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ABSTRACT. — We study existence and regularity of positive stationary solutions for a class of non-
linear pseudo-relativistic Schrodinger equations. Such equations are characterized by a nonlocal
pseudo-differential operator closely related to the square-root of the Laplacian. We investigate such
problems using critical point theory after transforming them to elliptic equations with nonlinear
Neumann boundary conditions.
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1. INTRODUCTION

The Hamiltonian for the motion of a free relativistic particle is given by
H = \/p2c? + m2ct.

With the usual quantization rule p — —iiV we get the so called pseudo-relativistic
Hamiltonian operator and the associated Schrodinger equation

iV _ = HY =V —IPARA + m2cty

61

We choose units so that 7z =1, ¢ = 1. For a discussion of the main properties of
the operator # we refer to [10].

In the mean field limit description of a quantum relativistic Bose gas, one is
lead to study the nonlinear mean field equation (see [4] for a rigorous derivation
of the model)

(1) i = e+ Ve = T4+ Vel
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where J~ denotes the kinetic energy operator and

Vartw) = =v [ @x = Dlwte. ) dy

the effective potential operator, ® being the two particles interaction potential.
We will take attractive two body interaction, which means @ > 0. See [11] for a
detailed analysis of this equation for gravitational interaction (and also of the
corresponding equation for fermions). It has recently been proved that such an
equation is locally well-posed in H*, s > 1/2, and is global in time for small ini-
tial data in L? (see [8]). Blow up has been proved in [6, 7]. These results apply for
Newton or Yukawa type two body interaction (i.e. ®(x) = |x| ™" or |x| e ). In
these cases the estimates on the nonlinearity rely on the observation that

e_/“x‘ ) 1
——x f=(—A fi F(RY), u>0
=AY for f € SR, iz
and on some facts from potential theory.

Solitary waves solutions of (1.1) correspond to solutions of

(1.2) T+ Ver(9)d = i

of given L?> norm equal to M. In the paper [11] Lieb and Yau have proved
existence of such solutions (in the case ®(x) = |x|”') provided that M < M.,
M, being the Chandrasekhar limit mass. More precisely they have shown the
existence of a radial, real-valued non negative ground state in H'/?(R?). More
recently (see [5, 9]) it has been proved that the solution is regular (H*(R?), for
all s > 1/2), strictly positive and that it decays exponentially, more precisely
that for every 0 < ¢ < min{m, A} there exists C > 0 such that |¢(x)| < Ce R,
for all x € R*. Moreover the solution is unique, at least for small L2 norm. Let us
remark that all these results are heavily based on the specific form (i.e. of New-
tonian or Yukawa type) of the two body interaction in the Hartree nonlinearity
(regularity and uniqueness) and on the remarkable fact that the integral kernel of
V—A+m—m+ ] can be computed explicitly (strict positivity and exponential
decay).

The main purpose of this paper is to prove existence and regularity results for
a wider class of nonlinearities. In particular we will study such a problem exploit-
ing the relation of equation (1.2) with an elliptic equation on Rfl with a non-
linear Neumann boundary condition. Such a relation has been recently exploited
to study several problems involving fractional powers of the laplacian, see in par-
ticular [2] from which we have learned it.

We will consider the pseudo-relativistic, static Schrodinger equation in RY,
N>2

(1.3) V =A 4+ m2u = g+ v[u|”2u+ o(W x u?)u
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(here W * u? denotes the convolution of W and u?) where p € (2,:2), u < m,

v, ¢ >0 (but not both 0), W e L"(RY) + L*(RN), W >0, r > N/2, W(x) =
W (|x|) — 0 as |x| — +00. We will be interested in positive solutions of such an
equation.

REMARK 1.4. We can deal, in dimension 3, as in [11], with the Newton potential
\x|71. When fixing (as in [11]) the L? norm to be M, the Newton potential is crit-
ical, in the sense that minimization is possible only for M < M, (i.e. smaller then
the Chandrasekhar mass M,). In contrast to [11], we are not fixing the L> norm
of the solution. This allows us a wider range of variability for the nonlinear
terms.

The operator
vV —A+ m?

can be defined for all / e L? with Fourier transform Zf satisfying
(15) /@ﬂﬂﬂ%%%ﬁ&<+w

(i.e. for all functions in H'(RY)) as
F(V=A+m?))(k) = Vm? + k> 7] (k).

See, for example, [10].
The associated energy is given as

/NMﬂ+m%%mW&
R N

and is well defined for all functions in H'/2(R"), that is for all functions in
L?*(RY) such that

‘/a+mm%wW&<+w
RN

An alternative definition of the operator (1.3) can be obtained as follows.
Given any function u € &(R") there is a unique function v e ¥ (RM"") (here
RV = {(x,y) € R x RY |x > 0}) such that

—Av+m?*v=0 in R}
v(0,y) =u(y) for ye RN =oRN"

Setting

Tu(y) =~ 220,
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we have that the equation

—Aw+m?*w=0 in Rf“
w(0,y) = Tu(y) = —2(0,y) for y e R

has the solution w(x, y) = — % (x, y). From this we have that

ow 0%

T(Tu)(y) = = 5-(0,3) = 55(0,5) = (=Ayw + m*0)(0, y)

and hence T2 = (—A, + m?).
We will exploit this fact, and, in order to find solutions of (1.3) and to prove

their regularity, we will look (following [2], see also [3] where a problem on a
bounded domain is studied) for solutions of

{—Av+mzv— 0 in [R{iv“

— & — v’ o+ a(W xv?)v on RY = aRNH
Our main result is the following

THEOREM 1.6. Let p € (2,7%), u < m, v, a = 0 (but not both 0), W € L"(RY) +
LZ(RY), W >0,r>N/2, W(x)= W(|x]), W(s) —» 0as s — +co.
Then equation (1.3) has a radially symmetric solution u € C*(R"Y) such that

(1.7) 0 <u(y) < Ce® forany|y| >R

where 0 <6 < m — u, for u >0 and 6 = m for u < 0.

NOTATION. Let (x, y) € R x RY. We have already introduced RY ™ = {(x, ) e
R¥*1 | x > 0}. With [|ull, we will always denote the norm of u € L2 (RN with
[ul| the norm of u € H'(RY*") and with [v], the L”(R") norm of v € LP(RY).

2. VARIATIONAL SETTING

We recall that for all v e H'(RV*!) A C¢ (RVH)

0
0
[onra= [ @[ Zpwra
RN RI\ 4+ X

ov

-1

SP/, |U(x7y)|p
Ri\Hrl

a3y 0 2)|dxdy
1/2
SP(/V Iv(x,y)lz(””dxdy) (/ SU
R;Jrl Rﬁ+1

7(xa y)

2 1/2
< dx dy>
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that is

ov

-1
(2.1) 017 < plelg, 5]

which, by Sobolev embedding, is finite for all 2<2(p—1) <2(N+1)/
((N+ 1) —2), that is 2 < p < 2%, By density of H'(R)n CF (R in

H'(RY*™") such an estimates allows us to define the trace y(v) of v for all the func-
tions v € H'(RY'"). The inequality

ov

(2.2) PO < pllells, || =

)

holds then for all v e H'(RY™H).

It is known that traces of functions in H'(RY *1) belongs to H'/2(R") and
that every function in H'!/ 2([R§N ) is the trace of a function in H'(RY*").

Let us define, for all v e H'(RYT),

:%// (|Vo|* + m*0?) dx dy
Rﬁ%l
= [ BI@P + 2l + 507 <5607 dy

We have that, for all p € [2,%]

(2.3) @), <

(p—1)
) [0]l5p—1) + VOl < Cpl|o]]

This is in fact equivalent to the well known fact that y(v) € H'/>(RY) —
LY(RY) provided ¢ e [2,2;], and shows that the terms ly(v)]* and

N

/R . [y(v)|” in our functional are well defined since p € (2,2Y;).

From Young’s inequality we have that

1
(W % 2(0))2(0)%]y < WL ©)2[; = W], 1(0)]3, PR

Since y(v) € L% for all 2¢ € [2,2N /(N — 1)], we have that the norm is finite pro-
vided W e L, r € [N/2,+0]. Under our assumptions, W = W, + W,, Wy € L',
r> N/2, W, e L*. Hence
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) [ 0 = [ e dy

RN

+ /RN(Wz #9(0))7(0)* dy

4 4
< Wil @) a1y + W2l v ()5

< Cwllo]* < +o0

since 2 <4r/(2r—1) <2N/(N —1).
We will also need the following estimate:

Lowsa@owir < ([ o) ([ por)”
< C</RN |W|r) "’/r(/RN |y(v)|2s) ’"/S(/RN |y(v)|mp)l/17

1

where p~! + ¢ ' =1 and 1+ (mq)” =r' +s7!. Setting mp = a = 25 we find

that 1 +m ' =1 + 307! so that

(2.5) (W 5 5(0)*)p(0)],, < CIW, I (v)]3
hence for o € 2,7 and r > § we can take m € (£, 7%5).

Let us remark here that from inequality (2.1) we also deduce that for all 1 > 0
we have

P 2

AD 2(p—1) 1/ v
2.6 e g ~Hdxdy + - —| dxdy.
eo [ wers% g S v
In particular, we have that

1 dvl?
(2.7) / I9(v)]? gz/ |v|2dxdy+—/ '—” dx dy.
RN Ri\’%»l l Ri\’*’l 0)(?

As an easy consequence of the above discussion, we have that

PROPOSITION 2.8. The functional I is C' on H'(RY*").
Letve Hl(RfH) be a critical point for I, then for all w € H'

// (VoVw + m*ow) dx dy
Ri\'#»l

- /w<ﬂy<v>y<w> I 2(©)200) + (W + (0))7(0)y(w) dy
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and we say that v is a weak solution of
—~Av+m*v =0 in RN
— 0 — o4 vl o+ o(W 20 on RN = 6[}@'*1 '
3. REGULARITY OF CRITICAL POINTS
To show that critical points of 7 are (classical) solutions of

G.1) {—Av—f—mzv:O in Rf*l

— & — v’ o+ a(W kv on RY = aRN*!
we are going to prove some regularity results for the critical points of 7.
THEOREM 3.2. Suppose that v e H! (Rf“) is a critical point for the functional 1
on H'(RY*).

Then y(v) € L?(RY) for all p € [2,4+0] and ve L*(RY ™).

ProoF. We will follow a classical argument, see for example [2]. Since
ve H'(RY'") is a critical point, we know that for all w e H'(RY ")

// (VoVw + msz) dx dy
Ri\#l
= /R @)y w) + vy )12y ()7(w) + o (W 5 9(0)*)y(0)7(w)) .

Let w=¢y r = UU%ﬂ where vy = min{v,, T'} and > 0. We have that ¢ ; €
Hl(Ri\“’l), ¢p =0 and from <{I'(v),ds 7» = 0 we deduce that (here we write v
for (v))

// v%ﬁ(|VU|2+mzvz)dxdy+// 2ﬁvaﬁ|Vv|2dxdy
R Dr
- / o ol 2 o (W w0yl dy
R?

where D7 = {(x, y) |vi(x,y) < T}.
Since

// |V(uv/;)|2dxdy=// v§ﬂ|w|2dxdy+// (28 + B0 Vol dx dy
RN RN Dr
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we find that, for ¢ = max{ 1+ g} >0

m2

oot = [ | (V@b + o) avay

< cﬁ/ (v + || 2020 + a(W « 0?20 dy.
RN

By Young’s inequality:

If Wy eL" with re (N/2 N], we have, since p(v)* € L? with p~! +r ! =
1+ N!, that W, *y(v)* € LV.

If W1 S L" with r > N, we have, since y(v ) e L? with p~' +r7! =1, that
Wy y(v ) € LOC

Since y(v)” € L' and W, € L” we have that W % p(v)*> € L*.

So in any case we have that, for some constant ¢; > 0 and g; € LY (R")

(W 3(v)?) <1+ g1
We also have that
2 2 2
@) = Iyt <1y + 12O o1y < 1+ 92

where g, € LY (RY). Indeed, if (p — 2)N < 2 we have that

N(p-2) 2 2
L gy < [ 0@y < [ 0P <20

while if 2 < (p — 2)N we have that (p —2)N € [2,2N/(N — 1)].
We have thus proved that, for some constant ¢ and function g € LV (RY),
g > 0 and independent of 7" and f3,

1 (0)9(0r) +v[p())7 2 9(0) > (0r) 7 + (W 5 p(0)*)p(0) *p(vr)

v
< (¢ + 9)7(0)*(or)?.

Asa consequence

S o P o < s [ @50 e [ arersen

and, using Fatou’s lemma and monotone convergence, we can pass to the limit as
T — +c0 to get

(3.3) // 1+ﬁ )+ |1)Jlfﬁ|2 < cc/g/RN y(v+)2<l+ﬂ) +c/;/ gy(v4)? (+4),

Forany M > 0,let Ay ={g < M}, A, = {g > M}.
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Then

/ g2 < / g2 / gu2+)
RY A Ay
1/N 1\ (W=1)/N
<M vi(”m+</ gN) (/ 2N OHD/W 1))
Ay A A

2

< Moy )5 + (M)l PP,
where we have set 27 = 2N /(N — 1). So we have that
10371 < e+ M) |p(o) P + cpe(M)[p(vy) )3

Since by (2.3) |y(vy) I+h s < C2#||ul+ﬂ || we finally have (choosing M large so that
cpe(M)C3, < 1/2) that, for all weak solutions v,

(3:4) oy 11* < 2ep(e + M) [p(vs) P

Remark that also M depends on /.
Using (2.3) we finally get that

(3.5) p(0:) e < 2ep(c+ M)CLp(0)" .

Then a bootstrap argument can start: since y(v,) € L*»/(V=1 we can apply (3. )
with f; +1=N/(N — 1) to deduce that y(v,) € LB+D2N/(N=1) — [2N?/(N=1)?
We can then apply again (3.5) and, after k iterations, we deduce that y(vy) €
L2VY/(N=D" and hence y(v,) e L”([RN) forall p € [2, +oo)

The same is clearly true for y(v_) and hence for y(v).

We will now show that actually v is bounded in RY*™! and y(v) in R,

We first of all observe that, since y(v) € L? for all p > 2, then W x y( ) e L™,
Indeed this was already the case for W2 «p(v)%, and for Wy = p(v)* if Wy e L
with > N. The fact that W; = p(v)> € L* also when W, e L” with N/2 <
r < N follows from Young’s inequality since we now know that y(v ) e L1,
g '+rt=1forallre (N/2,N].

Then we remark that ()72 = y(v)"fz)({ly(v)‘sl} + y(v)”fzx{‘y@)b]} and now
we have that ()" Zipw)>1y € L*. As a consequence we have now that, for
some constant ¢ and function g € L2N (RY), g > 0 and independent of 7 and g,

,uvzviﬁ+v|v|p_2vzvaﬁ+o(W*v )02 25 (c+g)vzvaﬁ

So we have that (3.3) holds for v, but now g € L*". Since

1+p) 1 1 1
[ 002 < oot le o < Il (210 4 5 107
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and
1 1 ¢ |g| 1
(3.6) [0 < eple+ lglon ot + P28 ol e,

Taking 4 such that

cplg| 1
1 =2

we find that

(3.7) W30 < 2¢p(c + gl A CRIET 3 = MploT)3

and the advantage with respect to (3.5) is that now we control the dependence on
f of the constant Mjy. Indeed

Mﬁ < Ccé < C(m_2 +1 _|_ﬁ)2 < Mge2\/1+/j.
Write (3.7) as
1/
(3:8) [0+ spiny < My PV oy

The same bootstrap argument of before shows, choosmg Po=0,2(p,1+1) =
2#(B, + 1), that u € L2+ implies u € L (Brr+1) and

"o /(1+8) ST 1) TR
04 rag,) < My X NI o [y .

Since (1 +,) = (2#/2)" = (N/(N —1))" we have that

i# < 4+ i ! < 4+
i=0 (1+ﬁi) 7 i=0 v1+ﬁi
and from this we deduce that

4], = Jim 04 [aw14p,) < +o0.

We can use the fact that [v4 |, < C < +o0 for all p in (3.6) (with 4 = 1) to de-
duce that, for all § > 0,

10117 < eple + gl ) C2P) + clglop C2OHP),
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Since by Sobolev’s embedding ||v+||;;§/f+ﬁ> = |57, < Co- 0P| we deduce
from the above inequality that
21 .
||U+||2£(;rf}f> < CCﬁC2(1+ﬁ).
Since 51/2<1+/‘)c[1f/2(1+ﬁ)C < ¢, as before we get that v, e L*(RY'). 0

PROPOSITION 3.9. Suppose that ve H' (RN A L*(RY™") is a weak solution

of

—A 2 =0 i IRNJrl
(3.10) af)—l—m v in R N
-2 =g(y) forall y e R

where g € LP(RN) for all p € 2, +x].

Then ve C%*([0,400) x RY) A Whe((0,R) x RY) for all q €[2,+x) and
R > 0.

If, in addition, g € C*(RN) then ve CY*([0,+0) x RY) n C*RY) is a
classical solution of (3.10).

PROOF. By a weak solution we mean a function v € H'(RY *1) such that

(3.11) // (VvVvv+msz)dxdy—/ gwdy forallwe H'(RMT)
Rﬁ'%»l RN

Following [2] we let
u(x,y) = / o(t, y)dt.
0

We clearly have that u € H'((0,R) x RY) for all R > 0. We will show that u
satisfies

(3.12) // (VuVy +m*un — gn)dxdy =0 forally e Cj(RY')
RJI:UH

so that u is a weak solution of the Dirichlet problem

~Au+mPu=g in RY"!
u=>0 for all y e RY

where g(x, y) = g(y) for all (x, y) e RY*!,
Take any e C{(RY'') and set, for all >0 w/(x,y)=n(x+1))e
H'(RY™). From (3.11) we get

//RM(VUVW, + mPow,) dx dy = /RN gw;dy forallye C&(Rf“), t>0.
&

Integrating such an equation in ¢ from 0 to +oo we get that (3.12) holds.
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Indeed

Il
o\_.
+
8
S
N
+
8
=
5
=
<
=3
=
=
<
=
2
=
&

= /0+OC ds . V(/Osv(x, y) dx)Vn(s, y)dy.

Let us define uoqq € H'((—R, R) x RY) and goaq € LI((—R, R) x RY) (for all
g € [2,+0] and R > 0) setting

u(x, y) x>0 _f9(y) x=0
i) ={ 0y V2o e sen = {100 (0

It is easy to check that

(3.13) // . 1(Vuodqu + mzuoddn — godat) dxdy =0 forally e C& ([REN“)
R/ +

so that uyqq 1s @ weak solution of the Dirichlet problem
—Attogd + M Uogd = Goad  in RV

Since goaa € LY((—R, R) x RY) for all ¢ € [2,+00] and R > 0 we deduce by stan-
dard elliptic regularity that

Uoad € WHI((—R,R) x RY) forall g € [2,+0), R >0

and hence by Sobolev’s embedding ueqq € CH*(RY*!) for all a e (0,1), ue
Ch([0,+00) x RY) and v(x, y) = Lu(x, y) € C**([0,+0) x RY).

If ge C*RY), we can apply classical elliptic boundary regularity for
Dirichlet problems and deduce that u € C>*([0,+00) x RY), showing that v e
C%([0, +0) x RY). The last statement follows again from classical interior
elliptic regularity applied directly to v. m|

THEOREM 3.14. Suppose that v € H! ([F\Rf“) is a strictly positive critical point for
the functional I on H'(RY™H).
Then v e C*([0,+0w) x RY) and satisfies
—Av+m?v=0 in RYH!
(3.13) ov p=2 2 N N+1 -~
— L=+l v+ a(W o)y on RY = 0R]

Moreover v(x, y)e*™ — 0, as x + | y| — +o0, for any i < m.
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PrROOF. We know from Theorem 3.2 that y(v) € LY(R") for all ¢ € [2, +x].
Then also

g(¥) = po + o] v+ o(W  v*)o e LYRY) forall ¢ € [2,40)].

From Theorem 3.9 we then deduce that y(v) € C%*(RY), and then that g €
CO*(RY). Again Theorem 3.9 tells us that v is a classical solution. A bootstrap
argument allows to deduce that v € C* ([0, +c0) x RY).

To prove the decay at infinity, let us remark that v is a classical, bounded
solution of

—Av+m?v =0 in RYH!
v(0,¥) =vo(p) € LARY) for y e RY = RN~

Then by using the Fourier transform with respect to the variable y € RY we get
Fo(x, k) = e VI s gy )
and hence

(3.16) sup [o(x, 7)| < Cleol,e ™.
yeRN

Since by Theorem 3.9 v e W?((0,R) x RY) for all ¢ € [2,40) and R > 0,
we have that v(x,y) — 0 as |y| — 4+oo for any x and we conclude that
v(x, y)e* — 0, as x + |y| — +oo, for any 4 < m. O

4. EXISTENCE OF A CRITICAL POINT
We will look for solutions in the following space of symmetric functions
={ue H'(RY™) |u(x, Ry) = u(x, y) for all R € O(N)}.
We start by analyzing the geometric structure of the functional
LEMMA 4.1. The functional I has the Mountain Pass structure, that is:

e [(0) = 0 and there exist r, o. > 0 such that I(v) > o > 0 for all ||v| = r,
o [(Jv) — —o0 as A — +oo for all ve H, y(v) #0.

ProoF. Using (2.7) with 2 = m, (2.3) and (2.4) we have

// (IVo)* + m*v?) dx dy
R’\Ur]

- / SGIOE O +Z 0 500 &y

1 M 2 2 Vv ) P o 4
2 3 o (= Il mon =) vy =1y =G e
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Hence we can find ¢ > 0 such that
2 v n a 4
1(v) = c|[]| —;C,ﬁ\leI” =7 Cwlll™.

We immediately deduce that there exist » and o > 0 such that
I(v) >0 >0 forall |jv|| =r.

Moreover for v e Hj, y(v) # 0, it is immediate to check that (iv) — —o0 as
A — +o0. O

LEMMA 4.2. The functional I satisfies the Palais-Smale condition, that is:
For all sequences v, € H such that 1(v,) — ¢ and I'(v,) — 0 there is a conver-
gent subsequence.

PrROOF. We have that

1
c+ 1+ ||oa|| = I(vn) —§<I’(vn),vn>

—(3-2) [ pearas+(5-5) [ 07 bl d

We can then find ¢, ¢, > 0 such that

vV

o
[ 4§ [ v @) d < allol + e
P JRrY RY

It follows then from
¢+ 1> 1(v,) = colloall* = c1]|oall — 2

that v, is bounded in H 1(Rﬁ’ *1). Then v, converges weakly to some v in H#lé. We
want to prove that y(v,) — y(v) strongly in L4(R") for all ¢ € (2,:2Y). Setting
wy, = v, — v, by (2.2) it is enough to prove that w, — 0 strongly in LZW—U(Rf ),
Let us remark that also w, belongs to H. ;}é.

By a result of P. L. Lions [12] (see also [14, Lemma 1.21]), it is enough to

prove that, for some r > 0,

sup / lwal> = 0 asn— +o0.
B(

zerM JB(zr)

Suppose this is not the case. Then there are r and « > 0 and a sequence
Zn = (Xu, ya) € RY*! such that (up to a subsequence)

/ |wa|* > o forallneN.
B(zy,r)
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If z, is bounded, say z, — Z, we get a contradiction since from the compact-
ness of the embedding of H'(B(z,r)) in L?>(B(Z,r)) we get that w, — 0 strongly in
L*(B(z,1)).
If z, = (xy, yu) is unbounded and |y,| — +o0, we can find an increasing num-
ber k, of rotations R; € O(N) such that

B((xy, Riyn),r) # B((xn, Riyn),r) fori#j,i,je{1,2,... ,ky}.
Then

kn
/ (Va2 + 12) > Z/ (Va2 12) > ket — +o0
Rj:]+l = B((X,” Ri}"n)v }’)

a contradiction.
So we can assume that x,, — +oo and |y,| bounded. We will show that in such

a case
/ |va]* — 0.
B(zy,r)

First of all let us remark that we can assume z, = (x,,0), eventually taking r

larger. Since, clearly
[ w0
B(zy,r)

we will immediately deduce that

/ v, — v]* = 0.
B(zy,r)

/ 0,)* = @ > 0.
B(z,,r)

For all n let m,, € N be the smallest integer such that

/ (Ve +02) <.
C(zp, r+my, r+my,+1)

where C(z,ry,r;) denotes the annulus of radii r; < r, and center z. Since v, is
bounded in H'(RY*),

Let & be such that

1
m, < :/ (IVua | + v2) < 7.
o Rﬁr+l

We can assume that x, >r+m+1 for all n (so that C, = C(z,,r + my,
r+m, + 1) < RM) and that r > 2.
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Let ¢z : R — [0, 1] be defined as follows
1 ls| <R
$r(s) =140 s| >R+1.
linear elsewhere

We finally let ¥, (z) = @,.,, (| — za|). Since z, = (x,,0) then y,v, € H}, and

we have that

<I’(v,,),v,,l,bn>:/ (|Vun|2+v§)¢n+/ U Vo, Vi,
Ri\#l Ri\lﬂ

1
205—/ |Vv,,||v,,|2oc——/ (IVou|* +02) >
G 2Je,

N

)

NSRS

a contradiction with the fact that [{I'(v,), v, >| < |[I'(va)]] [|vatdr, || — O.
Hence w, — 0 in L2<‘1‘1)([RE]+V“), and y(v,) — y(v) strongly in L4(R") for all

g€ (2,5%). .
We can now prove strong convergence of v, — v. (Here we write v for y(v).)

For g(v) = o]’ + o(W  v?), using (2.7) as in Lemma 4.1 we have
en = I (vy) = I'(v),v, —v) = //RN+1(|V(U” —0))? + m?|v, — v} dxdy
it [ ool dy= [ (glon)en = g0)0) (00— o)y
> //Rf*‘ ((1 - %) IV (0, — v)|* + m(m — u)|v, — v|2) dx dy
= [ ™ et o = oy
o [ (75l + (7 < Do), — ol
As a consequence
//RNH('W" P+ Jou— o) dxdy <
»
e [ Qo™+ o™ on o)y

+02/N((W*vz)|v| (W 5 02 0al) o — o] dy.
R
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By Hoélder inequality we have

-1 -1
[ 167 o= ol dy < i = o,

[ ol o= ey < ol o~ o,
R/

In the term

/Y(W*vz)|v||vn—v|:/ V(Wl*vz)v\|vn—v|+/ (W = 0)[o] [tn — o]
R/\ RJ\/ RN

involving convolutions we have to estimate the two integrals on the right hand
side separately. Take eg = sup{ W>(x)||x| > R}. From our assumptions, eg — 0
as R — +oo. Then Wayp ) € L"(RY) and | Waggm o, r)| < €r (xg being the
characteristic function of the set E). This shows that we can always assume that
|W>]| ., < eg modifying W;. We take R so large that egcaod 3 < %, d being a bound
for the L? norm of v, and C, is given by (2.3).

Then

cz/ (W 02)[o] [tn — o] :cz/ (W % (o] [o — o))
RN RN
2
< | W * (|v] [o, — v])] . [v]3
|
< erea|v3 vy — v]y < ererd?|v, — 0], < 1 l|on — v]|.

Let us now estimate the term with W;. Recalling (2.5) for 14+ m™! =
14+ 347", we have

(W3 % 02)el,, < CIWALJof:
then choosing m = q‘%l (the Holder conjugate of ¢) we get by Holder inequality
/ (W1 * 0)|v] |v, — o] dy < |(W; * vz)v|q,|vn -, < C|W1|,.|U|Z|v,, -1,
RN
where ¢ = 5. Analogously
0 <o lou = ol dy < CIWL ol o,

Hence we get

//RNH('V(”" — )P+ Jog — o) dxdy

< &+ c1|y(vn) = 7(v)], + c2ly(vn) — y()], + % [y(on) = 7(v)1,-
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Since 2 < ¢ =4r/(2r—1) <2N/(N — 1), by the strong convergence of y(v,) —
y(v) in L*(RY), for s € (2,2N/(N — 1)) we may conclude that v, — v strongly
in H'(RY™). i

Using the two above lemmas it follows immediately from the Mountain Pass
Lemma (see [1]) that

THEOREM 4.3. There is a critical point vy € Hj for the functional I(v). Such a
critical point is a weak solution of (3.1).
Moreover vy > 0.

PrOOF. By the Mountain Pass Theorem it follows immediately that there is a
critical point vy for I on H#lé. Since the problem under study is invariant by rota-
tion around the x-axis, follows from Palais principle of symmetric criticality [13]
that vy is also a critical point for / on H'(RY *1), and hence a weak solution of
(3.1).

From the mountain pass Theorem we know that

I(vo) = ¢4 = inf max 1 (9(1))
where I’y = {g € C([0, 1]; H,) | g(0) = 0,1(¢(1)) < 0}.
To show that vy > 0 we start by observing that, given any critical point w for /
on H'(RM"), the function 4 — I(Aw) has only one strict maximum at 4 = 1.
We then observe that 7(|v]) < I(v) for all v e H'(RY*).
As a consequence we have that for all 1 > 0, 4 # 1

I(/1|U()|) < I()LUO) < I(Uo).
The path 1 +— A|vg| is in Ty and hence

cx < sup I(Avo]) < I(vo) = cp.
>0

If |vg| is not a critical point, one can deform, using the gradient flow, the path
A+ Avo| into a path g(1) € T'y such that I(g(1)) < ¢4 for all 4, a contradiction
with the definition of ¢z which proves that there is always a non-negative critical
point at the mountain pass level. O

5. PROPERTIES OF THE MOUNTAIN PASS SOLUTION

THEOREM 5.1. Suppose that v is the critical point of I found via Theorem 4.3.
Then v(x,y) >0 in [0,4+00) x RY and, for any 0 <o € (u,m), there exists
C > 0 such that

(5.2) 0 < v(x, y) < Ce =2V 7 g

for any (x,y) € [0,+0) x RY.
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Hence in particular

(5.3) 0 <v(0,y) < CeP forany y e RV

where 0 <6 <m — u, for 4 > 0 and 6 = m for u < 0.

PrOOF. The strict positivity of v follows immediately from the maximum prin-
ciple: since v > 0, if v(X, y) = 0, then ¥ = 0. From the equation we deduce that
g—; (0, ) = 0 and we reach a contradiction applying the Hopf lemma.

For R > 0 let us define the following sets:

B ={(x,») e R} |V/x2+|y]* < R}
Qf ={(x,y) e RY"' [V/x2+|y]* > R}
T ={(0,y) e 0RY*'||y] > R}

and the auxiliary function
fr(x, ) = Cre e~ ")V T for (x,7) € Q}

with 0 < o € (u,m) and Cy a positive constant to be fixed later.
We have

2oc(m—a)x_N(m—oc))
VAT VP
{—Mk+m7k20 in Q7

0 0

Afr = (ocz+(m—oc)2+

Let us define w(x, y) = fr(x, y) — v(x, y) for (x, y) € Qf.

We have —Aw + m?w >0 in Qf and choosing Cg = e”Rmaxyz: v we get
w(x, ) =0 on dB and w(x, y) — 0as x+ |y| — +o0. !

Now we claim that w(x, y) > 0 in Q}. Indeed, let us suppose by contrary that

inf w < 0.
Qg

By the strong maximum principle there exists (0, yy) € I'g such that

w(0, yo) = inf w < w(x, y) forany (x,y) e Qf.
ot

R

Let us define z(x, y) = w(x, y)e’** for some A € («,m). By Theorem 3.14 we
have that z(x, y) — 0 as x + |y| — +oo and z(x, y) > 0 on dB};. Moreover,

—Aw 4 m?w = e P (=Az + 200,z + (m®> — 2%)z)

and we may conclude that —Az + 210,z 4+ (m? — 4*)z > 0.
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Then by the strong maximum principle infr, z =infg. z < z(x, y) for all
(x,») € Q} and hence z(0, yo) = infr, z = infr, w= w(0,v9) < 0. Finally by
the Hopf lemma we may conclude that f—n (0, o) < 0 and hence

ow )
%(0, y0) — Aw(0, y) < 0.
On the other hand,
ow
an 0,y) =afg — v —g(v)v onTg

where g(v) = v|y(v)|”"* + a(W * p(v)?). Hence

ow

i (0, yo) — Aw(0, yo) = (¢ — )w(0, yo) + (& — . — g(v)(¥0))v(0, yo).

From our choiche of 1 follows that the term (o — 2)w(0, yo) > 0. Let us show
that also (o — u — g(v)(y0))v(0, yo) is positive by showing that g(v)(yy) is small
for R large enough.

Recalling that v(0,y) — 0 as |y| — 4+ and W(y) — 0 as |[y| — 400, we
have that for any € > 0 there exists R > 0 such that

sup g(v)(y) <e
[y|=R

(to show that (W xy(0)?)(y) — 0 as |yo| — +oo, take p >0 such that
sup{W(»)[|y] > p} < €/2. Then

/N W(yo— y)o*(0, y) dy = / W (yo — y)o*(0, y) dy
R

B(y0,p)

+/ , W (yo — »)o*(0, y) dy
R¥\B(30.p)

Y 1/"’ €
<l ([ o) 5
B(y0.p)

and the claim follows)
Therefore since 4 € (a,m) and 0 < o € (u,m), taking 0 < & < o — ;t we get

ow

220, 30) — (0, y0) = 0

a contradiction. Namely, we get

0 < v(x,y) < frlx, y) = Cre e "4V T for (x,») € Qf.
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Hence setting 0 < 6 = m — o we finally get
0 < (0,y) < Cre™’! forany |y| > R.
Since v is a regular solution, the theorem follows. O

PROOF OF THEOREM 1.6. It is a direct consequence of Theorems 4.3, 3.14 and
5.1 O
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