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Abstract. — Motivated by the existence of radial solutions to the Neumann problem involving

the mean extrinsic curvature operator in Minkowski space

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

¼ gðjxj; vÞ in A;
qv

qn
¼ 0 on qA;

where 0aR1 < R2, A ¼ fx a RN : R1 a jxjaR2g and g : ½R1;R2� � R ! R is continuous, we

study the more general problem

½rN�1fðu 0Þ� 0 ¼ rN�1gðr; uÞ; u 0ðR1Þ ¼ 0 ¼ u 0ðR2Þ;

where f :¼ F 0 : ð�a; aÞ ! R is an increasing homeomorphism with fð0Þ ¼ 0 and the continuous

function F : ½�a; a� ! R is of class C 1 on ð�a; aÞ. The associated functional in the space of con-
tinuous functions over ½R1;R2� is the sum of a convex lower semicontinuous functional and of a

functional of class C 1. Using the critical point theory of Szulkin, we obtain various existence and
multiplicity results for several classes of nonlinearities. We also discuss the case of the periodic

problem.
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1. Introduction

This study is essentially motivated by the existence of radial solutions to the
Neumann problem involving the mean extrinsic curvature operator in Minkowski
space (see e.g. [3]):

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

¼ gðjxj; vÞ in A;
qv

qn
¼ 0 on qA;ð1Þ

where 0aR1 < R2, A ¼ fx a RN : R1 a jxjaR2g and g : ½R1;R2� � R ! R

is a continuous function. As usual, we have denoted by
qv

qn
the outward normal



derivative of v and j � j stands for the Euclidean norm in RN . Setting r ¼ jxj and
vðxÞ ¼ uðrÞ, the above problem (1) becomes

rN�1
� u 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u 02
p

�� �0
¼ rN�1gðr; uÞ; u 0ðR1Þ ¼ 0 ¼ u 0ðR2Þ;ð2Þ

and the solutions of (2) are classical radial solutions of (1).
In this paper we obtain existence results for the more general problem

½rN�1fðu 0Þ� 0 ¼ rN�1gðr; uÞ; u 0ðR1Þ ¼ 0 ¼ u 0ðR2Þ;ð3Þ

where f :¼ F 0 : ð�a; aÞ ! R is an increasing homeomorphism with fð0Þ ¼ 0 and
the continuous function F : ½�a; a� ! R is of class C1 on ð�a; aÞ and, without
loss of generality, we can assume that Fð0Þ ¼ 0. This kind of f is called singular

f-Laplacian. Note that for fðsÞ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p one takes FðsÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
.

Our approach is a variational one and relies on Szulkin’s critical point
theory [13]. Using a strategy inspired from [4], we show in Proposition 1 that u
is a solution of (3) provided that u is a critical point of the energy functional
I : C½R1;R2� ! ð�l;þl� defined by

IðuÞ ¼

Z R2

R1

rN�1Fðu 0Þ drþ
Z R2

R1

rN�1Gðr; uÞ dr; if u a K ;

þl; otherwise;

8<
:

where G : ½R1;R2� � R ! R is the primitive of g with respect to the second vari-
able and K ¼ fu a W 1;l½R1;R2� : ju 0ja a a:e: on ½R1;R2�g. The functional I has
the structure required by Szulkin’s critical point theory, i.e., it is the sum of a
proper convex, lower semicontinuous functional and of a C1 functional. In this
context, a critical point of I means a function u a K such that

Z R2

R1

rN�1½Fðv 0Þ �Fðu 0Þ� drþ
Z R2

R1

rN�1gðr; uÞðv� uÞ drb 0 for all v a K :

In Section 2 we introduce some notations and definitions and we prove the
above mentioned Proposition 1. Notice that, in contrast to [4], we replace some
auxiliary result based upon Leray-Schauder theory by an elementary argument
(Lemma 1) and obtain in this way a purely variational treatment of our problem.
A similar methodology can be applied to obtain pure variational proofs of the
results on periodic solutions in [5, 6, 12].

Section 3 deals with minimization problems for I based upon the fact that if
there exists r > 0 such that

inf IðuÞ : u a K ;

Z R2

R1

rN�1u dr

����
����a r

� �
¼ inf

K
I ;
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then I is bounded from below and attains its infimum at some u, which solves
problem (3) (Lemma 2). Theorem 1 from [4] is then an immediate consequence
of this result (Corrollary 1). We also prove (Theorem 1) that if g is such that

lim inf
jxj!l

Gðr; xÞ > 0; uniformly in r a ½R1;R2�;

then (3) has at least one solution u which minimizes I on C.
The same is also true if g is bounded and

lim
jxj!l

Z R2

R1

rN�1Gðr; xÞ dr ¼ þl

(Theorem 2). On the other hand, if Gðr; �Þ is convex for any r a ½R1;R2�, then (3)
has at least one solution if and only if the function

x 7!
Z R2

R1

rN�1gðr; xÞ dr

has at least one zero, or, equivalently, the real convex function

x 7!
Z R2

R1

rN�1Gðr; xÞ dr

has a minimum (Theorem 3).
In Section 4 we derive some properties of the (PS)–sequences (Lemma 3) and

we show that if g is bounded and

lim
jxj!l

Z R2

R1

rN�1Gðr; xÞ dr ¼ �l;

then (3) has at least one solution u which is a saddle point of I (Theorem 4). As
in Section 3, if g is not necessarily bounded but the above condition upon G is
replaced with the following more restrictive assumption

lim
jxj!l

Gðr; xÞ ¼ �l; uniformly in r a ½R1;R2�;

then the same result holds true (Theorem 5).
In Section 5 we consider the problem

½rN�1fðu 0Þ� 0 ¼ rN�1½ljujm�2
u� f ðr; uÞ�; u 0ðR1Þ ¼ 0 ¼ u 0ðR2Þ;ð4Þ

where l > 0 and mb 2 are fixed real numbers and f : ½R1;R2� � R ! R is a con-
tinuous function satisfying the classical Ambrosetti–Rabinowitz condition: there
exists y > m and x0 > 0 such that

0 < yF ðr; xÞa xf ðr; xÞ for all r a ½R1;R2� and jxjb x0:
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We also assume that

lim sup
jxj!0

mFðr; xÞ
jxjm < l uniformly in r a ½R1;R2�;

and prove that under these assumptions, problem (4) has at least one solution u
which is a mountain pass critical point of the corresponding I (Theorem 6).

Section 6 is devoted to the periodic problem

½fðu 0Þ� 0 ¼ gðr; uÞ; uðR1Þ � uðR2Þ ¼ 0 ¼ u 0ðR1Þ � u 0ðR2Þ:ð5Þ

Here we discuss the manner in which the above results for problems (3) and (4)
can be transposed for problem (5).

2. The functional framework

In what follows, we assume thatF : ½�a; a� ! R satisfies the following hypothesis:

Fð0Þ ¼ 0; F is continuous; of class C1 on ð�a; aÞ; withðHFÞ
f :¼ F 0 : ð�a; aÞ ! R an increasing homeomorphism such that fð0Þ ¼ 0:

Clearly, F is strictly convex and FðxÞb 0 for all x a ½�a; a�.
Given 0aR1 < R2 and g : ½R1;R2� � R ! R a continuous function, we denote

by G : ½R1;R2� � R ! R the indefinite integral of g, i.e.,

Gðr; xÞ :¼
Z x

0

gðr; xÞ dx; ðr; xÞ a ½R1;R2� � R:

We set C :¼ C½R1;R2�, L1 :¼ L1ðR1;R2Þ, Ll :¼ LlðR1;R2Þ and W 1;l :¼
W 1;lðR1;R2Þ. The usual norm k � kl is considered on C and Ll. The space
W 1;l is endowed with the norm

kvk ¼ kvkl þ kv 0kl; v a W 1;l:

Denoting

L1
N�1 :¼ v : ðR1;R2Þ ! R measurable :

Z R2

R1

rN�1jvðrÞj dr < þl

� �
;

each v a L1
N�1 can be written vðrÞ ¼ vþ ~vvðrÞ, with

v :¼ N

RN
2 � RN

1

Z R2

R1

vðrÞ rN�1 dr;

Z R2

R1

~vvðrÞ rN�1 dr ¼ 0:

If v a W 1;l then ~vv vanishes at some r0 a ðR1;R2Þ and

j~vvðrÞj ¼ j~vvðrÞ � ~vvðr0Þja
Z R2

R1

jv 0ðtÞj dta ðR2 � R1Þkv 0kl;
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so, one has that

k~vvkla ðR2 � R1Þkv 0kl:ð6Þ

Putting

K :¼ fv a W 1;l : kv 0kla ag;

it is clear that K is a convex subset of W 1;l.
Let C : C ! ð�l;þl� be defined by

CðvÞ ¼ jðvÞ; if v a K ;

þl; otherwise;

�

where j : K ! R is given by

jðvÞ ¼
Z R2

R1

rN�1Fðv 0Þ dr; v a K :

Obviously, C is proper and convex. On the other hand, as shown in [4], we have
that if fungHK and u a C are such that unðrÞ ! uðrÞ for all r a ½R1;R2�, then
u a K and

jðuÞa lim inf
n!l

jðunÞ:ð7Þ

This implies that C is lower semicontinuous on C. Also, note that K is closed
in C.

Next, let G : C ! R be defined by

GðuÞ ¼
Z R2

R1

rN�1Gðr; uÞ dr; u a C:

A standard reasoning (also see [9, Remark 2.7]) shows that G is of class C1 on C
and its derivative is given by

3G 0ðuÞ; v4 ¼
Z R2

R1

rN�1gðr; uÞv dr; u; v a C:

The functional I : C ! ð�l;þl� defined by

I ¼ Cþ Gð8Þ

has the structure required by Szulkin’s critical point theory [13]. Accordingly, a
function u a C is a critical point of I if u a K and it satisfies the inequality

CðvÞ �CðuÞ þ 3G 0ðuÞ; v� u4b 0 for all v a C;
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or, equivalently

Z R2

R1

rN�1½Fðv 0Þ �Fðu 0Þ� drþ
Z R2

R1

rN�1gðr; uÞðv� uÞ drb 0 for all v a K :

Now, we consider the Neumann boundary value problem (3) under the
basic hypothesis ðHFÞ. Recall that by a solution of (3) we mean a function
u a C1½R1;R2�, such that ku 0kl < a, fðu 0Þ is di¤erentiable and (3) is satisfied.

Lemma 1. For every f a C, problem

½rN�1fðu 0Þ� 0 ¼ rN�1½uþ f �; u 0ðR1Þ ¼ 0 ¼ u 0ðR2Þð9Þ

has a unique solution uf , which is also the unique solution of the variational in-
equality

Z R2

R1

rN�1½Fðv 0Þ �Fðu 0Þ þ uðv� uÞ þ f ðv� uÞ� drb 0 for all v a K ;ð10Þ

and the unique minimum over K of the strictly convex functional J defined by

JðuÞ ¼
Z R2

R1

rN�1 Fðu 0Þ þ u2

2
þ fu

� �
dr:ð11Þ

Proof. Problem (9) is equivalent to finding u ¼ uþ ~uu with u and ~uu solutions of

½rN�1fð~uu 0Þ� 0 ¼ rN�1~ff ; ~uu 0ðR1Þ ¼ 0 ¼ ~uu 0ðR2Þ;

u ¼ �f ;

Z R2

R1

rN�1~uuðrÞ dr ¼ 0:

8><
>:ð12Þ

Now the first equation gives, using the first boundary condition,

~uu 0ðrÞ ¼ f�1 r1�N

Z r

R1

sN�1~ff ðsÞ ds
� �

:ð13Þ

From (13) we get

k~uu 0kl < a; ~uu 0ðR2Þ ¼ f�1 R1�N
2

Z R2

R1

sN�1~ff ðsÞ ds
� �

¼ f�1ð0Þ ¼ 0:

Then the unique solution of (13) is given by

~uuðrÞ ¼ cþ
Z r

R1

f�1 t1�N

Z t

R1

sN�1~ff ðsÞ ds
� �

dt;ð14Þ
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where

c ¼ � N

RN
2 � RN

1

Z R2

R1

rN�1

Z r

R1

f�1 t1�N

Z t

R1

sN�1~ff ðsÞ ds
� �

dt dr:ð15Þ

The unique solution uf ¼ uþ ~uu of (9) follows from (12), (14) and (15).
Now, if u is a solution of (9), then, taking v a K , multiplying each member of

the di¤erential equation by v� u, integrating over ½R1;R2�, and using integration
by parts and the boundary conditions, we getZ R2

R1

rN�1½fðu 0Þðv 0 � u 0Þ þ uðv� uÞ þ f ðv� uÞ� dr ¼ 0;

which gives (10) if we use the convexity inequality for F

Fðv 0Þ �Fðu 0Þb fðu 0Þðv 0 � u 0Þ:

The inequality
v2

2
� u2

2
b uðv� uÞ introduced in (10) implies that

Z R2

R1

rN�1 Fðv 0Þ �Fðu 0Þ þ v2

2
þ fv� u2

2
� fu

� �
drb 0 for all v a K ;

which shows that J has a minimum on K at u. Conversely if it is the case, then,
for all l a ð0; 1� and all v a K , we get

Z R2

R1

rN�1 F½ð1� lÞu 0 þ lv 0� þ ½ð1� lÞuþ lv�2

2
þ f ½ð1� lÞuþ lv�

( )
dr

b

Z R2

R1

rN�1 Fðu 0Þ þ u2

2
þ fu

� �
dr;

which, using the convexity of F, simplifying, dividing both members by l and
letting l ! 0þ, gives the variational inequality (10). Thus solving (10) is equi-
valent to minimizing (11) over K . Now, it is straightforward to check that J is
strictly convex over K and therefore has a unique minimum there, which gives
the required uniqueness conclusions of Lemma 1. r

Proposition 1. If u is a critical point of I , then u is a solution of problem (3).

Proof. We set

fu :¼ gð�; uÞ � u a C

and consider the problem

½rN�1fðw 0Þ� 0 ¼ rN�1½wþ fuðrÞ�; w 0ðR1Þ ¼ 0 ¼ w 0ðR2Þ:ð16Þ
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By virtue of Lemma 1, problem (16) has an unique solution ûu and it is also the
unique solution of

Z R2

R1

rN�1½Fðv 0Þ �Fðûu 0Þ þ ûuðv� ûuÞ þ fuðrÞðv� ûuÞ� drb 0 for all v a K :ð17Þ

Since u is a critical point of I , we infer that

Z R2

R1

rN�1½Fðv 0Þ �Fðu 0Þ þ uðv� uÞ þ fuðrÞðv� uÞ� drb 0 for all v a K :ð18Þ

It follows by uniqueness that u ¼ ûu. Hence, u solves problem (3). r

3. Ground state solutions

We begin by a lemma which is the main tool for the minimization problems in
this section. With this aim, for any r > 0, set

K̂Kr :¼ fu a K : juja rg:

Lemma 2. Assume that there is some r > 0 such that

inf
K̂Kr

I ¼ inf
K

I :ð19Þ

Then I is bounded from below on C and attains its infimum at some u a K̂Kr, which
solves problem (3).

Proof. By virtue of (19) and inf
C

I ¼ inf
K

I , it su‰ces to prove that there is some
u a K̂Kr such that

IðuÞ ¼ inf
K̂Kr

I :ð20Þ

Then, we get that u is a minimum point of I on C and, on account of [13,
Proposition 1.1], is a critical point of I . The proof will be accomplished by virtue
of Proposition 1.

If v a K̂Kr then, using (6) we obtain

jvðrÞja jvj þ j~vvðrÞja rþ ðR2 � R1Þa:

This, together with kv 0kl a a show that K̂Kr is bounded in W 1;l and, by the com-
pactness of the embedding W 1;l HC, the set K̂Kr is relatively compact in C. Let
fungH K̂Kr be a minimizing sequence for I . Passing to a subsequence if necessary
and using [4, Lemma 1], we may assume that fung converges uniformly to some
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u a K . It is easily seen that actually u a K̂Kr. From (7) and the continuity of G on
C, we obtain

IðuÞa lim inf
n!l

IðunÞ ¼ lim
n!l

IðunÞ ¼ inf
K̂Kr

I ;

showing that (20) holds true. r

The following result is proved in [4, Theorem 1].

Corollary 1. Let f : ½R1;R2� � R! R be continuous and F : ½R1;R2� �R! R
be defined by

F ðr; xÞ :¼
Z x

0

f ðr; xÞ dx; ðr; xÞ a ½R1;R2� � R:

If there is some o > 0 such that Fðr; xÞ ¼ F ðr; xþ oÞ for all ðr; xÞ a ½R1;R2� � R,
then, for any h a C with h ¼ 0, the problem

½rN�1fðu 0Þ� 0 ¼ rN�1½ f ðr; uÞ þ hðrÞ�; u 0ðR1Þ ¼ 0 ¼ u 0ðR2Þ;

has at least one solution u a K̂Ko which is a minimizer of the corresponding energy
functional I on C.

Proof. We have

Gðr; xÞ ¼ F ðr; xÞ þ hðrÞx; ðr; xÞ a ½R1;R2� � R:

Due to the o-periodicity of Fðr; �Þ and because of h ¼ 0, it holds

Iðvþ joÞ ¼ IðvÞ for all v a K and j a Z:

Then, the conclusion follows from the equality

fIðvÞ : v a Kg ¼ fIðvÞ : v a K̂Kog

and Lemma 2. r

Theorem 1. If g : ½R1;R2� � R ! R is a continuous function such that

lim inf
jxj!l

Gðr; xÞ > 0; uniformly in r a ½R1;R2�;ð21Þ

then (3) has at least one solution which minimizes I on C.

Proof. Using (6) and (21) it follows that there exists r > 0 such that

Gðr; uÞ > 0

for any u a K such that juj > r. It follows that IðuÞ > 0 provided that u a K and
juj > r. The proof follows from Lemma 2, as Ið0Þ ¼ 0. r
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Remark 1. An easy adaptation of the techniques in Section 2.3 of [7] shows
that the Neumann problem for the p-Laplacian ðp > 1Þ on a bounded domain
WHRN

divðj‘vjp�2‘vÞ ¼ gðx; vÞ in W;
qu

qn
¼ 0 on qW,

with g : W� R ! R continuous has at least one strong solution if

lim inf
juj!l

Gðx; uÞ
jujp > 0; uniformly in x a W;

a condition of the type already introduced by Hammerstein [8] for the Laplacian
with Dirichlet conditions. For the radial solutions of (1), Theorem 1 shows that it
is su‰cient that such a condition holds with p ¼ 0.

Example 1. The Neumann problem

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

¼ vþ hðjxjÞ
1þ ½vþ hðjxjÞ�2

þ cos v in A;
qv

qn
¼ 0 on qA;

has at least one radial solution for all h a C.

Theorem 2. Let g : ½R1;R2� � R ! R be a continuous function and l a L1
N�1 be

such that

jgðr; xÞja lðrÞð22Þ

for a.e. r a ðR1;R2Þ and all x a R. If

lim
jxj!l

Z R2

R1

rN�1Gðr; xÞ dr ¼ þl;ð23Þ

then (3) has at least one solution which minimizes I on C.

Proof. We shall apply Lemma 2. For arbitrary u a K , using (6) and (22), we
estimate I as follows.

IðuÞ ¼
Z R2

R1

rN�1Fðu 0Þ drþ
Z R2

R1

rN�1Gðr; uÞ dr

b

Z R2

R1

rN�1Gðr; uÞ drþ
Z R2

R1

rN�1½Gðr; uÞ � Gðr; uÞ� dr

¼
Z R2

R1

rN�1Gðr; uÞ drþ
Z R2

R1

rN�1

Z 1

0

gðr; uþ s~uuÞ~uu ds dr

b

Z R2

R1

rN�1Gðr; uÞ dr� aðR2 � R1Þ
Z R2

R1

rN�1lðrÞ dr:
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From (23) we can find r > 0 such that IðuÞ > 0 provided that juj > r. As by ðHFÞ
we know that Fð0Þ ¼ 0, one has Ið0Þ ¼ 0. Therefore, (19) is fulfilled and the
proof is complete. r

Remark 2. Condition (23) is of the type introduced by Ahmad-Lazer-Paul [1]
for the Laplacian with Dirichlet conditions. The reader will observe that the con-
clusion of Theorem 2 still remains true if (23) is replaced by the weaker but more
technical condition

lim inf
jxj!l

Z R2

R1

rN�1Gðr; xÞ dr > aðR2 � R1Þ
Z R2

R1

rN�1lðrÞ dr:

Example 2. For every h a C such that �p

2
< h <

p

2
, the Neumann problem

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

� arctan v� cos v ¼ hðjxjÞ in A;
qv

qn
¼ 0 on qA;

has at least one radial solution.

Theorem 3. Let g : ½R1;R2� � R ! R be a continuous function such that Gðr; �Þ
is convex for all r a ½R1;R2�. Then, problem (3) has at least one solution if and only
if there is some c a R such that

Z R2

R1

rN�1gðr; cÞ dr ¼ 0:ð24Þ

Proof. Define

G : R ! R; x 7!
Z R2

R1

rN�1Gðr; xÞ dr

and note that

G 0ðxÞ ¼
Z R2

R1

rN�1gðr; xÞ dr for all x a R:

Let us assume that (3) has a solution u. Clearly, we have

Z R2

R1

rN�1gðr; uÞ dr ¼ 0:ð25Þ

On account of the convexity of Gðr; �Þ, the function gðr; �Þ : R ! R is nondecreas-
ing for any r a ½R1;R2�. Hence,

gðr;�kuklÞa gðr; uðrÞÞa gðr; kuklÞ for all r a ½R1;R2�:ð26Þ
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From (25) and (26) we infer

G 0ð�kuklÞa 0aG 0ðkuklÞ:

Then, by the continuity of G 0 there exists c a R such that (24) holds true.
Reciprocally, assume that there exists c a R such that G 0ðcÞ ¼ 0. Using the

fact that G 0 is nondecreasing, we have to consider the following three cases.
(i) It holds

G 0ðxÞ ¼ G 0ðcÞ ¼ 0 for all xb c:

This implies that

gðr; xÞ ¼ gðr; cÞ for all r a ½R1;R2� and xb c:

Let v be a solution of the problem

½rN�1fðw 0Þ� 0 ¼ rN�1gðr; cÞ; w 0ðR1Þ ¼ 0 ¼ w 0ðR2Þ;

we know that this exists by Theorem 2.3 in [3]. Setting u ¼ cþ kvkl þ v, we get
that u solves problem (3).

(ii) One has that

G 0ðxÞ ¼ G 0ðcÞ ¼ 0 for all xa c:

In this case the reasoning is similar to that in the case (i).
(iii) There are x1; x2 a R with x1 < c < x2 and G 0ðx1Þ < 0 < G 0ðx2Þ. If xb x2,

then

GðxÞ ¼ Gðx2Þ þ
Z R2

R1

rN�1
�Z x

x2

gðr; tÞ dt
�
dr

bGðx2Þ þ ðx� x2ÞG 0ðx2Þ:

It follows that GðxÞ ! þl when x ! þl. Analogously GðxÞ ! þl when
x ! �l. Hence,

lim
jxj!l

GðxÞ ¼ þl:ð27Þ

On the other hand, by the convexity of Gðr; �Þ, we have

Gðr; uÞb 2G
�
r;
u

2

�
� Gðr;�~uuÞ for all r a ½R1;R2�;

which gives

IðuÞb
Z R2

R1

rN�1Fðu 0Þ drþ 2G
� u

2

�
�
Z R2

R1

rN�1Gðr; ~uuÞ dr for all u a K :ð28Þ
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The estimate (28) together with (6) and (27) show that we can find r > 0 such that
IðuÞ > 0 provided that u a K and juj > r. Then, the proof follows from Lemma 2
as in the proof of Theorem 2. r

Remark 3. Theorem 3 can be stated equivalently as: Let g : ½R1;R2� � R ! R
be a continuous function such that Gðr; �Þ is convex for all r a ½R1;R2�. Then,
problem (3) has at least one solution if and only if the real convex function

x 7!
Z R2

R1

rN�1Gðr; xÞ dr has a minimum. Corresponding results for the Laplacian

with Neumann or Dirichlet boundary conditions have been given in [10] and [11].

Example 3. The Neumann problem with h a C

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

¼ arctan v� hðjxjÞ in A;
qv

qn
¼ 0 on qA;

has at least one radial solution if and only if � p

2
< h <

p

2
.

Example 4. The Neumann problem with h a C

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

¼ arctan vþ � hðjxjÞ in A;
qv

qn
¼ 0 on qA;

has at least one radial solution if and only if 0a h <
p

2
.

Example 5. The Neumann problem with h a C

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

¼ ev � hðjxjÞ in A;
qv

qn
¼ 0 on qA;

has at least one radial solution if and only if h > 0.

4. (PS)–sequences and Saddle Point solutions

Towards the application of the minimax results obtained in Szulkin [13] to the
functional I defined by (8) we have to know when I satisfies the compactness
Palais-Smale (in short, (PS)) condition.

Viewing our functional framework from Section 2, we say that a sequence
fungHK is a (PS)–sequence if IðunÞ ! c a R and

Z R2

R1

rN�1½Fðv 0Þ �Fðu 0
nÞ þ gðr; unÞðv� unÞ� drð29Þ

b�enkv� unkl for all v a K ;
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where en ! 0þ. According to [13], the functional I is said to satisfy the (PS)
condition if any (PS)–sequence has a convergent subsequence in C.

The lemma below provides useful properties of the (PS)–sequences.

Lemma 3. Let fung be a (PS)–sequence. Then the following hold true:

(i) the sequence

Z R2

R1

rN�1Gðr; unÞ dr
� �

is bounded;

(ii) if fung is bounded, then fung has a convergent subsequence in C;
(iii) one has that

�en a

Z R2

R1

rN�1gðr; unÞ dra en for all n a N:ð30Þ

Proof. (i) This is immediate from the fact that fIðunÞg and F are bounded.
(ii) From (6) and un a K , the sequence f~uung is bounded in W 1;l. By the com-

pactness of the embedding W 1;lHC, we deduce that f~uung has a convergent
subsequence in C. Using then the boundedness of fungHR it follows that fung
has a convergent subsequence in C.

(iii) Taking v ¼ un e 1 in (29) one obtains (30). r

Theorem 4. Let g : ½R1;R2� � R ! R be a continuous function and l a L1
N�1 be

such that (22) is satisfied for a.e. r a ðR1;R2Þ and all x a R. If

lim
jxj!l

Z R2

R1

rN�1Gðr; xÞ dr ¼ �l;ð31Þ

then (3) has at least one solution.

Proof. We shall apply the Saddle Point Theorem [13, Theorem 3.5].
From (31) the functional I is not bounded from below. Indeed, if v ¼ c a R is

a constant function then

IðcÞ ¼
Z R2

R1

rN�1Gðr; cÞ dr ! �l as jcj ! l:ð32Þ

We split C ¼ RaX , where X ¼ fv a C : v ¼ 0g. Note that

IðvÞb
Z R2

R1

rN�1Gðr; ~vvÞ dr for all v a KBX ;

which together with (6) imply that there is a constant a a R such that

IðvÞb a for all v a X :ð33Þ
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Using (32) and (33) we can find some R > 0 so that

sup
SR

I < inf
X

I ;

where SR ¼ fc a R : jcj ¼ Rg.
It remains to show that I satisfies the (PS) condition. Let fungHK be a (PS)–

sequence. Since fIðunÞg, fjðunÞg are bounded and, by (22) we haveZ R2

R1

rN�1½Gðr; unÞ � Gðr; unÞ� dr
����

����a
Z R2

R1

rN�1

Z 1

0

jgðr; un þ s~uunÞ~uunj ds dr

a aðR2 � R1Þ
Z R2

R1

rN�1lðrÞ dr;

from

IðunÞ ¼ jðunÞ þ
Z R2

R1

rN�1Gðr; unÞ drþ
Z R2

R1

rN�1½Gðr; unÞ � Gðr; unÞ� dr

it follows that there exists a constant b a R such thatZ R2

R1

rN�1Gðr; unÞ drb b:

Then by (31) the sequence fung is bounded and Lemma 3 (ii) ensures that fung
has a convergent subsequence in C. Consequently, I satisfies the (PS) condition
and the conclusion follows from [13, Theorem 3.5] and Proposition 1. r

Remark 4. Condition (31), also of the Ahmad-Lazer-Paul type [1] is, in some
sense, ‘dual’ to condition (23).

Example 6. For every h a C such that �p

2
< h <

p

2
, the Neumann problem

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

þ arctan vþ cos v ¼ hðjxjÞ in A;
qv

qn
¼ 0 on qA;

has at least one radial solution.

Theorem 5. If g : ½R1;R2� � R ! R is a continuous function such that

lim
jxj!l

Gðr; xÞ ¼ �l; uniformly in r a ½R1;R2�;ð34Þ

then (3) has at least one solution.

Proof. We keep the notations introduced in the proof of Theorem 4. Clearly,
(34) implies (31) and from the proof of Theorem 4 it follows that I has the geom-
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etry required by the Saddle Point Theorem. To show that I satisfies the (PS) con-
dition, let fungHK be a (PS)–sequence. If fjunjg is not bounded, we may assume
going if necessary to a subsequence, that junj ! l. Using (6) and (34) we deduce
that

Gðr; unðrÞÞ ! �l; uniformly in r a ½R1;R2�:

This implies Z R2

R1

rN�1Gðr; unÞ dr ! �l;

contradicting Lemma 3 (i). Hence, fung is bounded and by Lemma 3 (ii), the
sequence fung has a convergent subsequence in C. Therefore, I satisfies the (PS)
condition. The proof is complete. r

Remark 5. No result corresponding to Theorem 5 holds for the Laplacian with
Neumann (or Dirichlet) boundary conditions. Indeed, if lk is a positive eigen-
value of �D on some bounded domain WHRN with Neumann boundary condi-
tions, and jk a corresponding eigenfunction, the problem

Dv ¼ �lkvþ jkðxÞ in W;
qv

qn
¼ 0 on qW

has no solution, but �lk
u2

2
þ jkðxÞu ! �l uniformly in W when juj ! l.

Example 7. The Neumann problem

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

þ vþ hðjxjÞ
1þ ½vþ hðjxjÞ�2

¼ cos v in A;
qv

qn
¼ 0 on qA;

has at least one radial solution for all h a C.

5. Mountain Pass solutions

In this section we consider problem (4) with l > 0 and mb 2 fixed real num-
bers, and f : ½R1;R2� � R ! R a continuous function satisfying the Ambrosetti–
Rabinowitz condition [2]:

There exists y > m and x0 > 0 such thatðARÞ
0 < yF ðr; xÞa xf ðr; xÞ for all r a ½R1;R2� and jxjb x0:

Note that for problem (4) the function g from the general functional frame-
work in Section 2 is now defined in terms of f by

gðr; xÞ ¼ ljxjm�2
x� f ðr; xÞ for all ðr; xÞ a ½R1;R2� � R
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and accordingly, G entering in the definition of the energy functional I becomes

Gðr; xÞ ¼ l
jxjm

m
� F ðr; xÞ for all ðr; xÞ a ½R1;R2� � R:

Lemma 4. Let pb 1 be a real number. Then

juðrÞjp b jujp � paðR2 � R1Þjujp�1; Eu a K ; Er a ½R1;R2�ð35Þ

and there are constants a1; a2 b 0 such that

juðrÞjp a jujp þ a1jujp�1 þ a2; Eu a K with jujb 1; Er a ½R1;R2�:ð36Þ

Proof. The result is trivial for p ¼ 1. If p > 1, u a K and r a ½R1;R2�, then,
using the convexity of the di¤erentiable function s 7! jsjp, we get

juðrÞjp ¼ juþ ~uuðrÞjp b jujp þ pjujp�2
u~uuðrÞ

b jujp � pjujp�1ðR2 � R1Þa:

On the other hand, denoting by ~pp the smallest integer larger or equal to p and
letting M :¼ aðR2 � R1Þ, we have, for all r a ½R1;R2�,

juðrÞjp ¼ juþ ~uuðrÞjp a ðjuj þMÞp ¼ jujp
�
1þM

juj

�p

a jujp
�
1þM

juj

� ~pp

¼ jujp
�
1þ

X~pp

k¼1

~pp!

k!ð~pp� kÞ!
Mk

jujk
�

¼ jujp þ
X~pp

k¼1

~pp!

k!ð~pp� kÞ!M
kjujp�k;

and (36) follows easily. r

Lemma 5. If (AR) holds, then I satisfies the (PS) condition.

Proof. Let fungHK be a (PS)–sequence. From Lemma 3 (i) and (35) there are
constants c1; d a R such that

l
RN

2 � RN
1

N

junjm

m
� c1junjm�1 �

Z R2

R1

rN�1F ðr; unÞ dra d for all n a N:ð37Þ

Using Lemma 3 (iii) and en ! 0, we may assume that

�1a l

Z R2

R1

rN�1junjm�2
un dr�

Z R2

R1

rN�1f ðr; unÞ dra 1 for all n a N:ð38Þ
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Suppose, by contradiction, that fjunjg is not bounded. Then, there is a subse-
quence of fjunjg, still denoted by fjunjg, with junj ! l. Let n0 a N be such that
junjbmaxf1; x0 þ aðR2 � R1Þg for all nb n0. By virtue of (6) we have

junðrÞjb x0 for all r a ½R1;R2� and nb n0:

The (AR) condition ensures that

sign un ¼ sign unðrÞ ¼ sign f ðr; unðrÞÞ for all r a ½R1;R2� and nb n0ð39Þ

and

�
Z R2

R1

rN�1F ðr; unÞ drð40Þ

b� un

y

Z R2

R1

rN�1f ðr; unÞ dr�
1

y

Z R2

R1

rN�1f ðr; unÞ~uun dr for all nb n0:

From (38) and (36) there are constants c2; c3 b 0 such that

� un

y

Z R2

R1

rN�1f ðr; unÞ drð41Þ

b�l
RN

2 � RN
1

yN
junjm � c2junjm�1 � c3 for all nb n0:

Also, using (6), (36), (38) and (39) we can find constants c4; c5; c6 b 0 so that

� 1

y

Z R2

R1

rN�1f ðr; unÞ~uun drb�c4junjm�1 � c5junjm�2 � c6; for all nb n0:ð42Þ

From (40), (41) and (42) we obtain

�
Z R2

R1

rN�1Fðr; unÞ drb�l
RN

2 � RN
1

N

junjm

y
� ðc2 þ c4Þjunjm�1ð43Þ

� c5junjm�2 � c3 � c6 for all nb n0:

Then, (43) together with y > m imply

l
RN

2 � RN
1

N

junjm

m
� c1junjm�1 �

Z R2

R1

rN�1F ðr; unÞ dr ! þl as n ! l;

contradicting (37). Consequently, fung is bounded and the proof follows from
Lemma 3 (ii). r

Lemma 6. If (AR) holds and c a R, then IðcÞ ! �l as jcj ! l.
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Proof. The (AR) condition implies (see [7]) that there exists g a C, g > 0, such
that

Fðr; xÞb gðrÞjxjy for all r a ½R1;R2� and jxjb x0:ð44Þ

From (44) we infer

IðcÞ ¼ l
RN

2 � RN
1

mN
jcjm �

Z R2

R1

rN�1Fðr; cÞ dr

a l
RN

2 � RN
1

mN
jcjm � jcjy

Z R2

R1

rN�1gðrÞ dr;

for all c a R with jcjb x0. Then, the conclusion follows from y > m and g > 0.
r

Lemma 7. Assume that F satisfies

lim sup
x!0

mF ðr; xÞ
jxjm < l uniformly in r a ½R1;R2�:ð45Þ

Then there exist a; r > 0 such that

Z R2

R1

rN�1 l
jujm

m
� Fðr; uÞ

� �
drb a for all u a KB qBr;ð46Þ

where qBr :¼ fu a C : kukl ¼ rg.

Proof. Assumption (45) ensures that there are constants b < l and r > 0 such
that

Fðr; xÞa b

m
jxjm for all r a ½R1;R2� and jxja r:ð47Þ

We claim that:

inf
u AKBqBr

Z R2

R1

rN�1jujm dr > 0:ð48Þ

Then, by virtue of (47) we have

Z R2

R1

rN�1 l
jujm

m
� F ðr; uÞ

� �
dr

b
l� b

m

Z R2

R1

rN�1jujm drb a > 0 for all u a KB qBr;
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and (48) implies (46). In order to prove (48), suppose by contradiction that there
exists a sequence fungHKB qBr such thatZ R2

R1

rN�1junjm dr ! 0 as n ! l:

It is clear that fung is bounded in W 1;l. Passing to a subsequence if necessary,
we may assume a that fung is convergent in C to some u. This implies that
kukl ¼ r and Z R2

R1

rN�1junjm dr !
Z R2

R1

rN�1jujm dr as n ! l:

It follows that u ¼ 0, contradiction with kukl ¼ r > 0. Therefore, (48) holds true
and the proof is complete. r

Theorem 6. Assume that the (AR) condition holds true. If F satisfies (45), then
problem (4) has at least one nontrivial solution.

Proof. The proof follows immediately from Lemmas 5, 6 and 7 and the
Mountain Pass Theorem [13, Theorem 3.2]) applied to the functional I . r

Remark 6. Theorem 6 is of the type introduced by Ambrosetti and Rabinowitz
[2] for nonlinear perturbations of the Laplacian with Dirichlet boundary condi-
tions.

Example 8. If y > mb 2, l > 0 are given real numbers and m a C is a positive
function, then the Neumann problem

div
� ‘vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j‘vj2
q �

¼ ljvjm�2
v� mðjxjÞjvjy�2

v in A;
qv

qn
¼ 0 on qA;

has at least one nontrivial radial solution.

6. The periodic case

Let F : ½�a; a� ! R and g : ½R1;R2� � R ! R be as above, i.e., F satisfies ðHFÞ
and g is continuous. The periodic problem (5) can be treated quite similarly to
problem (3) with the following modifications. Taking N ¼ 1, one works with

KP :¼ fv a W 1;l : kv 0kla a; vðR1Þ ¼ vðR2Þg

instead of K , and CP : C ! ð�l;þl� given by

CPðvÞ ¼

Z R2

R1

Fðv 0Þ; ifv a KP;

þl; otherwise;

8<
:
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instead of C. With GP : C ! R defined by

GPðuÞ ¼
Z R2

R1

Gðr; uÞ dr; u a C;

the energy functional IP : C ! ð�l;þl� will be now IP ¼ CP þ GP.
The references from [4] are replaced by the similar ones from [5].
We only state the following existence results which are obtained as the corre-

sponding ones for problems (3) and (4) by no longer than ‘‘mutatis mutandis’’
arguments.

Proposition 2. If u a KP is a critical point of IP, then u is a solution of problem
(5).

Denoting

K̂KP;r :¼ fu a KP : juja rg;

we have the following

Lemma 8. Assume that there is some r > 0 such that

inf
K̂KP; r

IP ¼ inf
KP

IP:

Then IP is bounded from below and attains its infimum at some u a K̂KP;r, which
solves problem (5).

By means of Lemma 8 we can easily reformulate Corollary 1, Theorem 1 and
Theorem 5 for the periodic problem (5). Also we note the following versions of
the other theorems.

Theorem 7. Assume that there exists l a L1 such that

jgðr; xÞja lðrÞ

for a.e. r a ðR1;R2Þ and all x a R. If either

lim inf
jxj!l

Z R2

R1

Gðr; xÞ dr > ðR2 � R1Þ
�
a

Z R2

R1

lðrÞ dr
�

ð49Þ

or

lim
jxj!l

Z R2

R1

Gðr; xÞ dr ¼ �l;

then problem (5) has at least one solution u. Moreover, if (49) holds true then u
minimizes IP on C.
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Theorem 8. Let g : ½R1;R2� � R ! R be a continuous function such that Gðr; �Þ
is convex for all r a ½R1;R2�. Then, problem (5) has at least one solution if and only
if there is some c a R such that

Z R2

R1

gðr; cÞ dr ¼ 0:

Theorem 9. Let f : ½R1;R2� � R ! R be a continuous function such that the
(AR) condition is fulfilled. If F satisfies (45), then the problem

½fðu 0Þ� 0 ¼ ljujm�2
u� f ðr; uÞ; uðR1Þ � uðR2Þ ¼ 0 ¼ u 0ðR1Þ � u 0ðR2Þ;

has at least one nontrivial solution for any l > 0 and mb 2.
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