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ABSTRACT. — The nonlinear Klein-Gordon-Maxwell equations (NKGM) provide models for the
interaction between the electromagnetic field and matter. The relevance of NKGM relies on the fact
that they are the “‘simplest” gauge theory which is invariant under the group of Poincaré. These
equations present the interesting phenomenon of solitons. In this paper, we show that NKGM pre-
sent an Hamiltonian structure and hence they can be written as equations of the first order in 7. This
fact is not trivial since the Lagrangian does not depend on d,¢ (see section 3.3) and a suitable anal-
ysis of its structure is necessary. In the last section, we recall a recent result which states the existence
of solitons by using the particular structure of the Hamiltonian.
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1. INTRODUCTION

The relevance of the Klein-Gordon-Maxwell equations (KGM) relies on the fact
that they model the “simplest” gauge theory which is invariant under the group
of Poincaré and which couples matter and field (see e.g. [24] section 2.7 and [26]
section 1.4); the Klein-Gordon equation describes matter and the Maxwell equa-
tions describe the gauge invariant electromagnetic field.

Moreover, if you add a suitable nonlinear linear term, you get the so called
Nonlinear-Klein-Gordon-Maxwell equations (NKGM). These equations present
the interesting phenomenon of solitons. These solitons in the physics literature
are called charged Q-balls (see e.g. [23], [12], [25]).

More recently also mathematicians became interested to the study of solitary
waves and solitons in NKGM (see e.g. [5], [8], [4], [6], [7], [9], [14], [15], [16], [17])).

In this paper, we show that NKGM present an Hamiltonian structure and
hence they can be written as equations of first order in 7 (see eq. (66)). This fact
is not trivial since the Lagrangian does not depend on d,¢ (see section 3.3) and a
suitable analysis of its structure is necessary.

Finally, in the last section, we recall a recent result which states the existence
of solitons by using the particular structure of the Hamiltonian.
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2. THE MAXWELL EQUATIONS

The D’Alembert equation and Maxwell equations can be considered as the
“simplest”” equations in R* which are invariant both for the Poincaré group and
for a gauge group. In the next sections we will show this fact.

2.1. The simplest gauge invariant equations

The first partial differential equation which has been written and studied is the
D’Alembert equation

(D’ ALEMBERT) Oy = 0!

where
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Hereafter x = (x1, x2, x3) and ¢ will denote the space and time variables.

The D’Alembert equation is the simplest variational field equation which is
invariant under the Poincaré group.

It is variational since it is the Euler-Lagrange equation relative to the func-
tional

m Al =5 [0 = VPl dval

We recall that the Poincaré group can be defined as the subgroup of GL(R*)
which leaves invariant the Minkowski bilinear form, namely the form

3
(2) &y = —Eomg + Y _Emy Ene R
j=0

The Lagrangian %, corresponding to the action (1) can be written as follows
1 , 1 ) 1
3) Lo =510|" =S IVY[" = —S<d,d) .
2 2 2
Then (1) takes the form
1
4) Sl = /fo dxdt = —5/ Ldyr, dryyy dxdt.

Clearly % is invariant under the action of the Poincaré group. Observe that
So[¢] in (1) is invariant not only for the action of the Poincaré group, but also for

! Actually D’Alembert studied this equation only in one space diemensuin [13].
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the action of the “trivial gauge group” & — & + ¢, where ¢ is a constant, namely
FlE] = F[E+ ¢]. Then, if & is a solution of (D’ALEMBERT), also &+ ¢ solves
(D’ ALEMBERT).

The Maxwell equations in the empty space are the simplest generalization of
equation (D’ ALEMBERT) in the sense explained below. In order to get this gener-
alization we need to use the language of the differential forms and to regard the
function y as a zero form. Then dy is the exterior derivative of iy and the equa-
tion (D’ ALEMBERT) becomes:

(5) odyr = 0.
We recall that
0 : AF(RY) — AFH(RY)?
is the functional adjoint operator of
d: AFH(RY) — AF(RY),
namely it is the operator defined by the following equation:
[ Canyasai=— [ Gz asa
where we have assumed & e AF(R*), y e AR, k=0,...,3, and # with

compact support. We recall that the Minkowski product between k-forms is
defined as follows; if

E= Z fi]w,-kdxi‘/\"-/\dx"k and n = Z 171»17”_7,-kdx"‘/\~~/\dx"k
ity i5=0 ity i5=0
then
oy = Z g "'glk]kéil....,ik}/]il,.“,ik7
l‘l,.“,l'k:o
J1seees k=0
where
-1 0 0 O
N 0O 1 0 0
i _
9 =10 01 0
0 0 0 1

2 As usual, A* (%) denotes the space of the k-form defined in £.
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One of the most natural generalization of % [¢] defined by (4) is given by
(6) S[A4] = /cfl dxdt = —%/<dA7dA>M dx dt

where 4 i1s a 1-form:
3 .
(7) A=Y Ajdx.
=0

The variation of the action (6) gives the following Euler-Lagrange equation:
(8) ddA = 0.

This simple generalization gives a much richer structure; in fact the action (6)
is invariant for the gauge transformation 4 — A + dy where y € 4*(R*); namely
the gauge group %>(R*) is an infinite dimensional group. However, in most of the
physical interpretations of this theory, it is assumed that 4 and 4 + dy give the
same experimental results, namely y has no physical meaning. For this reason, we
can introduce the quantity

) F=dA

which does not depend on y (since ddy = 0) and which is considered the physi-
cally measurable quantity.

By equation (8), and the fact ddA4 = 0, we have that F satisfies the following
equations:

(10) dF =0
(11) oF = 0.
2.2. The Maxwell equations as gauge theory
In this section we will show that equations (10), (11) are nothing else but the
Maxwell equations in the empty space.

In order to get the Maxwell equations in a more familiar form, let us write
equations (10), (11) using the vector notation. We denote by

i . R3+1 BN AI(R3+1)

the duality map which associate to a 4-vector (v, v) € R**! the 1-form j(vo,v) €
(R .= AY(R3*!) defined by

i(vo, ¥)[(wo, W)] = —vowo + v - W.
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Then, if 4 is as in (7), we set (p,A) ={ ' (4), namely
(12) p:=A"= -4y, A= (4" 4% 4°) = (4,42, 43).

Then the Lagrangian % in the functional (6) becomes

3

3 3
QMJM)M:% S0y — 4 — 3 (GoA; — 40) — 3 (850 — o)}

Li,j=1 j=1 i=1

3

3
:% S (047 - o) }:aA +30)> = 3 (g + 0,4°)?

Li,j=1 i=1

= |VxA”—|0,A+ Vog|*.

Here and in the following Vx,V and V- will denote respectively the curl, the gra-
dient and the divergence operators with respect to the x variable. So (6) takes the
following aspect:

1
(13) Sl A) =5 [ (A -+ Vol - [V x AP) vl
Making the variation of %] with respect to ¢ and A we get

(14) V- (0,A+Vp)=0

0
(15) Vx(VxA)+a(8,A+V¢):0.

Now we make the following change of variables:
(16) E=—(0,A+Vp)
(17) H=VxA.
From (16) and (17) we have that
(18) VXE+JdH=0
(19) V-H=0
and (14), (15) become
(20) V-E=0
(21) VxH-0E=0.

Equations (18), (19), (20), (21) are respectively the Faraday’s law, the no
monopole law and the Gauss’ and the Ampére’s laws in the empty space. Thus
we have obtained the Maxwell equations in the usual 3-vector notation.
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3. THE NONLINEAR KLEIN-GORDON-MAXWELL EQUATIONS (NKGM)
3.1. The Klein-Gordon-Maxwell equations as Abelian gauge theory

The nonlinear Klein-Gordon equation for a complex valued field y, defined on
the space-time R*, can be written as follows:

(22) O+ W'(y) =0
where
Y >y Py Py
DV =Za —& M=gutiatad

and, with some abuse of notation,

v
¥l

for some smooth function F : [0, ) — R. The field  : R* — C will be called
matter field. If W'(s) is linear, W'(s) = mis, my # 0, equation (22) reduces to
the Klein-Gordon equation.

Consider the Abelian gauge theory in R* equipped with the Minkowski metric
and described by the Lagrangian density (see e.g. [8], [26])

W' () = F'([y])

(23) L =%+ % - W)

where

(1Dyy|* — [DaY?)

NS

L=

L ==(|0A+Vop|* — |V x A]%),

N —

and
A= (4,,45,43) eR® and ¢peR
are the gauge potentials (see (12)). Moreover
Dy = (0 + iqp)yy
is the covariant derivative with respect to the ¢ variable, and
Dy = (V — igA)

is the covariant derivative with respect to the x variable (see e.g. [8] or [26]). Here
¢ denotes a positive parameter.
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Now consider the total action
(24) S = /(Eo + A — W) dxdt.

Making the variation of & with respect to ¥, ¢ and A we get the system of the
Nonlinear Klein-Gordon-Maxwell equations (NKGM)

(25) Doy = D3y + W'(§) =0
(26) V- (0 A+Vp) = qRe(iDWlﬁ)
(27) V x (Vx A) + 0,(3;A + Vo) = gRe(iDAY ).

3.2. General features of the Klein-Gordon-Maxwell equations

Now we make the following change of variables:

(28) E=—(0,A+Vp)
(29) H=VxA

(30) p = —qRe(iD,y))
(31) i=qRe(iDaY).

By this change of variables, we see that (26) and (27) are the second couple of the
Maxwell equations (respectively the Gauss and Ampére’s laws) with respect to a
matter distribution whose electric charge and current densities are respectively p
and j:

(GAUSS) V-E=p
(AMPERE) VxH-0E=j.

As for (18), (19), equations (28) and (29) give rise to the first couple of the
Maxwell equations (respectively the Faraday and no monopole laws):

(FARADAY) VXE+JdH=0

(NOMONOPOLE) V-H=0.

Sometimes it is useful to give a different form to these equations; if we write
in polar form

(32) Y(x, 1) = u(x, eSS uw>0,8eR/2nZ
equation (25) can be split in the two following ones

(33) O+ W) + (VS — qA* — (8,5 + g¢)Ju = 0
(34) g (0,8 4 qp)u?] — V - (VS — gA)u’] = 0.

ot
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Observe that, using the polar form (32), the charge and the current densities (30)
and (31) become

(35) p=—q(0S+qpu*, j=q(VS—qA)u’.

Then equations (33) and (34), using the variables j and p, can be written as
follows:

j2 _ p2
(MATTER) Cu+ W' (u) + VR =0
(CONTINUITY) op+V-j=0.

Equation (CONTINUITY) is the charge continuity equation.

Notice that equation (CONTINUITY) is also a consequence of (GAuss) and
(aMPERE) and hence it can be eliminated. Thus equations (25), (26), (27) are equi-
valent to equations (GAUSS), (AMPERE), (FARADAY), (NOMONOPOLE), (MATTER).

In conclusion, an Abelian gauge theory, via equations (GAUSS), (AMPERE),
(FARADAY), (NOMONOPOLE), (MATTER), provides a model of interaction of the
matter field y with the electromagnetic field (E, H).

Observe that the Lagrangian (23) is invariant with respect to the gauge trans-
formations

(36) —
(37) 9 —¢— 0y
(38) A=AtV

where y € C?(R%).

So our equations are gauge invariant; if we use the variables u, p, j, E, H, this
fact can be checked directly since these variables are gauge invariant. In fact,
equations (GAUSS), (AMPERE), (FARADAY), (NOMONOPOLE), (MATTER) are the
gauge invariant formulation of equations (25), (26), (27).

3.3. The modified Lagrangian

The Lagrangian (23) has the following form:

L, 00, A, 0, ) =5 (IDY|* — |Dav]?) — W ()

N —

1
+5(10A+ Vgl = |V x AP).

Since ¥ does not depend on d,¢ it is not possible to make the Legendre trans-
formation with respect to d,¢ and hence to get an Hamiltonian formulation of
the dynamics.
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To overcome this difficulty, we set

(39)  Mr={(QQ):%p+V-A=0,V-(dA + Vp) = gRe(iD))}

where

Q = (lvau (ﬂ)a Q = (arlpa atA) a;(ﬂ)

and we consider the modified Lagrangian

(40) 2(Q.Q) =5 [IDW|* — IDAYI’] = W(¥)

N —

1
+5[10A1" = [VAI® = (0:9)" + [yl ]

The dynamics induced by & is given by the following equations:

(41) Doy — D+ W'(y) =0
(42) A — gRe(iDayh) = 0
(43) ¢ + gRe(iDyyh) = 0

THEOREM 1. The set My is invariant for the dynamics induced by equations (41),
(42), (43). Moreover, if the initial data are in My, and (W, A, ¢) is a smooth solution
of eqs. (41), (42), (43) then it is also a solution of (25), (26), (27).

PROOF. Asin (30) and (31) we set
i = +qRe(iDay))
p = —qRe(iD,n)).

Let us first show that M is invariant for the dynamics induced by (41), (42), (43).
Let

Q(X, Z) - (W(Xa [)7 A(X, t)v (ﬂ(x7 t))

be the solution of (41), (42), (43) with initial data

(44) (Q(x7 0),Q(X, Z))t:O € M.
So
(45)  Owp(x,1),_o+V-A(x,0) =0, V-(0A(x,1),_y+ Vo(x,0)) = —p,

where
po=p0)=—q Re(iDga‘Plp);:o-
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We want to show that for all + > 0

(Q(x.1),Q(x,1)) € My

namely that for all z > 0
(46) 0p(x, 1) +V-A(x, 1) =0,
(47) V- (0,A(x, 1) + Vo(x,1)) = gRe(iD,y)).
We set for all x, ¢

F=F(x,t)=0mp(x,t) + V- A(x,1).
Then
(48) OF = 0,(0¢) + V- (OA) = (by 42,43) = 0,p+ V -
Since (41) is equivalent to (33) and (34), we have by (34) that
(49) op+V-ji=0.
Then by (48) and (49) we get

(50) F =0.

By (45)

(51) F(x,0) = 0,p(x,1),_o+ V- A(x,0) = 0.
Moreover

(52)  OF =329+ V-(0,A) = (by43) =V - (Vo) +p+V-(0,A(x,1)).
Then

(53)  OF(x,0),_y =V - (Vo(x,0) + 0,A(x,7),_y) + py = (by (45)) = 0.
By (50), (51), (53) we get and

OF =0
F=0 fort=0
0 F=0 fort=0.

So,



HAMILTONIAN FORMULATION OF THE KLEIN-GORDON-MAXWELL EQUATIONS 123

Then (46) is proved. Now in order to prove (47), we observe that by (46) we get
0.F =0 forall t.
From which, using (52), we have
V- (Vp)+p+V-(0A(x,1)) =0 forallz.

Then (47) clearly holds.

Let us now prove the second part of the theorem. Let (i, A, ) be a smooth
solution of eqs. (41), (42), (43) with initial data in M. We show that it is a solu-
tion of (25), (26), (27).

Since (41) coincides with (25), we are reduced to show that (i, A, @) satisfies
(26), (27).

Clearly we have

j= (by42) = 0’A — AA
=0;A-V(V-A)+Vx (VxA) (by(46))
= 0,(0A) + V(0p) +V x (V x A)

So (27) is satisfied. On the other hand

p=(by (43)) = 0,(0ip) =V - Vg
— (by (46)) = —0,V-A—V - Vg
=—V-(0,A+Vp).
Then also (26) is satisfied. O

REMARK 2. By the proof of the above theorem, we can easily deduce that any
smooth solution (Y, A, p) of egs. (25), (26), (27) belonging to My, is also a solution
of (41), (42), (43).

3.4. Hamiltonian formulation

The Lagrangian (40) depends on the configuration variable Q = (/, A, ¢) and its
time derivative Q = (04, 0,A, 0,p); moreover it is convex in Q. Then it is possible
to define the conjugate variable of Q via the Legendre transform. These conju-
gate variables will be denoted by P = (y/, A, ¢). We have:

.09 ,
(54) V= W =0 + iqpy = D,y
. 0.9
(55) A= ai) — A
(56) b=L oy
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We denote by u the state of our dynamical system described by the canonical
variables

u= (Q,P) = (lpaA)wv‘ﬁ’A7¢)'

The invariant set M, (see (39)), expressed in the canonical variables (Q, P) is
given by

(57) My ={(QP): =6+ V-A=0,V-(A+Vp) = gRe(if}))}.
We notice that the equation

(58) —9+V-A=0

defines the Lorentz gauge in the canonical variables, while

(59) V- (A +Vp) = gRe(if))

is nothing else but the equation (GAUSS) in these variables.
The duality between P and Q is given by

(60) (P.Q) = Re(§ida)) + A 0 + iy,
then, the Hamiltonian density takes the form

(61) H(Q,P) = [(P,Q) - 2(Q,Q)lg_¢)-

By the definition of covariant derivative and (54), we have

(62) o = Doy — iqpyy = — igpys

and hence, inserting (62), (55) and (56) in (60), we have

(63) P, Qoo = I¥I” + gpRe(i) + |A]* — ¢

Moreover the Lagrangian % (see (40), expressed in the canonical variables
u = (Q,P), takes the form

(64)  Z(Q.P)=2((Q,Q(w)
1, - 1, -
=5 (Y1° = IDay[*) + 5 (A]” = [VA]” = 9% + [Vo|) = W (y).
Then by (63) and (64) the Hamiltonian density (61) becomes
1 - .
(65) H(Q.P) = (IY" + |A]" = @° + [Day|* + VA" — [Vg[*)

+ gpRe(ifn)) + W ().
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The action (in a bounded domain Q) is given by:

7QP) = [ (P.Q)~ HQ.P) dra
_ / (Re(§/dp) + A - 0,A + §0,p) dx di
Q
‘ABWW+MV—¢+WWF+MW—WW>Mm

—@wmw®+mwwm

Making the variations of .%(Q,P) with respect v, U, A, A, ¢, ¢ respectively, we
get the canonical equations of motion:

o =V — iqpy
6tlﬁ = —igoy + Dilﬁ - W'(y)
0,A = A

(66) A 2 T
0,A = V2A + qRe(iDAYY))
09 =—9

8.9 = —V?¢ — qRe(ifh)).

REMARK 3. If'we use the covariant derivative with respect to time D, the Hamil-
ton equations take a simplerg form:

(67) Dy =y

(68) Dy = Dy — W'(y)
(69) A=A

(70) 3A = V2A + gRe(iDayi))
(71) 0p=—0

09 = —V?p — qRe(iD, )
3.5. NKGM as a dynamical system

We assume that My (or equivalently M) consist of C* functions; we would like
to define a natural metric and to take the completion of My with respect to this
metric.

The choice of the “right” metric is a delicate problem which depends on
mathematical and physical considerations. In many problems, we have that

(72) {energy} = {positive quadratic form} + {higher order terms}.
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In these problems, usually, the “norm of the energy’ is a good choice:

(73) | - || := \/{positive quadratic form}.

In NKGM, the energy is just the Hamiltonian; namely (if the energy is finite), by
(65)

(714)  H#(Q.P)= / H(Q,P)dx
= %/(Ilﬁl2 + A2 = @ + | DAy + |VA]® — Vo) dx
+ / [qp Re(i)) + W ()] dx.

We observe that #(Q, P) is not positive. However, if (Q,P) € My and if W > 0,
the energy is positive as the following proposition shows:

ProrosiTION 4. If (Q,P) € My, and the energy is finite, then
1 - R
(15) HQ@P) =5 [ (01 + IDapl + Vo + AP 41V x AP) + [ W(w),

PrOOF. We recall that, if (Q,P) € My, then by eq. (58), we have that
9> = V- A]”
and, recalling that
VA = [V-A]* + |V x A%,
we get
(16 HQP) = [+ AP + D + |V x AP = [VP)

+ / qoRe(ip) + W ().

Moreover, by (59), multiplying by ¢ and integrating by parts, we get

/|V¢|2+V¢-A—q/¢Re<z'W>.
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Thus, replacing ¢ / o Re(if)) in eq. (76), we have
1
HQP) =5 [P+ AP + Dbl + 1V < AP + Vol +2Vp- &)+ [ Wiy

=5 (W1 + Day + 199+ AP+ 7 x AR) + [ (). 0

Now we want to express the energy in the gauge invariant variables (GIV) u
v, p, i, E, H defined by

u= |
L _ Re(yy)
]
(GIV) p = —qRe(i)
i = qRe(iDay))
—(Vp+A)
H=VxA.

We notice that E and H coincide with the electromagnetic field defined by
eqs. (28) and (29), u is consistent with (32) while p and j are the electric and the
current density.

We now set

Xo={ue C*(R*R?)|V-E=p,V-H=0,E(u) < +0}

where u = (u, v, p, j, E, H) denotes the generic state and E(u) is the energy as func-
tion of u.

We observe that X, is invariant for the dynamics given by the equations
(GAUSS, AMPERE, FARADAY, NOMONOPOLE, MATTER).

PROPOSITION 5. Ifu € Xy, then the energy takes the following expression:

E(u) = ;/(v +|V\+q

PROOF. By using the polar form y = ue’ and by the first eq. of (66), we have

_ Re(Y)) _ Re[(0y + igpy)y]

PP+

+E2+H2 dx+/W

7 u
Re[o, ]  Re[(Oue™ + i0,Sue™ yue ™)
u u

- aﬂ/l.
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Then

(77) v = du.

Using again the first eq. of (66) and the polar form of y, we have

(78) W= 0 + iqp = [Ou + i(8,S + qp)ue’.
Moreover, by (35),
(79) p=—q(0:S + qp)u’.

Thus, by (78), (79) and (77), we have
72 2 22 2, P
(80) [WY|” = [0u]” +|0:S + qo|"u” = [v] "‘W-
Similarly, writing v in polar form, we have
Dy = Vi — igAy = [Vu — i(VS — gA)ule™
and using (35)
i=aq(VS —qA)?,

we get

)
J
(81) DAyl = Vul* + VS = gA"u® = [Vul’ + 5.

Thus, by (75), (80), (81) and the last two equations of GIV

1

E(u) =3

S0P+ 1Dagl + Vo4 AP+ 9 x AP+ [ W)

1 2 2
:5/{|v|2+#+Vu|2+ﬁ+E2+H2}dx+/W(u)dx. O

We write W as follows
2

(82) W(s) = m7s2 FN(s), N(s) = ofs?)

and we will assume m > 0. Then we have

1 2 22
E(u)zi/{ 2+|Vu|2+m2u2+pq;2’ +E2+H2]dx+/N(u)dx.
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The term (p? + j*)/u? is singular and the energy does not have the form (72).

In order to avoid this problem, it is convenient to introduce new gauge invariant
variables which eliminate this singularity:

(83) 0=—"L, o=
qu qu

Using these new variables the energy takes the form:
1
(84)  E(u) = 5/[02 VUl + ml 4+ 0%+ ©° + B2 + HY + / N(w).
Thus, we can take a norm having the form (73), namely
2 2000 2 @2 w2 )
(85) ||u||—(/[v +Vul? + m2u? + 0> + @2+ E +H]dx) :

If Q = (y,A, p) is a solution of the Cauchy problem relative to equations (41),
(42), (43) with initial data in M and with finite energy, after the change of vari-
ables (83) and (GIV), u = (u,v, 0,0, E, H) solves the Cauchy problem relative to
equations

0% — @

u

O+ W' (1) =

V-E = —q6u
V xH - 0,E = ¢qOu
VXxE+dH=0

V-H=0

(86)

with initial data in Xj.
We will denote by ¥ the completion of Cg°(R*, R'?) with respect to the norm
(85) so that

u=(u,0,0,0,E,H) e V=~ H'(R*) x L*(R?,R'").

Finally X < I will denote the closure of X, with respect to the norm (85).

In the following we shall assume that the Cauchy problem for NKGM is
globally well posed in X so that we can consider NKGM as a dynamical system.
Actually in the literature there are not many results relative to this problem (we
know only [18], [19], [21]). In any case X seems to be an appropriate space to
study the Cauchy problem.

In the following we will denote by (X,y) the dynamical system relative to
NKGM.
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4. SOLITARY WAVES AND SOLITONS IN NKGM

An interesting fact concerning NKGM is the existence of solitary waves and
solitons, provided that W satisfies suitable assumptions. Roughly speaking a
solitary wave is a solution of a field equation whose energy travels as a localized
packet and which preserves this localization in time. A soliton is a solitary wave
which exhibits some form of stability so that it has a particle-like behavior (see
e.g. [1], [8], [22], [25]). In theoretical physics, the solitons occurring in NKGM
are called charged Q-balls.

In this section we will describe some recent results concerning the existence
and the nature of such solitons.

4.1. Definition of solitary waves and solitons

Now we will give a rigorous definition of solitary waves and solitons in NKGM.
Solitary waves and solitons are particular szates of the dynamical system (X, y)
described by the nonlinear Klein-Gordon-Maxwell equations (see (86) and the
end of section 3.5).

DEFINITION 6. A state u(x) € X is called solitary wave if

lyu(x)| = f(x —vt).
In particular, if v = 0, then u(x) is called standing wave.

The solitons are solitary waves characterized by some form of stability. To
define them, we need to recall some well known notions in the theory of dynam-
ical systems.

A set I' X is called invariant if Vu e I', Vt e R, yu e I'.

DEFINITION 7. Let (X,d) be a metric space and let (X, y) be a dynamical sys-
tem. An invariant set I’ = X is called stable, if Ve > 0, 36 > 0, Vu € X,

d(u,T') <9,

implies that
VieR, diyul)<e

Let G be the group induced by the translations in R, namely, for every
7 € RY, the transformation ¢, € G is defined as follows:

(87) (g-u)(x) =u(x — 7).
A subset I' < X is called G-invariant if

Vuel, VreRY, guel.
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DEFINITION 8. A closed set I' = X is called G-compact if it is G-invariant and
for any sequence u,(x) in I there is a sequence 7, € R, such that u, (x — 7,) has
a converging subsequence.

Now we are ready to give the definition of soliton:

DEFINITION 9. A standing wave u(x) is called (standing) soliton if there is a
closed set I such that

e (i) V&, yu(x) e T,
e (ii) I is stable,
e (iii) " is G-compact.

Some times, in the literature, the kind of stability described by the above
definition is called orbital stability.

REMARK 10. The above definition needs some explanations. For simplicity, we
assume that T is a manifold (actually, it is possible to prove that this is the generic
case if the problem is formulated in a suitable function space). Then (i) implies
that T is finite dimensional. Since T is invariant, ugp € I = yug € I' for every
time. Thus, since U is finite dimensional, the evolution of g is described by a finite
number of parameters. Thus the dynamical system (I',y) behaves as a point in a
finite dimensional phase space. By the stability of I, a small perturbation of ugy
remains close to I'. However, in this case, its evolution depends on an infinite
number of parameters. Thus, this system appears as a finite dimensional system
with a small perturbation, namely as a “particle’” perturbed by a field.

REMARK 11. We recall that (NKGM) are defined by a Lagrangian which is in-
variant under the action of the Lorentz group. If g is a standing wave, it is possible
to obtain a travelling wave just making a Lorentz boost (see e.g. [8] or [4]). More
precisely, let Ty be the representation of a Lorentz boost relative to our system and
let

u(z, x) = yup(x)
be the evolution of our standing wave uy(x); then
u'(¢,x") == Ty(t, x)
is a solution of our equation which moves in time with velocity v. In [4] you can see

the details and how this principle works in some particular cases. Obviously, if uy is
a standing soliton, u, is orbitally stable and hence it is a travelling soliton.

4.2. The charge and hylomorphic solitons

In recent papers (see e.g. [2], [3], [4], [7], [9], [10]), the notion of hylomorphic
soliton has been introduced and analyzed. The existence and the properties of
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hylomorphic solitons are guaranteed by the interplay between energy E and
another integral of motion which is called hylenic charge and it will be denoted
by C. More precisely, a soliton uy € X is hylomorphic if

E(uy) = min{E(u) | C(u) = C(ug)}.

In NKGM, the hylenic charge coincides with the electric charge and we will
refer to it just using the word charge. The charge, by definition, is the quantity
which is preserved by the gauge action (36), (37), (38). Using (34), we see that it
has the following expression

(88) c— / pdx.

Using the variables u and 6, by (83), the charge becomes:

(89) Cu) = —q / Ou dix.

We make the following assumptions on W:

e (W-i) (Positivity) W(s) >0
(W i) (Nondegeneracy) W = W(s) (s = 0) is C? near the origin with W (0) =
w'(0) =0, W"(0)=m?>>0
e (W-iii) (Hylomorphy) 35 > 0 and « € (0,m) such that W(5) < 1
® (W-iiii) (Growth condition) There are constants a,b > 0,
IN'(s)| < asP~! + bs>~?/? where N is defined by eq. (82).

52

o
6>p>2 st

Here there are some comments on assumptions (W-i), (W-ii), (W-iii), (W-iiii).

(W-i) Clearly (see (84)) (W-i) implies that the energy is positive; if this con-
dition does not hold, it is possible to have solitary waves, but not hylomorphic
waves (cf. the discussion in section 4.2 of [7]).

(W-ii) In order to have solitary waves it is necessary to have W”(0) > 0. There
are some results also when W”(0) = 0 (null-mass case, see e.g. [11]), however the
most interesting situation occurs when W"”(0) > 0.

(W-iii) This is the crucial assumption which characterizes the potentials which
might produce hylomorphic solitons. By this assumption there exists sy such that
N (S()) < 0.

(WH-iiii) This assumption contains the usual growth condition at infinity which
guarantees the C! regularity of the functional. Moreover it implies that |[N'(s)| =
O(s*>~%/?) for s small.

We have the following results (for the proof see ([10])):

THEOREM 12. Assume that (W-i), (W-ii), (W-iii), (W-iiii) hold, then there exists
q such that for every q € |0,q], equations (86) have a continuous family us
(0 €(0,0(q))) of independent, hylomorphic solitons (two solitons us,, us, are called
independent if us, # gus, for every g € G).
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THEOREM 13. The solitons us = (us, iis, 0s, ©5, Es, Hy) in Theorem 12 are station-
ary solutions of (86), this means that tis = @5 = Hy = 0, Es = —Vgs and us, 05, ¢;
solve the equations
02
—Aus + W' (us) — 2 =0
Us

—Ag0(; + gOsus = 0.
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