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Abstract. — We study existence and regularity of positive stationary solutions for a class of non-

linear pseudo-relativistic Schrödinger equations. Such equations are characterized by a nonlocal
pseudo-di¤erential operator closely related to the square-root of the Laplacian. We investigate such

problems using critical point theory after transforming them to elliptic equations with nonlinear
Neumann boundary conditions.

Key words: Nonlinear Schrödinger equation, solitary waves, pseudo-relativistic Hartree approx-

imation.

AMS Subject Classification: 35Q55, 35S05.

1. Introduction

The Hamiltonian for the motion of a free relativistic particle is given by

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

p
:

With the usual quantization rule p 7! �i�h‘ we get the so called pseudo-relativistic
Hamiltonian operator and the associated Schrödinger equation

i�h
qc

qt
¼ ĤHc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��h2c2Dþm2c4

p
c

We choose units so that �h ¼ 1, c ¼ 1. For a discussion of the main properties of
the operator ĤH we refer to [10].

In the mean field limit description of a quantum relativistic Bose gas, one is
lead to study the nonlinear mean field equation (see [4] for a rigorous derivation
of the model)

i
qc

qt
¼ ðĤH�mÞcþ Ve¤ðcÞc ¼ T̂Tcþ Ve¤ðcÞcð1:1Þ



where T̂T denotes the kinetic energy operator and

Ve¤ðcÞ ¼ �n

Z
R3

Fðjx� yjÞjcðt; yÞj2 dy

the e¤ective potential operator, F being the two particles interaction potential.
We will take attractive two body interaction, which means F > 0. See [11] for a
detailed analysis of this equation for gravitational interaction (and also of the
corresponding equation for fermions). It has recently been proved that such an
equation is locally well-posed in Hs, sb 1=2, and is global in time for small ini-
tial data in L2 (see [8]). Blow up has been proved in [6, 7]. These results apply for
Newton or Yukawa type two body interaction (i.e. FðxÞ ¼ jxj�1 or jxj�1

e�jxj). In
these cases the estimates on the nonlinearity rely on the observation that

e�mjxj

4pjxj � f ¼ ðm2 � DÞ�1
f for f a SðR3Þ; mb 0

and on some facts from potential theory.
Solitary waves solutions of (1.1) correspond to solutions of

T̂Tfþ Ve¤ðfÞf ¼ lfð1:2Þ

of given L2 norm equal to M. In the paper [11] Lieb and Yau have proved
existence of such solutions (in the case FðxÞ ¼ jxj�1) provided that M < Mc,
Mc being the Chandrasekhar limit mass. More precisely they have shown the
existence of a radial, real-valued non negative ground state in H 1=2ðR3Þ. More
recently (see [5, 9]) it has been proved that the solution is regular (HsðR3Þ, for
all sb 1=2), strictly positive and that it decays exponentially, more precisely
that for every 0 < d < minfm; lg there exists C > 0 such that jfðxÞjaCe�djxj,
for all x a R3. Moreover the solution is unique, at least for small L2 norm. Let us
remark that all these results are heavily based on the specific form (i.e. of New-
tonian or Yukawa type) of the two body interaction in the Hartree nonlinearity
(regularity and uniqueness) and on the remarkable fact that the integral kernel offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dþm

p
�mþ l can be computed explicitly (strict positivity and exponential

decay).
The main purpose of this paper is to prove existence and regularity results for

a wider class of nonlinearities. In particular we will study such a problem exploit-
ing the relation of equation (1.2) with an elliptic equation on Rnþ1

þ with a non-
linear Neumann boundary condition. Such a relation has been recently exploited
to study several problems involving fractional powers of the laplacian, see in par-
ticular [2] from which we have learned it.

We will consider the pseudo-relativistic, static Schrödinger equation in RN ,
Nb 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Dþm2
p

u ¼ muþ njujp�2
uþ sðW � u2Þuð1:3Þ
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(here W � u2 denotes the convolution of W and u2) where p a
�
2; 2N

N�1

�
, m < m,

n, sb 0 (but not both 0), W a LrðRNÞ þ LlðRNÞ, W b 0, r > N=2, W ðxÞ ¼
WðjxjÞ ! 0 as jxj ! þl. We will be interested in positive solutions of such an
equation.

Remark 1.4. We can deal, in dimension 3, as in [11], with the Newton potential
jxj�1. When fixing (as in [11]) the L2 norm to be M, the Newton potential is crit-
ical, in the sense that minimization is possible only for M < Mc (i.e. smaller then
the Chandrasekhar mass Mc). In contrast to [11], we are not fixing the L2 norm
of the solution. This allows us a wider range of variability for the nonlinear
terms.

The operator ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dþm2

p
can be defined for all f a L2 with Fourier transform Ff satisfyingZ

ðm2 þ jkj2ÞjFf ðkÞj2 dk < þlð1:5Þ

(i.e. for all functions in H 1ðRNÞ) as

Fðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dþm2

p
f ÞÞðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

p
jkj2Ff ðkÞ:

See, for example, [10].
The associated energy is given asZ

RN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

p
jkj2 jFf ðkÞj2 dk

and is well defined for all functions in H 1=2ðRNÞ, that is for all functions in
L2ðRNÞ such that Z

RN

ð1þ jkjÞjFf ðkÞj2 dk < þl:

An alternative definition of the operator (1.3) can be obtained as follows.
Given any function u a SðRNÞ there is a unique function v a SðRNþ1

þ Þ (here
RNþ1

þ ¼ fðx; yÞ a R� RN j x > 0g) such that

�Dvþm2v ¼ 0 in RNþ1
þ

vð0; yÞ ¼ uðyÞ for y a RN ¼ qRNþ1
þ

(
:

Setting

TuðyÞ ¼ � qv

qx
ð0; yÞ
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we have that the equation

�Dwþm2w ¼ 0 in RNþ1
þ

wð0; yÞ ¼ TuðyÞ ¼ � qv
qx
ð0; yÞ for y a RN

(

has the solution wðx; yÞ ¼ � qv
qx
ðx; yÞ. From this we have that

TðTuÞðyÞ ¼ � qw

qx
ð0; yÞ ¼ q2v

qx2
ð0; yÞ ¼ ð�Dyvþm2vÞð0; yÞ

and hence T 2 ¼ ð�Dy þm2Þ.
We will exploit this fact, and, in order to find solutions of (1.3) and to prove

their regularity, we will look (following [2], see also [3] where a problem on a
bounded domain is studied) for solutions of

�Dvþm2v ¼ 0 in RNþ1
þ

� qv
qx

¼ mvþ njvjp�2
vþ sðW � v2Þv on RN ¼ qRNþ1

þ

(
:

Our main result is the following

Theorem 1.6. Let p a
�
2; 2N

N�1

�
, m < m, n, sb 0 (but not both 0), W a LrðRNÞþ

LlðRNÞ, W b 0, r > N=2, WðxÞ ¼ ~WWðjxjÞ, ~WWðsÞ ! 0 as s ! þl.
Then equation (1.3) has a radially symmetric solution u a ClðRNÞ such that

0 < uðyÞaCe�djyj for any jyjbRð1:7Þ

where 0 < d < m� m, for mb 0 and d ¼ m for m < 0.

Notation. Let ðx; yÞ a R� RN . We have already introduced RNþ1
þ ¼ fðx; yÞ a

RNþ1 j x > 0g. With kukp we will always denote the norm of u a LpðRNþ1
þ Þ, with

kuk the norm of u a H 1ðRNþ1
þ Þ and with jvjp the LpðRNÞ norm of v a LpðRNÞ.

2. Variational setting

We recall that for all v a H 1ðRNþ1ÞBCl
0 ðRNþ1ÞZ

RN

jvð0; yÞjp dy ¼
Z
RN

dy

Z 0

þl

q

qx
jvðx; yÞjp dx

a p

Z
RNþ1

þ

jvðx; yÞjp�1 qv

qx
ðx; yÞ

����
����dx dy

a p

�Z
RNþ1
þ

jvðx; yÞj2ðp�1Þ
dx dy

�1=2�Z
RNþ1
þ

qv

qx
ðx; yÞ

����
����
2

dx dy

�1=2
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that is

jvð0; �Þjpp a pkvkp�1
2ðp�1Þ

qv

qx

����
����
2

;ð2:1Þ

which, by Sobolev embedding, is finite for all 2a 2ðp� 1Þa 2ðN þ 1Þ=
ððN þ 1Þ � 2Þ, that is 2a pa 2N

N�1 . By density of H 1ðRNþ1ÞBCl
0 ðRNþ1Þ in

H 1ðRNþ1
þ Þ such an estimates allows us to define the trace gðvÞ of v for all the func-

tions v a H 1ðRNþ1
þ Þ. The inequality

jgðvÞjpp a pkvkp�1
2ðp�1Þ

qv

qx

����
����
2

;ð2:2Þ

holds then for all v a H 1ðRNþ1
þ Þ.

It is known that traces of functions in H 1ðRNþ1
þ Þ belongs to H 1=2ðRNÞ and

that every function in H 1=2ðRNÞ is the trace of a function in H 1ðRNþ1
þ Þ.

Let us define, for all v a H 1ðRNþ1
þ Þ,

IðvÞ ¼ 1

2

ZZ
RNþ1
þ

ðj‘vj2 þm2v2Þ dx dy

�
Z
RN

� m

2
jgðvÞj2 þ n

p
jgðvÞjp þ s

4
ðW � gðvÞ2ÞgðvÞ2

	
dy

We have that, for all p a


2; 2N

N�1

�

jgðvÞjp a
ðp� 1Þ

p
kvk2ðp�1Þ þ k‘vk2 aCpkvkð2:3Þ

This is in fact equivalent to the well known fact that gðvÞ a H 1=2ðRNÞ ,!

LqðRNÞ provided q a


2; 2N

N�1

�
, and shows that the terms

Z
RN

jgðvÞj2 andZ
RN

jgðvÞjp in our functional are well defined since p a
�
2; 2N

N�1

�
.

From Young’s inequality we have that

jðW � gðvÞ2ÞgðvÞ2j1 a jW jrjgðvÞ
2j2q ¼ jW jrjgðvÞj

4
2q

1

r
þ 2

q
¼ 2:

Since gðvÞ a L2q for all 2q a ½2; 2N=ðN � 1Þ�, we have that the norm is finite pro-
vided W a Lr, r a ½N=2;þl�. Under our assumptions, W ¼ W1 þW2, W1 a Lr,
r > N=2, W2 a Ll. Hence

55existence of ground states for nonlinear schrödinger equations



Z
RN

ðW � gðvÞ2ÞgðvÞ2 dy ¼
Z
RN

ðW1 � gðvÞ2ÞgðvÞ2 dyð2:4Þ

þ
Z
RN

ðW2 � gðvÞ2ÞgðvÞ2 dy

a jW1jrjgðvÞj
4
4r=ð2r�1Þ þ jW2jljgðvÞj42

aCWkvk4 < þl

since 2a 4r=ð2r� 1Þ < 2N=ðN � 1Þ.
We will also need the following estimate:

Z
RN

jW � gðvÞ2jgðvÞj jm a

�Z
RN

jW � gðvÞ2jmq
	1=q�Z

RN

jgðvÞjmp
	1=p

aC
�Z

RN

jW jr
	m=r�Z

RN

jgðvÞj2s
	m=s�Z

RN

jgðvÞjmp
	1=p

where p�1 þ q�1 ¼ 1 and 1þ ðmqÞ�1 ¼ r�1 þ s�1. Setting mp ¼ a ¼ 2s we find
that 1þm�1 ¼ r�1 þ 3a�1 so that

jðW � gðvÞ2ÞgðvÞjm aCjW jrjgðvÞj
3
að2:5Þ

hence for a a


2; 2N

N�1

�
and r > N

2 we can take m a
�

2N
Nþ4 ;

2N
N�3

�
.

Let us remark here that from inequality (2.1) we also deduce that for all l > 0
we have Z

RN

jgðvÞjp a lp2

4

Z
RNþ1

þ

jvj2ðp�1Þ
dx dyþ 1

l

Z
RNþ1

þ

qv

qx

����
����
2

dx dy:ð2:6Þ

In particular, we have thatZ
RN

jgðvÞj2 a l

Z
RNþ1

þ

jvj2 dx dyþ 1

l

Z
RNþ1

þ

qv

qx

����
����
2

dx dy:ð2:7Þ

As an easy consequence of the above discussion, we have that

Proposition 2.8. The functional I is C1 on H 1ðRNþ1
þ Þ.

Let v a H 1ðRNþ1
þ Þ be a critical point for I , then for all w a H 1

ZZ
RNþ1
þ

ð‘v‘wþm2vwÞ dx dy

¼
Z
RN

ðmgðvÞgðwÞ þ njgðvÞjp�2gðvÞgðwÞ þ sðW � gðvÞ2ÞgðvÞgðwÞÞ dy

56 v. c. zelati and m. nolasco



and we say that v is a weak solution of

�Dvþm2v ¼ 0 in RNþ1
þ

� qv
qx

¼ mvþ njvjp�2
vþ sðW � v2Þv on RN ¼ qRNþ1

þ

(
:

3. Regularity of critical points

To show that critical points of I are (classical) solutions of

�Dvþm2v ¼ 0 in RNþ1
þ

� qv
qx

¼ mvþ njvjp�2
vþ sðW � v2Þv on RN ¼ qRNþ1

þ

(
ð3:1Þ

we are going to prove some regularity results for the critical points of I .

Theorem 3.2. Suppose that v a H 1ðRNþ1
þ Þ is a critical point for the functional I

on H 1ðRNþ1
þ Þ.

Then gðvÞ a LpðRNÞ for all p a ½2;þl� and v a LlðRNþ1
þ Þ.

Proof. We will follow a classical argument, see for example [2]. Since
v a H 1ðRNþ1

þ Þ is a critical point, we know that for all w a H 1ðRNþ1
þ Þ

ZZ
RNþ1

þ

ð‘v‘wþm2vwÞ dx dy

¼
Z
RN

ðmgðvÞgðwÞ þ njgðvÞjp�2gðvÞgðwÞ þ sðW � gðvÞ2ÞgðvÞgðwÞÞ dy:

Let w ¼ fb;T ¼ vv
2b
T where vT ¼ minfvþ;Tg and b > 0. We have that fb;T a

H 1ðRNþ1
þ Þ, fb;T b 0 and from 3I 0ðvÞ; fb;T4 ¼ 0 we deduce that (here we write v

for gðvÞ)
ZZ

RNþ1
þ

v
2b
T ðj‘vj2 þm2v2Þ dx dyþ

ZZ
DT

2bv2bT j‘vj2 dx dy

¼
Z
RN

ðmv2v2bT þ njvjp�2
v2v

2b
T þ sðW � v2Þv2v2bT Þ dy

where DT ¼ fðx; yÞ j vþðx; yÞaTg.
Since

ZZ
RNþ1

þ

j‘ðvvbTÞj
2
dx dy ¼

ZZ
RNþ1

þ

v
2b
T j‘vj2 dx dyþ

ZZ
DT

ð2b þ b2Þv2bT j‘vj2 dx dy
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we find that, for cb ¼ max
�

1
m2 ; 1þ b

2



> 0

kvvbTk
2 ¼

ZZ
RNþ1

þ

ðj‘ðvvbTÞj
2 þ ðvvbTÞ

2Þ dx dy

a cb

Z
RN

ðmv2v2bT þ njvjp�2
v2v

2b
T þ sðW � v2Þv2v2bT Þ dy:

By Young’s inequality:
If W1 a Lr with r a ðN=2;N�, we have, since gðvÞ2 a Lp with p�1 þ r�1 ¼

1þN�1, that W1 � gðvÞ2 a LN .
If W1 a Lr with r > N, we have, since gðvÞ2 a Lp with p�1 þ r�1 ¼ 1, that

W1 � gðvÞ2 a Ll.
Since gðvÞ2 a L1 and W2 a Ll we have that W2 � gðvÞ2 a Ll.
So in any case we have that, for some constant c1 > 0 and g1 a LNðRNÞ

ðW � gðvÞ2Þa c1 þ g1

We also have that

jgðvÞjp�2 ¼ jgðvÞjp�2
wfjvja1g þ jgðvÞjp�2

wfjvj>1g a 1þ g2

where g2 a LNðRNÞ. Indeed, if ðp� 2ÞN < 2 we have that

Z
RN

jgðvÞjNðp�2Þ
wfjvj>1g a

Z
RN

jgðvÞj2wfjvj>1g a

Z
RN

jgðvÞj2 < þl

while if 2a ðp� 2ÞN we have that ðp� 2ÞN a ½2; 2N=ðN � 1Þ�.
We have thus proved that, for some constant c and function g a LNðRNÞ,

gb 0 and independent of T and b,

mgðvÞ2gðvTÞ2b þ njgðvÞjp�2gðvÞ2gðvTÞ2b þ sðW � gðvÞ2ÞgðvÞ2gðvTÞ2b

a ðcþ gÞgðvÞ2gðvTÞ2b:

As a consequenceZZ
RNþ1
þ

j‘ðvvbTÞj
2 þ jvvbT j

2
a ccb

Z
RN

gðvÞ2gðvTÞ2b þ cb

Z
RN

ggðvÞ2gðvTÞ2b

and, using Fatou’s lemma and monotone convergence, we can pass to the limit as
T ! þl to getZZ

RNþ1
þ

j‘ðv1þb
þ Þj2 þ jv1þb

þ j2 a ccb

Z
RN

gðvþÞ2ð1þbÞ þ cb

Z
RN

ggðvþÞ2ð1þbÞ:ð3:3Þ

For any M > 0, let A1 ¼ fgaMg, A2 ¼ fg > Mg.
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ThenZ
RN

gv
2ð1þbÞ
þ a

Z
A1

gv
2ð1þbÞ
þ þ

Z
A2

gv
2ð1þbÞ
þ

aM

Z
A1

v
2ð1þbÞ
þ þ

�Z
A2

gN
	1=N�Z

A2

v
2Nð1þbÞ=ðN�1Þ
þ

	ðN�1Þ=N

aMjv1þb
þ j22 þ �ðMÞjv1þb

þ j22a

where we have set 2a¼ 2N=ðN � 1Þ. So we have that

kv1þb
þ k2 a cbðcþMÞjgðvþÞ1þbj22 þ cb�ðMÞjgðvþÞ1þbj22a:

Since by (2.3) jgðvþÞ1þbj2aaC2akv1þb
þ k we finally have (choosing M large so that

cb�ðMÞC2
2a < 1=2) that, for all weak solutions v,

kv1þb
þ k2 a 2cbðcþMÞjgðvþÞ1þbj22:ð3:4Þ

Remark that also M depends on b.
Using (2.3) we finally get that

jgðvþÞbþ1j22aa 2cbðcþMÞC2
2ajgðvþÞ

bþ1j22:ð3:5Þ

Then a bootstrap argument can start: since gðvþÞ a L2N=ðN�1Þ we can apply (3.5)

with b1 þ 1 ¼ N=ðN � 1Þ to deduce that gðvþÞ a Lðb1þ1Þ2N=ðN�1Þ ¼ L2N 2=ðN�1Þ2 .
We can then apply again (3.5) and, after k iterations, we deduce that gðvþÞ a
L2N k=ðN�1Þk and hence gðvþÞ a LpðRNÞ for all p a ½2;þlÞ.

The same is clearly true for gðv�Þ and hence for gðvÞ.
We will now show that actually v is bounded in RNþ1

þ and gðvÞ in RN .
We first of all observe that, since gðvÞ a Lp for all pb 2, then W � gðvÞ2 a Ll.

Indeed this was already the case for W2 � gðvÞ2, and for W1 � gðvÞ2 if W1 a Lr

with r > N. The fact that W1 � gðvÞ2 a Ll also when W1 a Lr with N=2 <
raN follows from Young’s inequality since we now know that gðvÞ2 a Lq,
q�1 þ r�1 ¼ 1 for all r a ðN=2;N�.

Then we remark that gðvÞðp�2Þ ¼ gðvÞp�2wfjgðvÞja1g þ gðvÞp�2wfjgðvÞj>1g and now

we have that gðvÞp�2
wfjgðvÞj>1g a L2N . As a consequence we have now that, for

some constant c and function g a L2NðRNÞ, gb 0 and independent of T and b,

mv2v
2b
T þ njvjp�2

v2v
2b
T þ sðW � v2Þv2v2bT a ðcþ gÞv2v2bT :

So we have that (3.3) holds for vþ but now g a L2N . SinceZ
gv

2ð1þbÞ
þ a jgj2N jv

1þb
þ j2jv

1þb
þ j2aa jgj2N

�
ljv1þb

þ j22 þ
1

l
jv1þb

þ j22a
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and

kv1þb
þ k2 a cbðcþ jgj2NlÞjv

1þb
þ j22 þ

cbjgj2N
l

jv1þb
þ j22a:ð3:6Þ

Taking l such that

cbjgj2N
l

C2
2a ¼ 1

2

we find that

jvbþ1
þ j22aa 2cbðcþ jgj2NlÞC2

2ajv
bþ1
þ j22 ¼ Mbjvbþ1

þ j22ð3:7Þ

and the advantage with respect to (3.5) is that now we control the dependence on
b of the constant Mb. Indeed

Mb aCc2b aCðm�2 þ 1þ bÞ2 aM 2
0 e

2
ffiffiffiffiffiffiffi
1þb

p
:

Write (3.7) as

jvþj2aðbþ1Þ aM
1=ð1þbÞ
0 e1=

ffiffiffiffiffiffiffi
1þb

p
jvþj2ðbþ1Þ:ð3:8Þ

The same bootstrap argument of before shows, choosing b0 ¼ 0, 2ðbnþ1 þ 1Þ ¼
2aðbn þ 1Þ, that u a L2ðbnþ1Þ implies u a L2aðbnþ1þ1Þ and

jvþj2að1þbnÞ aM
T

n

i¼0 1=ð1þbiÞ
0 eT

n

i¼0 1=
ffiffiffiffiffiffiffi
1þbi

p
jvþj2ðb0þ1Þ:

Since ð1þ bnÞ ¼ ð2a=2Þn ¼ ðN=ðN � 1ÞÞn we have that

Xl
i¼0

1

ð1þ biÞ
< þl;

Xl
i¼0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ bi

p < þl

and from this we deduce that

jvþjl ¼ lim
n!þl

jvþj2að1þbnÞ < þl:

We can use the fact that jvþjp aC < þl for all p in (3.6) (with l ¼ 1) to de-
duce that, for all b > 0,

kv1þb
þ k2 a cbðcþ jgj2NÞC2ð1þbÞ þ cbjgj2NC2ð1þbÞ:
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Since by Sobolev’s embedding kvþk1þb
2�ð1þbÞ ¼ kv1þb

þ k2� aC2�kv1þb
þ k we deduce

from the above inequality that

kvþk2ð1þbÞ
2�ð1þbÞ a ~cccbC

2ð1þbÞ:

Since ~cc1=2ð1þbÞc
1=2ð1þbÞ
b Ca c, as before we get that vþ a LlðRNþ1

þ Þ. r

Proposition 3.9. Suppose that v a H 1ðRNþ1
þ ÞBLlðRNþ1

þ Þ is a weak solution
of

�Dvþm2v ¼ 0 in RNþ1
þ

� qv
qx

¼ gðyÞ for all y a RN

(
ð3:10Þ

where g a LpðRNÞ for all p a ½2;þl�.
Then v a C0;að½0;þlÞ � RNÞBW 1;qðð0;RÞ � RNÞ for all q a ½2;þlÞ and

R > 0.
If, in addition, g a C aðRNÞ then v a C1;að½0;þlÞ � RNÞBC2ðRNþ1

þ Þ is a
classical solution of (3.10).

Proof. By a weak solution we mean a function v a H 1ðRNþ1
þ Þ such thatZZ

RNþ1
þ

ð‘v‘wþm2vwÞ dx dy ¼
Z
RN

gw dy for all w a H 1ðRNþ1
þ Þð3:11Þ

Following [2] we let

uðx; yÞ ¼
Z x

0

vðt; yÞ dt:

We clearly have that u a H 1ðð0;RÞ � RNÞ for all R > 0. We will show that u
satisfies ZZ

RNþ1
þ

ð‘u‘hþm2uh� ghÞ dx dy ¼ 0 for all h a C1
0 ðRNþ1

þ Þð3:12Þ

so that u is a weak solution of the Dirichlet problem

�Duþm2u ¼ g in RNþ1
þ

u ¼ 0 for all y a RN

(

where gðx; yÞ ¼ gðyÞ for all ðx; yÞ a RNþ1
þ .

Take any h a C1
0 ðRNþ1

þ Þ and set, for all tb 0 wtðx; yÞ ¼ hðxþ t; yÞ a
H 1ðRNþ1

þ Þ. From (3.11) we getZZ
RNþ1

þ

ð‘v‘wt þm2vwtÞ dx dy ¼
Z
RN

gwt dy for all h a C1
0 ðRNþ1

þ Þ; tb 0:

Integrating such an equation in t from 0 to þl we get that (3.12) holds.
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Indeed Z þl

0

dt

Z þl

0

dx

Z
RN

‘vðx; yÞ‘hðxþ t; yÞ dy

¼
Z þl

0

dx

Z þl

x

ds

Z
RN

‘vðx; yÞ‘hðs; yÞ dy

¼
Z þl

0

ds

Z s

0

dx

Z
RN

‘vðx; yÞ‘hðs; yÞ dy

¼
Z þl

0

ds

Z
RN

‘
�Z s

0

vðx; yÞ dx
	
‘hðs; yÞ dy:

Let us define uodd a H 1ðð�R;RÞ � RNÞ and godd a Lqðð�R;RÞ � RNÞ (for all
q a ½2;þl� and R > 0) setting

uoddðx; yÞ ¼
uðx; yÞ xb 0

�uð�x; yÞ x < 0

�
and goddðx; yÞ ¼

gðyÞ xb 0

�gðyÞ x < 0

�
:

It is easy to check thatZZ
RNþ1

ð‘uodd‘hþm2uoddh� goddhÞ dx dy ¼ 0 for all h a C1
0 ðRNþ1Þð3:13Þ

so that uodd is a weak solution of the Dirichlet problem

�Duodd þm2uodd ¼ godd in RNþ1:

Since godd a Lqðð�R;RÞ � RNÞ for all q a ½2;þl� and R > 0 we deduce by stan-
dard elliptic regularity that

uodd a W 2;qðð�R;RÞ � RNÞ for all q a ½2;þlÞ; R > 0

and hence by Sobolev’s embedding uodd a C1;aðRNþ1Þ for all a a ð0; 1Þ, u a
C1;að½0;þlÞ � RNÞ and vðx; yÞ ¼ q

qx
uðx; yÞ a C0;að½0;þlÞ � RNÞ.

If g a C aðRNÞ, we can apply classical elliptic boundary regularity for
Dirichlet problems and deduce that u a C2;að½0;þlÞ � RNÞ, showing that v a
C1;að½0;þlÞ � RNÞ. The last statement follows again from classical interior
elliptic regularity applied directly to v. r

Theorem 3.14. Suppose that v a H 1ðRNþ1
þ Þ is a strictly positive critical point for

the functional I on H 1ðRNþ1
þ Þ.

Then v a Clð½0;þlÞ � RNÞ and satisfies

�Dvþm2v ¼ 0 in RNþ1
þ

� qv
qx

¼ mvþ njvjp�2
vþ sðW � v2Þv on RN ¼ qRNþ1

þ

(
:ð3:15Þ

Moreover vðx; yÞelx ! 0, as xþ jyj ! þl, for any l < m.
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Proof. We know from Theorem 3.2 that gðvÞ a LqðRNÞ for all q a ½2;þl�.
Then also

gðyÞ ¼ mvþ njvjp�2
vþ sðW � v2Þv a LqðRNÞ for all q a ½2;þl�:

From Theorem 3.9 we then deduce that gðvÞ a C0;aðRNÞ, and then that g a
C0;aðRNÞ. Again Theorem 3.9 tells us that v is a classical solution. A bootstrap
argument allows to deduce that v a Clð½0;þlÞ � RNÞ.

To prove the decay at infinity, let us remark that v is a classical, bounded
solution of

�Dvþm2v ¼ 0 in RNþ1
þ

vð0; yÞC v0ðyÞ a L2ðRNÞ for y a RN ¼ qRNþ1
þ

(
:

Then by using the Fourier transform with respect to the variable y a RN we get

Fvðx; kÞ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2pkj2þm2

p
xFv0ðkÞ

and hence

sup
y ARN

jvðx; yÞjaCjv0j2e�mx:ð3:16Þ

Since by Theorem 3.9 v a W 1;qðð0;RÞ � RNÞ for all q a ½2;þlÞ and R > 0,
we have that vðx; yÞ ! 0 as jyj ! þl for any x and we conclude that
vðx; yÞelx ! 0, as xþ jyj ! þl, for any l < m. r

4. Existence of a critical point

We will look for solutions in the following space of symmetric functions

H 1
a¼ fu a H 1ðRNþ1

þ Þ j uðx;RyÞ ¼ uðx; yÞ for all R a OðNÞg:

We start by analyzing the geometric structure of the functional

Lemma 4.1. The functional I has the Mountain Pass structure, that is:

• Ið0Þ ¼ 0 and there exist r, a > 0 such that IðvÞb a > 0 for all kvk ¼ r;

• IðlvÞ ! �l as l ! þl for all v a H 1
a, gðvÞ2 0.

Proof. Using (2.7) with l ¼ m, (2.3) and (2.4) we have

IðvÞ ¼ 1

2

ZZ
RNþ1

þ

ðj‘vj2 þm2v2Þ dx dy

�
Z
RN

�m
2
jgðvÞj2 þ n

p
jgðvÞjp þ s

4
ðW � gðvÞ2ÞgðvÞ2

	
dy

b
1

2

ZZ
RNþ1

þ

��
1� m

m

	
j‘vj2 þmðm� mÞv2

	
dx dy� n

p
Cp

p kvk
p � s

4
CWkvk4:
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Hence we can find c > 0 such that

IðvÞb ckvk2 � n

p
Cp

p kvk
p � s

4
CWkvk4:

We immediately deduce that there exist r and a > 0 such that

IðvÞb a > 0 for all kvk ¼ r:

Moreover for v a H 1
a, gðvÞ2 0, it is immediate to check that IðlvÞ ! �l as

l ! þl. r

Lemma 4.2. The functional I satisfies the Palais-Smale condition, that is:
For all sequences vn a H 1

a such that IðvnÞ ! c and I 0ðvnÞ ! 0 there is a conver-
gent subsequence.

Proof. We have that

cþ 1þ kvnkb IðvnÞ �
1

2
3I 0ðvnÞ; vn4

¼
� n

2
� n

p

	Z
RN

jgðvnÞjp dyþ
� s

2
� s

4

	Z
RN

ðW � jgðvnÞj2ÞgðvnÞ2 dy:

We can then find c1; c2 > 0 such that

n

p

Z
RN

jgðvnÞjp dyþ
s

4

Z
RN

ðW � jgðvnÞj2ÞgðvnÞ2 dya c1kvnk þ c2:

It follows then from

cþ 1b IðvnÞb c0kvnk2 � c1kvnk � c2

that vn is bounded in H 1ðRNþ1
þ Þ. Then vn converges weakly to some v in H 1

a. We
want to prove that gðvnÞ ! gðvÞ strongly in LqðRNÞ for all q a

�
2; 2N

N�1

�
. Setting

wn ¼ vn � v, by (2.2) it is enough to prove that wn ! 0 strongly in L2ðq�1ÞðRNþ1
þ Þ.

Let us remark that also wn belongs to H 1
a.

By a result of P. L. Lions [12] (see also [14, Lemma 1.21]), it is enough to
prove that, for some r > 0,

sup
z ARNþ1

þ

Z
Bðz; rÞ

jwnj2 ! 0 as n ! þl:

Suppose this is not the case. Then there are r and a > 0 and a sequence
zn ¼ ðxn; ynÞ a RNþ1

þ such that (up to a subsequence)Z
Bðzn; rÞ

jwnj2 b a for all n a N:
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If zn is bounded, say zn ! z, we get a contradiction since from the compact-
ness of the embedding of H 1ðBðz; rÞÞ in L2ðBðz; rÞÞ we get that wn ! 0 strongly in
L2ðBðz; rÞÞ.

If zn ¼ ðxn; ynÞ is unbounded and jynj ! þl, we can find an increasing num-
ber kn of rotations Ri a OðNÞ such that

Bððxn;RiynÞ; rÞABððxn;RjynÞ; rÞ for iA j; i; j a f1; 2; . . . ; kng:

Then

Z
RNþ1

þ

ðj‘wnj2 þ w2
nÞb

Xkn
i¼1

Z
Bððxn;RiynÞ; rÞ

ðj‘wnj2 þ w2
nÞb kna ! þl

a contradiction.
So we can assume that xn ! þl and jynj bounded. We will show that in such

a case Z
Bðzn; rÞ

jvnj2 ! 0:

First of all let us remark that we can assume zn ¼ ðxn; 0Þ, eventually taking r
larger. Since, clearly Z

Bðzn; rÞ
jvj2 ! 0;

we will immediately deduce thatZ
Bðzn; rÞ

jvn � vj2 ! 0:

Let a be such that Z
Bðzn; rÞ

jvnj2 b a > 0:

For all n let mn a N be the smallest integer such thatZ
Cðzn; rþmn; rþmnþ1Þ

ðj‘vnj2 þ v2nÞ < a;

where Cðz; r1; r2Þ denotes the annulus of radii r1 < r2 and center z. Since vn is
bounded in H 1ðRNþ1

þ Þ,

mn a
1

a

Z
RNþ1

þ

ðj‘vnj2 þ v2nÞam:

We can assume that xn > rþmþ 1 for all n (so that Cn ¼ Cðzn; rþmn;
rþmn þ 1ÞHRNþ1

þ ), and that r > 2.
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Let fR : R ! ½0; 1� be defined as follows

fRðsÞ ¼
1 jsjaR

0 jsj > Rþ 1

linear elsewhere

8<
: :

We finally let cnðzÞ ¼ frþmn
ðjz� znjÞ. Since zn ¼ ðxn; 0Þ then cnvn a H 1

a, and
we have that

3I 0ðvnÞ; vncn4 ¼
Z
RNþ1

þ

ðj‘vnj2 þ v2nÞcn þ
Z
RNþ1

þ

vn‘vn‘cn

b a�
Z
Cn

j‘vnj jvnjb a� 1

2

Z
Cn

ðj‘vnj2 þ v2nÞb
a

2
;

a contradiction with the fact that j3I 0ðvnÞ; vncn4ja kI 0ðvnÞk kvncnk ! 0.
Hence wn ! 0 in L2ðq�1ÞðRNþ1

þ Þ, and gðvnÞ ! gðvÞ strongly in LqðRNÞ for all
q a

�
2; 2N

N�1

�
.

We can now prove strong convergence of vn ! v. (Here we write v for gðvÞ.)
For gðvÞ ¼ njvjp�2 þ sðW � v2Þ, using (2.7) as in Lemma 4.1 we have

�n b 3I 0ðvnÞ � I 0ðvÞ; vn � v4 ¼
ZZ

RNþ1
þ

ðj‘ðvn � vÞj2 þm2jvn � vj2Þ dx dy

� m

Z
RN

jvn � vj2 dy�
Z
RN

ðgðvnÞvn � gðvÞvÞðvn � vÞ dy

b

ZZ
RNþ1

þ

��
1� m

m

	
j‘ðvn � vÞj2 þmðm� mÞjvn � vj2

	
dx dy

� n

Z
RN

ðjvjp�1 þ jvnjp�1Þjvn � vjÞ dy

� s

Z
RN

ððW � v2Þjvj þ ðW � v2nÞjvnjÞjvn � vj dy:

As a consequence

ZZ
RNþ1

þ

ðj‘ðvn � vÞj2 þ jvn � vj2Þ dx dya �n

þ c1

Z
RN

ðjvjp�1 þ jvnjp�1Þjvn � vjÞ dy

þ c2

Z
RN

ððW � v2Þjvj þ ðW � v2nÞjvnjÞjvn � vj dy:
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By Hölder inequality we haveZ
RN

jvjp�1jvn � vj dya jvjp�1
p jvn � vjp;Z

RN

jvnjp�1jvn � vj dya jvnjp�1
p jvn � vjp:

In the termZ
RN

ðW � v2Þjvj jvn � vj ¼
Z
RN

ðW1 � v2Þjvj jvn � vj þ
Z
RN

ðW2 � v2Þjvj jvn � vj

involving convolutions we have to estimate the two integrals on the right hand
side separately. Take �R ¼ supfW2ðxÞ j jxjbRg. From our assumptions, �R ! 0

as R ! þl. Then W2wBð0;RÞ a LrðRNÞ and jW2wRNnBð0;RÞjl < �R (wE being the
characteristic function of the set E). This shows that we can always assume that
jW2jl < �R modifying W1. We take R so large that �Rc2d

3 < C2

4 , d being a bound
for the L2 norm of vn and C2 is given by (2.3).

Then

c2

Z
RN

ðW2 � v2Þjvj jvn � vj ¼ c2

Z
RN

v2ðW2 � ðjvj jvn � vjÞÞ

a c2jW2 � ðjvj jvn � vjÞjljvj22

a �Rc2jvj32 jvn � vj2 a �Rc2d
3jvn � vj2 a

1

4
kvn � vk:

Let us now estimate the term with W1. Recalling (2.5) for 1þm�1 ¼
r�1 þ 3q�1, we have

jðW1 � v2Þvjm aCjW1jrjvj
3
q

then choosing m ¼ q

q�1 (the Hölder conjugate of q) we get by Hölder inequalityZ
RN

ðW1 � v2Þjvj jvn � vj dya jðW1 � v2Þvjq 0 jvn � vjq aCjW1jrjvj
3
q jvn � vjq

where q ¼ 4r
2r�1 . AnalogouslyZ

RN

ðW1 � v2nÞjvnj jvn � vj dyaCjW1jrjvnj
3
q jvn � vjq:

Hence we getZZ
RNþ1

þ

ðj‘ðvn � vÞj2 þ jvn � vj2Þ dx dy

a �n þ c1jgðvnÞ � gðvÞjp þ c2jgðvnÞ � gðvÞjq þ
1

2
jgðvnÞ � gðvÞj2:
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Since 2a q ¼ 4r=ð2r� 1Þ < 2N=ðN � 1Þ, by the strong convergence of gðvnÞ !
gðvÞ in LsðRNÞ, for s a ð2; 2N=ðN � 1ÞÞ we may conclude that vn ! v strongly
in H 1ðRNþ1

þ Þ. r

Using the two above lemmas it follows immediately from the Mountain Pass
Lemma (see [1]) that

Theorem 4.3. There is a critical point v0 a H 1
a for the functional IðvÞ. Such a

critical point is a weak solution of (3.1).
Moreover v0 b 0.

Proof. By the Mountain Pass Theorem it follows immediately that there is a
critical point v0 for I on H 1

a. Since the problem under study is invariant by rota-
tion around the x-axis, follows from Palais principle of symmetric criticality [13]
that v0 is also a critical point for I on H 1ðRNþ1

þ Þ, and hence a weak solution of
(3.1).

From the mountain pass Theorem we know that

Iðv0Þ ¼ ca¼ inf
g AGa

max
t A ½0;1�

IðgðtÞÞ

where Ga¼ fg a Cð½0; 1�;H 1
aÞ j gð0Þ ¼ 0; Iðgð1ÞÞ < 0g.

To show that v0 b 0 we start by observing that, given any critical point w for I
on H 1ðRNþ1

þ Þ, the function l 7! IðlwÞ has only one strict maximum at l ¼ 1.
We then observe that IðjvjÞa IðvÞ for all v a H 1ðRNþ1

þ Þ.
As a consequence we have that for all l > 0, lA 1

Iðljv0jÞa Iðlv0Þ < Iðv0Þ:

The path l 7! ljv0j is in Ga and hence

caa sup
l>0

Iðljv0jÞa Iðv0Þ ¼ ca:

If jv0j is not a critical point, one can deform, using the gradient flow, the path
l 7! ljv0j into a path gðlÞ a Ga such that IðgðlÞÞ < ca for all l, a contradiction
with the definition of cawhich proves that there is always a non-negative critical
point at the mountain pass level. r

5. Properties of the Mountain Pass solution

Theorem 5.1. Suppose that v is the critical point of I found via Theorem 4.3.
Then vðx; yÞ > 0 in ½0;þlÞ � RN and, for any 0a a a ðm;mÞ, there exists

C > 0 such that

0 < vðx; yÞaCe�ðm�aÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
x2þjyj2

p
e�axð5:2Þ

for any ðx; yÞ a ½0;þlÞ � RN .

68 v. c. zelati and m. nolasco



Hence in particular

0 < vð0; yÞaCe�djyj for any y a RNð5:3Þ

where 0 < d < m� m, for mb 0 and d ¼ m for m < 0.

Proof. The strict positivity of v follows immediately from the maximum prin-
ciple: since vb 0, if vðx; yÞ ¼ 0, then x ¼ 0. From the equation we deduce that
qv
qn
ð0; yÞ ¼ 0 and we reach a contradiction applying the Hopf lemma.
For R > 0 let us define the following sets:

Bþ
R ¼ fðx; yÞ a RNþ1

þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ

p
jyj2 < Rg

Wþ
R ¼ fðx; yÞ a RNþ1

þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ

p
jyj2 > Rg

GR ¼ fð0; yÞ a qRNþ1
þ j jyjbRg

and the auxiliary function

fRðx; yÞ ¼ CRe
�axe�ðm�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
x2þjyj2

p
for ðx; yÞ a Wþ

R

with 0a a a ðm;mÞ and CR a positive constant to be fixed later.
We have

DfR ¼
�
a2 þ ðm� aÞ2 þ 2aðm� aÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ
p

jyj2
� Nðm� aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ
p

jyj2
	
fR

�DfR þm2fR b 0 in Wþ
R

� qfR
qx

¼ qfR
qn

¼ afRð0; yÞ on Gþ
R :

(

Let us define wðx; yÞ ¼ fRðx; yÞ � vðx; yÞ for ðx; yÞ a Wþ
R .

We have �Dwþm2wb 0 in Wþ
R and choosing CR ¼ emRmaxqBþ

R
v we get

wðx; yÞb 0 on qBþ
R and wðx; yÞ ! 0 as xþ jyj ! þl.

Now we claim that wðx; yÞb 0 in Wþ
R . Indeed, let us suppose by contrary that

inf
Wþ

R

w < 0:

By the strong maximum principle there exists ð0; y0Þ a GR such that

wð0; y0Þ ¼ inf
Wþ

R

w < wðx; yÞ for any ðx; yÞ a Wþ
R :

Let us define zðx; yÞ ¼ wðx; yÞelx for some l a ða;mÞ. By Theorem 3.14 we
have that zðx; yÞ ! 0 as xþ jyj ! þl and zðx; yÞb 0 on qBþ

R . Moreover,

�Dwþm2w ¼ e�lxð�Dzþ 2lqxzþ ðm2 � l2ÞzÞ

and we may conclude that �Dzþ 2lqxzþ ðm2 � l2Þzb 0.
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Then by the strong maximum principle infGR
z ¼ inf

Wþ
R
z < zðx; yÞ for all

ðx; yÞ a Wþ
R and hence zð0; y0Þ ¼ infGR

z ¼ infGR
w ¼ wð0; y0Þ < 0. Finally by

the Hopf lemma we may conclude that qz
qn
ð0; y0Þ < 0 and hence

qw

qn
ð0; y0Þ � lwð0; y0Þ < 0:

On the other hand,

qw

qn
ð0; yÞ ¼ afR � mv� gðvÞv on GR

where gðvÞ ¼ njgðvÞjp�2 þ sðW � gðvÞ2Þ. Hence

qw

qn
ð0; y0Þ � lwð0; y0Þ ¼ ða� lÞwð0; y0Þ þ ða� m� gðvÞðy0ÞÞvð0; y0Þ:

From our choiche of l follows that the term ða� lÞwð0; y0Þ > 0. Let us show
that also ða� m� gðvÞðy0ÞÞvð0; y0Þ is positive by showing that gðvÞðy0Þ is small
for R large enough.

Recalling that vð0; yÞ ! 0 as jyj ! þl and W ðyÞ ! 0 as jyj ! þl, we
have that for any � > 0 there exists R > 0 such that

sup
jyjbR

gðvÞðyÞa �

(to show that ðW � gðvÞ2Þðy0Þ ! 0 as jy0j ! þl, take r > 0 such that
supfW ðyÞ j jyj > rg < �=2. ThenZ

RN

W ðy0 � yÞv2ð0; yÞ dy ¼
Z
Bðy0;rÞ

W ðy0 � yÞv2ð0; yÞ dy

þ
Z
RNnBðy0;rÞ

W ðy0 � yÞv2ð0; yÞ dy

a jW jr
�Z

Bðy0;rÞ
v2r

0 ð0; yÞ dy
	1=r 0

þ �

2
jvj22

and the claim follows)
Therefore since l a ða;mÞ and 0a a a ðm;mÞ, taking 0 < ea a� m we get

qw

qn
ð0; y0Þ � lwð0; y0Þb 0

a contradiction. Namely, we get

0 < vðx; yÞa fRðx; yÞ ¼ CRe
�axe�ðm�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
x2þjyj2

p
for ðx; yÞ a Wþ

R :
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Hence setting 0 < d ¼ m� a we finally get

0 < vð0; yÞaCRe
�djyj for any jyjbR:

Since v is a regular solution, the theorem follows. r

Proof of Theorem 1.6. It is a direct consequence of Theorems 4.3, 3.14 and
5.1. r
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