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ABSTRACT. — Motivated by the existence of radial solutions to the Neumann problem involving
the mean extrinsic curvature operator in Minkowski space

0

Vo . v
)=glxlv) ins, T =0 ond,

V1= Vol

where 0 < R < Ry, o/ ={xeRY: R <|x| <Ry} and ¢:[R;,Ry] x R — R is continuous, we
study the more general problem

P =" g(ru), u'(R) =0=u'(Ry),

diV(

where ¢ := @' : (—a,a) — R is an increasing homeomorphism with ¢(0) = 0 and the continuous
function @ : [—a,a] — R is of class C' on (—a,a). The associated functional in the space of con-
tinuous functions over [R;, R,] is the sum of a convex lower semicontinuous functional and of a
functional of class C'. Using the critical point theory of Szulkin, we obtain various existence and
multiplicity results for several classes of nonlinearities. We also discuss the case of the periodic
problem.

KEy worDps:  Neumann problem, radial solutions, mean extrinsic curvature, critical point, Palais—
Smale condition, saddle point, Mountain Pass Theorem, periodic problem.
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1. INTRODUCTION

This study is essentially motivated by the existence of radial solutions to the
Neumann problem involving the mean extrinsic curvature operator in Minkowski
space (see e.g. [3]):

(1) div(L):gqu) in o, %:o on 0,

/1 — |Vl
where 0 < Ry < Ry, o/ ={xeR": R <|x| <R} and ¢:[R,R)] xR — R

. ) . v
is a continuous function. As usual, we have denoted by e the outward normal
y
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derivative of v and | - | stands for the Euclidean norm in RY. Setting r = |x| and
v(x) = u(r), the above problem (1) becomes

/

2) [VNI <—%1 u_ u,2>]/ =" lg(ru), W' (Ri) =0=u'(Ry),

and the solutions of (2) are classical radial solutions of (1).
In this paper we obtain existence results for the more general problem

(3) [PV =N g (), W' (R) =0 =u'(Ry),

where ¢ := @' : (—a,a) — R is an increasing homeomorphism with ¢(0) = 0 and
the continuous function @ : [~a,a] — R is of class C! on (—a,a) and, without
loss of generality, we can assume that ®(0) = 0. This kind of ¢ is called singular

S
-Laplacian. Note that for ¢(s) = one takes ®(s) =1 — V1 — s2.
#-Lap o) = o () =1-V

Our approach is a variational one and relies on Szulkin’s critical point
theory [13]. Using a strategy inspired from [4], we show in Proposition 1 that u
is a solution of (3) provided that u is a critical point of the energy functional
I: C[Ry, Ry] — (—0o0,+c0] defined by

Ry Ry
/ N D (u') dr +/ NUG(ru)dr, ifueK,
I(u) = R R

4000, otherwise,

where G : [R;, Ry] x R — R is the primitive of g with respect to the second vari-
able and K = {u € WY*[Ry,R,] : |u'| < aa.e. on [Ry, R,]}. The functional / has
the structure required by Szulkin’s critical point theory, i.e., it is the sum of a
proper convex, lower semicontinuous functional and of a C' functional. In this
context, a critical point of / means a function u# € K such that

Rz RZ
/ VO ') — d(u')] dr —|—/ N lg(ru)(v—u)dr =0 forallveK.
R

1 R

In Section 2 we introduce some notations and definitions and we prove the
above mentioned Proposition 1. Notice that, in contrast to [4], we replace some
auxiliary result based upon Leray-Schauder theory by an elementary argument
(Lemma 1) and obtain in this way a purely variational treatment of our problem.
A similar methodology can be applied to obtain pure variational proofs of the
results on periodic solutions in [5, 6, 12].

Section 3 deals with minimization problems for / based upon the fact that if
there exists p > 0 such that

Ry
/ N ludr
R

inf{l(u) cuek,

< =1
_p} IIIl(fI,
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then I is bounded from below and attains its infimum at some u, which solves
problem (3) (Lemma 2). Theorem 1 from [4] is then an immediate consequence
of this result (Corrollary 1). We also prove (Theorem 1) that if g is such that

liminf G(r,x) >0, uniformly inr € [R;, Ry],

|x]— 0

then (3) has at least one solution «# which minimizes 7 on C.
The same is also true if ¢ is bounded and

R

2
lim NG, x) dr = +o0
IX[—o0 J R,

(Theorem 2). On the other hand, if G(r,-) is convex for any r € [R;, R,], then (3)
has at least one solution if and only if the function

Ry
X — N g (r, x) dr

Ry

has at least one zero, or, equivalently, the real convex function

Ry
X = N G(r, x) dr
Ry

has a minimum (Theorem 3).
In Section 4 we derive some properties of the (PS)—sequences (Lemma 3) and
we show that if ¢ is bounded and

Ry
‘lim NG (r, x) dr = — o0,
X|—o0 R

then (3) has at least one solution u which is a saddle point of I (Theorem 4). As
in Section 3, if ¢ is not necessarily bounded but the above condition upon G is
replaced with the following more restrictive assumption

|llim G(r,x) = —oo, uniformly in r € [Ry, Rz],
X|—00

then the same result holds true (Theorem 5).
In Section 5 we consider the problem

(4) PN = N 2" = f ()], W (Ry) =0 = ! (Ry),

where 4 > 0 and m > 2 are fixed real numbers and f : [R;, Ry] x R — R is a con-
tinuous function satisfying the classical Ambrosetti-Rabinowitz condition: there
exists 6 > m and x( > 0 such that

0 < OF(r,x) < xf(r,x) forallre[R), Ry and |x| > xo.
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We also assume that

F(r, x)

lim sup% </ uniformly in r € [Ry, Ry],
|x|—0 X

and prove that under these assumptions, problem (4) has at least one solution u
which is a mountain pass critical point of the corresponding / (Theorem 6).
Section 6 is devoted to the periodic problem

(5) (")) = g(r,u),  u(Ri) —u(R) = 0=u'(Ry) — u/(Ry).
Here we discuss the manner in which the above results for problems (3) and (4)
can be transposed for problem (5).
2. THE FUNCTIONAL FRAMEWORK
In what follows, we assume that @ : [—a,a] — R satisfies the following hypothesis:

(Hp)  @(0) =0, @ is continuous, of class C' on (—a,a), with
¢ =@ : (—a,a) — R an increasing homeomorphism such that ¢(0) = 0.
Clearly, @ is strictly convex and ®(x) > 0 for all x € [—a, d].

Given 0 < R; < Ry and ¢ : [R;, Ry] x R — R a continuous function, we denote
by G : [Ry, R;] x R — R the indefinite integral of ¢, i.e.,

G(r,x) ::/ g(r,&)dé, (r,x) € [Ri, Ra] X R.
0
We set C:= C[R|,R,], L' := L'(R|,R,), L* := L*(Ry,R;) and W* :=

W1“(Ry, R,y). The usual norm | - || is considered on C and L*. The space
W is endowed with the norm

o0

ol = llolle + 110'll.e, v e whe.

Denoting

R

2
Ly = {v : (R1, R,) — R measurable : /R N o(r) | dr < +oo},

1

each v e L}, | can be written v(r) = ¢ + o(r), with

. N e N-1 O
U= o(r)r™ =" dr, o(r)yr " dr=0.
R

N N
R2 _Rl Ry 1

If v € W™ then  vanishes at some r € (R, R,) and

[6(r)| = [6(r) = 5(ro)| < /R (o) dr < (R~ RO
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so, one has that
(6) 190l < (R2 = Ry)|[v"]] .-
Putting

K:={vew"* ||, <a},

it is clear that K is a convex subset of W1 =,
Let ¥ : C — (—o0,+00] be defined by

400, otherwise,

where ¢ : K — R is given by

Ry
o(v) :/ Nlow)dr, veKk.
R

1

Obviously, W is proper and convex. On the other hand, as shown in [4], we have
that if {u,} = K and u € C are such that u,(r) — u(r) for all r € [Ry, R;], then
u e K and

(7) p(u) < liminf o(u,).

n—oo

This implies that ¥ is lower semicontinuous on C. Also, note that K is closed
in C.
Next, let 4 : C — R be defined by

Ry
G(u) :/ NG (ru)dr, ue C.
Ry

A standard reasoning (also see [9, Remark 2.7]) shows that % is of class C! on C
and its derivative is given by
Ry
{Y'(u),v)y = N lg(r uyvdr, uve C.
R,

The functional I : C — (—o0, +o0] defined by
(8) I=¥Y+%

has the structure required by Szulkin’s critical point theory [13]. Accordingly, a
function u € C is a critical point of I if u € K and it satisfies the inequality

Y()—W(u)+<%' u),v—uy>0 forallveC,
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or, equivalently

Rg RZ

/ VD) — D(u')] dr+/ N lg(ru)(v—u)dr >0 forallveK.

R1 R]

Now, we consider the Neumann boundary value problem (3) under the

basic hypothesis (Hg). Recall that by a solution of (3) we mean a function
u € C'[Ry, Ry], such that ||u'|| , < a, ¢(u') is differentiable and (3) is satisfied.

LEMMA 1. For every f € C, problem
©) Pl =V £, W'(R) =0 =u'(Ro)

has a unique solution uy, which is also the unique solution of the variational in-
equality

Ry
(10) / N OO — ') +a(@ — @) + f(v —u)]dr =0 forall veKk,
R,
and the unique minimum over K of the strictly convex functional J defined by
Ry L_lz
(11) J(u):/ PNVl [(D(u’)—i—?—l—fu] dr.
Ry

PRrROOF. Problem (9) is equivalent to finding v = & + u with & and # solutions of

12 _ Ry
(12 i=—f, / rNYa(r) dr = 0.
Ry

Now the first equation gives, using the first boundary condition,

(13) i) =o' [0 .

1

From (13) we get

i R
@'l <a, @(R)=¢" Ré_N/R sMU (s) dS] =¢7'(0)=0.

Then the unique solution of (13) is given by

(14) i(r) :c+/Rr¢—1{z1N /Rtlef(s)ds} dt,

1 1
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where

___ N v 1w [ vz
(15) c= ¥ ¥ r ¢ |t sV f(s)ds| dtdr.
Ry — R Jr, R R

1

The unique solution uy = it +  of (9) follows from (12), (14) and (15).

Now, if u is a solution of (9), then, taking v € K, multiplying each member of
the differential equation by v — u, integrating over [R;, R;], and using integration
by parts and the boundary conditions, we get

Ry
[ Pt - e+ - wlar=o

1

which gives (10) if we use the convexity inequality for ©

Q') — ') = p(u") (v —u').

=2

G 2
The inequality 5~

% > (0 — u) introduced in (10) implies that

Ry 72 >
/ N1 [(I)(v’)—CD(u’)+2+fU—2—f” dr>0 forallveKk,
Ry

which shows that J has a minimum on K at u. Conversely if it is the case, then,
forall 2 € (0,1] and all v € K, we get

/R2 N1 {@[(1 PTG I (Gt U o R (R Y iv]} dr

Ry e
> / PNl {CD(Z/) +=+ fu} dr,
R 2

1

which, using the convexity of ®, simplifying, dividing both members by 4 and
letting 2 — 0., gives the variational inequality (10). Thus solving (10) is equi-
valent to minimizing (11) over K. Now, it is straightforward to check that J is
strictly convex over K and therefore has a unique minimum there, which gives
the required uniqueness conclusions of Lemma 1. O

PRrOPOSITION 1. Ifu is a critical point of I, then u is a solution of problem (3).
PrROOF. We set

fu=g(,u)—ueC
and consider the problem

(16) PN =V Um + £(0)], wI(R) =0 =w(Ry).
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By virtue of Lemma 1, problem (16) has an unique solution # and it is also the
unique solution of

Ry ) )
(17) / PO — D) + (D — i) + fulr) (v — @) dr >0 forall v e K.
R
Since u is a critical point of 7, we infer that
R
(18) / N O — D) + a(o — i) + f,(r)(v —u)]dr >0 forallveK.
Ry

It follows by uniqueness that u = u. Hence, u solves problem (3). O

3. GROUND STATE SOLUTIONS

We begin by a lemma which is the main tool for the minimization problems in
this section. With this aim, for any p > 0, set

K,:={ueKk:la <p}
LEMMA 2. Assume that there is some p > 0 such that

(19) inf I =inf I.
K, K

Then I is bounded from below on C and attains its infimum at some u € K,, which
solves problem (3).

PRrROOF. By virtue of (19) and mf 1= 1nf 1, it suffices to prove that there is some
ue K such that

(20) I(u) = inf 1.

K,

Then, we get that u is a minimum point of 7 on C and, on account of [13,
Proposition 1.1], is a critical point of 7. The proof will be accomplished by virtue
of Proposition 1.

If v € K, then, using (6) we obtain

()] < [ol + [o(r)] < p + (R2 = Ri)a.

This, together with ||v'||, < a show that K, is bounded in W!* and, by the com-
pactness of the embeddlng whe < C, the set K/, is relatively compact in C. Let
{u,} < K be a minimizing sequence for /. Passing to a subsequence if necessary
and using [4, Lemma 1], we may assume that {u,} converges uniformly to some
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u € K. It is easily seen that actually u € I%,,. From (7) and the continuity of 4 on
C, we obtain

I(u) < liminf I(u,) = lim I(u,) =inf I,
n— oo n— o0
showing that (20) holds true. O
The following result is proved in [4, Theorem 1].

COROLLARY 1. Let f : [R, R2] X R — R be continuous and F : [R;, Ry} x R — R
be defined by

F(V’x) I:/Oxf(r,f)df, (V,X>€[R1,R2]XR.

If there is some w > 0 such that F(r,x) = F(r,x + ) for all (r,x) € [R1, R2] x R,
then, for any h € C with h = 0, the problem

PV = NS ) + A, W' (R) =0 = u/(Re),

has at least one solution u € K,, which is a minimizer of the corresponding energy
Sfunctional I on C.

PrROOF. We have

G(r,x)=F(r,x)+ h(r)x, (r,x)€[R],R] x R.
Due to the w-periodicity of F(r,-) and because of i = 0, it holds

I(v+ jo)=1(v) forallve KandjeZ.
Then, the conclusion follows from the equality
{Iw):veK}={I(v):veK,}

and Lemma 2. O
THEOREM 1. If'g:[Ri, R:] x R — R is a continuous function such that

(21) liminf G(r,x) >0, uniformly inr € [Ry, Ry],

|| — o0
then (3) has at least one solution which minimizes I on C.
Proor. Using (6) and (21) it follows that there exists p > 0 such that
G(ryu) >0

for any u € K such that |i| > p. It follows that I(u) > 0 provided that u € K and
|i| > p. The proof follows from Lemma 2, as 7(0) = 0. O
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REMARK 1. An easy adaptation of the techniques in Section 2.3 of [7] shows
that the Neumann problem for the p-Laplacian (p > 1) on a bounded domain
QcRY

ou

div(|Vo|? Vo) = g(x,v) inQ, e 0 ondQ,
v

with g : Q x R — R continuous has at least one strong solution if

fim inf E5 %)

5— >0, uniformly in x € Q,
[u|— o0 |u|

a condition of the type already introduced by Hammerstein [8] for the Laplacian
with Dirichlet conditions. For the radial solutions of (1), Theorem 1 shows that it
is sufficient that such a condition holds with p = 0.

ExAMPLE 1. The Neumann problem

Vo ) _ v+ h(]x]) . ov

+cosv in .7, 6_:0 on 0.7,
\/ 1 —|Vol?

div 5
1+ [v+ h(]x])] v
has at least one radial solution for all & € C.

THEOREM 2. Let g : [Ry, Ry] x R — R be a continuous function and [ € L), | be
such that

(22) lg(r, x)| < I(r)
forae re (R,Ry) and all x € R If
R,
(23) |llim NG (r, x) dr = 400,
x[—oo JR,

then (3) has at least one solution which minimizes I on C.

PrOOF. We shall apply Lemma 2. For arbitrary u € K, using (6) and (22), we
estimate / as follows.

I(u):/R2 Nl o(u )dr—i—/RRerlG(r,u)dr

Y4

/ PNLG(r, @) dr + /R NG w) — Gl ) dr

1

Ry Ry
/ NlGrudr+/ V- 1/ (r, i+ su)udsdr
Ry Ry

R

Ry 2
/ rNUG(r @) dr — a(Ry — Rl)/ N () dr.
R,

Ry

\Y
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From (23) we can find p > 0 such that 7(x) > 0 provided that |z| > p. As by (Ho)
we know that ®(0) =0, one has 7(0) = 0. Therefore, (19) is fulfilled and the
proof is complete. O

REMARK 2. Condition (23) is of the type introduced by Ahmad-Lazer-Paul [1]
for the Laplacian with Dirichlet conditions. The reader will observe that the con-
clusion of Theorem 2 still remains true if (23) is replaced by the weaker but more
technical condition

R
lim inf VUG, x) dr > a(Ry — Rl)/
=0 JR, R

R

2
N () dr.
ExaMPLE 2. For every i € C such that —g <h< g, the Neumann problem
. \% . 0
dlv<7v> —arctanv — cosv = h(|x|) in ./, Lo on d.</,
2 ov
1 —|Vu|

has at least one radial solution.
THEOREM 3. Let g: [R, Ry] x R — R be a continuous function such that G(r,-)

is convex for all r € [Ry, Ry]. Then, problem (3) has at least one solution if and only
if there is some ¢ € R such that

Ry
(24) / rN*Ig(r, ¢)dr=0.
R,

PRrOOF. Define

Ry
' R-— R, xn—>/ NLG(r, x) dr
R

1
and note that
R,
I'(x) :/ N lg(r,x)dr for all x € R.
Ry

Let us assume that (3) has a solution u. Clearly, we have

Ry
(25) / N lg(r,u)dr = 0.
Ry

On account of the convexity of G(r, -), the function g(r,-) : R — R is nondecreas-
ing for any r € [R;, R;]. Hence,

(26) g(r; =llull ) < g(r,u(r)) < g(r, [lull.,) forallre [Ri, Rs].
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From (25) and (26) we infer
(= ffull,) <0 < T'(|full.,)-

Then, by the continuity of '’ there exists ¢ € R such that (24) holds true.
Reciprocally, assume that there exists ¢ € R such that I'’(¢) = 0. Using the
fact that I'" is nondecreasing, we have to consider the following three cases.
(1) It holds

I'x)=T'(¢)=0 forallx>c.
This implies that
g(r,x) =g(r,c) forallre [Ry,Ry] and x > c.
Let v be a solution of the problem
Pl =Yg (re), w(Ri) = 0= w'(Ro);

we know that this exists by Theorem 2.3 in [3]. Setting u = ¢ + ||v||, + v, we get
that u solves problem (3).
(i1) One has that

Ix)=T"(¢)=0 forallx<ec.

In this case the reasoning is similar to that in the case (i).
(iii) There are x1,x; € Rwith x; < ¢ < x; and T'(x1) < 0 < T'(x2). If x > x3,
then

I'x)=T(x)+ /RR2 V-1 (/xg(r, 1) dl) dr

1 X2

> T'(x2) + (x — x2)(x2).

It follows that I'(x) — 400 when x — +00. Analogously I'(x) — +oco when
x — —oo. Hence,

(27) lim I'(x) = +4o0.

|x|— 00

On the other hand, by the convexity of G(r,-), we have
u ~
G(ryu) > 2G(r,§) — G(r,—u) forallre [Ry, Ry,

which gives

R il Ry
(28) I(u)> / rN*'cD(u’)der(E)_ / PN G(r, @) dr - for all u e K.
Ry

Ry
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The estimate (28) together with (6) and (27) show that we can find p > 0 such that
I(u) > 0 provided that u € K and |iz| > p. Then, the proof follows from Lemma 2
as in the proof of Theorem 2. O

REMARK 3. Theorem 3 can be stated equivalently as: Let g : [R, Ry)] x R — R

be a continuous function such that G(r,-) is convex for all r € [Ry, Ry]. Then,

problem (3) has at least one solution if and only if the real convex function
R

2
X rN1G(r, x) dr has a minimum. Corresponding results for the Laplacian

R
with Neumann or Dirichlet boundary conditions have been given in [10] and [11].

ExAMPLE 3. The Neumann problem with 7 € C

. \% . 0
dlv(iv):arctanv—h(pd) in o/, a—vzo on 0.9/,
/1= |Vol? Y
has at least one radial solution if and only if —g <h< g
ExaMPLE 4. The Neumann problem with # € C
div(L):arctaan’—hﬂxD in .o/, ?:0 on 0./,
\/1—|Vu|? !
has at least one radial solution if and only if 0 < /& < g
ExAMPLE 5. The Neumann problem with # € C
. Vo v . ov
d1V< )-e —h(]x|]) in., 5—0 on 0.7,

/1= |Vo)?

has at least one radial solution if and only if 4 > 0.

4. (PS)—SEQUENCES AND SADDLE POINT SOLUTIONS

Towards the application of the minimax results obtained in Szulkin [13] to the
functional / defined by (8) we have to know when [ satisfies the compactness
Palais-Smale (in short, (PS)) condition.

Viewing our functional framework from Section 2, we say that a sequence
{u,} = K is a (PS)—sequence if I(u,) — ¢ € R and

Ry
(29) / D) — D) + () (0 — )] dr

> —gyllv —u,||,, forallve K,
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where ¢, — 0+. According to [13], the functional I is said to satisfy the (PS)
condition if any (PS)-sequence has a convergent subsequence in C.
The lemma below provides useful properties of the (PS)—sequences.

LeEmMMA 3. Let {u,} be a (PS)-sequence. Then the following hold true:

Ry
(i) the sequence { / rNLG(r ) dr} is bounded;
R

(i) if {@,} is bounded, then {u,} has a convergent subsequence in C;
(iil) one has that

Ry
(30) —& < / N lg(ru,) dr < e, forall neN.
R

1

PRrOOE. (i) This is immediate from the fact that {/(u,)} and ® are bounded.

(ii) From (6) and u, € K, the sequence {i,} is bounded in W' By the com-
pactness of the embedding W' * < C, we deduce that {i,} has a convergent
subsequence in C. Using then the boundedness of {i,} = R it follows that {u,}
has a convergent subsequence in C.

(iii) Taking v = u, + 1 in (29) one obtains (30). O

THEOREM 4. Let g: [Ry, Ry] x R — R be a continuous function and | € L), | be
such that (22) is satisfied for a.e. r € (Ry, Ry) and all x € R. If

R

(31) lim NG (r, x) dr = — o0,

[x|— JR,
then (3) has at least one solution.

Proor. We shall apply the Saddle Point Theorem [13, Theorem 3.5].
From (31) the functional 7 is not bounded from below. Indeed, if v = c € R is
a constant function then

R
(32) I(c) :/ VUG (r ) dr — —co  as |¢| — .
R

1

We split C = R@ X, where X = {v e C: 7 =0}. Note that

Ry
I(v)z/ rNUG(r,0)dr forallve Kn X,
R

1

which together with (6) imply that there is a constant o € R such that

(33) I(v)>o forallve X.
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Using (32) and (33) we can find some R > 0 so that

sup I < inf 1,
SRp X
where Sg = {c € R: |c| = R}.
It remains to show that 7 satisfies the (PS) condition. Let {u,} = K be a (PS)-
sequence. Since {/(u,)}, {¢(u,)} are bounded and, by (22) we have

/ NG ) — G(r,iy)] dr
R

1

R 1
S/ rN_l/ lg(r, @, + siy,)it,| ds dr
R 0

Ry
<a(R; — Rl)/ N7 () dr,

Ry
from

R Ry

2
rN*IG(r, L"tn)dr—l—/ erl[G(r, uy) — G(r, )] dr
Ry

) = plu) + [

Ry
it follows that there exists a constant f € R such that

Ry
/ N G(r @) dr > B
R

1

Then by (31) the sequence {#,} is bounded and Lemma 3 (ii) ensures that {u,}
has a convergent subsequence in C. Consequently, / satisfies the (PS) condition
and the conclusion follows from [13, Theorem 3.5] and Proposition 1. O

REMARK 4. Condition (31), also of the Ahmad-Lazer-Paul type [1] is, in some
sense, ‘dual’ to condition (23).

ExaMPLE 6. For every 4 € C such that —g <h< g, the Neumann problem

. 0
diV(L)+arctanv+cosv=h(|x|) in .o/, —0 on 0oL,

/1—|Vv|2 o

has at least one radial solution.
THEOREM 5. If g : [Ri, Ry] x R — R is a continuous function such that

(34) lim G(r,x) = —oo0, uniformly inr € [Ry, Ra],

|x|— o0
then (3) has at least one solution.

PrOOF. We keep the notations introduced in the proof of Theorem 4. Clearly,
(34) implies (31) and from the proof of Theorem 4 it follows that I has the geom-
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etry required by the Saddle Point Theorem. To show that I satisfies the (PS) con-
dition, let {u,} = K be a (PS)-sequence. If {|i,|} is not bounded, we may assume
going if necessary to a subsequence, that |i,| — 0. Using (6) and (34) we deduce
that

G(r,uy(r)) — —oco, uniformly in r € [Ry, Ry).

This implies

Ry
/ N G(r uy) dr — — o0,
R

1

contradicting Lemma 3 (i). Hence, {@,} is bounded and by Lemma 3 (ii), the
sequence {u,} has a convergent subsequence in C. Therefore, I satisfies the (PS)
condition. The proof is complete. O

REMARK 5. No result corresponding to Theorem 5 holds for the Laplacian with
Neumann (or Dirichlet) boundary conditions. Indeed, if 4 is a positive eigen-
value of —A on some bounded domain Q = R" with Neumann boundary condi-
tions, and ¢, a corresponding eigenfunction, the problem

Av=—Av+ ¢ (x) inQ, % =0 ondQ

2
has no solution, but — 4 % + ¢ (x)u — —oo uniformly in Q when |u| — oo.

ExaMPLE 7. The Neumann problem

div( Vo ) 1 v+ h(|x]) , ov

5 =Ccosv in </, —=0 onde,
o) U+ ot Adl)]

v
has at least one radial solution for all # € C.

5. MOUNTAIN PASS SOLUTIONS

In this section we consider problem (4) with 2 > 0 and m > 2 fixed real num-
bers, and f : [R}, R2] x R — R a continuous function satisfying the Ambrosetti—
Rabinowitz condition [2]:

(AR) There exists 0 > m and xy > 0 such that
0 < OF(r,x) <xf(r,x) forall re[Ry, Ry and |x| > xo.

Note that for problem (4) the function g from the general functional frame-
work in Section 2 is now defined in terms of f by

g(r,x) = A|x|"*x — f(r,x) forall (r,x) € [R,R] X R
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and accordingly, G entering in the definition of the energy functional / becomes

X"

G(r,x) = /17 — F(r,x) forall (r,x) € [R1,Ry] x R.

LEMMA 4. Let p > 1 be a real number. Then

(35) lu(r)|” > |a|” — pa(R, — R)|al’™", Vue K, Vre[R, R
and there are constants oy, oy > 0 such that

(36)  [u(r)|” < ||’ +oul@|’ ™ + oy, Vue K with |a] > 1, ¥r € [Ry, Ra).

PRrROOF. The result is trivial for p=1. If p > 1, u € K and r € [Ry, Ry], then,
using the convexity of the differentiable function s — |s|”, we get

lu(r)|” = |a+a(r)|” = |al” + plal’ai(r)
> |al” — pla)”" (R, — Ry)a.

On the other hand, denoting by p the smallest integer larger or equal to p and
letting M := a(R, — R;), we have, for all r € [R, Ry],

M~\r
lu(r)|” = |a+a(r)|” < (ja| + M)? = |a|”<1 +W)
MNP J P! k
il = a1 Rl
<ot (1) =+ 2~ )
S kg
= |al” + = M"|al”™",
= k(p —Fk)!
and (36) follows easily. .

LemMA 5. If (AR) holds, then I satisfies the (PS) condition.

Proor. Let {u,} < K be a (PS)-sequence. From Lemma 3 (i) and (35) there are

constants ¢, d € R such that

Rév — R{v |ﬁn|m
N

Ry
(37) 2 — ¢! —/ rNUE(ru,)dr < d - foralln e N.
R

1

Using Lemma 3 (iii) and &, — 0, we may assume that

Ry Ry
(38) —-1<4i PN " dr — / N (ru,)dr <1 forallme N.
R,
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Suppose, by contradiction, that {|i,|} is not bounded. Then, there is a subse-
quence of {|i,|}, still denoted by {|i,|}, with |@,] — oo. Let ny € N be such that
|it,] > max{1l,xo+ a(Ry — R;)} for all n > ny. By virtue of (6) we have
lun(r)] = xo forall r € [Ry, Ry] and n > ny.
The (AR) condition ensures that
(39) signi, = signu,(r) = sign f(r,u,(r)) forall r € [Ry, Ry] and n > ny

and

R
(40) —/ erlF(r, uy) dr
R

L_l R 1 Ry
>_n N () dr — —/ N (r u)it, dr - for all n > ny.
0 Rl 0 Rl

From (38) and (36) there are constants ¢;, ¢c3 > 0 such that

@y =N ) dr
0 Ja
RN_RN
> =22 Bl =l s forallnz .

Also, using (6), (36), (38) and (39) we can find constants ¢4, ¢s, cs = 0 so that

1 &
(42) —5/ NV )ity dr > —C4|L_tn|m71 - c5|ﬁn|m*2 —cg, foralln > ny.
Ry

From (40), (41) and (42) we obtain

R RN _ RN |g.I™
(43) _A erlF(ra un) dr 2 —i% |u’é| _ (C2 + C4>|Z/7ln|mil
1

— 65|L_ln|m_2 —c3—c¢g foralln > ny.
Then, (43) together with 0 > m imply

Rév — Rfv |1’_’n|m

N

R,
—c1|u,,|ml—/ rNUE(ru,) dr — 400 asn — oo,
R,

contradicting (37). Consequently, {u,} is bounded and the proof follows from
Lemma 3 (ii). O

LEMMA 6. If (AR) holds and ¢ € R, then I(c) — —o0 as |¢| — 0.
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ProOOF. The (AR) condition implies (see [7]) that there exists y € C, y > 0, such
that

(44) F(r,x) > y(r)|x|® forall r e [R;, Ry] and |x| > xo.
From (44) we infer
RN _ RN Ry
I(c) = /IWM’” —/R rNUE(r ¢ dr

1
RN—RN Ry
<i—2—L|" - 9/ Nly(r)d
< 2= el |

for all ¢ € R with |¢| > xj. Then, the conclusion follows from 6 > m and y > 0.
a

LEMMA 7. Assume that F satisfies

F
(45) lim supu}:;x) < A uniformly inr € [Ry, Ry].
X

x—0 | |

Then there exist o, p > 0 such that
fe vot [ ™

(46) . r AW—F(r,u) dr > o forallue KnoB,,
1

where 0B, == {u e C: |ul|, = p}.

PROOF. Assumption (45) ensures that there are constants » < 4 and p > 0 such
that

b
(47) F(r,x) < n—1|x|m for all r € [Ry, Ry] and |x| < p.
We claim that:
Ry
(48) inf / N u|" dr > 0.
ueKniB, R

Then, by virtue of (47) we have

Ry |u|m
/ rN_l[/l——F(r,u)] dr
R m

i—b [*
> — N Nu"dr >0 >0 forallue KnoB,,
m R
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and (48) implies (46). In order to prove (48), suppose by contradiction that there
exists a sequence {u,} = K ndB, such that

R,
/ PN, |"dr — 0 asn — oo.
Ry

It is clear that {u,} is bounded in W!*. Passing to a subsequence if necessary,
we may assume a that {u,} is convergent in C to some u. This implies that
Jull,, = p and

Ry R,
/ N, | dr — N Nu"dr asn— oo.
R1 Rl

It follows that u = 0, contradiction with ||u|| , = p > 0. Therefore, (48) holds true
and the proof is complete. O

THEOREM 6. Assume that the (AR) condition holds true. If F satisfies (45), then
problem (4) has at least one nontrivial solution.

PrROOF. The proof follows immediately from Lemmas 5, 6 and 7 and the
Mountain Pass Theorem [13, Theorem 3.2]) applied to the functional /. |

REMARK 6. Theorem 6 is of the type introduced by Ambrosetti and Rabinowitz
[2] for nonlinear perturbations of the Laplacian with Dirichlet boundary condi-
tions.

ExXAMPLE 8. If 0 > m > 2, A > 0 are given real numbers and x € C is a positive
function, then the Neumann problem

\%) ov B

diV( ) = o™ v = u(]xD|o] " v in o, 8__0 on 0./,
1— |Vo? v

has at least one nontrivial radial solution.

6. THE PERIODIC CASE

Let ®:[—a,al —» Rand g : [R], Ry] Xx R — R be as above, i.e., ® satisfies (Hgp)
and ¢ is continuous. The periodic problem (5) can be treated quite similarly to
problem (3) with the following modifications. Taking N = 1, one works with

Kp={ve W' v/, <a,0o(R) = v(Ry)}

instead of K, and Wp : C — (—c0, +00] given by

Ry
, .
Wp(0) = /R ®(v"), ifve Kp,

1
+o0, otherwise,
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instead of W. With 4p : C — R defined by

Ry
Gp(u) :/ G(r,u)dr, ueC,
R

1

the energy functional Ip : C — (—o0, +00] will be now Ip = VYp + %p.

The references from [4] are replaced by the similar ones from [5].

We only state the following existence results which are obtained as the corre-
sponding ones for problems (3) and (4) by no longer than “mutatis mutandis”
arguments.

PROPOSITION 2. Ifu € Kp is a critical point of Ip, then u is a solution of problem

(5)-
Denoting
Kp,:={ueKp:|a| <p},
we have the following
LEMMA 8. Assume that there is some p > 0 such that

lpflp = inf IP.
KI".p KP

Then Ip is bounded from below and attains its infimum at some u € Kg s Which
solves problem (5).

By means of Lemma 8 we can easily reformulate Corollary 1, Theorem 1 and
Theorem 5 for the periodic problem (5). Also we note the following versions of
the other theorems.

THEOREM 7. Assume that there exists | € L' such that

lg(r, x)| < I(r)
forae. re (Ry,Ry) and all x € R. If either

Ry

(49) lim inf /RR2 G(r,x)dr > (Ry — R1)<a/ I(r) dr)

[x|[—oo JR, R

or

Ry
lim G(r,x)dr = —0,

|x|— 00 R

then problem (5) has at least one solution u. Moreover, if (49) holds true then u
minimizes Ip on C.
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THEOREM 8. Let g: [R1, R2] X R — R be a continuous function such that G(r,-)
is convex for all r € [Ry, Rz]. Then, problem (5) has at least one solution if and only
if there is some ¢ € R such that

Ry
/ g(r,c)dr =0.
R

1

THEOREM 9. Let f:[Ry,Ry] X R — R be a continuous function such that the
(AR) condition is fulfilled. If F satisfies (45), then the problem

(¢ = Aul"2u— f(r,u), u(R) —u(Rs) =0 =u'(Ri) —u'(Ry),

has at least one nontrivial solution for any A > 0 and m > 2.
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