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ABSTRACT. — We will consider the following obstacle problem

/QVMVT/((U—u)dx-{—/ﬂh(u)WuVTk(v—u)dx2 /Q(g(x,u)-i—f)Tk(v—u)dx,

with the condition that u > a.e in Q. Under suitable condition relating ¢, & and ¢, we show the
existence of a solution for all f e L'(Q).

The main feature is, assuming that g(x, s) is asymptotically linear as |s| — 400 and independently
of the values of
g(x, )

)

lim
s—+oo S

to obtain a solution for all 2 > 0 and f € L'(Q). In this sense we could say that the first order term
break down any resonant effect.

KEey worDs: Nonlinear obstacle problems, existence and nonexistence, regularization, resonance.
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1. INTRODUCTION

In this paper we deal with a nonlinear elliptic obstacle problem of the form

u>yaeinQ, forallve #(Y), wehave

(1.1) /Q VuV(o — u) dx + /Q h(w) [V (v — ) dx > /Q (90x.u) + /)0 —u) dx,

where Q = R is an open bounded domain, 1 < ¢ <2, y is a bounded function
such that € Wol’z(Q) and

H W) ={ve Wy?nL*(Q):v >y inQ}.
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We suppose that 1 € L'(Q), g is a Caratheodory function asymptotically linear,
that is, verifying

(1.2) lg(x,8)| < Ago(x)[s] + g1(x)
where g1 € L'(Q) and g, satisfies

gozoa

do GL1<Q),

(1.3) (Jo VeI dx)?

C go,q) > 07 where C 90,9) =

(o) (o) sewliiani)  Jo9oldldx

It is easy to check that if g, satisfies (1.3), then go € W~19(Q) n L1(Q), ¢’ = -L;.
We say that g is an admissible weight if (1.3) holds.
If = 0 and we consider the equation

(1.4) ~Au=g)+f, inQ ux0andue W, (Q),

where ¢ is a lipschitz function such that g(0) = 0 and verifying the condition

(L5) lim @:z+,

s—+oo § -

for A_ < A1 < Ay < Ay, A1 and A, are the first and second eigenvalue of the Lap-
lacian. The problem (1.4) was solved in the famous work by Ambrosetti-Prodi
[2]. The authors establish a sharp existence, nonexistence and multiplicity result
related to the value of the projection of the datum f e L*(Q) on the first positive
normalized eigenfunction of the Laplacian,

/ S () dx = 1.
Q

More precisely they prove that there exists a threshold 7 such that, if # > 7 there is
no solution, if r = 7 there exist a solution and if 7 < 7 there exist two solutions.

One of the goals of this paper is to prove that under some hypotheses on ¢,
for all f e L'(Q), g satisfying (1.2) (1.3) and & with some structural conditions,
there exists a solution to the variational inequality (1.1). In particular in the
Ambrosetti-Prodi context we prove that the gradient term give a solution without
any condition on Ay or the projection of f on ¢,.

As a precedent we have the case of an equation with gradient term. It was
proved in [1], for the case g(x,u) = Ago(x)u, under a suitable condition on ¢ and
go, h(u) = 1, that the absorption term |Vu|? is sufficient to break down any reso-
nant effect of the linear zero order term and then the existence of a solution is
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obtained for all 2 > 0 and f e L'(Q). In this sense this paper could be under-
stood, in particular, as the extension of the result in [1] to variational inequalities
with ¢ verifying (1.2) (1.3) and 4 verifying (3.2) below.

Unilateral problems with gradient term has been largely studied in the litera-
ture, we refer, for instance, to [4], [8], [14] and the references therein. In [4] it is
studied the existence of unbounded solutions for an obstacle problem with natu-
ral growth in the gradient.

To prove the existence of solutions for unilateral problems with L' datum, it is
necessary to consider entropy solution in the sense that # > iy and

/VuV(Tk(v—u))de /f(Tk(v—u))dx
Q Q

for all v € A (yr). See for instance [7].

We organize the contents as follows.

In Section 2 we consider a simple model where >0, />0, h=1 and
g(x,8) = Ago(x)u, with go > 0. Then for all A > 0, we prove the existence of a
nonnegative solution. More precisely we show that if gy is a nonnegative admis-
sible weight in the sense of condition (1.3), then we have a solution for all A > 0
and all f e L'(Q).

To prove the main result we use a convenient approximate problems and uni-
form estimates in order to pass to the limit. In Subsection 2.1 a partial uniqueness
result is given for ¢ = 2 and = 0.

Section 3, is devoted to obstacle problem (1.1) without any sign condition on
f and . The term |Vu|? will be substituted by the more general A(u)|Vu|? and we
will consider the general nonlinearity g(x,u) satisfying (1.5). Under suitable con-
ditions on 4 we will prove the existence of entropy solution for all f e L' and
without any restriction on 4. In this sense the result can be seen as breaking of
resonance for the Ambrosetti-Prodi obstacle problem.

It is worthy to pomt out that in the problem Wlthout constraint, condition
(1.3) is optimal. It is sufficient to consider g(x) = |x| 2, the Hardy potential, for
which we have the classical inequality

2 2
/ |Vu|2dx > AN/ u_zdx7 for all u € % (Q) where Ay = (N_2> )
Q Q |X| 2

In this case condltlon (1.3) holds if and only if ¢ > 7. Then if g < N ~—7 and
A>Ay = (NTz) there is no solution to the obstacle problem (See Theorem 3.1
n [1] for details).

We will use the following notation. For a measurable function u we define the
truncation Ty (u) by

Ty (u) = max{—k, min{k,u}}.

We set Gi(u) = u — Ty (u).
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2. EXISTENCE OF NONNEGATIVE SOLUTIONS TO THE SIMPLE MODEL

In this section we deal with the simple case where >0, f >0, h=1 and
g(x,s) = Ago(x)u, with go > 0. Define the convex set

H ) ={ve WAL®(Q):v=yinQ}.
We find the following result.

THEOREM 2.1. Assume that g is an admissible weight in the sense of condition
(1.3), then for all 2 >0 and for all f € L'(Q), there exits a positive u >

such that |Vu|? e L'(Q), Ti(u) € Wol’z(Q) Sfor all k > 0 and for all v e A () we
have

(2.1) /QVMV(Tk(v—u))dx—i—/Q|Vu|q(Tk(v—u))dx

> /Q(}Vgu—l-f)(Tk(v—u))dx.

We will say that u is an entropy solution to the obstacle problem if (2.1) holds.

To prove Theorem 2.1 we start by proving the result in some particular cases
and then we proceed by approximation of g and f. Notice that since 1 < ¢ < 2,
then 5 < 7.

THEOREM 2.2. Assume that f,g € L"(Q) are positive functions with r >, then
for all A > 0, there exists u € A () a weak positive solution to problem

/QVMV(U —u)dx+ /Q |Vu|?(v — u) dx
(2.2)

> /(,lgu+f)(v—u)dx Sorall ve A (Y),
Q

ProoOF. We divide the proof in several steps.

Step 1:  Let k > 0 be fixed, then for all n € N, using classical results (see for in-
stance [13] and [12]), there exists w, € 2 (), a solution to the obstacle problem

q
(2.3) / Vw, V(v — wy) dx + / [Vl (v —wy)dx
Q

al +%|an|q
> / (GgTe(wn) + £)(0 — wy) dx
Q

for all v e A ().
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For k fixed we pass to the limit in n. Let v = T,,(w,), since € L*(Q), then
choosing m very large we conclude that v is an admissible test function in (2.3).
Since v — w, = —G,,(wy), it follows that

VGm(Wn)|q
VG, (w, 2dx + / |—Gm w,) < / 29Ti(w,) + )Gn(wy,) dx.
JL VGt s+ [ TR s Gatnn) < | GaTiton) + /)G

Thus
/|VGm(w,,)|2dx§)vk2|g||l—|—/me(w,,)dx.
Q Q

Using Poincaré inequality we get that / VG, (w,)|* dx < C for all m.
Q

Notice that choosing m > k it follows that

(2.4) /Q VG (wy)| dx < /Q G (wy) dx,

and then by using the classical Stampacchia estimates, see [15], we obtain that
Wull;~ < C where C is independent of n.
We set now v =, then

[Vw,|?

/QVW,,V(wn — ) dx + /Ql“l‘%|VWn|q (W, — ) dx
< [ GaTutm) + £)n, = ) .
Since w, >, we get
/Q [Vw,|* dx < /Q Vw, Vi dx + /Q (AgTi(wy) + f)(w, — ) dx.
Thus using Holder inequality and the previous estimate we obtain that
/Q IVw,|*dx < C(f,g,Q,k) uniformly in n,

therefore, up to a subsequence, w, — u; weakly in WOI’Z(Q). By weak-
*convergence in L*(Q) we also have that uy € W,> A L*(Q) and u; > . Next
we investigate the inequality satisfied by uy. To do that we prove the following
claim.

CONVERGENCE CLAIM. w, — u strongly in Wol’z(Q).
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PROOF OF THE CONVERGENCE CLAIM. It is clear that for all v € (),
(AgTi(wn) + £)w, —v) — (AgTi(we) + f)(ug — v)  strongly in L'(Q).

Letv=w, — (w, —u;)", thenv e #(Y) and v — w, = —(w, — ux)", so we have

/VW V(w —u,)+dx+/M(w — )t dx
Q " " k Ql+%|Vw,,|q "

< /(lng(wn) + ) (wy, — uy) dx.
Q

It is clear that / (AgTr(wy) + f)(wy — ux) dx — 0 as n — oo. Hence we conclude
that Q

+ 2d |an|[1 +d
QlV(W’n —l/lk) | X + QW(WH —Uk) X

< —/QVukV(wn — )" dx 4+ o(1) = o(1).

Thus / IV(wy — ux) T|* dx = o(1) and then (w, — u;) " — 0 strongly in WOI’E(Q).
Q

To complete the proof we follow closely the argument used in [6]. Consider
¢(s) = sel/H5" which satisfies ¢'(s) — [¢(s)| = 1.

Letv=w, + ¢((w, —ug)” ), then v e # () and v — w,, = (W, —ug) ). It is
clear that

0 if w, > u,
V(v—w,,)—{ it w Uy

¢ (wp — ug) ) (Vg — Vwy,)  if w, < ug.

Using v as a test function in (2.3) we obtain that
(2.5) / Vwad' (wn — ) )V (wy — ug) ™ dx + / H,(Vwy)d(wy — uy) ™ dx
Q Q

< }v/Qg(x) Tiwnd((Wy — ug) ™) dx + /Qf(x)¢((wn —uy)")dx.

q
where H,(s) = —2 . Therefore
8 14l

(2.6) / ) @' (W — ) ") VW, V(wy, — uy) dx — /QH,,(VW,,)|¢(W,, —ug) | dx

<A 9(xX) Trewnd(ux — wy,) dx + / S (X)p(ux — wy) dx.

Wy <ug Wy < Uy
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Since w, — uy weakly in WOI’Z(Q), a direct computation shows that

/ Vw,d' (Wy — we) )V(w, — ug) ™ dx
Q

= [ V(0w = ) ) (o~ ) ) e+ (1)
Q
As g < 2, Ve > 0 there exists a non negative constant C, such that
(2.7) s1<es +C,, s=0.

Hence the second term in the left-hand side can be estimated in the following
way,

/QHH(an)(/ﬁ((wn —u) ) dx
<e /Q VP10 — ) )| dx + Cle) /Q (0 — ) )] dx
= /Q V(00— 1) ) 21w — ) ) dx — /Q Va0 — 1) ")) dx

+ 28/QVanuk|¢((Wn - uk)_>| dx + C(‘C") /Q |¢((Wﬂ - le)_)| dx.

Since w, — u; weakly in WOI’Z(Q) and [¢((w, — ux)” )| — 0 almost everywhere
and in L*(Q), it follows that,

O [ IO — ) ) v — 0 a5 n — oz,
Q
(i1) / Vw,Vur¢((wy — ux) ) dx — 0 as n — oo.
Q
Therefore, passing to the limit as n tends to oo, we have

/ H,(Vw,)p(wn —ux) ) dx < s/ IV, — Va2 (W — wi) ") dx + o(1).
Q Q

Moreover, it is clear that the right-hand side in (2) goes to zero as n — co. Since
¢'(s) — |¢(s)| > 1, choosing ¢ < 1 we conclude that

3 [ V(0 =) )
<

< /Q(¢’((wn —u)”) = el ((wn = ) IDIV(Ovn — i) 7)|* dx

<o(1),
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whence w, — u; in WOI‘Z(Q) and the claim is proved. Moreover, from (2.7) it
follows that

H,(Vw,) < ¢ |an|2 + .

By the claim, we have in particular the almost everywhere convergence of the
gradients and therefore we conclude that

H,(Vw,) — |Vig | in LY(Q).

Hence we find that u; € # (i) solves
(2.8) / ViV (o — ) dx + / Vaae| (6 — ug) dx
Q Q

> /(ing(uk) + ) (v —u) dx
o

for all v e A ().

Step 2:  We claim the existence of a universal M > 0 that does not depend on k
such that [|uc||;-q) < M. To prove the claim we use the fact that f, gy € L"(Q)
where r > % Let v = T, (ux), using v as a test function in (2.8) it follows that

/|VGm(uk)|2dx+/ VG (uic) |4 G (1) Sl/goGrzn(uk)dx—i-/me(uk)dx
Q Q Q Q

Notice that, using Poincaré inequality we get

[ 96 0)16Golt) = 75 [ VGl = € [ 006Gl
q Q
and

[ G v [ 16, dx
Q Q

<o [ w6y )+ o) |

uz=>m

. 1/2°
godx + C(/ G (uk)dx> .
Q

Therefore we conclude that

/Q VG ()| dx + ¢ /Q VG (102) | Go (1) < /

u=m

. 1/2%
go dx + C(/ G2 (uy) dx)
Q

where C > 0 is a positive constant that depends only on the data and is indepen-
dent of m and k.
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Recall that f,gg € L" with r > N /2, then using Sobolev inequality,

o[ G2 wa)™ ([ G ax)”

/ * 1/2* *
< C(|uk >m|'" + C/ G (uk)dx) g > m|' V2
o

From Young’s inequality there results that

c( /Q G, (ue) dx)z/ 2*+( /Q Gﬁ,}ﬂ/q)q*(uk)dx)q/ "

1-1/r—1/2%

< C(lue = m|"" + Clug = m|* ) < Cluye = ml”,

where y = min{2(1 — 1/r — 1/2%),1/r'}. By a direct computation we get easily
that 2*y/2 > 1.
We set ff(m) = |ux = m]|, then for m; < m, we have

ﬁl/2*<m2)(m2—ml) < (/ |uk_m1|2* dx)l/z*

U =nnp

RN Ve
< (/ g — my|* dx)
U =mj
< B2 (my).

Thus

2%y/2
Blmz) < ﬁ—(mg

(ma — my)
Since 2*y/2 > 1, using the Stampacchia classical result, (see [15]), there exists a

universal constant /7, > 0 such that f(m) = 0 if m > m. Thus u; < m, and then
choosing k > m, we obtain that u = uy solves

ue A (Y) forallve A (), wehave

(2.9) / VuV (v — u) dx + / |Vu|?(v — u) dx > /(/lgou + /)0 — up) dx.
Q Q Q

Hence we conclude the proof. O

In the following result, we still consider a weight gy with the same summability
condition as in Theorem 2.2, but now we assume f € L'(Q).
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THEOREM 2.3. Assume that f, go are positive functions, f € L'(Q) and
go € L"(Q) with r > %, then for all >0 there exists u € Wol’q(Q) such that
u > and for all v e A () we have

/VuV(Tk(vu))der/ [Vul!(Ti(v —u)) dx > /(ﬂbg0u+f)(Tk(vu))dx.
Q Q Q

PrROOF. Consider a sequence f, € L*(Q) such that £, T f in L'(Q). By Theo-
rem 2.2, there exists a sequence of positive bounded functions {u,}, solutions to
problems,

u, € A (), forallve # (), wehave
(2.10) / Vu, V(v — uy) dx + / |V, ? (v — uy) dx > /(igoun + ) (v — uy) dx.
Q o Q

Consider the function

0 ifs<k
(2.11) Vi(s) =qs—k ifk<s<k+1
1 if s >k+1.

Define v = u, — Wi (u,), then v > . Using v as a test function in (2.10) it follows

that,
/ |Vun|2dx+/ |Vt | " () dx
k<u, <k+1 Q

SA"/Qg(x)un‘l‘k(un)dx—k/Qf,,(x)‘l’k(un)dx.

Notice that,
/ |V, | "Wy (uy) dx = / VO (u,)|? dx,
Q Q
where O(s) = / ‘P,i/ 1(s) ds. Using the hypothesis (1.3) on g we obtain,
0

/Q|V®(un)|"dx > C(go,q)</gg®(un)dx)q.

Therefore, using the fact that s, (s) < O(s) + C, it follows that,

q
[ vl oo [ w0 )
k <uy <k+1 Q

si/ggoG)(u,,)der C)»/ng(x) dx+/9fn(x) dx.
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Thus using Young’s inequality there results

q
/ \Vaun|* dx + C(go, q) </ g0®(u,,)dx> <C,
k<u, <k+1 Q

and then
/ |V, | ™ () dx < C, /1/ go(X)u, Vi (uy) dx < C,
Q Q

where C is a positive constant depending only on the data.
We set now v = u,, — Ty (u, — ). It is clear that v >, using v as a test func-
tion in (2.10) we get

/ Vu, VT (u, — ) dx + / |V, | Ti (u, — ) dx
Q Q
< /l/ggounTk(un - lp) dx + /Qka(un - l//> dx.

Using the fact that v, > and that ﬂ,/ goun Ty (uy, — ) dx + / STi(u, — ) dx
< C for all n, it follows that Q Q

/ Vu,V(u, — ) dx < C.
[un—p| <k

Then using Holder’s and Young’s inequalities we get

/ \Vu,|* dx < C.
‘u,,—l//lﬁk

Let & > 0, then

/ Vi, | dx < / \Vu,|* dx < C.
‘M”‘Sk ‘un_l//‘sk"’_Hl//”L’/v

Hence {T}(u,)} is bounded in W1 2(Q) and {u,} is bounded in Wl 7(Q). Thus
we get the ex1stence of u such that u, — u weakly in W Q) and Tru, — Tru
weakly n W (Q) It is clear by the assumption on g that golt, — gou strongly
in L1(Q).

Define @1 (s) = T1(Gx-1(s)), then @ (u,)|Vern|? = |Vuu| Ty, 5 10

Let v = u, — ®k_;(uy), then v > . Using v as a test function in (2.10) there
results

/ VD1 ()| e + / Oy 1 (1) Vit e < / (o)t + () D1 (14) dix.
Q Q Q
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Since {u,} is uniformly bounded in L?(Q), Vp < ¢, it follows that

{x € Q, such that k — 1 < u,(x) < k}| — 0,
{x € Q, such that u,(x) > k}| -0 ask — oo,

uniformly in n. Thus we conclude

(2.12) lim |Vu,|?dx =0, uniformly in n.
k—o0 {uy >k}

We claim that Vu, — Vu, a.e. in Q.

To prove the claim we follow the same arguments as in the proof of Theorem
2.2.

Let v=u,— (Ti(un) = Tic(w))", then ve # () and v—u,=—(Ti(un) — Ti(w))",
hence there result

/ VitV (i) — Te()) ™ dx + / Vit (T (1) — Tie(w)) " dlx
Q Q
< [ Gaon + £)(Tilwn) = Ti)” d
Q
A direct computation shows that
/ Vu,V(Ty(u,) — Tk(u))+dx
Q
= / V(T () — Ti(u)) "> dx + / VG (1) V Ty (1) dx
Q Q
+ / VT3 (1) V(Ti () — T (1)) dx
Q
_ /Q V(T () — T () "> dx + o(1).

It is clear that /(/lgoun + ) (Ti(un) — Ti(u)) " dx — 0 as n — oo, therefore we
conclude that /€

/|V(Tk(un) — Te(u) |?dx — 0 asn— oo.
Q

Thus (T (u,) — Ti(u))™ — 0 strongly in Wol’z. Take now v = u, + ¢((Ty(u,) —
Ty (u))™), then v € A (). Using v as a test function in (2.10) we obtain that
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/Q V(00 — ) ")Vt V(Tiltt) — Ti)) ™ el
+ /Q IVa| “9((Tic(tr) — Te(w)”) dix
<7 / 90 ()t Tilttn) — T (w)) ") dx + / FuI(Teltn) — Tew)) ™) .
Thus
/ ¢'(Tie(un) — Tie(u)) ") Vi, V(uy — u) dx
T (un) < Ty (u)
- /Q IV26) (T () — Tic(w)) ™| dx

</ 9o(X)un((Tic (1) — Tic(ut)) ~ dx

Ty (tn) < T (u)

+ / H@H(Tl) = Ti) )

Since Tju, — Tru weakly in W()l"z(Q), then
/ 8 (Telt) = Te(u) " )VitnV (1t — 1) dx
Tic(un) < Ty (u)

=/Q|V((Tk(un) = Ti() )¢ (Te(un) = Tie(w)) ™) dx + o(1).

Since ¢ < 2, as in the computation in the proof of Theorem 2.2 it follows that
1 -2
3/, IV((Ti(un) = Tic(u)) )| dx

< /Q(qﬁ’((Tk(un) — Te(w)")

— el ((Teun) = Te() ) IV((Tlun) = Tie(u)) | dx
<o(1),

whence (T (u,) — Tx(u))”) — 0 in WOI’Z(Q) and then Ty (u,) — Ti(u) strongly in
W, ~. Hence the claim follows.

To finish the proof, we have to show that |Vu,|? — |Vu|? strongly in L'(Q).
Since the sequence of gradients converges a.e. in Q, we have just to prove the



42 B. ABDELLAOUI, S. M. BOUGUIMA AND I. PERAL

equi-integrability of the sequence {|Vu,|?} and then apply Vitali’s Theorem. Let
E = Q be a measurable set. Then,

/|Vun|qu£ /|VTku,,|qu+/ |V, | dx.
E E {uy>k}nE

Since ¢ < 2, then for all k > 0, Ty (u,) — Ty (u) strongly in Wol’q(Q). Hence the

integral / |VTi(u,)|? dx is uniformly small if |E| is small enough. On the other
E

hand, by (2.12) we obtain that

/ |Vu,| T dx < / |Vu,|!dx — 0 as k — oo uniformly in n.
{un=k}nE {u, >k}

The equi-integrability of |Vu,|? follows immediately, and the proof is complete.
O

PRrROOF OF THEOREM 2.1. Consider g,(x) = min{gy(x),n} € L*(Q). It is clear
that g, — go strongly in W14,

Using Theorem 2.3, we get the existence of a sequence of nonnegative func-
tions {u,} such that u, solves

u, >y forallve A (), we have

(2.13) /QVM”V(TI‘(U_u”))dx+/Q|V“n|q(Tk(U_un))dx
> [ g+ 1)(Tulo = w)) .
Q

By setting v = u, — Wi (u,), where Wy is defined in (2.11), and using the same
computations as in the proof of Theorem 2.3, it follows that

q
[ vl ars oo [ 00w )
k<u, <k+1 Q

g/l/ 9n® (up) dx + C;u/ go(x) dx+/fn(x) dx,
Q Q Q
where

. (Jo Vg|*dx)"/
C(gn,q) = inf Jo .
pewiinoy  Jodnldldx

It is clear that C(g,,q) T C(g0,¢q) > 0. Then

/ V| dx + (/ gn®(un)dX)q <C,
k<u,<k+1 Q
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and
/ |Vt | "Wy () dx < C, /1/ gn(X)u, ¥ (u,) dx < C,
Q Q

where C is a positive constant depending only on the data. As in the proof of
Theorem 2.3 we can prove that / |Vu,|?dx < C and then u, — u weakly in
Q
Wol’q(Q). Since g, — ¢ strongly in W~1¢, then / Gty dx — / gou dx strongly
Q

Q
in L'(Q). Now to complete the proof we follow closely the argument used in the
proof of Theorem 2.3. O

2.1. Partial uniqueness result. In this subsection we consider the case g = 2.
We will prove a uniqueness result for positive solutions. We will use the next
Comparison Principle that is a variation of the uniqueness result obtained in [1].
For the reader’s convenience we include a short proof.

LEMMA 2.4. Let f € L'(Q) is a non negative function and suppose that gy is an
admissible function in the sense of condition (1.3). Let uj,u; € WO1 2(Q) be func-
tions such that u; > 0 (resp. uy > 0) is a subsolution (resp. supesolution) to problem

—Au+ |Vul* = Jgo(X)u+ f(x) inQ,
(2.14) u>0 inQ,
u=0 ondQ,

then uy < up in Q.

PROOF. Fori=1,2wesety;,=1—e " then0 <v; <1in Q and v; (resp. vy) is
a subsolution (resp. supersolution) to problem

@i (Al + 1=/ ind
v=0 ondQ.

Define

H(x,v) = {lg(x)ﬂ —v)log(tL) + (1 -0)f(x), f0<v<l,
’ 0, ifo>1.

By a direct computation we find that M is a non-increasing function in v for

v > 0, then by similar arguments as in [1], we conclude that v; < vy, therefore the
result follows.
Then we can prove the following result about uniqueness.

THEOREM 2.5. Assume q =2, Yy =0 and that the hypotheses of Theorem 2.1
hold. Then problem (2.1) has a unique positive solution.
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PrROOF. The existence of a nonnegative solution is a consequence of the
Theorem 2.1.

Assume that u; and u, are two nonnegative solution to the obstacle problem
(2.1). We claim that u is strictly positive in Q (the same conclusion holds for u5).
To prove the claim we consider ¢ € ¢;°(Q2) a nonnegative function. Let v =
Ty(u) + ¢, it is clear that for & large we have v >y and v € L*(Q) N WOI’Z(Q).
Using v as a test function in (2.1), it follows that

/ Vuy V(T (Th(ur) — uy + ¢)) dx +/ \Vaur|*(Ti (T (1) — uy + ¢)) dx
Q Q

> /(’190”1 + NI (Th(ur) — ur + ¢)) dx.
Q

Since u; € Wol’2 (Q), then for fixed k, using the Dominated Convergence
Theorem and a duality argument we can pass to the limit in /, hence

(2.16) /QVmV(Tk(gb))dx—i—/Q]Vu1|2(Tk(¢))dx2 /Q(/lgoul + 1) (Tu($) dv.

Since ¢ € % (Q2), then choosing k large enough we conclude that

/ Vu1V¢dx+/ \Vuy|* ¢ dx > /(A“goul + f)pdx.
Q Q Q
Thus u; is a nonnegative supersolution to problem

(2.17) {—AW + VW = Jgo(x)w+ f inQ,

w>0inQ and we WOI’Z(Q).

From [1] we know that the above problem has a unique positive solution and that
if w; is a supersolution to problem (2.17), then w; > w. Since u; is a supersolu-
tion, then the claim follows.

We follow now closely the argument used in [3]. Define

v = Uy — 5¢, and Uy = Uy +5¢

It is clear that v, > 0. We show that for J small enough, depending on ¢, then
v; > 0. It is clear that v; > 0 in Q\Supp(¢). Since Supp(¢) =< Q, then by using
the strict positivity of u; there exists a positive constant ¢ such that u; > ¢ in
Supp(¢). Hence for x € Supp(¢4), we have

v1(x) =2 C =0l

Choosing 6 > W, we conclude that v;(x) > C/2 for all x € Supp(¢). Hence

v; >0 in Q. Notice that the same conclusion holds if we substitute v; by
vl = Ty(uy) — 3¢ where h is large enough.
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It is clear that we cannot use v; and v, directly as a test function in the corre-

sponding obstacle problem of u; and u,. Thus we use an approximation argu-
ment. Set

v{’ = Ty(uy) — 09, vé’ = Ty(uz) + 0¢.

As above, for k fixed and passing to the limit in /, it follows that

/ Vi V(Ti(04)) dx + / Vu [ (Te(69)) dx < / (gous + £)(Te(64)) dx
Q Q Q

and

/VU2V(Tk(5¢>)dX+/ |Vu2|2(Tk(5¢))dx2 /(lg0u2+f)(Tk(6¢))dx.
Q Q o

Letting k — co and using the fact that ¢ € € (Q), there results that

/QVuIVz;ﬁdx+/Q|Vul|2¢dxs /Q(igoul + [ dx

and
/ ViV + / Vios 2 dx > / (igots + f)p .
Q Q Q

Thus u; (resp. u;) is a nonnegative subsolution (resp. supersolution) to (2.17),
then by Lemma 2.4 we conclude that u; < u,. Following the same argument as
above we get easily that u; < u;. Hence u; = u, and then the uniqueness result
follows. O

3. THE GENERAL RESULT

In this section we will consider the general case, that is, / and  can change sign.
More precisely we will consider the following obstacle problem

u>yaeinQ, forallve # (), wehave
(3-1) {/QVuV(v—u) dx—f—/gh(u)Wu]q(v—u) dx > /Q(g(x,u)—i—f)(v—u) dx,

where y € Wol"z(Q) N L*(Q) and f e L'(Q). We will assume that & satisfies the
next sign condition,

(3.2) h(s) is an continous increasing function such that, A(s)s >0, Vs € R
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and
(33) l9(x,5)| < Ago(x)]s] + g1 (x)

where gy satisfies the condition (1.3) and g; € L'(Q).
We can formulate the general existence result as follows.

THEOREM 3.1. Assume that conditions (3.2) and (1.2) hold. Then for all f €
LY(Q), there exists a function u such that h(u)|Vul?! e L'Y(Q), Ty (u) € Wom(Q)
Sor all k > 0, and for all v e A () we have

(3.4) /QVuV(Tk(v —u))dx+ /Qh(u)|Vu|q(Tk(U —u))dx

> [ (gs.w) + N(TLo =) d.

We will say that u is an entropy solution to the obstacle problem (3.1).

As in section 2 we will prove the existence result for regular data and then we
will pass to the limit.
For n,m > 0, we define,

h(s)

g(x,s)
= d gm(x,s) =
1—|—%|h(s)\ and ¢, (x,s)

B =BT
() T+ Llg(x,9)]

Then we have

THEOREM 3.2. Assume that the above conditions (3.2) and (1.2) hold, then
for all f e L*(Q) and for all m fixed, there exits a u, € WOI’Z(Q) such that
h(x, tp) | V| € LY (Q) and for all v e A () we have

(3.5) /QVumV(v — Uy dx + /Qh(um)|Vum|q(v — Uy) dx

> [ (gnlosm) 1) (0 = ) .

PrOOE. Fixed m > 0, since f € L*(Q), using the classical results in [13] or [12],
there exists u, € # (), a solution to the obstacle problem

e

36 an - nd hn n) 3 . 11w g
(3.6) /Qu (v u)er/Q (u)1+%|Vun|q

(v—u,)dx

> /(/lgm(x, up) + ) (v — uy) dx
Q
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for all v € #° (). For fixed m, we want to pass to the limit in n. Let v = Ty(wy,),

since Y € L*(Q), then choosing k such that k > [|y|| ., we conclude that v is an
admissible test function. Notice that v — u, = —Gy(u,), hence

2 VG (1)
/Q|VGk(un)| dx+/th(un)WGk(un)

< /Q (G, 1) + 1) G (1) .

Since A, (u,) Gy (1) = 0, then

/|VGk(un)|2dxg /(m+|f|)|Gk(un)|dx.
Q Q

Since f € L*(Q), then by the classical Stampacchia result, see [15], the following
L*-estimate holds,

[tnll . < Clm, [, Q).
Take v =y as test function in (3.6), then

|V, |

1 +l|Vun\q<un W) dx

/Q Vit — ) dx + /Q )

< [ (gnlcm) + 1) = ) .

Since u,, >, we get

/ V| dx < / Vu, Vi dx + / G (X, 1) + f) (g — ) dix.
Q Q Q
Thus using Holder inequality and the previous estimate we obtain that
/ \Va,|> dx < C(f,mQ, k) uniformly in n.
Q

Therefore, up to a subsequence, u, — u,, weakly in W01,2(9> as n — oo. By weak-
*convergence in L”(Q) we also have that w,, € W,> A L”(Q) and u, > .
Since {u,} is bounded in L*(Q), then as in the first section, following closely
the argument used in [6], we get the strong convergence of u, in WOI‘Z(Q). Thus
Uy, € WOI’Z(Q) N L*(Q) and it solves the obstacle problem (3.5). Hence the result
follows. O
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Now we can prove Theorem 3.1.

ProoOF oF THEOREM 3.1. Let {f,} be a sequence of bounded functions such
that f,, — f strongly in L'(Q) and consider u,, the solution to the obstacle prob-
lem (3.5) obtained above and let k£ > 0, then using v = u,, — Wi (u,,), where Wy
is defined in (2.11) with ¥(s) = —¥(—s) for s < 0, as a test function in (3.5) it
follows that

/ \Vity,|* dx + / (1t |Vt | 7P (1)
fe < |up| <k+1 Q

siAm@MMﬂMMﬁmeﬁ+LﬁMWk

Using the properties of / it follows that, for k large,

B ()| Ve | " i (th) = C (k)| V| (th)| = CIVO ()] ?
where O(s) = / [W(s)|"/4 ds. Thus
0
/ Vit |* dx +/ VO (un)|? < i/ 90 () |t Wk ()| + C.
k <|up| <k+1 Q Q
Notice that |s| [« (s)| < ©(s) + C, then

/ |Vum|2dx+/ VO ()| gx/ G0(x)O () dx + C.
k <lup| <k+1 Q Q

Since g satisfies the condition (1.3), thus

/ |Vum|2dx+/ VOu)|¢ < C(k).
k < |up| <k+1 Q

Therefore

/Wm%mwmmsc7z/%ummwwwusc
Q Q

where C is a positive constant depending only on the data. As in the proof of

Theorem 2.3 we can prove that / |Vuy|?dx < C and then u, — u weakly in
Q
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WOl 1(Q). It is clear that / gouy, dx — / gou dx strongly in L'(Q), then using the
Q Q
Dominated Convergence Theorem we obtain that
Gm(X, ) — g(x,u) strongly in L(Q).

The rest of the proof follows exactly as in the proof of Theorem 2.3. O
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