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Abstract. — Navier–Stokes-ab continua are shown to be a special subclass of the recently intro-

duced class of ephemeral continua that arises when particular constraints and constitutive relations

are introduced. Beside o¤ering a new endorsement of balance equations already obtained by numer-
ous Authors, our study o¤ers a chance for enlightening remarks, remarks that might possibly lead to

further developments.
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1. Introduction

Ephemeral continua are members of the vast class of bodies for which, on prin-
ciple, no single preferred placement, nor even a single preferred configuration,
exists, which could be invoked as physically significant reference. The vastness
of the class appears to be so great to suspect it to be almost meaningless, partic-
ularly in view of the consequent vagueness of the separation between dynamic
and thermal phenomena.

The search ensues for subclasses assuring a link with well-established catego-
ries to which a right of citizenship has already been accorded in the literature—
foremost hypocontinua, a compressed noun invented from two adjectives, hypo-
elastic and hypoplastic, already of some repute.

A remarkable catch emerges. The di¤erential equation for stress, which in
hypoelasticity and hypoplasticity is declared to be constitutive, appears now to
be instead an added balanced law for a tensor of equilibrated su¤usion or colli-
sion. The catch should not be too surprising, however: even in the standard
continuum theory of simple materials, conversely, the law of balance of moment
of momentum is already treated as if it were a constitutive prescription.

Here we make a further step towards specifics and examine the particular case
of Navier–Stokes-ab continua, which appear naturally to be a subclass of ephem-
eral continua obeying certain constraints evident under the circumstances. The
connection thus established could be deemed trivial. In fact, it is far from so. To
quote only one point, the distinct origin of the dispersive and dissipative terms in
the balance equations becomes now clear and can be classified strictly. Precisely,



a term previously attributed to a dispersive contribution to the extra stress is
actually inertial and, thus, not constitutive in nature.

2. Reprise of the theory for ephemeral continua

In Capriz’s [3] theory for ephemeral continua, each place x in the region BðtÞ oc-
cupied by a body at a time t is the mass center of a loculus eðx; tÞ of subplaces.
Aside from the conventional notions of mass density % and velocity v, averages
with a suitably defined locular number density give rise to a symmetric and
positive-definite mesoinertia tensor Y , a mesodistortion tensor, with rate B, a
moment of mesomomentum tensor K , and a symmetric and positive-seimidefinite
mesofluctuation (or Reynolds) tensor H, all of which may depend on place and
time. The spatial fields Y , B, K , and H are all measured per unit mass. The meso-
distortion tensor is assumed a‰ne, so that B ¼ K>Y�1 or, equivalently,

K ¼ YB>:ð1Þ

Possible discrepancy between the macroscopic and mesoscopic disfigurements
described by the velocity gradient

L ¼ grad vð2Þ

and the mesodistortion rate B is accompanied by su¤usion of matter between
loculi defined by

s ¼ trðL� BÞ:ð3Þ

The theory generates balance laws for mass, moment of inertia, linear momen-
tum, moment of mesomomentum, and mesofluctuations. In pointwise form, these
balance laws read

_%%þ % div v ¼ s%;

%ð _YY þ sY � YB> � BY Þ ¼ 0;

%ð _vvþ svÞ ¼ %bþ divT ;

%ð _KK þ sK � KB> � BK �HÞ ¼ %M � Aþ divm;

%ð _HH þ sH �HB> � BHÞ ¼ %J � Z þ div |;

8>>>>><
>>>>>:

ð4Þ

where a superposed dot indicates time di¤erentiation along paths obtained by ret-
rogression from the average velocity, the full left-hand sides contain the coshap-
ing time derivatives, T is the familiar Cauchy stress tensor, A and Z are second-
order tensorial internal supply densities associated, respectively, with moment of
mesomomentum and mesofluctuations, m and | are third-order tensors, the for-
mer a hyperstress associated with the moment of mesomomentum and the latter
a measure of power flux, b and M are applied or noninertial external forces, mea-
sured per unit mass, and J is the mesofluctuation supply, also measured per unit
mass. In place of the classical requirement that T be symmetric, T and A must
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satisfy

skwT ¼ skwA:ð5Þ

The condition (5) can be replaced by the stronger alternative T ¼ �A>. Here, we
rest content with (5).

For a detailed justification of the balance equations (4), the reader is addressed
to papers by Brocato and Capriz [2] and Capriz [3]. However, also in view of the
goal of this report, we must provide at least a cursory inkling of ideas underlying
those equations. Consider a time t and a place x in BðtÞ. The value vðx; tÞ of the
velocity v at that time and place arises on averaging a mesoscale velocity w over
all subplaces in the loculus eðx; tÞ. As such, v and w are justly termed filtered and
unfiltered velocities. For the di¤erence w� v, statistical mesofiltering is per-
formed: the average being obviously null, the Euler inertia tensor Y , the moment
of momentum K , and the variance H are evaluated and their laws of evolution
sought. The tensor H is there to account for the intensity of collisions within
each loculus, so that %H provides a sort of anisotropic pressure—more precisely,
its spherical component 1

3 %ðtrHÞI takes the role of pressure while its deviatoric
component devð%HÞ ¼ %

�
H � 1

3 ðtrHÞI
�
is a sort of additional stress. Since H is

symmetric and positive-semidefinite, it possesses nonnegative eigenvalues hi,
i ¼ 1; 2; 3, and a corresponding othonormal eigenbasis fh1; h2; h3g. Additional in-
sight regarding the nature of H arises on expressing it in canonical form

H ¼
X3

i¼1

hihi n hi;ð6Þ

which provides a caricature of the primitive definition of H based on averaging
as the sum of three terms as though the population of molecules, all having
the same mass, were spread between three swarms: within the i-th swarm, all
molecules move along the line spanned by hi with speed hi; each swarm is split
evenly into two subswarms but with opposing velocities ehihi. Alternatively,
one may imagine all molecules to have not only the same mass but also the
same speed, but with the fraction of those moving along the line spanned by hi
being hi=ðh1 þ h2 þ h3Þ. With this interpretation in mind, it becomes evident
that the square-root H 1=2 of H regulates the balanced cross-flux of molecules—
H 1=2n being a measure of the flux of molecules through a plane with unit normal
n. Thus, with reference to (4)4, within a loculus, the tensor symA should account
for coherence opposing su¤usion and dispersal, actions which are promoted,
instead, by collisions.

3. Consequences of constraining B to equal the skew part of L

Imposing the constraint B ¼ L within the context in the theory of ephemeral con-
tinua leads to Capriz’s [4] theory of hypocontinua. Here, we consider the stronger
constraint

B ¼ skwL ¼ W :ð7Þ
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Moreover, to procure the simplest account of e¤ects of turbulence on flows of
liquids, we supplement (7) by the classical constraint

trL ¼ div v ¼ 0ð8Þ

of incompressibility.
To deduce the primary implications of the constraints (7) and (8), we proceed

as in Capriz’s [4] derivation of the theory of hypocontinua. This rests on consid-
erations involving the internal power density, which, in the theory for ephemeral
continua, has the general form

T � Lþ A � B> þm � gradðB>Þ þ 1
2 trZ;ð9Þ

but which, with the constraint (7) and the standard decomposition L ¼ DþW ,
with D ¼ symL, of the velocity gradient, specializes to

ðdev symTÞ �Dþ ðskwT � skwAÞ �W �m � gradW þ 1
2 trZ:ð10Þ

Following the traditional approach to dealing with constraints, we suppose that
the fields T , A, m, and Z split, additively, into active and reactive components,

T ¼ Ta þ Tr; A ¼ Aa þ Ar; m ¼ ma þmr; Z ¼ Za þ Zr;ð11Þ

and we require that the internal power density obey

ðdev symTÞ �Dþ ðskwT � skwAÞ �W �m � gradW þ 1
2 trZð12Þ

¼ ðdev symTaÞ �Dþ ðskwTa � skwAaÞ �W �ma � gradW þ 1
2 trZa

for all admissible choices of D, W , and gradW , so that the reactions Tr, Ar, mr,
and Zr are powerless.

Since the power flux | associated with mesofluctuations does not enter the
internal power (10), it seems reasonable to assume that it does not react to the
imposition of any internal constraint. With this assumption, |r ¼ 0 and

| ¼ |a:ð13Þ

Moreover, since the deviatoric component devZ ¼ Z � 1
3 ðtrZÞI of Z is absent

from (10), it seems reasonable to assume that it cannot include, under internally
constrained circumstances, an additive reactive component. This amounts to as-
suming that Zr is spherical, viz.

Zr ¼ 1
3 ðtrZrÞI :ð14Þ

Using the decompositions (11) of T , A, m, and Z in (12) yields

ðdev symTrÞ �Dþ ðskwTr � skwArÞ �W �mr � gradW þ 1
2 trZr ¼ 0:ð15Þ
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In view of (8) and (14), if trZ is independent of D, W , and gradW , then (15) is
satisfied for all choices of D, W , and gradW , if and only if

dev symTr ¼ 0; skwTr ¼ skwAr; mr ¼ tmr; trZr ¼ 0:ð16Þ

The third of (16) embodies the requirement that

mr � ða1 n a2 n a3Þ ¼ mr � ða2 n a1 n a3Þð17Þ

for all vectors a1, a2, and a3 (that is, that mr be symmetric in its first pair of
indices). In view of (14), the fourth of (16) implies that

Zr ¼ 0:ð18Þ

Consistent with its absence from (15), the symmetric part symAr of the reaction
Ar is unrestricted by (16).

A simple calculation shows that if Tr, Ar, mr, and Zr satisfy (16), then (15)
holds for all choices of D, W , and gradW . To establish the converse, note that
since D, W , and gradW can be prescribed independently at any given point and
time, (15) holds for all choices of D, W , and gradW only if each of its terms
vanish separately:

ðdev symTrÞ �D ¼ 0; ðskwTr � skwArÞ �W ¼ 0;

mr � gradW ¼ 0; trZr ¼ 0:

�
ð19Þ

To satisfy (19)1 for all deviatoric and symmetric second-order tensors D,
dev symTr must vanish, which establishes (16)1. To satisfy (19)2 for all skew
second-order tensors W , ðskwTr � skwArÞ ¼ skwðTr � ArÞ must be symmetric
and, thus, must vanish, which establishes (16)2. Since

ðgradWÞ � ða1 n a2 n a3Þ ¼ �ðgradW Þ � ða2 n a1 n a3Þð20Þ

for all vectors a1, a2, and a3 (that is, since gradW is skew in its first two indices),
to satisfy (19)3 for all gradW with W skew, mr must obey (17), which establishes
(16)3. Finally, granted (14), to satisfy (19)4, Zr must vanish, which establishes
(16)4. The restrictions (16) are therefore both necessary and su‰cient to ensure
that the reactions Tr, Ar, mr, and Zr are powerless.

Taken together, (16)1 and (16)2 imply that there must exist a scalar field j such
that

Tr ¼ �jI þ skwAr:ð21Þ

Further, (16)3 implies that skwðdivmrÞ ¼ 0, which leads to the conclusion that

divmr ¼ symðdivmrÞ:ð22Þ

Moreover, by (11)1 and (16)2, the basic relation (5) reduces to

skwTa ¼ skwAa:ð23Þ
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4. Reduced balance laws

The constraints (7) and (8) require that

s ¼ 0:ð24Þ

Hence, the present subclass of ephemeral continua cannot sustain su¤usion of
matter between loculi. By (8) and (24), the mass balance (4)1 reduces to _%% ¼ 0,
so that the mass density is constant along particle trajectories obtained by retro-
gression. Consistent with this requirement, we assume that

% ¼ constant > 0:ð25Þ

Together, (24) and (25) ensure that the mass balance (4)1 is satisfied trivially.
The requirement (24) leads immediately to a partial simplification of the remain-
ing balances (4)2�5. Somewhat more concise versions of these balances arise on
noting that, for any second-order tensor field G, (7) yields

_GG � GB> � BG ¼ _GG þ GW �WG:ð26Þ

The right side of (26) is the corotational rate of G. For brevity, we use a super-
posed circle to denote the corotational time di¤erentiation, so that

G
�
¼ _GG þ GW �WG:ð27Þ

For the particular choice G ¼ W , (27) yields

W
�
¼ _WW þW 2 �W 2 ¼ _WW ;ð28Þ

whereby, on choosing G ¼ K in (27), we conclude from (1) and (7) that

K
�
¼ �Y

�
W � YW

�
¼ �Y

�
W � Y _WW :ð29Þ

In view of (13), (16), (24), (25), (27), and (29), the balances (4)2�5 reduce to

Y
�
¼ 0;

% _vv ¼ %b� grad jþ div½Ta þ skwðAa þ ArÞ�;
%ðY _WW þHÞ ¼ �%M þ Aa þ Ar � divma � symðdivmrÞ;
%H

�
¼ %J � Za þ div |a;

8>>>><
>>>>:

ð30Þ

where (21) and (23) have been used to express T in the form

T ¼ Ta þ Tr ¼ Ta � jI þ skwArð31Þ
¼ �jI þ symTa þ skwTa þ skwAr

¼ �jI þ symTa þ skwðAa þ ArÞ
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and (30)1 has been used to reduce the expression (29) for K
�
to

K
�
¼ �Y _WW :ð32Þ

The balance (30)3 can be decomposed into symmetric and skew components

%ðsymðY _WW Þ þHÞ ¼ �% symM þ symðAa þ ArÞ � sym½divðmr þmaÞ�ð33Þ

and

% symðY _WWÞ ¼ �% skwM þ skwðAr þ AaÞ þ skwðdivmaÞ:ð34Þ

Given v, Y , M, Aa, and ma, (34) determines skwAr while (33) determines a gauge
relation for symðAr � divmrÞ. Thus, (30)3 is inconsequential to the present spe-
cialization of the theory for ephemeral continua. In view of (23), the skew com-
ponent skwTa of the active component Ta the Cauchy stress is also irrelevant to
the theory.

However, solving (34) for skwðAa þ ArÞ, substituting the result into (30)2, and
invoking the assumption (25) that the mass density % is constant, reduces the
balance of linear momentum to the form

%
�
_vv� 1

2 divðY _WW þ _WWY Þ
�
¼ %½bþ divðskwMÞ� � grad jð35Þ
þ div½symTa þ skwðdivmaÞ�;

which, aside from the reactive pressure j needed to ensure satisfaction of the
constraint (8), shows no influence of the reaction Ar. Importantly, (35) is also
independent of the active contribution Aa to A.

In summary, the general balances for an ephemeral continuum constrained
according to (7) and (8) are

Y
�
¼ 0;

%
�
_vv� 1

2 divðY _WW þ _WWY Þ
�

¼ %½bþ divðskwMÞ� � grad jþ div½symTa þ skwðdivmaÞ�;
%H

�
¼ %J � Za þ div |a:

8>>>><
>>>>:

ð36Þ

Interestingly the balances (36)1;2 become decoupled from balance (36)3 if,
merely, the constitutive rules for Ta and ma fail to involve H. Such absence would
be too restrictive, in general, because, surely, the intensity of collisions is bound
to influence these tensors of stress and hyperstress. However, for those two ten-
sors, one accepts now the corresponding constitutive laws valid in general, but
with the single insertion in them of skwL for B and the null scalar for div v. In
the consequent absence of volume changes, su¤usion, and so on, collisions may
end up by being expended only via the reactive pressure, and the decoupling
ensues.

On the contrary, the balance (36)3 cannot escape the influence of the gross
motion as the corotational rate of H involves the velocity field v and the spin
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tensor W . A study of some special flows and the search for simple corollaries
pursued after a choice of tentative constitutive laws for Z and | would help clarify
doubts.

5. Navier–Stokes-ab continua

Provided that Y , Ta, and ma have the forms

Y ¼ 2a2I ; symTa ¼ 2%nD; ma ¼ �2%nb2 gradW ;ð37Þ

where a > 0 and b > 0 are constants with dimensions of length and n > 0 is the
kinematic viscosity, the balances (30)1;2 reduce to the equation

%ð _vv� 2a2 divD
�
Þ ¼ % f � grad pþ %nð1� b2DÞDvð38Þ

governing the flow of a Navier–Stokes-ab continuum. In (38),

f ¼ bþ divðskwMÞð39Þ

denotes the e¤ective body force, per unit mass, and

p ¼ j� %a2 grad trðL2Þð40Þ

denotes the e¤ective pressure.
We verify the foregoing assertion in steps. First, we consider the implications

of assuming that the moment of inertia tensor Y is as given by (37)1, with a con-
stant. By (27),

Y
�
¼ 2a2I

�
¼ 2a2ð _II þ IW �WIÞ ¼ 2a2ðW �WÞ ¼ 0;ð41Þ

so that (30)1 is satisfied trivially. Further, since

2 div _WW ¼ _DvDvþ divðLL>Þ � 1
2 grad trðL2Þð42Þ

and

2 divD
�
¼ _DvDvþ divðLL>Þ þ 1

2 grad trðL2Þ;ð43Þ

it follows that, for Y as given by (37)1, with a constant,

1
2 divðY _WW þ _WWY Þ ¼ a2 divðI _WW þ _WWIÞð44Þ

¼ 2a2 div _WW

¼ 2a2 divD
�
� a2 grad trðL2Þ:

Next, for Ta given by (37)2, with % constant,

divðsymTaÞ ¼ 2%n divD ¼ %nDv;ð45Þ
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while, for ma given by (37)3, with % and b constant,

div½skwðdivmaÞ� ¼ divðdivmaÞð46Þ
¼ �2%nb2 divðDWÞ
¼ �%nb2½DDv� gradðD div vÞ�
¼ �%nb2DDv:

Finally, on using (44)–(46) in (30) and recalling the definition (40) of p, we obtain
the flow equation (38).

6. Specialization: Euler-a and Navier–Stokes-a continua

When the kinematic viscosity n vanishes, so that (37)2 and (37)3 become
symTa ¼ 0 and ma ¼ 0, (30)1;2 and (37) yield the flow equation

%ð _vv� 2a2 divD
�
Þ ¼ % f � grad pð47Þ

for an Euler-a continuum. Further, on choosing b ¼ a in (37)3, (30) and (37) yield
the flow equation

%ð _vv� 2a2 divD
�
Þ ¼ % f � grad pþ %nð1� a2DÞDvð48Þ

for a Navier–Stokes-a continuum. More directly, (38) yields (47) when n ¼ 0 and
(48) when b ¼ a.

The Euler-a equation (47) was first introduced in the Euler–Poincaré varia-
tional framework of Holm, Marsden and Ratiu [12, 13]. Alternatively, Holm
[14] showed that (47) can be obtained by applying Lagrangian averaging to the
Euler equations and invoking a closure based on Taylor’s [19] hypothesis that
small rapid fluctuations convect with the mean flow. The equations for Euler-a
are ordinarily encountered as a system,

%ðu 0 þ ðgrad uÞvþ ðgrad vÞ>uÞ ¼ �grad$;

u ¼ ð1� a2Þv;
ð49Þ

where a prime is used to denote spatial time-di¤erentiation and $ is an e¤ective
pressure determined by p, v, and D via

$ ¼ p� 1
2 %ðjvj

2 þ a2jDj2Þ:ð50Þ

The Navier–Stokes-a equation (48) was first proposed by Chen, Foias, Holm,
Olson, Titi, and Wynne [6, 7], who obtained it by augmenting the Euler-a equa-
tion with Navier–Stokes viscosity so that (49)1 becomes

%ðu 0 þ ðgrad uÞvþ ðgrad vÞ>uÞ ¼ �grad$þ %nDv:ð51Þ
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7. Inhomogeneous and anisotropic generalizations

A straightforward generalization of Navier–Stokes-ab equation arises on relaxing
the assumption that a and b are independent of place and time. If a is a field, then
(41) is replaced by

Y
�
¼ 2ð2a _aaI þ a2IW � a2WIÞ ¼ 2að2 _aaI þ aW � aW Þ ¼ 2a _aaI ;ð52Þ

whereby (30)1 yields

_aa ¼ 0;ð53Þ

so that a is convected with the mean flow. If b is also a field, then using (37) in
(30)2 yields the inhomogeneous generalization

%ð _vv� 2a2 divD
�
� 4aD

�
grad aÞð54Þ

¼ % f � grad pþ %nð1� b2DÞDv� 2%nbðDLÞ grad b
� %nbðDLÞ> grad b � 2%nðgradWÞðgrad grad b þ grad bn grad bÞ

of the flow equation (38) for Navier–Stokes-ab continua. When the kinematic
viscosity n vanishes, (54) is equivalent to an inhomogeneous Euler-a equation
derived by Marsden and Shkoller [17] and Holm [15] on the basis of Taylor’s
[19] hypothesis.

Finally, a mildly anisotropic generalization of the Navier–Stokes-ab equation
arises on allowing Y to evolve according to (30)1. In this case, granted that
symTa and ma have the simple isotropic forms given in (37)2 and (37)3, (30)2
yields

%
�
_vv� 1

2 divðY _WW þ _WWY Þ
�
¼ % f � grad pþ %nð1� b2DÞDv:ð55Þ

Any anisotropy present in (55) is solely due to the possible asphericity of the
inertia tensor Y . A more general equation would arise by replacing (37)3 by an
anisotropic relation for ma in terms of gradW .

In their anisotropic generalization of the Navier–Stokes-a equation (48),
Marsden and Shkoller [17] consider a covariance tensor F and find that this ten-
sor obeys the evolution equation

_FF � LF � FL> ¼ 0:ð56Þ

That is, the Oldroyd, or upper-convected, rate of F must vanish. Although F is
inherently symmetric, Marsden and Shkoller [17] allow for the possibility that it
may vanish at boundaries. Thus, F need not be positive-definite. If, nevertheless,
F is identified with the moment of inertia tensor Y from the theory of ephemeral
continua, comparison of (30)1 and (56) demonstrates that the anisotropic evolu-
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tion equations obtained on the basis of the constraints (7) and (8) are not as gen-
eral as those obtained by Marsden and Shkoller [17]. Interestingly, Capriz’s [4]
theory of hypocontinua requires that Oldroyd rate of the moment of inertia ten-
sor vanish. It therefore seems possible that the theory of hypocontinua might
encompass the anisotropic generalization of the Navier–Stokes-a equations ob-
tained by Marsden and Shkoller [17]. In contrast to Marsden and Shkoller [17],
Holm [15] provides an anisotropic generalization of the Navier–Stokes-a equa-
tion in which the covariance tensor is convected with the mean flow.

The paper of Marsden and Shkoller [17] calls for some comments on point of
view, beyond a mere endeavour to check coincidences or justify minor discrepan-
cies in the final equation. In the Introduction to that paper, the closure problem
for the Reynolds stress H is quoted and, as per tradition, translated into a consti-
tutive issue: the expression for H in terms of gradients of the mean velocity field.
In the theory of ephemeral continua, the matter is argued di¤erently and a sepa-
rate balance equation is proposed for H. Of course, the, perhaps deeper, problem
then arises of deciding on laws for vigour of the corresponding supply and power
flux; but the new setting might even help the imagination. In any case the prob-
lem is bypassed here by a decoupling of balance equations. Curiously, the re-
search path crosses now a di¤erent one pursued in hypoelasticity, where the con-
stitutive equation for stress (Reynolds or otherwise) is presumed to be, midway,
di¤erential, with the final outcome depending on initial data. The second ques-
tion highlighted in the Introduction of Marsden and Shkoller [17] is the possible
synergy, rather than contrast, between two approaches, Lagrangian versus Euler-
ian (whatever the faults be of that terminology, faults exposed by Truesdell [21,
Footnote 2 of Chapter II] in his precise historical investigations). In introducing
ephemeral continua, the more modest technique of retrogression (in the vocabu-
lary of Truesdell and Muncaster [20]) is shown to su‰ce and is conveniently
linked with Euler moment of inertia tensor, for which conservation laws are, for
the most part, standard.

8. Distinction between inertial and kinetic terms

in the Navier–Stokes-ab equation

Fried and Gurtin [11] derived the flow equation (38) for Naver–Stokes-ab con-
tinua based on a theory for fluids with higher-order gradient dependencies. That
theory yields a linear-momentum balance of the form

% _vv ¼ %b� grad pþ divS þ curl divG;ð57Þ

where S ¼ devT ¼ T � 1
3 ðtrTÞI ¼ T þ pI is the deviatoric component of the

symmetric Cauchy stress T and G is a traceless second-order hyperstress, with S
and G being power-conjugate to D and grad curl v, respectively. To arrive at (38)
on the basis of (57), Fried and Gurtin [11] chose

S ¼ 2%nDþ 2%a2D
�
; G ¼ %nb2ðcurl curl vþ gðcurl curl vÞ>Þ;ð58Þ
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where, to ensure that the internal dissipation be nonnegative, n and g must obey

nb 0; �1a ga 1:ð59Þ

The expression (58)1 defines the extra stress of a fluid of second grade. Whereas
the Newtonian contribution to that expression is dissipative, the remaining, non-
Newtonian, contribution is dispersive. As Dunn and Fosdick [9] show, the latter
contribution stems from a specific free-energy c which, up to an indeterminate
additive constant, must have the form

c ¼ a2jDj2:ð60Þ

Indeed, Fried and Gurtin [11] impose a free-energy inequality with local form
% _cc� S �D� G � grad curl va 0. Granted (59), the choices (58) and (60) guaran-
tee satisfaction of this inequality in all processes. In this sense, said choices are
thermodynamically compatible.

Although the flow equation that arises on combining the momentum balance
(57) and the constitutive relations (58) for S and G is indeed the Navier–Stokes-
ab equation (38), the role of S in (57) identifies its origin as constitutive—that is,
as related to collisions between molecules. In contrast, the derivation presented
here shows that the dispersive term entering the Navier–Stokes-ab equation has
an inertial origin.

The foregoing interpretation is consistent with observations made by Fried
and Gurtin [11, 10], who associated the length scale a entering the dispersive con-
tribution to their extra stress S with a characteristic measure of eddy sizes in the,
dissipationless, inertial range of the turbulent energy cascade and the length scale
b entering the wholly dissipative hyperstress G with a characteristic measure of
eddy scales in the dissipation range. These interpretations stem from heuristic
reasoning based on the observation that the dispersive contribution to S is gener-
ated by the potential %c. This leads Fried and Gurtin [11, 10] to interpret %c as
a measure of turbulent kinetic-energy. Analytical and numerical support for
said heuristics are provided by Chen and Fried [8] and Kim, Cassiani, Albertson,
Dolbow, Fried, and Gurtin [16], respectively.

9. Relation to the theory for continua with affine microstructure

The balance equations (4) look, formally, not very di¤erent from ones that are
proposed for continua with a‰ne microstructure, though the latter arise on the
implicit, and contrary, assumption that material elements are perfectly identifi-
able, an assumption which must be intended to apply also for grains within the
element. Precisely, the grains are supposed then to belong to their specific element
forever, even though a process might remove them a long way from their com-
mon centre of mass; the mathematical model does not allow su¤usion. Hence
the absence, in the equations, of terms implying variable mass (s ¼ 0). Besides,
the local distortion is supposed to be exactly a‰ne; the mathematical model
does not allow chaotic motions either. The peculiar velocities are null and conse-
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quently H vanishes. Hence the lack of an evolution equation for H and the
absence of H in the law of balance of moment of mesomomentum. Actually the
two restrictive conditions have fundamentally distinct character when seen from
the di¤erent points of view of the two theories. Within the ‘a‰ne’ approach they
declare bounds to the model, any deficiency being implicitly transferred, for a
redress, to some theory of heat and attendant constitutive choices. Within the
‘ephemeral’ approach they are constraints; their consequences should be explored
and, eventually, their influence on balance equations made explicit. If the plain
route followed above to deal with perfect constraints would be expedient here
is a moot point, to which we may return later. Finally, the definition of a‰ne
moment of momentum, say K, makes use of a reference stance and thus K has
the properties of a double vector (or, equivalently, a two-point tensor) rather
than of a tensor, as the ephemeral K properly is. In fact, the relation between K
and K is K ¼ KG�>, where G is related to B via

_GGG�1 ¼ B:ð61Þ

In view of this relation, G>B> ¼ _GG> and

K
�
¼ _KKG> þ K _GG> � KG>B> � BKG>ð62Þ

¼ _KKG> þ K _GG> � K _GG> � BKG>

¼ ð _KK � BKÞG>:

Thus, when expressed in terms of K , the coshaping rate of K looses a term and,
granted that s ¼ 0 and H ¼ 0, (4) can be converted to

%ð _KK � BKÞ ¼ %M þ T > þ C þ div h;ð63Þ

in which M ¼ MG�> and C and h obey

C þ div h ¼ �T > þ ð�Aþ divmÞG�>:ð64Þ

In (63), the divergence applied to h must be the covariant divergence; if written
with trivial derivatives, without involvement of the local metric, the separation
does not make sense and the two addenda are not singly covariant. In any case
the sum of the terms T > þ C and div h is covariant. Computing the covariant
divergence involves the metric Y and, consequently, G. Reference to Capriz and
Podio-Guidugli [5] or the more recent contributions of Obukhov and Tresguerres
[18] and Brocato and Capriz [1] reveals that (63) coincides with the balance of
generalized moment of momentum arising in the theory for continua with a‰ne
microstructure. The use of K instead of K in the a‰ne dynamics is therefore
strictly unnecessary. Hence, one can study the evolution of an a‰ne continuum
also with the use of the balance law as written for ephemeral continua by simply
canceling terms involving s and H and adapting appropriately the constitutive
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laws for sources and fluxes. Thus, the Navier–Stokes-ab equation could have
been based on the more restricted a‰ne version of the balance laws, in view
of the many constraints introduced along the derivation from the ephemeral
dynamics.
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