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Abstract. — We will consider the following obstacle problemZ
W

‘u‘Tkðv� uÞ dxþ
Z
W

hðuÞj‘ujqTkðv� uÞ dxb
Z
W

ðgðx; uÞ þ f ÞTkðv� uÞ dx;

with the condition that ubc a.e in W: Under suitable condition relating g, h and q, we show the
existence of a solution for all f a L1ðWÞ.
The main feature is, assuming that gðx; sÞ is asymptotically linear as jsj !el and independently

of the values of

lim
s!el

gðx; sÞ
s

;

to obtain a solution for all l > 0 and f a L1ðWÞ. In this sense we could say that the first order term

break down any resonant e¤ect.
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1. Introduction

In this paper we deal with a nonlinear elliptic obstacle problem of the form

ubc a:e in W; for all v a KðcÞ; we haveZ
W

‘u‘ðv� uÞ dxþ
Z
W

hðuÞj‘ujqðv� uÞ dxb
Z
W

ðgðx; uÞ þ f Þðv� uÞ dx;

8<
:ð1:1Þ

where WHRN is an open bounded domain, 1 < qa 2, c is a bounded function
such that c a W 1;2

0 ðWÞ and

KðcÞ ¼ fv a W
1;2
0 BLlðWÞ : vbc in Wg:
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We suppose that f a L1ðWÞ, g is a Caratheodory function asymptotically linear,
that is, verifying

jgðx; sÞja lg0ðxÞjsj þ g1ðxÞð1:2Þ

where g1 a L1ðWÞ and g0 satisfies

g0 z 0;

g0 a L1ðWÞ;

Cðg0; qÞ > 0; where Cðg0; qÞ ¼ inf
f AW 1; q

0
ðWÞnf0g

ð
R
W
j‘fjq dxÞ1=qR
W g0jfj dx

:

8>>><
>>>:

ð1:3Þ

It is easy to check that if g0 satisfies (1.3), then g0 a W�1;q 0 ðWÞBL1ðWÞ, q 0 ¼ q

q�1 .
We say that g0 is an admissible weight if (1.3) holds.
If cC 0 and we consider the equation

�Du ¼ gðuÞ þ f ; in W; ub 0 and u a W
1;2
0 ðWÞ;ð1:4Þ

where g is a lipschitz function such that gð0Þ ¼ 0 and verifying the condition

lim
s!el

gðsÞ
s

¼ le;ð1:5Þ

for l� < l1 < lþ < l2, l1 and l2 are the first and second eigenvalue of the Lap-
lacian. The problem (1.4) was solved in the famous work by Ambrosetti-Prodi
[2]. The authors establish a sharp existence, nonexistence and multiplicity result
related to the value of the projection of the datum f a L2ðWÞ on the first positive
normalized eigenfunction of the Laplacian,

Z
W

f ðxÞf1ðxÞ dx ¼ t:

More precisely they prove that there exists a threshold t such that, if t > t there is
no solution, if t ¼ t there exist a solution and if t < t there exist two solutions.

One of the goals of this paper is to prove that under some hypotheses on q,
for all f a L1ðWÞ, g satisfying (1.2) (1.3) and h with some structural conditions,
there exists a solution to the variational inequality (1.1). In particular in the
Ambrosetti-Prodi context we prove that the gradient term give a solution without
any condition on le or the projection of f on f1.

As a precedent we have the case of an equation with gradient term. It was
proved in [1], for the case gðx; uÞ ¼ lg0ðxÞu, under a suitable condition on q and
g0, hðuÞC 1, that the absorption term j‘ujq is su‰cient to break down any reso-
nant e¤ect of the linear zero order term and then the existence of a solution is
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obtained for all l > 0 and f a L1ðWÞ. In this sense this paper could be under-
stood, in particular, as the extension of the result in [1] to variational inequalities
with g verifying (1.2) (1.3) and h verifying (3.2) below.

Unilateral problems with gradient term has been largely studied in the litera-
ture, we refer, for instance, to [4], [8], [14] and the references therein. In [4] it is
studied the existence of unbounded solutions for an obstacle problem with natu-
ral growth in the gradient.

To prove the existence of solutions for unilateral problems with L1 datum, it is
necessary to consider entropy solution in the sense that ubc and

Z
W

‘u‘ðTkðv� uÞÞ dxb
Z
W

f ðTkðv� uÞÞ dx

for all v a KðcÞ. See for instance [7].
We organize the contents as follows.
In Section 2 we consider a simple model where cb 0, f b 0, hC 1 and

gðx; sÞC lg0ðxÞu, with g0 b 0. Then for all l > 0, we prove the existence of a
nonnegative solution. More precisely we show that if g0 is a nonnegative admis-
sible weight in the sense of condition (1.3), then we have a solution for all l > 0
and all f a L1ðWÞ.

To prove the main result we use a convenient approximate problems and uni-
form estimates in order to pass to the limit. In Subsection 2.1 a partial uniqueness
result is given for q ¼ 2 and cC 0.

Section 3, is devoted to obstacle problem (1.1) without any sign condition on
f and c. The term j‘ujq will be substituted by the more general hðuÞj‘ujq and we
will consider the general nonlinearity gðx; uÞ satisfying (1.5). Under suitable con-
ditions on h we will prove the existence of entropy solution for all f a L1 and
without any restriction on le. In this sense the result can be seen as breaking of
resonance for the Ambrosetti-Prodi obstacle problem.

It is worthy to point out that in the problem without constraint, condition
(1.3) is optimal. It is su‰cient to consider gðxÞ ¼ jxj�2, the Hardy potential, for
which we have the classical inequality

Z
W

j‘uj2 dxbLN

Z
W

u2

jxj2
dx; for all u a Cl

0 ðWÞ where LN ¼ N � 2

2

� �2
:

In this case condition (1.3) holds if and only if q > N
N�1 . Then if q < N

N�1 and

l > LN ¼
�
N�2
2

�2
, there is no solution to the obstacle problem. (See Theorem 3.1

in [1] for details).
We will use the following notation. For a measurable function u we define the

truncation TkðuÞ by

TkðuÞ ¼ maxf�k;minfk; ugg:

We set GkðuÞ ¼ u� TkðuÞ.
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2. Existence of nonnegative solutions to the simple model

In this section we deal with the simple case where cb 0, f b 0, hC 1 and
gðx; sÞC lg0ðxÞu, with g0 b 0. Define the convex set

KðcÞ ¼ fv a W
1;2
0 BLlðWÞ : vbc in Wg:

We find the following result.

Theorem 2.1. Assume that g0 is an admissible weight in the sense of condition
(1.3), then for all l > 0 and for all f a L1ðWÞ, there exits a positive ubc

such that j‘ujq a L1ðWÞ, TkðuÞ a W 1;2
0 ðWÞ for all k > 0 and for all v a KðcÞ we

have Z
W

‘u‘ðTkðv� uÞÞ dxþ
Z
W

j‘ujqðTkðv� uÞÞ dxð2:1Þ

b

Z
W

ðlguþ f ÞðTkðv� uÞÞ dx:

We will say that u is an entropy solution to the obstacle problem if (2.1) holds.

To prove Theorem 2.1 we start by proving the result in some particular cases
and then we proceed by approximation of g and f . Notice that since 1 < qa 2,
then N

2 a N
q
.

Theorem 2.2. Assume that f ; g a LrðWÞ are positive functions with r > N
q
, then

for all lb 0, there exists u a KðcÞ a weak positive solution to problem

Z
W

‘u‘ðv� uÞ dxþ
Z
W

j‘ujqðv� uÞ dx

b

Z
W

ðlguþ f Þðv� uÞ dx for all v a KðcÞ;

8>>><
>>>:

ð2:2Þ

Proof. We divide the proof in several steps.

Step 1: Let k > 0 be fixed, then for all n a N, using classical results (see for in-
stance [13] and [12]), there exists wn a KðcÞ, a solution to the obstacle problem

Z
W

‘wn‘ðv� wnÞ dxþ
Z
W

j‘wnjq

1þ 1
n
j‘wnjq

ðv� wnÞ dxð2:3Þ

b

Z
W

ðlgTkðwnÞ þ f Þðv� wnÞ dx

for all v a KðcÞ.
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For k fixed we pass to the limit in n. Let v ¼ TmðwnÞ, since c a LlðWÞ, then
choosing m very large we conclude that v is an admissible test function in (2.3).
Since v� wn ¼ �GmðwnÞ, it follows that
Z
W

j‘GmðwnÞj2 dxþ
Z
W

j‘GmðwnÞjq

1þ 1
n
jGmðwnÞjq

GmðwnÞa
Z
W

ðlgTkðwnÞ þ f ÞGmðwnÞ dx:

Thus Z
W

j‘GmðwnÞj2 dxa lk2kgk1 þ
Z
W

fGmðwnÞ dx:

Using Poincaré inequality we get that

Z
W

j‘GmðwnÞj2 dxaC for all m.

Notice that choosing mg k it follows that

Z
W

j‘GmðwnÞj2 dxa
Z
W

fGmðwnÞ dx;ð2:4Þ

and then by using the classical Stampacchia estimates, see [15], we obtain that
kwnkLl aC where C is independent of n.

We set now v ¼ c, then

Z
W

‘wn‘ðwn � cÞ dxþ
Z
W

j‘wnjq

1þ 1
n
j‘wnjq

ðwn � cÞ dx

a

Z
W

ðlgTkðwnÞ þ f Þðwn � cÞ dx:

Since wn bc, we get

Z
W

j‘wnj2 dxa
Z
W

‘wn‘c dxþ
Z
W

ðlgTkðwnÞ þ f Þðwn � cÞ dx:

Thus using Hölder inequality and the previous estimate we obtain that

Z
W

j‘wnj2 dxaCð f ; g;W; kÞ uniformly in n;

therefore, up to a subsequence, wn * uk weakly in W
1;2
0 ðWÞ. By weak-

*convergence in LlðWÞ we also have that uk a W
1;2
0 BLlðWÞ and uk bc. Next

we investigate the inequality satisfied by uk. To do that we prove the following
claim.

Convergence claim. wn ! uk strongly in W
1;2
0 ðWÞ.
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Proof of the convergence claim. It is clear that for all v a KðcÞ,

ðlgTkðwnÞ þ f Þðwn � vÞ ! ðlgTkðukÞ þ f Þðuk � vÞ strongly in L1ðWÞ:

Let v ¼ wn � ðwn � ukÞþ, then v a KðcÞ and v� wn ¼ �ðwn � ukÞþ, so we haveZ
W

‘wn‘ðwn � ukÞþ dxþ
Z
W

j‘wnjq

1þ 1
n
j‘wnjq

ðwn � ukÞþ dx

a

Z
W

ðlgTkðwnÞ þ f Þðwn � ukÞ dx:

It is clear that

Z
W

ðlgTkðwnÞ þ f Þðwn � ukÞ dx ! 0 as n ! l. Hence we conclude
that Z

W

j‘ðwn � ukÞþj2 dxþ
Z
W

j‘wnjq

1þ 1
n
j‘wnjq

ðwn � ukÞþ dx

a�
Z
W

‘uk‘ðwn � ukÞþ dxþ oð1Þ ¼ oð1Þ:

Thus

Z
W

j‘ðwn � ukÞþj2 dx ¼ oð1Þ and then ðwn � ukÞþ ! 0 strongly in W 1;2
0 ðWÞ.

To complete the proof we follow closely the argument used in [6]. Consider

fðsÞ ¼ seð1=4Þs
2
, which satisfies f 0ðsÞ � jfðsÞjb 1

2 .
Let v ¼ wn þ fððwn � ukÞ�Þ, then v a KðcÞ and v� wn ¼ fððwn � ukÞ�Þ. It is

clear that

‘ðv� wnÞ ¼
0 if wn b uk;

f 0ððwn � ukÞ�Þð‘uk � ‘wnÞ if wn a uk:

�

Using v as a test function in (2.3) we obtain thatZ
W

‘wnf
0ððwn � ukÞ�Þ‘ðwn � ukÞ� dxþ

Z
W

Hnð‘wnÞfðwn � ukÞ� dxð2:5Þ

a l

Z
W

gðxÞTkwnfððwn � ukÞ�Þ dxþ
Z
W

f ðxÞfððwn � ukÞ�Þ dx:

where HnðsÞ ¼ jsjq

1þ1
n
jsjq

. Therefore

Z
wnauk

f 0ððwn � ukÞ�Þ‘wn‘ðwn � ukÞ dx�
Z
W

Hnð‘wnÞjfðwn � ukÞ�j dxð2:6Þ

a l

Z
wnauk

gðxÞTkwnfðuk � wnÞ dxþ
Z
wnauk

f ðxÞfðuk � wnÞ dx:
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Since wn * uk weakly in W
1;2
0 ðWÞ, a direct computation shows thatZ

W

‘wnf
0ððwn � ukÞ�Þ‘ðwn � ukÞ� dx

¼
Z
W

j‘ððwn � ukÞ�Þj2f 0ððwn � ukÞ�Þ dxþ oð1Þ:

As qa 2, Ee > 0 there exists a non negative constant Ce such that

sq a es2 þ Ce; sb 0:ð2:7Þ

Hence the second term in the left-hand side can be estimated in the following
way,Z

W

Hnð‘wnÞfððwn � ukÞ�Þ dx

a e

Z
W

j‘wnj2jfððwn � ukÞ�Þj dxþ CðeÞ
Z
W

jfððwn � ukÞ�Þj dx

¼ e

Z
W

j‘ððwn � ukÞ�Þj2jfððwn � ukÞ�Þj dx� e

Z
W

j‘ukj2jfððwn � ukÞ�ÞÞj dx

þ 2e

Z
W

‘wn‘ukjfððwn � ukÞ�Þj dxþ CðeÞ
Z
W

jfððwn � ukÞ�Þj dx:

Since wn * uk weakly in W
1;2
0 ðWÞ and jfððwn � ukÞ�Þj ! 0 almost everywhere

and in L2ðWÞ, it follows that,

(i)

Z
W

j‘ukj2jfððwn � ukÞ�Þj dx ! 0 as n ! l,

(ii)

Z
W

‘wn‘ukfððwn � ukÞ�Þ dx ! 0 as n ! l.

Therefore, passing to the limit as n tends to l, we haveZ
W

Hnð‘wnÞfððwn � ukÞ�Þ dxa e

Z
W

j‘wn � ‘ukj2jfððwn � ukÞ�Þj dxþ oð1Þ:

Moreover, it is clear that the right-hand side in (2) goes to zero as n ! l. Since
f 0ðsÞ � jfðsÞj > 1

2 , choosing ea 1 we conclude that

1

2

Z
W

j‘ððwn � ukÞ�Þj2 dx

a

Z
W

ðf 0ððwn � ukÞ�Þ � ejfððwn � ukÞ�ÞjÞj‘ððwn � ukÞ�Þj2 dx

a oð1Þ;
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whence wn ! uk in W
1;2
0 ðWÞ and the claim is proved. Moreover, from (2.7) it

follows that

Hnð‘wnÞa c1j‘wnj2 þ c2:

By the claim, we have in particular the almost everywhere convergence of the
gradients and therefore we conclude that

Hnð‘wnÞ ! j‘ukjq in L1ðWÞ:

Hence we find that uk a KðcÞ solvesZ
W

‘uk‘ðv� ukÞ dxþ
Z
W

j‘ukjqðv� ukÞ dxð2:8Þ

b

Z
W

ðlgTkðukÞ þ f Þðv� ukÞ dx

for all v a KðcÞ.

Step 2: We claim the existence of a universal M > 0 that does not depend on k
such that kukkLlðWÞ aM. To prove the claim we use the fact that f ; g0 a LrðWÞ
where r > N

2 . Let v ¼ TmðukÞ, using v as a test function in (2.8) it follows that

Z
W

j‘GmðukÞj2 dxþ
Z
W

j‘GmðukÞjqGmðukÞa l

Z
W

g0G
2
mðukÞ dxþ

Z
W

fGmðukÞ dx:

Notice that, using Poincaré inequality we getZ
W

j‘GmðukÞjqGmðukÞ ¼
1

ð1þ 1=qÞq
Z
W

j‘G1þ1=q
m ðukÞjq dxbC

Z
W

g0G
1þq
m ðukÞ dx;

and

l

Z
W

g0G
2
mðukÞ dxþ

Z
W

fGmðukÞ dx

a e

Z
W

g0G
1þq
m ðukÞ dxþ CðeÞ

Z
ubm

g0 dxþ C
�Z

W

G2�
m ðukÞ dx

�1=2�
:

Therefore we conclude that

Z
W

j‘GmðukÞj2 dxþ c

Z
W

j‘GmðukÞjqGmðukÞa
Z
ubm

g0 dxþ C
�Z

W

G2�
m ðukÞ dx

�1=2�

where C > 0 is a positive constant that depends only on the data and is indepen-
dent of m and k.
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Recall that f ; g0 a Lr with r > N=2, then using Sobolev inequality,

C
�Z

W

G2�
m ðukÞ dx

�2=2�
þ
�Z

W

Gð1þ1=qÞq�
m ðukÞ dx

�q=q�

aC
�
juk bmj1=r

0
þ C

Z
W

G2�
m ðukÞ dx

�1=2�
juk bmj1�1=r�1=2� :

From Young’s inequality there results that

C
�Z

W

G2�
m ðukÞ dx

�2=2�
þ
�Z

W

Gð1þ1=qÞq�
m ðukÞ dx

�q=q�
aCðjuk bmj1=r

0
þ Cjuk bmj2ð1�1=r�1=2�Þ

aCjuk bmjg;

where g ¼ minf2ð1� 1=r� 1=2�Þ; 1=r 0g. By a direct computation we get easily
that 2�g=2 > 1.

We set bðmÞ ¼ juk bmj, then for m1 < m2 we have

b1=2�ðm2Þðm2 �m1Þa
�Z

ukbm2

juk �m1j2
�
dx

�1=2�

a

�Z
ukbm1

juk �m1j2
�
dx

�1=2�

a bg=2ðm1Þ:

Thus

bðm2Þa
b2�g=2ðm1Þ
ðm2 �m1Þ2

� :

Since 2�g=2 > 1, using the Stampacchia classical result, (see [15]), there exists a
universal constant m > 0 such that bðmÞ ¼ 0 if mbm. Thus uk am, and then
choosing kgm, we obtain that u ¼ uk solves

u a KðcÞ for all v a KðcÞ; we haveZ
W

‘u‘ðv� uÞ dxþ
Z
W

j‘ujqðv� uÞ dxb
Z
W

ðlg0uþ f Þðv� unÞ dx:

8<
:ð2:9Þ

Hence we conclude the proof. r

In the following result, we still consider a weight g0 with the same summability
condition as in Theorem 2.2, but now we assume f a L1ðWÞ.
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Theorem 2.3. Assume that f , g0 are positive functions, f a L1ðWÞ and
g0 a LrðWÞ with r > N

q
, then for all lb 0 there exists u a W

1;q
0 ðWÞ such that

ubc and for all v a KðcÞ we haveZ
W

‘u‘ðTkðv� uÞÞ dxþ
Z
W

j‘ujqðTkðv� uÞÞ dxb
Z
W

ðlg0uþ f ÞðTkðv� uÞÞ dx:

Proof. Consider a sequence fn a LlðWÞ such that fn " f in L1ðWÞ. By Theo-
rem 2.2, there exists a sequence of positive bounded functions fung, solutions to
problems,

un a KðcÞ; for all v a KðcÞ; we haveZ
W

‘un‘ðv� unÞ dxþ
Z
W

j‘unjqðv� unÞ dxb
Z
W

ðlg0un þ f Þðv� unÞ dx:

8<
:ð2:10Þ

Consider the function

CkðsÞ ¼
0 if sa k

s� k if ka sa k þ 1

1 if sb k þ 1:

8<
:ð2:11Þ

Define v ¼ un �CkðunÞ, then vbc. Using v as a test function in (2.10) it follows
that, Z

kaunakþ1

j‘unj2 dxþ
Z
W

j‘unjqCkðunÞ dx

a l

Z
W

gðxÞunCkðunÞ dxþ
Z
W

fnðxÞCkðunÞ dx:

Notice that, Z
W

j‘unjqCkðunÞ dx ¼
Z
W

j‘YðunÞjq dx;

where YðsÞ ¼
Z s

0

C
1=q
k ðsÞ ds. Using the hypothesis (1.3) on g we obtain,Z
W

j‘YðunÞjq dxbCðg0; qÞ
�Z

W

gYðunÞ dx
�q
:

Therefore, using the fact that sCkðsÞaYðsÞ þ C, it follows that,Z
kaunakþ1

j‘unj2 dxþ Cðg0; qÞ
�Z

W

g0YðunÞ dx
�q

a l

Z
W

g0YðunÞ dxþ Cl

Z
W

g0ðxÞ dxþ
Z
W

fnðxÞ dx:

38 b. abdellaoui, s. m. bouguima and i. peral



Thus using Young’s inequality there resultsZ
kaunakþ1

j‘unj2 dxþ Cðg0; qÞ
�Z

W

g0YðunÞ dx
�q

aC;

and then Z
W

j‘unjqCkðunÞ dxaC; l

Z
W

g0ðxÞunCkðunÞ dxaC;

where C is a positive constant depending only on the data.
We set now v ¼ un � Tkðun � cÞ. It is clear that vbc, using v as a test func-

tion in (2.10) we getZ
W

‘un‘Tkðun � cÞ dxþ
Z
W

j‘unjqTkðun � cÞ dx

a l

Z
W

g0unTkðun � cÞ dxþ
Z
W

fTkðun � cÞ dx:

Using the fact that un bc and that l

Z
W

g0unTkðun � cÞ dxþ
Z
W

fTkðun � cÞ dx
aC for all n, it follows thatZ

jun�cjak

‘un‘ðun � cÞ dxaC:

Then using Hölder’s and Young’s inequalities we get

Z
jun�cjak

j‘unj2 dxaC:

Let k > 0, then Z
junjak

j‘unj2 dxa
Z
jun�cjakþkckLl

j‘unj2 dxaC:

Hence fTkðunÞg is bounded in W
1;2
0 ðWÞ and fung is bounded in W

1;q
0 ðWÞ. Thus

we get the existence of u such that un * u weakly in W
1;q
0 ðWÞ and Tkun * Tku

weakly in W
1;2
0 ðWÞ. It is clear by the assumption on g0 that g0un ! g0u strongly

in L1ðWÞ.
Define Fk�1ðsÞ ¼ T1ðGk�1ðsÞÞ, then Fk�1ðunÞj‘unjq b j‘unjqwfunbkg.
Let v ¼ un �Fk�1ðunÞ, then vbc. Using v as a test function in (2.10) there

resultsZ
W

j‘Fk�1ðunÞj2 dxþ
Z
W

Fk�1ðunÞj‘unjq dxa
Z
W

ðlg0ðxÞun þ fnðxÞÞFk�1ðunÞ dx:
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Since fung is uniformly bounded in LpðWÞ, Epa q�; it follows that

jfx a W; such that k � 1 < unðxÞ < kgj ! 0;

jfx a W; such that unðxÞ > kgj ! 0 as k ! l;

uniformly in n. Thus we conclude

lim
k!l

Z
funbkg

j‘unjq dx ¼ 0; uniformly in n:ð2:12Þ

We claim that ‘un ! ‘u, a.e. in W.
To prove the claim we follow the same arguments as in the proof of Theorem

2.2.
Let v¼un�ðTkðunÞ�TkðuÞÞþ, then v aKðcÞ and v�un¼�ðTkðunÞ�TkðuÞÞþ,

hence there result

Z
W

‘un‘ðTkðunÞ � TkðuÞÞþ dxþ
Z
W

j‘unjqðTkðunÞ � TkðuÞÞþ dx

a

Z
W

ðlg0un þ fnÞðTkðunÞ � TkðuÞÞþ dx:

A direct computation shows that

Z
W

‘un‘ðTkðunÞ � TkðuÞÞþ dx

¼
Z
W

j‘ðTkðunÞ � TkðuÞÞþj2 dxþ
Z
W

‘GkðunÞ‘TkðuÞ dx

þ
Z
W

‘TkðuÞ‘ðTkðunÞ � TkðuÞÞþ dx

¼
Z
W

j‘ðTkðunÞ � TkðuÞÞþj2 dxþ oð1Þ:

It is clear that

Z
W

ðlg0un þ fnÞðTkðunÞ � TkðuÞÞþ dx ! 0 as n ! l, therefore we
conclude that

Z
W

j‘ðTkðunÞ � TkðuÞÞþj2 dx ! 0 as n ! l:

Thus ðTkðunÞ � TkðuÞÞþ ! 0 strongly in W
1;2
0 . Take now v ¼ un þ fððTkðunÞ�

TkðuÞÞ�Þ, then v a KðcÞ. Using v as a test function in (2.10) we obtain that

40 b. abdellaoui, s. m. bouguima and i. peral



Z
W

‘f 0ððwn � ukÞ�Þ‘un‘ðTkðunÞ � TkðuÞÞ� dx

þ
Z
W

j‘unjqfððTkðunÞ � TkðuÞÞ�Þ dx

a l

Z
W

g0ðxÞunfððTkðunÞ � TkðuÞÞ�Þ dxþ
Z
W

fnðxÞfððTkðunÞ � TkðuÞÞ�Þ dx:

Thus

Z
TkðunÞaTkðuÞ

f 0ððTkðunÞ � TkðuÞÞ�Þ‘un‘ðun � uÞ dx

�
Z
W

j‘unÞjfððTkðunÞ � TkðuÞÞ�j dx

a l

Z
TkðunÞaTkðuÞ

g0ðxÞunfððTkðunÞ � TkðuÞÞ� dx

þ
Z
TkunaTku

fnðxÞfððTkðunÞ � TkðuÞÞ�Þ dx:

Since Tkun * Tku weakly in W
1;2
0 ðWÞ, then

Z
TkðunÞaTkðuÞ

f 0ððTkðunÞ � TkðuÞÞ�Þ‘un‘ðun � uÞ dx

¼
Z
W

j‘ððTkðunÞ � TkðuÞÞ�Þj2f 0ððTkðunÞ � TkðuÞÞ�Þ dxþ oð1Þ:

Since qa 2, as in the computation in the proof of Theorem 2.2 it follows that

1

2

Z
W

j‘ððTkðunÞ � TkðuÞÞ�Þj2 dx

a

Z
W

ðf 0ððTkðunÞ � TkðuÞÞ�Þ

� ejfððTkðunÞ � TkðuÞÞ�Þj‘ððTkðunÞ � TkðuÞÞ�j2 dx
a oð1Þ;

whence ðTkðunÞ � TkðuÞÞ�Þ ! 0 in W
1;2
0 ðWÞ and then TkðunÞ ! TkðuÞ strongly in

W
1;2
0 . Hence the claim follows.
To finish the proof, we have to show that j‘unjq ! j‘ujq strongly in L1ðWÞ.

Since the sequence of gradients converges a.e. in W, we have just to prove the
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equi-integrability of the sequence fj‘unjqg and then apply Vitali’s Theorem. Let
EHW be a measurable set. Then,Z

E

j‘unjq dxa
Z
E

j‘Tkunjq dxþ
Z
funbkgBE

j‘unjq dx:

Since qa 2, then for all k > 0, TkðunÞ ! TkðuÞ strongly in W
1;q
0 ðWÞ. Hence the

integral

Z
E

j‘TkðunÞjq dx is uniformly small if jEj is small enough. On the other

hand, by (2.12) we obtain thatZ
funbkgBE

j‘unjq dxa
Z
funbkg

j‘unjq dx ! 0 as k ! l uniformly in n:

The equi-integrability of j‘unjq follows immediately, and the proof is complete.
r

Proof of Theorem 2.1. Consider gnðxÞ ¼ minfg0ðxÞ; ng a LlðWÞ. It is clear
that gn ! g0 strongly in W�1;q 0

.
Using Theorem 2.3, we get the existence of a sequence of nonnegative func-

tions fung such that un solves

un bc for all v a KðcÞ; we haveZ
W

‘un‘ðTkðv� unÞÞ dxþ
Z
W

j‘unjqðTkðv� unÞÞ dx

b

Z
W

ðlgnun þ f ÞðTkðv� unÞÞ dx:

8>>>>><
>>>>>:

ð2:13Þ

By setting v ¼ un �CkðunÞ, where Ck is defined in (2.11), and using the same
computations as in the proof of Theorem 2.3, it follows thatZ

kaunakþ1

j‘unj2 dxþ Cðgn; qÞ
�Z

W

gnYðunÞ dx
�q

a l

Z
W

gnYðunÞ dxþ Cl

Z
W

g0ðxÞ dxþ
Z
W

fnðxÞ dx;

where

Cðgn; qÞ ¼ inf
f AW 1; q

0
ðWÞnf0g

ð
R
W j‘fjq dxÞ1=qR
W gnjfj dx

:

It is clear that Cðgn; qÞ " Cðg0; qÞ > 0. ThenZ
kaunakþ1

j‘unj2 dxþ
�Z

W

gnYðunÞ dx
�q

aC;
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and Z
W

j‘unjqCkðunÞ dxaC; l

Z
W

gnðxÞunCðunÞ dxaC;

where C is a positive constant depending only on the data. As in the proof of

Theorem 2.3 we can prove that

Z
W

j‘unjq dxaC and then un ! u weakly in

W
1;q
0 ðWÞ. Since gn ! g strongly in W�1;q 0

, then

Z
W

gnun dx !
Z
W

g0u dx strongly

in L1ðWÞ. Now to complete the proof we follow closely the argument used in the
proof of Theorem 2.3. r

2.1. Partial uniqueness result. In this subsection we consider the case q ¼ 2.
We will prove a uniqueness result for positive solutions. We will use the next
Comparison Principle that is a variation of the uniqueness result obtained in [1].
For the reader’s convenience we include a short proof.

Lemma 2.4. Let f a L1ðWÞ is a non negative function and suppose that g0 is an
admissible function in the sense of condition (1.3). Let u1; u2 a W

1;2
0 ðWÞ be func-

tions such that u1 > 0 (resp. u2 > 0) is a subsolution (resp. supesolution) to problem

�Duþ j‘uj2 ¼ lg0ðxÞuþ f ðxÞ in W;

u > 0 in W;

u ¼ 0 on qW;

8><
>:ð2:14Þ

then u1 a u2 in W.

Proof. For i ¼ 1; 2 we set vi C 1� e�ui , then 0 < vi a 1 in W and v1 (resp. v2) is
a subsolution (resp. supersolution) to problem

�Dv ¼ lg0ðxÞð1� vÞ log
�

1
1�v

�
þ ð1� vÞ f ðxÞ in W;

v ¼ 0 on qW:

�
ð2:15Þ

Define

Hðx; vÞ ¼ lgðxÞð1� vÞ log
�

1
1�v

�
þ ð1� vÞ f ðxÞ; if 0 < v < 1;

0; if vb 1:

�

By a direct computation we find that Hðv;xÞ
v

is a non-increasing function in v for

vb 0, then by similar arguments as in [1], we conclude that v1 a v2, therefore the
result follows.

Then we can prove the following result about uniqueness.

Theorem 2.5. Assume q ¼ 2, cC 0 and that the hypotheses of Theorem 2.1
hold. Then problem (2.1) has a unique positive solution.
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Proof. The existence of a nonnegative solution is a consequence of the
Theorem 2.1.

Assume that u1 and u2 are two nonnegative solution to the obstacle problem
(2.1). We claim that u1 is strictly positive in W (the same conclusion holds for u2).
To prove the claim we consider f a Cl

0 ðWÞ a nonnegative function. Let v ¼
ThðuÞ þ f, it is clear that for h large we have vbc and v a LlðWÞBW

1;2
0 ðWÞ.

Using v as a test function in (2.1), it follows thatZ
W

‘u1‘ðTkðThðu1Þ � u1 þ fÞÞ dxþ
Z
W

j‘u1j2ðTkðThðu1Þ � u1 þ fÞÞ dx

b

Z
W

ðlg0u1 þ f ÞðTkðThðu1Þ � u1 þ fÞÞ dx:

Since u1 a W
1;2
0 ðWÞ, then for fixed k, using the Dominated Convergence

Theorem and a duality argument we can pass to the limit in h, henceZ
W

‘u1‘ðTkðfÞÞ dxþ
Z
W

j‘u1j2ðTkðfÞÞ dxb
Z
W

ðlg0u1 þ f ÞðTkðfÞÞ dx:ð2:16Þ

Since f a Cl
0 ðWÞ, then choosing k large enough we conclude thatZ

W

‘u1‘f dxþ
Z
W

j‘u1j2f dxb
Z
W

ðlg0u1 þ f Þf dx:

Thus u1 is a nonnegative supersolution to problem

�Dwþ j‘wj2 ¼ lg0ðxÞwþ f in W;

wb 0 in W and w a W
1;2
0 ðWÞ:

(
ð2:17Þ

From [1] we know that the above problem has a unique positive solution and that
if w1 is a supersolution to problem (2.17), then w1 bw. Since u1 is a supersolu-
tion, then the claim follows.

We follow now closely the argument used in [3]. Define

v1 ¼ u1 � df; and v2 ¼ u2 þ df:

It is clear that v2 b 0. We show that for d small enough, depending on f, then
v1 b 0. It is clear that v1 b 0 in WnSuppðfÞ. Since SuppðfÞHHW, then by using
the strict positivity of u1 there exists a positive constant c such that u1 b c in
SuppðfÞ. Hence for x a SuppðfÞ, we have

v1ðxÞbC � dkfkLl :

Choosing db C

2kfkLl
, we conclude that v1ðxÞbC=2 for all x a SuppðfÞ. Hence

v1 b 0 in W. Notice that the same conclusion holds if we substitute v1 by
vh1 CThðu1Þ � df where h is large enough.
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It is clear that we cannot use v1 and v2 directly as a test function in the corre-
sponding obstacle problem of u1 and u2. Thus we use an approximation argu-
ment. Set

vh1 ¼ Thðu1Þ � df; vh2 ¼ Thðu2Þ þ df:

As above, for k fixed and passing to the limit in h, it follows that

Z
W

‘u1‘ðTkðdfÞÞ dxþ
Z
W

j‘u1j2ðTkðdfÞÞ dxa
Z
W

ðlg0u1 þ f ÞðTkðdfÞÞ dx

and

Z
W

‘u2‘ðTkðdfÞÞ dxþ
Z
W

j‘u2j2ðTkðdfÞÞ dxb
Z
W

ðlg0u2 þ f ÞðTkðdfÞÞ dx:

Letting k ! l and using the fact that f a Cl
0 ðWÞ, there results that

Z
W

‘u1‘f dxþ
Z
W

j‘u1j2f dxa
Z
W

ðlg0u1 þ f Þf dx

and Z
W

‘u2‘f dxþ
Z
W

j‘u2j2f dxb
Z
W

ðlg0u2 þ f Þf dx:

Thus u1 (resp. u2) is a nonnegative subsolution (resp. supersolution) to (2.17),
then by Lemma 2.4 we conclude that u1 a u2. Following the same argument as
above we get easily that u2 a u1. Hence u1 ¼ u2 and then the uniqueness result
follows. r

3. The general result

In this section we will consider the general case, that is, f and c can change sign.
More precisely we will consider the following obstacle problem

ubc a:e in W; for all v a KðcÞ; we haveZ
W

‘u‘ðv� uÞ dxþ
Z
W

hðuÞj‘ujqðv� uÞ dxb
Z
W

ðgðx; uÞ þ f Þðv� uÞ dx;

8<
:ð3:1Þ

where c a W
1;2
0 ðWÞBLlðWÞ and f a L1ðWÞ. We will assume that h satisfies the

next sign condition,

hðsÞ is an continous increasing function such that; hðsÞsb 0; Es a Rð3:2Þ
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and

jgðx; sÞja lg0ðxÞjsj þ g1ðxÞð3:3Þ

where g0 satisfies the condition (1.3) and g1 a L1ðWÞ.
We can formulate the general existence result as follows.

Theorem 3.1. Assume that conditions (3.2) and (1.2) hold. Then for all f a
L1ðWÞ, there exists a function u such that hðuÞj‘ujq a L1ðWÞ, TkðuÞ a W

1;2
0 ðWÞ

for all k > 0, and for all v a KðcÞ we have
Z
W

‘u‘ðTkðv� uÞÞ dxþ
Z
W

hðuÞj‘ujqðTkðv� uÞÞ dxð3:4Þ

b

Z
W

ðgðx; uÞ þ f ÞðTkðv� uÞÞ dx:

We will say that u is an entropy solution to the obstacle problem (3.1).

As in section 2 we will prove the existence result for regular data and then we
will pass to the limit.

For n;m > 0, we define,

hnðsÞ ¼
hðsÞ

1þ 1
n
jhðsÞj

and gmðx; sÞ ¼
gðx; sÞ

1þ 1
m
jgðx; sÞj

:

Then we have

Theorem 3.2. Assume that the above conditions (3.2) and (1.2) hold, then

for all f a LlðWÞ and for all m fixed, there exits a um a W
1;2
0 ðWÞ such that

hðx; umÞj‘umjq a L1ðWÞ and for all v a KðcÞ we have
Z
W

‘um‘ðv� umÞ dxþ
Z
W

hðumÞj‘umjqðv� umÞ dxð3:5Þ

b

Z
W

ðgmðx; umÞ þ f Þðv� umÞ dx:

Proof. Fixed m > 0, since f a LlðWÞ, using the classical results in [13] or [12],
there exists un a KðcÞ, a solution to the obstacle problem

Z
W

‘un‘ðv� unÞ dxþ
Z
W

hnðunÞ
j‘unjq

1þ 1
n
j‘unjq

ðv� unÞ dxð3:6Þ

b

Z
W

ðlgmðx; unÞ þ f Þðv� umÞ dx

46 b. abdellaoui, s. m. bouguima and i. peral



for all v a KðcÞ. For fixed m, we want to pass to the limit in n. Let v ¼ TkðwnÞ,
since c a LlðWÞ, then choosing k such that kg kckl, we conclude that v is an
admissible test function. Notice that v� un ¼ �GkðunÞ, hence

Z
W

j‘GkðunÞj2 dxþ
Z
W

hnðunÞ
j‘GkðunÞjq

1þ 1
n
jGkðunÞjq

GkðunÞ

a

Z
W

ðgmðx; unÞ þ f ÞGkðunÞ dx:

Since hnðunÞGkðunÞb 0, then

Z
W

j‘GkðunÞj2 dxa
Z
W

ðmþ j f jÞjGkðunÞj dx:

Since f a LlðWÞ, then by the classical Stampacchia result, see [15], the following
Ll-estimate holds,

kunkLl aCðm; f ;WÞ:

Take v ¼ c as test function in (3.6), then

Z
W

‘un‘ðun � cÞ dxþ
Z
W

hnðunÞ
j‘unjq

1þ 1
n
j‘unjq

ðun � cÞ dx

a

Z
W

ðgmðx; unÞ þ f Þðun � cÞ dx:

Since un bc, we get

Z
W

j‘unj2 dxa
Z
W

‘un‘c dxþ
Z
W

gmðx; unÞ þ f Þðun � cÞ dx:

Thus using Hölder inequality and the previous estimate we obtain that

Z
W

j‘unj2 dxaCð f ;mW; kÞ uniformly in n:

Therefore, up to a subsequence, un * um weakly in W 1;2
0 ðWÞ as n ! l: By weak-

*convergence in LlðWÞ we also have that wm a W 1;2
0 BLlðWÞ and um bc.

Since fung is bounded in LlðWÞ, then as in the first section, following closely
the argument used in [6], we get the strong convergence of un in W

1;2
0 ðWÞ. Thus

um a W
1;2
0 ðWÞBLlðWÞ and it solves the obstacle problem (3.5). Hence the result

follows. r
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Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Let f fng be a sequence of bounded functions such
that fm ! f strongly in L1ðWÞ and consider um the solution to the obstacle prob-
lem (3.5) obtained above and let k > 0, then using v ¼ um �CkðumÞ, where Ck

is defined in (2.11) with CðsÞ ¼ �Cð�sÞ for s < 0, as a test function in (3.5) it
follows that

Z
kajumjakþ1

j‘umj2 dxþ
Z
W

hðumÞj‘umjqCkðumÞ

a l

Z
W

g0ðxÞjumj jCkðumÞj þ
Z
W

g1ðxÞ dxþ
Z
W

j fnðxÞj dx:

Using the properties of h it follows that, for k large,

hðumÞj‘umjqCkðumÞbCðkÞj‘umjqjCkðumÞjbCj‘YðumÞjq

where YðsÞ ¼
Z s

0

jCðsÞj1=q ds. Thus

Z
kajumjakþ1

j‘umj2 dxþ
Z
W

j‘YðumÞjq a l

Z
W

g0ðxÞjumj jCkðumÞj þ C:

Notice that jsj jCkðsÞjaYðsÞ þ C, then

Z
kajumjakþ1

j‘umj2 dxþ
Z
W

j‘YðumÞjq a l

Z
W

g0ðxÞYðumÞ dxþ C:

Since g0 satisfies the condition (1.3), thus

Z
kajumjakþ1

j‘umj2 dxþ
Z
W

j‘YðumÞjq aCðkÞ:

Therefore

Z
W

j‘unjqjCkðumÞj dxaC; l

Z
W

g0ðxÞjunj jCðunÞj dxaC

where C is a positive constant depending only on the data. As in the proof of

Theorem 2.3 we can prove that

Z
W

j‘unjq dxaC and then un ! u weakly in
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W
1;q
0 ðWÞ. It is clear that

Z
W

g0un dx !
Z
W

g0u dx strongly in L1ðWÞ, then using the

Dominated Convergence Theorem we obtain that

gmðx; umÞ ! gðx; uÞ strongly in L1ðWÞ:
The rest of the proof follows exactly as in the proof of Theorem 2.3. r
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[6] L. Boccardo - T. Gallouët - L. Orsina, Existence and nonexistence of solutions for some

nonlinear elliptic equations, J. Anal. Math. 73 (1997), 203–223.

[7] L. Boccardo - G. R. Cirmi, Existence and uniqueness of solution of Unilateral Problems

with L1 data, J. Convex Analysis 6, no. 1 (1999), 195–206.

[8] L. Boccardo - F. Murat - J. P. Puel, Existence de solutions faibles pour des équations
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