the left hand side, we have
KðabÞðcdÞðef Þ � nðabc;def Þ ¼ 0 as KðabÞðcdÞðef Þ is disjoint from Hðabc;def Þ. For the first

term on the right hand side, mðabcÞ �Dðef Þ ¼ mðdef Þ �DðabÞ ¼ 1 and all other inter-
sections are 0. For the last two terms on the right hand side, mðabcÞ �Hðabc;def Þ ¼
mðdef Þ �Hðabc;def Þ ¼ �1, and all other intersection numbers are 0, and ðabc; def Þ
P ðabÞðcdÞðef Þ. Thus we obtain 0 ¼ 2þ ð�2� 0Þ. Next we consider nðace;bdf Þ ¼
mðaceÞ þmðbdf Þ. For the left hand side, mðaceÞ � KðabÞðcdÞðef Þ ¼ mðbdf Þ � KðabÞðcdÞðef Þ ¼ 1
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as this is a single transverse intersection point in the P1sðceÞ; ðdf Þ in the corank
2 boundary component CðabÞðceÞðdf Þ. For the first term on the right hand side,
mðaceÞ �DðabÞ ¼ mðbdf Þ �DðabÞ ¼ 0 and similarly for DðcdÞ and Dðef Þ as these curves
are disjoint from these surfaces. For the last two terms on the right hand side,
mðaceÞ �Hðace;bdf Þ ¼ mðbdf Þ �Hðace;bdf Þ ¼ �1, and all other intersection numbers are
0, but now ðace; bdf ÞS ðabÞðcdÞðef Þ. Thus we obtain 2 ¼ 0þ ð0� ð�2ÞÞ, com-
pleting the verification. r

We can also obtain other particularly symmetric expressions, though if we
wish to have integral coe‰cients we must pass to multiples of Kh.

Corollary 4.13. For any fixed h,

2Kh ¼ �2
X
la h

Dl þ
X
lBh

Dl þ
X
DSh

HD;

3Kh ¼ �
X
la h

Dl þ
X
lBh

Dl þ
X
DPh

HD;

4Kh ¼
X
lBh

Dl þ 2
X
DPh

HD �
X
DSh

HD;

5Kh ¼
X
l

Dl þ 3
X
DPh

HD � 2
X
DSh

HD;

¼ �3
X
la h

Dl þ 2
X
lBh

Dl þ
X
D

HD:

Proof. The expression for 2Kh is obtained from doubling the expression for Kh

in Theorem 4.12 and then adding suitable relations from Lemma 4.8, and then
the remaining expressions are obtained by taking suitable linear combinations of
the expressions for Kh and for 2Kh. r

Corollary 4.14. There is no expression

Kh ¼
X
l

ah;lDl þ
X
D

bh;DHD

with all ah;l and all bh;D nonnegative integers.

Proof. By Lemma 4.11, any such expression would have to have either bh;D1
¼

bh;D2
¼ 1 and bh;D ¼ 0 for DAD1; D2 or bh;D1

¼ 2 and bh;D ¼ 0 for DAD1. Now
the symmetric group S6 operates doubly transitively on fDg, so it su‰ces to
check one expression of each type. Beginning with the formula in Theorem 4.12
and adding suitable relations from Lemma 4.8, we obtain the following two
expressions:
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KðabÞðcdÞðef Þ ¼ �DðabÞ þ
1

2
DðacÞ þ

1

2
DðadÞ þ

1

2
DðaeÞ þ

1

2
Dðaf Þ

þ 1

2
DðbcÞ þ

1

2
DðbdÞ þ

1

2
DðbeÞ þ

1

2
Dðbf Þ

þHðacd;bef Þ þHðaef ;bcdÞ

KðabÞðcdÞðef Þ ¼ �DðabÞ þDðacÞ þDðadÞ þDðbeÞ þDðbf Þ þ 2Hðacd;bef Þ

and in each case the coe‰cient of DðabÞ is negative. r

In fact a stronger result is true.

Theorem 4.15. There is no expression

Kh ¼
X
l

ah;lDl þ
X
D

bh;DHD

with all ah;l and all bh;D nonnegative rational numbers.

Proof. The space of relations is 9-dimensional with basis the relations
Ri : HD �HD0

� � � � ¼ 0 for any fixed D0 and all DAD0, and then it is routine
to check that no expression of the form

X
la h

Dl þ
X
DPh

HD �
X
DPh

HD þ
X
i

ciRi;

with ci arbitrary rational numbers, can have all Dl coe‰cients and all HD coe‰-
cients nonnegative. r

Remark 4.16. Of course this theorem is equivalent to the result that there does
not exist an expression for NKh, for any integer NA 0, as above with all coe‰-
cients nonnegative integers.

In this paper we have heavily exploited the ‘‘dictionary’’ of [7] showing us how
to translate between the finite symplectic group PSpð4;Z=2ZÞ and the symmetric
group S6. Let us take this opportunity to record an addendum to [7]. Although
we have not needed to use theta functions in this paper, [7] also relates this action
to the action of PSpð4;Z=2ZÞ on (sets of ) theta characteristics in genus 2. We
would like to add one more example of this relationship (which we observed
shortly after that paper appeared).

We consider the classical theta function with characteristic m given by

ymðt; zÞ ¼
X
x AZn

expðpiðxþm 0=2Þt tðxþm 00=2Þ þ 2piðxþm 0=2Þ tðzþm 00=2ÞÞ
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where t a Sd , a point in Siegel space of degree d, z ¼ ðz1; . . . ; zdÞ is a vector in
Cd , and m ¼ ðm 0;m00Þ where each of m 0 and m 00 is a vector in Zd . We let m be
even or odd as the product sðmÞ ¼ m 0 tm 00 is even or odd. These functions satisfy
the identity

ymðt;�zÞ ¼ ð�1ÞsðmÞ
ymðt; zÞ:

The theta constant ymðtÞ is defined to be the function ymðt; 0Þ so we see that if m is
odd ymðtÞ is identically 0, but for m even it certainly is not. It su‰ces to consider
m ðmod2Þ, so henceforth we suppose m a f0; 1g2d . If d ¼ 1 there are three even
characteristics, ð0; 0Þ, ð0; 1Þ, and ð1; 0Þ, and one odd characteristic, ð1; 1Þ. In that
case we have Jacobi’s derivative formula

y 0
11ðtÞ ¼ �py00ðtÞy01ðtÞy10ðtÞ

where the left hand side denotes q=qzðy11ðt; zÞÞ evaluated at z ¼ 0. In degree two
there are 10 even characteristics and 6 odd characteristics, there is an analogous
formula, discovered by Rosenhain and proved by Thomae and Weber [4]:

J½ym1
ðtÞ; ym2

ðtÞ� ¼ep2ym3
ðtÞym4

ðtÞym5
ðtÞym6

ðtÞ

where J½ � denotes the Jacobian determinant of the functions ym1
ðt; zÞ and

ym2
ðt; zÞ with respect to the variables z1 and z2 (where z ¼ ðz1; z2Þ) evaluated at

z ¼ ðz1; z2Þ ¼ ð0; 0Þ, and the six characteristics satisfy:

m1 and m2 are distinct odd characteristics,
m3, m4, m5, and m6 are distinct even characteristics,
m1 þm2 þmi is odd for i ¼ 3; 4; 5, and 6.

By [7, Lemma 4.3] there is a canonical correspondence between odd character-
istics and spreads of lines, and a canonical correspondence between even charac-
teristics and nonsingular pairs. (Nonsingular pairs were called anisotropic pairs
there.)

Theorem 4.17. Let m1; . . . ;m6 be characteristics as in Rosenhain’s formula. Let
m1 and m2 correspond to spreads of lines s1 and s2, and let m3; . . . ;m6 correspond
to nonsingular pairs D3; . . . ;D6 as above. Let l be the unique line in s1Bs2. Then
D3; . . . ;D6 are the four nonsingular pairs given by l a Di , i ¼ 3; . . . ; 6.

Proof. By the equivariance of the correspondence, it su‰ces to verify this for a
single 6-tuple fm1; . . . ;m6g. Then direct computation shows that this is true for
fm1; . . . ;m6g ¼ f0101; 1101; 0010; 0011; 0110; 1111g, where the line l ¼ ð1000Þ.
(See [7, Tables 1 and 2].) r

Remark 4.18. In the indexing given by the symmetric group, if m1 corresponds
to the monad a and m2 corresponds to the monad b, so that l is the duad
l ¼ ðabÞ, then fD3; . . . ;D6g are the triadic synthemes fðabc; def Þ; ðabd; cef Þ;
ðabe; cdf Þ; ðabf ; cdeÞg.
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5. Relation with M0;6

The space M�
2 has a completely di¤erent description, which we now give. (See

especially [5, Section 8], and also [6, 7].)
Consider a nonsingular curve, i.e., a Riemann surface, of genus 2. Any such

Riemann surface is hyperelliptic, i.e., is a 2-fold cover of P1, branched at 6
points, the Weierstrass points of the surface. We let M0;6 be the space of 6 or-
dered points in P1 (a surface of genus 0) modulo the action of PGLð2;CÞ on P1

by a fractional linear transformations. Given such a six-tuple of points, we asso-
ciate to it the hyperelliptic curve with these Weierstrass points (this association
factoring through the action of PGLð2;CÞ, which gives automorphisms of the
associated surface), and hence its Jacobian, which is a two-dimensional Abelian
variety. The ordering of points on the curve corresponds to a level 2 structure,
and so we obtain an isomorphism from M0;6 into M�

2. The image of this isomor-
phism is M�

2 � ðH1 AD1Þ. This isomorphism then extends to an isomorphism
M0;6 ! M�

2, where M0;6 is the moduli space of stable curves of genus 2. The ge-
neric points of H1 and D1 (i.e., of the divisors HD and Dl) each parameterize a
type of singular curve with a single singularity, see [5, Figure 8.4.1] for a descrip-
tion. Fulton asked whether every divisor on M0;6 is a nonnegative integral linear
combination of divisors parameterizing curves with a single singularity, that is, of
divisors in M0;6 �M0;6, and this question was answered in the negative by Keel
and by Vermeire, who constructed what are now known as Keel-Vermeire divi-
sors. These divisors are exactly our divisors Kh (and Keel came across them by
considering involutions: if h ¼ ðabÞðcdÞðef Þ is an isotropic plane in our notation,
then there is the associated element of order 2 in S6 also denoted ðabÞðcdÞðef Þ),
and so Corollary 4.14 is originally due to them, though our Theorem 4.15 is a
strengthening of that result.

(A remark on terminology: Although these spaces have no boundary in the
topological sense, it is common among mathematicians who work on Siegel mod-
ular varieties to call D ¼ M�

n �Mn, the union of the compactification divisors,
the boundary. It is common among mathematicians who work on configuration
spaces to call M0;n �M0;n (the two uses of n are unrelated) the boundary. Trans-
lated into M�

2, M0;6 �M0;6 is the union H1 AD. Thus these two (ab)uses of the
word boundary are inconsistent with each other, which is why we have avoided
using this term in this paper.)

We would like to close by contrasting the approaches of [11] and this paper.
The description of M0;6 in [11] falls into a family of descriptions of M0;n for
any n, and so that approach is most useful for generalizations. On the other
hand, that description involves a choice which destroys the symmetry of the situ-
ation, and so we feel our description here is most useful for understanding M�

2
itself.
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