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Abstract. — A result is announced concerning a family of semiclassical Fourier Integral Opera-

tors representing a global parametrix for the Schrödinger propagator when the potential is quadratic
at infinity. The construction is based on the geometrical approach of the corresponding Hamilton-

Jacobi equation and thus sidesteps the problem of the caustics generated by the classical flow. More-
over, a detailed study of the real phase function allows us to recover a WKB semiclassical approxi-

mation which necessarily involves the multivaluedness of the graph of the Hamiltonian flow past the
caustics.
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1. Introduction

The purpose of this paper is to announce some results about the construction of a
global parametrix for the Schrödinger propagator.

Let us consider the initial value problem for the Schrödinger equation:

i�h
qc

qt
ðt; xÞ ¼ � �h2

2m
Dcðt; xÞ þ VðxÞcðt; xÞ;

cð0; xÞ ¼ jðxÞ:

8<
:ð1:1Þ

Here �h is the Planck constant (divided by 2p) and m the mass of the particle. The
potential V a ClðRn;RÞ is assumed quadratic at infinity; namely, there is a con-
stant C > 0 such that jVðxÞjaCjxj2 for jxj ! l. In this case it is well known
that the operator H in L2ðRnÞ defined by the maximal action of � �h2

2mDþ VðxÞ
is self-adjoint. Hence the Cauchy problem (1.1) considered in L2ðRnÞ admits
the unique global solution cðt; xÞ ¼ U�hðtÞjðxÞ, Et a R, Ej a L2ðRnÞ. Here t 7!
U�hðtÞ :¼ e�iHt=�h : L2 ! L2, t a R is the unitary group generated by the self-
adjoint operator H and is known as the propagator of the Schrödinger equation
(1.1).

The construction of a parametrix for the Schrödinger propagator under the
form of a semiclassical Fourier integral operator (FIO) with phase given by the



solution of the corresponding classical Hamilton-Jacobi equation can be consid-
ered the main motivating problem of semiclassical microlocal analysis (see e.g.
[Sj], [Ro]). This construction amounts indeed to the mathematical justification of
the well known time-dependent WKB approximation which is a standard method
in quantum mechanics.

In the present conditions a parametrix of the propagator under the form of
a semiclassical Fourier integral operator (WKB representation), with real phase
given by the solution of the Hamilton-Jacobi equation generated by the symbol
of the Schrödinger operator, has been constructed long ago by Chazarain [Ch]
(for related results by the same technique see also [Fu], [Ki]; for recent related
work see [MY], [Ya1], [Ya2]). The L2 continuity of the FIO follows by the
general result of Asada and Fujiwara [AF] on continuity of FIO with oscillatory
kernels. However the solutions of the Hamilton-Jacobi equations develop caus-
tics after a finite time, and this occurrence makes the construction only local
with respect to time itself; the solution at an arbitrary time T > 0 requires multi-
ple compositions of the local representations.

The occurrence of caustics is unavoidable; therefore the construction of
a global (in time) parametrix for the propagator without the introduction of
multiple convolutions requires more general techniques. A parametrix has been
constructed through the method of complex-valued phase functions (as in [KS],
[LS]), with related complex transport coe‰cients. A particularly convenient
choice of the complex phase function (the Herman-Kluk representation) has been
isolated in the chemical physics literature long ago ([H-K]). Its validity has
been recently proved in [SwR] and [Ro2]. The complex phase function methods
not only generate a parametrix for all times, but also make possible to extend the
construction to potentials more singular at infinity. This case is impossible to deal
within the standard WKB approximations in which the phase function solves the
classical Hamilton-Jacobi equation, because the caustics appear as soon as t > 0.
On the other hand, the standard WKB approximation has a direct relation with
the underlying classical flow which is not shared by the above approaches.

In a forthcoming paper [G-Z] we study the problem through the so-called
geometric approach to the Hamilton-Jacobi equation (see e.g. [CZ], [Sik86]), in
which a global generating function for the Lagrangian submanifold defined by
the classical Hamiltonian flow is constructed. The main results, announced here,
are the following ones.

In Theorem 1.1 a parametrix is obtained for the propagator UðtÞ :¼ eiHt=�h

valid for t a ½0;T �, 0 < T < l, under the form of a family of semiclassical
global Fourier Integral Operators (FIO), which extend to continuous operators
in L2ðRnÞ. The corresponding phase function is real and generates the graph of
the flow of the Hamiltonian H ¼ p2

2m þ VðxÞ. The proof of the L2 continuity
requires an argument di¤erent from the standard one of [AF]. This construc-
tion not only yields globality in time, but also helps to obtain a unified view of
Fujiwara’s as well as Chazarain’s approaches on one side, and of the Laptev-
Sigal one on the other side.

In Theorem 1.2 we prove that a WKB construction is still valid, necessarily
multivalued because of the caustics.
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2. Statement of the results

Adopting standard notations and terminology (see e.g. [We]), we denote by
o ¼ dpbdx ¼

Pn
i¼1 dpibdxi the 2-form on T �Rn that defines its natural sym-

plectic structure. As usual, a di¤eomorphism C : T �Rn ! T �Rn is a canonical
transformation if the pull back of the symplectic form is preserved, C�o ¼ o.

We say that LHT �Rn is a Lagrangian submanifold if ojL ¼ 0 and dimL ¼
n ¼ 1

2 dimT �Rn. In a natural way, a symplectic structure o on T �Rn � T �Rn G
T �ðRn � RnÞ is the twofold pull–back of the standard symplectic 2-form on
T �Rn defined as o :¼ pr�2o� pr�1o ¼ dp2bdx2 � dp1bdx1. Similarly, LH
T �Rn � T �Rn is called a Lagrangian submanifold of T �Rn � T �Rn if ojL ¼ 0
and dimðLÞ ¼ 2n.

A Hamiltonian is a C2-function H : T �Rn ! R and its flow is the one-
parameter group of canonical transformations f t

H : U JT �Rn ! T �Rn solving
Hamilton’s equations

_gg ¼ J‘HðgÞ

(J the unit symplectic matrix) with initial conditions gð0Þ ¼ ðx0; p0Þ a U .
The Hamilton-Helmholtz functional:

A½ðgx; gpÞ� :¼
Z t

0

½gpðsÞ _ggxðsÞ �HðgxðsÞ; gpðsÞÞ� dsð2:1Þ

is well defined and continuous on the path space H 1ð½0; t�;T �RnÞ. The action
functional:

A½gx� :¼
Z t

0

LðgxðsÞ; _ggxðsÞÞ dsð2:2Þ

is defined on H 1ð½0; t�;RnÞ.
Here of course H ¼ p2

2m þ VðxÞ; hence the Legendre transform guarantees
the corrispondence of the stationary curves of these two functionals. Obvi-
ously the self-adjoint operator H in L2ðRnÞ defined by the maximal action of
� �h2

2mDþ VðxÞ is the quantization of H in the Schrödinger representation.

Definition 2.1. A global generating function for a Lagrangian submanifold
LHT �Rn is a C2 function S : Rn � Rk ! R such that

• L ¼ fðx; pÞ a T �Rn j p ¼ ‘xSðx; yÞ; 0 ¼ ‘ySðx; yÞg,
• rankð‘2

xyS ‘2
yySÞjL ¼ max:

Similarly, a global generating function for a Lagrangian submanifold LH
T �Rn � T �Rn is a C2 map S : Rn � Rn � Rk ! R such that

• L¼ fðx; p; y; hÞ a T �Rn �T �Rn j p ¼ ‘xSðx; h; yÞ; y ¼ ‘hSðx; h; yÞ; 0¼ ‘ySg,
• rankð‘2

xyS ‘2
hyS ‘2

yySÞjL ¼ max:
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Remark 2.2. The set:

SS :¼ fðx; h; yÞ a Rn � Rn � Rk j 0 ¼ ‘ySðx; h; yÞgð2:3Þ

is also a submanifold of R2nþk di¤eomorphic to L.

We focus our attention on the graphs of a Hamiltonian flow f t
H : T �Rn !

T �Rn, which correspond to a family of Lagrangian submanifolds in T �Rn �
T �Rn:

Lt :¼ fðy; h; x; pÞ a T �Rn � T �Rn j ðx; pÞ ¼ f t
Hðy; hÞg

which is in turn generated by the family of global generating functions:

Lt ¼ fðy; h; x; pÞ a T �Rn � T �Rn j p ¼ ‘xS; y ¼ ‘hS; 0 ¼ ‘ySðt; x; h; yÞg

explicitly constructed for arbitrarily large times in [G-Z], §3.
As is known, the technical tool of the generating function for Lagrangian

manifolds has been developed in the context of symplectic geometry and varia-
tional analysis (see [AZ], [CZ], [Cha], [LSik], [Vit], [Sik86], [Sik]) to sidestep the
locality in time generated by the occurrence of caustics.

We can now state the main results of [G-Z]. We assume:

VðxÞ ¼ 3Lx; x4þ V0ðxÞ; L a GLðnÞ; detLA 0;ð2:4Þ
V0 a ClðRnÞ; jqa

xV0ðxÞjaC0:ð2:5Þ

Then:

Theorem 2.3. Let (2.4) and (2.5) be fulfilled. Let 0 < T < l and j a SðRnÞ.
Then the propagator U�hðtÞ admits the following parametrix:

cðt; xÞ ¼ ð2p�hÞ�n
Xl
j¼0

Z
Rn

Z
Rn

Z
Rk

eði=�hÞðSðt;x;h;yÞ�3y;h4Þð2:6Þ

� �h jbjðt; x; h; yÞ dy dhjðyÞ dyþOð�hlÞ

Here:

k > CT 4 sup
jajþjbjb2

sup
ðx;pÞ AR2n

jqa
xq

b
pHðx; pÞj2ð2:7Þ

for some (explicitly estimated) C > 0. Moreover the following assertions hold:

(1) S generates the graph Lt of the Hamiltonian flow f t
H : T �Rn ! T �Rn

Et a ½0;T �:

Lt :¼ fðy; h; x; pÞ a T �Rn � T �Rn j ðx; pÞ ¼ f t
Hðy; hÞgð2:8Þ

¼ fðy; h; x; pÞ a T �Rn � T �Rn j p ¼ ‘xS; y ¼ ‘hS; 0 ¼ ‘ySg
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(2) S a Clð½0;T � � R2n � Rk;RÞ and has the expression:

S ¼ 3x; h4� t

2m
h2 � t3Lx; x4þ 3QðtÞy; y4ð2:9Þ

þ 3vðt; x; hÞ; yþ f ðt; x; yÞ4þ 3nðt; x; h; yÞ; y4þ gðt; x; h; yÞ:

Here f ðt; x; yÞ : ½0;T � � Rn � Rk ! Rk, nðt; x; h; yÞ : ½0;T � � Rn � Rn � Rk

! Rk, gðt; x; h; yÞ : ½0;T � � Rn � Rn � Rk ! R and CabsðTÞ > 0 are such
that

sup
½0;T ��R2nþk

½jqa
xq

s
y f ðt; x; h; yÞj þ jqa

xq
b
h q

s
ygðt; x; h; yÞj þ jqa

xq
b
h q

s
y nðt; x; h; yÞj�

aCabsðTÞ:

The function ðx; hÞ 7! vðt; x; hÞ : Rn � Rn ! R is linear Et a R, and t 7!
QðtÞ : ½0;T � ! GLðkÞ with Qð0Þ ¼ 0.

(3) The transport coe‰cients bj : j ¼ 0; . . . are determined by the first order PDE:

qtb0 þ
1

m
‘xS‘xb0 þ

1

2m
DxSb0ðt; x; h; yÞ ¼ YN ;

b0ð0; x; h; yÞ ¼ rðyÞ:

8<
: j ¼ 0ð2:10Þ

qtbj þ
1

m
‘xS‘xbj þ

1

2m
DxSbj �

i

2m
Dxbj�1 ¼ 0;

bjð0; x; h; yÞ ¼ 0:

8<
: jb 1ð2:11Þ

Here rð�Þ a SðRk;RþÞ,
Z
Rk

rðyÞ dy ¼ 1 and YN a Cl
b ðR2nþk;RÞ fulfills:

PaYN a Cl
b ðR2nþk;RÞ; 0a aaN;

PYN :¼ divy YN

‘yS

j‘ySj2

 !
:

(4) E0a taT, 0aT < þl, the expansion (2.6) generates an L2 parametrix of
the propagator UðtÞ ¼ eiHt=�h: each term is a continuos FIO on SðRnÞ denoted
BjðtÞ, j ¼ 0; 1; . . . , which admits a continuous extension to L2ðRnÞ, and:

eiHt=�h ¼
Xl
j¼0

BjðtÞ þOð�hlÞ:ð2:12Þ

The notation Oð�hlÞ means:

jjRNðtÞjjL2!L2 aCNðTÞ�hNþ1; ENb 0; Et a ½0;T �;

RNðtÞ :¼ UðtÞ �
XN
j¼0

BjðtÞ:
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Moreover, the expansion (2.12) does not depend on r provided jjrjjL1 ¼ 1.
Namely, if r1A r2:

XN
j¼0

Bj½r1�ðtÞ �
XN
j¼0

Bj½r2�ðtÞ ¼ Oð�hNþ1Þ:

By applying the stationary phase theorem to the oscillatory integral (2.6), the
integration over the auxiliary parameters y can be eliminated and the WKB
approximation to the evolution operator is recovered, necessarily multivalued
on account of the caustics.

Theorem 2.4. Let VðxÞ ¼ 1
2 jxj

2 þ V0ðxÞ with

sup
x ARn

jj‘2V0ðxÞjj < 1;

let ĵj�hðhÞ be the �h-Fourier transform of the initial datum j. Then Et a ½0;T �,
tA ð2tþ 1Þ p2 , t a N, there exists a finite open partition Rn � Rn ¼

SN
l¼1 Dl such

that the solution of (1.1) can be represented as:

cðt; xÞ ¼
Z
Rn

ÛU�hðt; x; hÞĵj�hðhÞ dh; 0a taT ; tA ð2tþ 1Þ p
2

ÛU�hðt; x; hÞjDl
¼
Xl
a¼1

eði=�hÞSaðt;x;hÞjdet‘2
ySðt; x; h; y

�
a ðt; x; hÞÞj

�1=2

� eðip=4Þsaba;0ðt; x; hÞ þOð�hÞ
Sa :¼ Sðt; x; h; y�

a ðt; x; hÞÞ; ba;0 :¼ b0ðt; x; h; y�
a ðt; x; hÞÞ;

sa :¼ sgn‘2
ySðt; x; h; y

�
a ðt; x; hÞÞ

ð2:13Þ

where N is a t-dependent natural and:

(i) On each Dl the equation 0 ¼ ‘ySðt; x; h; yÞ has l smooth solutions y�
a ðt; x; hÞ,

1a aa l.
(ii) Any function Saðt; x; hÞ solves locally the Hamilton-Jacobi equation:

j‘xSaj2

2m
ðt; x; hÞ þ VðxÞ þ qtSaðt; x; hÞ ¼ 0

(iii) An explicit upper bound on the t-dependent natural N is given by formula
(2.64) of [G-Z].

Example. In the harmonic oscillator case VðxÞ ¼ 1
2 x

2 and the phase function is
exactly quadratic:

Sðt; x; h; yÞ ¼ 3x; h4� t

2
ðh2 þ x2Þ þ 3vðt; x; hÞ; y4þ 3QðtÞy; y4:
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It admits a unique (N ¼ 1) smooth global critical point y�ðt; x; hÞ on ðx; hÞ a R2n

for t a ½0;T �, tA ð2tþ 1Þ p2 , t a N. Hence the series (2.13) reduces to just one
term conciding with the well known Mehler formula:

cðt; xÞ ¼
Z
Rn

eði=ð�h cosðtÞÞÞð3x;h4�ðsinðtÞ=2Þðh2þx2ÞÞ 1

cosðtÞ ĵj�hðhÞ dh

Remarks.

1. The construction of the phase function is based upon the Amann-Conley-
Zehnder reduction technique of the action functional ([AZ], [CZ], [Car]).
Namely:

Sðt; x; h; yÞ ¼ 3x; h4þ
Z t

0

½gpðsÞ _ggxðsÞ �HðgxðsÞ; hþ gpðsÞÞ� dsjgðt;x;yÞð�Þð2:14Þ

where the curves Gðt; x; yÞ ¼ ðgxðt; x; yÞðsÞ; gpðt; x; yÞðsÞÞ are parametrized as
follows:

Gðt; x; yÞ :¼

gxðt; x; yÞðsÞ ¼ x�
Z t

s

fxðt; x; yÞðtÞ dt;

fx ¼ yxð�Þ þ f xðt; x; yÞð�Þ;

gpðt; x; yÞðsÞ ¼
Z s

0

fpðt; x; yÞðtÞ dt;

fp ¼ ypð�Þ þ f pðt; x; yÞð�Þ

8>>>>>>><
>>>>>>>:

ð2:15Þ

Here y a PML2ð½0;T �;R2nÞURk (PM is the finite dimensional Fourier or-
thogonal projector, k ¼ 2nð2M þ 1Þ) so that the parameters y can be identi-
fied with the finite Fourier components of the derivatives of the curves g.

(2.14) represents a generating function with finitely many parameters, and
it is global if k, the number of parameters, fulfills the lower bound (2.7). In
turn, the functions ð f x; f pÞ : ½0;T � � Rn � PML2 ! QML2 �QML2 are de-
termined by a fixed point functional equation, essentially the QM projection
of the Hamilton equations.

The parametrization (2.8) entails that S is a smooth solution of the
problem:

j‘xSj2

2m
ðt; x; h; yÞ þ VðxÞ þ qtSðt; x; h; yÞ ¼ 0;

Sð0; x; h; yÞ ¼ 3x; h4; ‘ySðt; x; h; yÞ ¼ 0:

8<
:ð2:16Þ

2. Any function Sðt; x; h; yÞ solving (2.16), i.e. the Hamilton-Jacobi equation
under the stationarity constraint ‘yS ¼ 0, is the central object to determine
the so called geometrical solutions of the Hamilton-Jacobi equation (see for
example the recent works [Car], [B-C]). Generating functions are clearly not
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unique and this is due to the presence of the y-auxiliary parameters. Unique-
ness holds instead for the geometry of set of critical points:

SS :¼ fðx; h; yÞ a R2nþk j‘ySðt; x; h; yÞ ¼ 0g

which does not depend on S because it is globally di¤eomorphic to Lt; a
detailed study of SS is done in Section 2. We recall (Section 3) that symbols
coinciding on some open set WISS generate semiclassical Fourier Integral
Operators di¤ering only by terms Oð�hlÞ. This will allow us to select symbols
in such a way to make essentially trivial the proof of the L2 continuity of the
associated operator.

3. The symbol b0 solving the geometrical version (2.10) of the transport equation
is

b0ðt; x; h; yÞ ¼ exp � 1

2m

Z t

0

DxSðt; gxðt; x; yÞðtÞ; h; yÞ dt
� �

rðyÞð2:17Þ

If T2 > T1, then kðT2Þ > kðT1Þ so that GðT1; x; yÞHGðT2; x; yÞ. In the limit

T ! l, y ! f a L2ðRþ;R2nÞ and we get the simplified functional (still well
defined):

b0ðt; x; fÞ ¼ exp
1

2m

Z t

0

DxV
�
x�

Z t

t

fxðlÞ dl
�
dt

� �
rðfÞð2:18Þ

The functional (2.18) is closely related to the zero-th order symbol of the
Laptev-Sigal construction [LS]:

v0ðt; y; hÞ ¼ exp
1

2m

Z t

0

DxVðxtðy; hÞÞ dt
� �

:

Namely, the functional is the same, but this is evaluated on the classical curves
(with initial conditions x0ðy; hÞ ¼ y, p0ðy; hÞ ¼ h) instead of all the free curves
used in (2.18) with regularity H 1 and boundary condition gxðt; x; fÞðtÞ ¼ x.

4. For potentials in the class (2.4) and 0a taT small enough no caustics de-
velop, and there is a unique smooth solution y�ðt; x; hÞ for ðx; hÞ a R2n. The
stationary phase theorem yields the 0-th order approximation to the integral
(2.6):

ÛU
ð0Þ
�h ðt; x; hÞ ¼ eði=�hÞSðt;x;h;y

�Þjdet‘2
ySðt; x; h; y

�Þj�ð1=2Þð2:19Þ
� eðip=4Þsb0ðt; x; h; y�Þ þOð�hÞ

which coincide with the WKB semiclassical approximation. This fact suggests
a relationship, at any order in �h, between the present construction and those of
Chazarain [Ch] and Fujiwara [Fu]. This is the contents of Theorem 4.1.

5. The first three assertions of Theorem 1.2 essentially represent the counterpart
(in the h variables) of a result of Fujiwara [Fu], valid under the additional
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assumption that the number of classical curves connecting boundary data
is finite.

As already mentioned, the phase of the FIO related to the Hamiltonian flow f t
H,

which belong to the general setting of Hörmander [Ho], is represented by the gen-
erating functions constructed by the above method. The relevant analytical prop-
erties of the FIO such as asymptotic behaviour of the kernel and L2-continuity
depend on the topology of their critical points. Therefore we conclude this an-
nouncement by stating the result about the L2 continuity of the present FIO,
whose proof is done by an argument di¤erent from that of [AF].

First, we introduce the set of phase functions:

Definition 2.5. The set of phase functions Sðt; x; h; yÞ : ½0;T � � Rn � Rn �
Rk ! R is the set of smooth global generating functions of the graphs Lt H
T �Rn � T �Rn of the canonical maps f t

H : T �Rn ! T �Rn, with the inititial condi-
tion Sð0; x; h; yÞ ¼ 3x; h4. Each Lt admits the parametrization:

Lt :¼ fðy; h; x; pÞ a T �Rn � T �Rn j ðx; pÞ ¼ f t
Hðy; hÞg

¼ fðy; h; x; pÞ a T �Rn � T �Rn j p ¼ ‘xS; y ¼ ‘hS; 0 ¼ ‘ySðt; x; h; yÞg

The following property of the generating function S is proved in [G-Z], §3.

Proposition 2.6. Consider the set of critical points

SS :¼ fðx; h; yÞ a R2nþk j 0 ¼ ‘ySðt; x; h; yÞg:ð2:20Þ

Then:

(1) SS is a manifold globally di¤eomorphic to Lt;
(2) Define the following set

1S :¼ fðx; h; yÞ a R2nþk j jxj2 þ jhj2 > DðTÞ2; jyja ~KK2ðTÞlðx; hÞg:ð2:21Þ

Then for all t > 0 1S is free from critical points, i.e.:

1S HR2nþknSS

We introduce now the relevant class of symbols associated to S. For ðx; hÞ a
Rn � Rn set:

lðx; hÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jxj2 þ jhj2

q
Definition 2.7. The set of symbols consists of all b a Clð½0;T � � R2n � Rk;RÞ
such that

(i)

bð0; x; h; yÞ ¼ rðyÞ; rð�Þ a SðRk;RþÞ;
Z
Rk

rðyÞ dy ¼ 1:
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(ii) For all multi-indices a, b, s and t a �0;T � there are constants Ce
a;b;sðTÞ > 0

such that the following inequalities hold:

jbðt; x; h; yÞja CþðTÞelðx;hÞe�jyj2 ; ðx; h; yÞ B 1S

C�ðTÞl�nðx; hÞe�jyj2 ; ðx; h; yÞ a 1S

(
ð2:22Þ

Finally, we introduce the class of global FIO associated to the Hamiltonian
flow f t

H:

Definition 2.8. Fix a phase function S as in Definition 2.5, and a symbol b as
in Definition 2.7. Then the global �h-Fourier Integral Operator on SðRnÞ is defined
as:

BðtÞjðxÞ ¼ ð2p�hÞ�n

Z
Rn

Z
Rn

Z
Rk

eði=�hÞðSðt;x;h;yÞ�3y;h4Þbðt; x; h; yÞ dy dhjðyÞ dyð2:23Þ

In equivalent way, it can be rewritten in the form:

BðtÞjðxÞ ¼ ð2p�hÞ�n

Z
Rn

Z
Rk

eði=�hÞ
~SSðt;x;y;uÞ~bbðx; uÞ dujðyÞ dyð2:24Þ

where u :¼ ðh; yÞ, ~SSðt; x; y; uÞ :¼ Sðt; x; h; yÞ � 3y; h4 and ~bbðt; x; uÞ :¼ bðt; x; h; yÞ.
Indeed, if S generates the Lagrangian submanifold L, then ~SS does the same in new
variables:

L ¼ fðx; p; y; hÞ a T �Rn � T �Rn j p ¼ ‘x
~SS; h ¼ �‘y

~SS; 0 ¼ ‘u
~SSg

Then the resut is:

Theorem 2.9. Consider the FIO as in Definition 2.8:

BðtÞjðxÞ ¼ ð2p�hÞ�n

Z
Rn

Z
Rn

Z
Rk

eði=�hÞðSðt;x;h;yÞ�3y;h4Þbðt; x; h; yÞ dy dhjðyÞ dy

Then BðtÞ : SðRnÞ ! SðRnÞ is continuous and admits a continuous extension as
an operator in L2ðRnÞ.

Remark 2.10. It is verified in [G-Z] that the exponential upper bound outside
1S is fulfilled by the symbol b0 as well as by any other symbol bj, j ¼ 1; . . .
appearing in the expansion of Theorem 1.1. It is moreover verified that on the
domain 1S there are no critical points for the function S, and this leads to the
required vanishing asymptotic behaviour of the type l�nðx; hÞ in this region.
This disjoint partition of Rn � Rn � Rn is motivated by the proof [G-Z] that the
contribution of 1S to the FIO is of order Oð�hlÞ and L2-bounded. This setting
allows us a very simple proof of global L2 continuity.
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