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Abstract. — The nonlinear Klein-Gordon-Maxwell equations (NKGM) provide models for the

interaction between the electromagnetic field and matter. The relevance of NKGM relies on the fact
that they are the ‘‘simplest’’ gauge theory which is invariant under the group of Poincaré. These

equations present the interesting phenomenon of solitons. In this paper, we show that NKGM pre-
sent an Hamiltonian structure and hence they can be written as equations of the first order in t. This

fact is not trivial since the Lagrangian does not depend on qtj (see section 3.3) and a suitable anal-
ysis of its structure is necessary. In the last section, we recall a recent result which states the existence

of solitons by using the particular structure of the Hamiltonian.
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1. Introduction

The relevance of the Klein-Gordon-Maxwell equations (KGM) relies on the fact
that they model the ‘‘simplest’’ gauge theory which is invariant under the group
of Poincaré and which couples matter and field (see e.g. [24] section 2.7 and [26]
section 1.4); the Klein-Gordon equation describes matter and the Maxwell equa-
tions describe the gauge invariant electromagnetic field.

Moreover, if you add a suitable nonlinear linear term, you get the so called
Nonlinear-Klein-Gordon-Maxwell equations (NKGM). These equations present
the interesting phenomenon of solitons. These solitons in the physics literature
are called charged Q-balls (see e.g. [23], [12], [25]).

More recently also mathematicians became interested to the study of solitary
waves and solitons in NKGM (see e.g. [5], [8], [4], [6], [7], [9], [14], [15], [16], [17]).

In this paper, we show that NKGM present an Hamiltonian structure and
hence they can be written as equations of first order in t (see eq. (66)). This fact
is not trivial since the Lagrangian does not depend on qtj (see section 3.3) and a
suitable analysis of its structure is necessary.

Finally, in the last section, we recall a recent result which states the existence
of solitons by using the particular structure of the Hamiltonian.



2. The Maxwell equations

The D’Alembert equation and Maxwell equations can be considered as the
‘‘simplest’’ equations in R4 which are invariant both for the Poincarè group and
for a gauge group. In the next sections we will show this fact.

2.1. The simplest gauge invariant equations

The first partial di¤erential equation which has been written and studied is the
D’Alembert equation

kc ¼ 01ðD’AlembertÞ

where

kc ¼ q2c

qt2
� Dc and Dc ¼ q2c

qx2
1

þ q2c

qx2
2

þ q2c

qx2
3

:

Hereafter x ¼ ðx1; x2; x3Þ and t will denote the space and time variables.
The D’Alembert equation is the simplest variational field equation which is

invariant under the Poincaré group.
It is variational since it is the Euler-Lagrange equation relative to the func-

tional

S0½c� ¼
1

2

Z
½jqtcj2 � j‘cj2� dx dt:ð1Þ

We recall that the Poincaré group can be defined as the subgroup of GLðR4Þ
which leaves invariant the Minkowski bilinear form, namely the form

3x; h4M ¼ �x0h0 þ
X3

j¼0

xjhj; x; h a R4:ð2Þ

The Lagrangian L0 corresponding to the action (1) can be written as follows

L0 ¼
1

2
jqtcj2 �

1

2
j‘cj2 ¼ � 1

2
3dc; dc4M :ð3Þ

Then (1) takes the form

S0½c� ¼
Z

L0 dx dt ¼ � 1

2

Z
3dc; dc4M dx dt:ð4Þ

Clearly L0 is invariant under the action of the Poincaré group. Observe that
S0½x� in (1) is invariant not only for the action of the Poincaré group, but also for

1Actually D’Alembert studied this equation only in one space diemensuin [13].
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the action of the ‘‘trivial gauge group’’ x ! xþ c, where c is a constant, namely
S0½x� ¼ S0½xþ c�. Then, if x is a solution of (D’Alembert), also xþ c solves
(D’Alembert).

The Maxwell equations in the empty space are the simplest generalization of
equation (D’Alembert) in the sense explained below. In order to get this gener-
alization we need to use the language of the di¤erential forms and to regard the
function c as a zero form. Then dc is the exterior derivative of c and the equa-
tion (D’Alembert) becomes:

d dc ¼ 0:ð5Þ

We recall that

d : LkðR4Þ ! Lk�1ðR4Þ2

is the functional adjoint operator of

d : Lk�1ðR4Þ ! LkðR4Þ;

namely it is the operator defined by the following equation:Z
3x; dh4M dx dt ¼ �

Z
3dx; h4M dx dt

where we have assumed x a LkðR4Þ, h a Lk�1ðR4Þ, k ¼ 0; . . . ; 3, and h with
compact support. We recall that the Minkowski product between k-forms is
defined as follows; if

x ¼
X3

i1;...; ik¼0

xi1;...; ik dx
i1b� � �bdxik and h ¼

X3

i1;...; ik¼0

hi1;...; ik dx
i1b� � �bdxik

then

3x; h4M ¼
X3

i1;...; ik¼0
j1;...; jk¼0

gi1 j1 . . . gik jkxi1;...; ikhi1;...; ik ;

where

½gij� ¼

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775:

2As usual, Lk ðGÞ denotes the space of the k-form defined inG.
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One of the most natural generalization of S0½x� defined by (4) is given by

S1½A� ¼
Z

L1 dx dt ¼ � 1

2

Z
3dA; dA4M dx dtð6Þ

where A is a 1-form:

A ¼
X3

j¼0

Aj dx
j :ð7Þ

The variation of the action (6) gives the following Euler-Lagrange equation:

d dA ¼ 0:ð8Þ

This simple generalization gives a much richer structure; in fact the action (6)
is invariant for the gauge transformation A ! Aþ dw where w a C2ðR4Þ; namely
the gauge group C2ðR4Þ is an infinite dimensional group. However, in most of the
physical interpretations of this theory, it is assumed that A and Aþ dw give the
same experimental results, namely w has no physical meaning. For this reason, we
can introduce the quantity

F ¼ dAð9Þ

which does not depend on w (since ddw ¼ 0Þ and which is considered the physi-
cally measurable quantity.

By equation (8), and the fact ddA ¼ 0, we have that F satisfies the following
equations:

dF ¼ 0ð10Þ

dF ¼ 0:ð11Þ

2.2. The Maxwell equations as gauge theory

In this section we will show that equations (10), (11) are nothing else but the
Maxwell equations in the empty space.

In order to get the Maxwell equations in a more familiar form, let us write
equations (10), (11) using the vector notation. We denote by

j : R3þ1 ! L1ðR3þ1Þ

the duality map which associate to a 4-vector ðv0; vÞ a R3þ1 the 1-form jðv0; vÞ a
ðR3þ1Þ� :¼ L1ðR3þ1Þ defined by

jðv0; vÞ½ðw0;wÞ� ¼ �v0w0 þ v � w:
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Then, if A is as in (7), we set ðj;AÞ ¼ j�1ðAÞ, namely

j :¼ A0 ¼ �A0; A :¼ ðA1;A2;A3Þ ¼ ðA1;A2;A3Þ:ð12Þ

Then the Lagrangian L1 in the functional (6) becomes

3dA; dA4M ¼ 1

2

X3

i; j¼1

ðqiAj � qjAiÞ2 �
X3

j¼1

ðq0Aj � qjA0Þ2 �
X3

i¼1

ðqiA0 � q0AiÞ2
" #

¼ 1

2

X3

i; j¼1

ðqiA j � qjA
iÞ2 �

X3

j¼1

ðqtA j þ qjjÞ2 �
X3

i¼1

ðqijþ qtA
iÞ2

" #

¼ j‘� Aj2 � jqtAþ ‘jj2:

Here and in the following ‘�;‘ and ‘� will denote respectively the curl, the gra-
dient and the divergence operators with respect to the x variable. So (6) takes the
following aspect:

S1½ðj;AÞ� ¼
1

2

Z
ðjqtAþ ‘jj2 � j‘� Aj2Þ dx dt:ð13Þ

Making the variation of S1 with respect to j and A we get

‘ � ðqtAþ ‘jÞ ¼ 0ð14Þ

‘� ð‘� AÞ þ q

qt
ðqtAþ ‘jÞ ¼ 0:ð15Þ

Now we make the following change of variables:

E ¼ �ðqtAþ ‘jÞð16Þ

H ¼ ‘� A:ð17Þ

From (16) and (17) we have that

‘� Eþ qtH ¼ 0ð18Þ

‘ �H ¼ 0ð19Þ

and (14), (15) become

‘ � E ¼ 0ð20Þ

‘�H� qtE ¼ 0:ð21Þ

Equations (18), (19), (20), (21) are respectively the Faraday’s law, the no
monopole law and the Gauss’ and the Ampére’s laws in the empty space. Thus
we have obtained the Maxwell equations in the usual 3-vector notation.
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3. The Nonlinear Klein-Gordon-Maxwell equations (NKGM)

3.1. The Klein-Gordon-Maxwell equations as Abelian gauge theory

The nonlinear Klein-Gordon equation for a complex valued field c, defined on
the space-time R4, can be written as follows:

kcþW 0ðcÞ ¼ 0ð22Þ

where

kc ¼ q2c

qt2
� Dc; Dc ¼ q2c

qx2
1

þ q2c

qx2
2

þ q2c

qx2
3

and, with some abuse of notation,

W 0ðcÞ ¼ F 0ðjcjÞ c

jcj

for some smooth function F : ½0;lÞ ! R. The field c : R4 ! C will be called
matter field. If W 0ðsÞ is linear, W 0ðsÞ ¼ m2

0s, m0A 0, equation (22) reduces to
the Klein-Gordon equation.

Consider the Abelian gauge theory in R4 equipped with the Minkowski metric
and described by the Lagrangian density (see e.g. [8], [26])

L ¼ L0 þL1 �W ðcÞð23Þ

where

L0 ¼
1

2
ðjDjcj2 � jDAcj2Þ

L1 ¼
1

2
ðjqtAþ ‘jj2 � j‘� Aj2Þ;

and

A ¼ ðA1;A2;A3Þ a R3 and j a R

are the gauge potentials (see (12)). Moreover

Djc ¼ ðqt þ iqjÞc

is the covariant derivative with respect to the t variable, and

DAc ¼ ð‘� iqAÞc

is the covariant derivative with respect to the x variable (see e.g. [8] or [26]). Here
q denotes a positive parameter.
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Now consider the total action

S ¼
Z

ðL0 þL1 �WðcÞÞ dx dt:ð24Þ

Making the variation of S with respect to c, j and A we get the system of the
Nonlinear Klein-Gordon-Maxwell equations (NKGM)

D2
jc�D2

AcþW 0ðcÞ ¼ 0ð25Þ

‘ � ðqtAþ ‘jÞ ¼ qReðiDjccÞð26Þ

‘� ð‘� AÞ þ qtðqtAþ ‘jÞ ¼ qReðiDAccÞ:ð27Þ

3.2. General features of the Klein-Gordon-Maxwell equations

Now we make the following change of variables:

E ¼ �ðqtAþ ‘jÞð28Þ

H ¼ ‘� Að29Þ

r ¼ �qReðiDjccÞð30Þ

j ¼ qReðiDAccÞ:ð31Þ

By this change of variables, we see that (26) and (27) are the second couple of the
Maxwell equations (respectively the Gauss and Ampére’s laws) with respect to a
matter distribution whose electric charge and current densities are respectively r
and j:

‘ � E ¼ rðgaussÞ

‘�H� qtE ¼ j:ðampereÞ

As for (18), (19), equations (28) and (29) give rise to the first couple of the
Maxwell equations (respectively the Faraday and no monopole laws):

‘� Eþ qtH ¼ 0ðfaradayÞ

‘ �H ¼ 0:ðnomonopoleÞ

Sometimes it is useful to give a di¤erent form to these equations; if we write c
in polar form

cðx; tÞ ¼ uðx; tÞeiSðx; tÞ; ub 0; S a R=2pZð32Þ

equation (25) can be split in the two following ones

kuþW 0ðuÞ þ ½j‘S � qAj2 � ðqtS þ qfÞ2� u ¼ 0ð33Þ
q

qt
½ðqtS þ qfÞu2� � ‘ � ½ð‘S � qAÞu2� ¼ 0:ð34Þ
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Observe that, using the polar form (32), the charge and the current densities (30)
and (31) become

r ¼ �qðqtS þ qfÞu2; j ¼ qð‘S � qAÞu2:ð35Þ

Then equations (33) and (34), using the variables j and r, can be written as
follows:

kuþW 0ðuÞ þ j2 � r2

q2u3
¼ 0ðmatterÞ

qtrþ ‘ � j ¼ 0:ðcontinuityÞ

Equation (continuity) is the charge continuity equation.
Notice that equation (continuity) is also a consequence of (gauss) and

(ampere) and hence it can be eliminated. Thus equations (25), (26), (27) are equi-
valent to equations (gauss), (ampere), (faraday), (nomonopole), (matter).

In conclusion, an Abelian gauge theory, via equations (gauss), (ampere),
(faraday), (nomonopole), (matter), provides a model of interaction of the
matter field c with the electromagnetic field ðE;HÞ.

Observe that the Lagrangian (23) is invariant with respect to the gauge trans-
formations

c ! eiqwcð36Þ
j ! j� qtwð37Þ
A ! Aþ ‘wð38Þ

where w a C2ðR4Þ.
So our equations are gauge invariant; if we use the variables u, r, j, E, H, this

fact can be checked directly since these variables are gauge invariant. In fact,
equations (gauss), (ampere), (faraday), (nomonopole), (matter) are the
gauge invariant formulation of equations (25), (26), (27).

3.3. The modified Lagrangian

The Lagrangian (23) has the following form:

Lðc; qtc;A; qtA; jÞ ¼
1

2
ðjDjcj2 � jDAcj2Þ �WðcÞ

þ 1

2
ðjqtAþ ‘jj2 � j‘� Aj2Þ:

Since L does not depend on qtj it is not possible to make the Legendre trans-
formation with respect to qtj and hence to get an Hamiltonian formulation of
the dynamics.
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To overcome this di‰culty, we set

ML ¼ fðQ; _QQÞ : qtjþ ‘ � A ¼ 0;‘ � ðqtAþ ‘jÞ ¼ qReðiDjccÞgð39Þ

where

Q ¼ ðc;A; jÞ; _QQ ¼ ðqtc; qtA; qtjÞ

and we consider the modified Lagrangian

L̂LðQ; _QQÞ ¼ 1

2
½jDjcj2 � jDAcj2� �WðcÞð40Þ

þ 1

2
½jqtAj2 � j‘Aj2 � ðqtjÞ2 þ j‘jj2�:

The dynamics induced by L̂L is given by the following equations:

D2
jc�D2

AcþW 0ðcÞ ¼ 0ð41Þ

kA� qReðiDAccÞ ¼ 0ð42Þ

kjþ qReðiDjccÞ ¼ 0ð43Þ

Theorem 1. The set ML is invariant for the dynamics induced by equations (41),
(42), (43). Moreover, if the initial data are in ML and ðc;A; jÞ is a smooth solution
of eqs. (41), (42), (43) then it is also a solution of (25), (26), (27).

Proof. As in (30) and (31) we set

j ¼ þqReðiDAccÞ

r ¼ �qReðiDjccÞ:

Let us first show that ML is invariant for the dynamics induced by (41), (42), (43).
Let

Qðx; tÞ ¼ ðcðx; tÞ;Aðx; tÞ; jðx; tÞÞ

be the solution of (41), (42), (43) with initial data

ðQðx; 0Þ; _QQðx; tÞÞt¼0 a ML:ð44Þ

So

qtjðx; tÞt¼0 þ ‘ � Aðx; 0Þ ¼ 0; ‘ � ðqtAðx; tÞt¼0 þ ‘jðx; 0ÞÞ ¼ �r0ð45Þ

where

r0 ¼ rð0Þ ¼ �qReðiDjccÞt¼0:
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We want to show that for all tb 0

ðQðx; tÞ; _QQðx; tÞÞ a ML

namely that for all tb 0

qtjðx; tÞ þ ‘ � Aðx; tÞ ¼ 0;ð46Þ

‘ � ðqtAðx; tÞ þ ‘jðx; tÞÞ ¼ qReðiDjccÞ:ð47Þ

We set for all x, t

F ¼ F ðx; tÞ ¼ qtjðx; tÞ þ ‘ � Aðx; tÞ:

Then

kF ¼ qtðkjÞ þ ‘ � ðkAÞ ¼ ðby 42; 43Þ ¼ qtrþ ‘ � jð48Þ

Since (41) is equivalent to (33) and (34), we have by (34) that

qtrþ ‘ � j ¼ 0:ð49Þ

Then by (48) and (49) we get

kF ¼ 0:ð50Þ

By (45)

F ðx; 0Þ ¼ qtjðx; tÞt¼0 þ ‘ � Aðx; 0Þ ¼ 0:ð51Þ

Moreover

qtF ¼ q2t jþ ‘ � ðqtAÞ ¼ ðby 43Þ ¼ ‘ � ð‘jÞ þ rþ ‘ � ðqtAðx; tÞÞ:ð52Þ

Then

qtFðx; tÞt¼0 ¼ ‘ � ð‘jðx; 0Þ þ qtAðx; tÞt¼0Þ þ r0 ¼ ðby ð45ÞÞ ¼ 0:ð53Þ

By (50), (51), (53) we get and

kF ¼ 0

F ¼ 0 for t ¼ 0

qtF ¼ 0 for t ¼ 0:

So,

F ¼ 0:
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Then (46) is proved. Now in order to prove (47), we observe that by (46) we get

qtF ¼ 0 for all t:

From which, using (52), we have

‘ � ð‘jÞ þ rþ ‘ � ðqtAðx; tÞÞ ¼ 0 for all t:

Then (47) clearly holds.
Let us now prove the second part of the theorem. Let ðc;A; jÞ be a smooth

solution of eqs. (41), (42), (43) with initial data in ML. We show that it is a solu-
tion of (25), (26), (27).

Since (41) coincides with (25), we are reduced to show that ðc;A; jÞ satisfies
(26), (27).

Clearly we have

j ¼ ðby 42Þ ¼ q2t A� DA

¼ q2t A� ‘ð‘ � AÞ þ ‘� ð‘� AÞ ðby ð46ÞÞ
¼ qtðqtAÞ þ ‘ðqtjÞ þ ‘� ð‘� AÞ
¼ qtðqtAþ ‘jÞ þ ‘� ð‘� AÞ:

So (27) is satisfied. On the other hand

r ¼ ðby ð43ÞÞ ¼ qtðqtjÞ � ‘ � ‘j
¼ ðby ð46ÞÞ ¼ �qt‘ � A� ‘ � ‘j
¼ �‘ � ðqtAþ ‘jÞ:

Then also (26) is satisfied. r

Remark 2. By the proof of the above theorem, we can easily deduce that any
smooth solution ðc;A; jÞ of eqs. (25), (26), (27) belonging to ML, is also a solution
of (41), (42), (43).

3.4. Hamiltonian formulation

The Lagrangian (40) depends on the configuration variable Q ¼ ðc;A; jÞ and its
time derivative _QQ ¼ ðqtc; qtA; qtjÞ; moreover it is convex in _QQ. Then it is possible
to define the conjugate variable of Q via the Legendre transform. These conju-
gate variables will be denoted by P ¼ ðĉc; ÂA; ĵjÞ. We have:

ĉc ¼ qL̂L

qðqtcÞ
¼ qtcþ iqjc ¼ Djcð54Þ

ÂA ¼ qL̂L

qðqtAÞ
¼ qtAð55Þ

ĵj ¼ qL̂L

qðqtjÞ
¼ �qtj:ð56Þ
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We denote by u the state of our dynamical system described by the canonical
variables

u ¼ ðQ;PÞ ¼ ðc;A; j; ĉc; ÂA; ĵjÞ:

The invariant set ML (see (39)), expressed in the canonical variables ðQ;PÞ is
given by

MH ¼ fðQ;PÞ : �ĵjþ ‘ � A ¼ 0;‘ � ðÂAþ ‘jÞ ¼ qReðiĉccÞg:ð57Þ

We notice that the equation

�ĵjþ ‘ � A ¼ 0ð58Þ

defines the Lorentz gauge in the canonical variables, while

‘ � ðÂAþ ‘jÞ ¼ qReðiĉccÞð59Þ

is nothing else but the equation (gauss) in these variables.
The duality between P and _QQ is given by

3P; _QQ4 ¼ ReðĉcqtcÞ þ ÂA � qtAþ ĵjqtj;ð60Þ

then, the Hamiltonian density takes the form

HðQ;PÞ ¼ ½3P; _QQ4� L̂LðQ; _QQÞ� _QQ¼ _QQðuÞ:ð61Þ

By the definition of covariant derivative and (54), we have

qtc ¼ Djc� iqjc ¼ ĉc� iqjcð62Þ

and hence, inserting (62), (55) and (56) in (60), we have

3P; _QQ4 _QQ¼ _QQðuÞ ¼ jĉcj2 þ qjReðiĉccÞ þ jÂAj2 � ĵj2:ð63Þ

Moreover the Lagrangian L̂L (see (40), expressed in the canonical variables
u ¼ ðQ;PÞ, takes the form

L̂LðQ;PÞ ¼ L̂LððQ; _QQÞðuÞÞð64Þ

¼ 1

2
ðjĉcj2 � jDAcj2Þ þ

1

2
ðjÂAj2 � j‘Aj2 � ĵj2 þ j‘jj2Þ �W ðcÞ:

Then by (63) and (64) the Hamiltonian density (61) becomes

HðQ;PÞ ¼ 1

2
ðjĉcj2 þ jÂAj2 � ĵj2 þ jDAcj2 þ j‘Aj2 � j‘jj2Þð65Þ

þ qjReðiĉccÞ þW ðcÞ:
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The action (in a bounded domain W) is given by:

SðQ;PÞ ¼
Z
W

ð3P; _QQ4�HðQ;PÞÞ dx dt

¼
Z
W

ðReðĉcqtcÞ þ ÂA � qtAþ ĵjqtjÞ dx dt

�
Z
W

1

2
ðjĉcj2 þ jÂAj2 � ĵj2 þ jDAcj2 þ j‘Aj2 � j‘jj2Þ

� �
dx dt

�
Z
W

½qjReðiĉccÞ þW ðcÞ� dx dt:

Making the variations of SðQ;PÞ with respect ĉc, c, ÂA, A, ĵj, j respectively, we
get the canonical equations of motion:

qtc ¼ ĉc� iqjc

qtĉc ¼ �iqjĉcþD2
Ac�W 0ðcÞ

qtA ¼ ÂA

qtÂA ¼ ‘2Aþ qReðiDAccÞ
qtj ¼ �ĵj

qtĵj ¼ �‘2j� qReðiĉccÞ:

ð66Þ

Remark 3. If we use the covariant derivative with respect to time Dj the Hamil-
ton equations take a simplerg form:

Djc ¼ ĉcð67Þ
Djĉc ¼ D2

Ac�W 0ðcÞð68Þ
qtA ¼ ÂAð69Þ
qtÂA ¼ ‘2Aþ qReðiDAccÞð70Þ
qtj ¼ �ĵjð71Þ
qtĵj ¼ �‘2j� qReðiDjccÞ

3.5. NKGM as a dynamical system

We assume that MH (or equivalently ML) consist of C
l functions; we would like

to define a natural metric and to take the completion of MH with respect to this
metric.

The choice of the ‘‘right’’ metric is a delicate problem which depends on
mathematical and physical considerations. In many problems, we have that

fenergyg ¼ fpositive quadratic formg þ fhigher order termsg:ð72Þ
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In these problems, usually, the ‘‘norm of the energy’’ is a good choice:

k � k :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpositive quadratic formg

p
:ð73Þ

In NKGM, the energy is just the Hamiltonian; namely (if the energy is finite), by
(65)

HðQ;PÞ ¼
Z

HðQ;PÞ dxð74Þ

¼ 1

2

Z
ðjĉcj2 þ jÂAj2 � ĵj2 þ jDAcj2 þ j‘Aj2 � j‘jj2Þ dx

þ
Z

½qjReðiĉccÞ þW ðcÞ� dx:

We observe thatHðQ;PÞ is not positive. However, if ðQ;PÞ a MH and if W b 0,
the energy is positive as the following proposition shows:

Proposition 4. If ðQ;PÞ a MH, and the energy is finite, then

HðQ;PÞ ¼ 1

2

Z
ðjĉcj2 þ jDAcj2 þ j‘jþ ÂAj2 þ j‘� Aj2Þ þ

Z
WðcÞ:ð75Þ

Proof. We recall that, if ðQ;PÞ a MH , then by eq. (58), we have that

jĵjj2 ¼ j‘ � Aj2

and, recalling that

j‘Aj2 ¼ j‘ � Aj2 þ j‘� Aj2;

we get

HðQ;PÞ ¼ 1

2

Z
ðjĉcj2 þ jÂAj2 þ jDAcj2 þ j‘� Aj2 � j‘jj2Þð76Þ

þ
Z

qjReðiĉccÞ þW ðcÞ:

Moreover, by (59), multiplying by j and integrating by parts, we get

Z
j‘jj2 þ ‘j � ÂA ¼ q

Z
jReðiĉccÞ:
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Thus, replacing q

Z
jReðiĉccÞ in eq. (76), we have

HðQ;PÞ ¼ 1

2

Z
ðjĉcj2 þ jÂAj2 þ jDAcj2 þ j‘� Aj2 þ j‘jj2 þ 2‘j � ÂAÞ þ

Z
W ðcÞ

¼ 1

2

Z
ðjĉcj2 þ jDAcj2 þ j‘jþ ÂAj2 þ j‘� Aj2Þ þ

Z
WðcÞ: r

Now we want to express the energy in the gauge invariant variables (GIV) u,
v, r, j, E, H defined by

u ¼ jcj

v ¼ ReðĉccÞ
jcj

r ¼ �qReðiĉccÞ

j ¼ qReðiDAccÞ

E ¼ �ð‘jþ ÂAÞ
H ¼ ‘� A:

ðGIVÞ

We notice that E and H coincide with the electromagnetic field defined by
eqs. (28) and (29), u is consistent with (32) while r and j are the electric and the
current density.

We now set

X0 ¼ fu a ClðR3;R12Þ j‘ � E ¼ r;‘ �H ¼ 0;EðuÞ < þlg

where u ¼ ðu; v; r; j;E;HÞ denotes the generic state and EðuÞ is the energy as func-
tion of u.

We observe that X0 is invariant for the dynamics given by the equations
(gauss, ampere, faraday, nomonopole, matter).

Proposition 5. If u a X0, then the energy takes the following expression:

EðuÞ ¼ 1

2

Z �
v2 þ j‘uj2 þ r2 þ j2

q2u2
þ E2 þH2

�
dxþ

Z
WðuÞ dx:

Proof. By using the polar form c ¼ ueiS and by the first eq. of (66), we have

v ¼ ReðĉccÞ
jcj ¼ Re½ðqtcþ iqjcÞc�

u

¼ Re½qtcc�
u

¼ Re½ðqtueiS þ iqtSue
iSÞue�iS�

u

¼ qtu:
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Then

v ¼ qtu:ð77Þ

Using again the first eq. of (66) and the polar form of c, we have

ĉc ¼ qtcþ iqjc ¼ ½qtuþ iðqtS þ qjÞu�eiS:ð78Þ

Moreover, by (35),

r ¼ �qðqtS þ qfÞu2:ð79Þ

Thus, by (78), (79) and (77), we have

jĉcj2 ¼ jqtuj2 þ jqtS þ qjj2u2 ¼ jvj2 þ r2

q2u2
:ð80Þ

Similarly, writing c in polar form, we have

DAc ¼ ‘c� iqAc ¼ ½‘u� ið‘S � qAÞu�eiS

and using (35)

j ¼ qð‘S � qAÞu2;

we get

jDAcj2 ¼ j‘uj2 þ j‘S � qAj2u2 ¼ j‘uj2 þ j2

q2u2
:ð81Þ

Thus, by (75), (80), (81) and the last two equations of GIV

EðuÞ ¼ 1

2

Z
ðjĉcj2 þ jDAcj2 þ j‘jþ ÂAj2 þ j‘� Aj2Þ þ

Z
W ðcÞ

¼ 1

2

Z
jvj2 þ r2

q2u2
þ j‘uj2 þ j2

q2u2
þ E2 þH2

� �
dxþ

Z
WðuÞ dx: r

We write W as follows

W ðsÞ ¼ m2

2
s2 þNðsÞ; NðsÞ ¼ oðs2Þð82Þ

and we will assume m > 0. Then we have

EðuÞ ¼ 1

2

Z
v2 þ j‘uj2 þm2u2 þ r2 þ j2

q2u2
þ E2 þH2

� �
dxþ

Z
NðuÞ dx:
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The term ðr2 þ j2Þ=u2 is singular and the energy does not have the form (72).
In order to avoid this problem, it is convenient to introduce new gauge invariant
variables which eliminate this singularity:

y ¼ �r

qu
; Y ¼ j

qu
:ð83Þ

Using these new variables the energy takes the form:

EðuÞ ¼ 1

2

Z
½v2 þ j‘uj2 þm2u2 þ y2 þY2 þ E2 þH2� þ

Z
NðuÞ:ð84Þ

Thus, we can take a norm having the form (73), namely

kuk ¼
�Z

½v2 þ j‘uj2 þm2u2 þ y2 þY2 þ E2 þH2� dx
�1=2

:ð85Þ

If Q ¼ ðc;A; jÞ is a solution of the Cauchy problem relative to equations (41),
(42), (43) with initial data in ML and with finite energy, after the change of vari-
ables (83) and (GIV), u ¼ ðu; v; y;Y;E;HÞ solves the Cauchy problem relative to
equations

kuþW 0ðuÞ ¼ y2 �Y2

u

‘ � E ¼ �qyu

‘�H� qtE ¼ qYu

‘� Eþ qtH ¼ 0

‘ �H ¼ 0

ð86Þ

with initial data in X0.
We will denote by V the completion of Cl

0 ðR3;R12Þ with respect to the norm
(85) so that

u ¼ ðu; v; y;Y;E;HÞ a V GH 1ðR3Þ � L2ðR3;R11Þ:

Finally X HV will denote the closure of X0 with respect to the norm (85).
In the following we shall assume that the Cauchy problem for NKGM is

globally well posed in X so that we can consider NKGM as a dynamical system.
Actually in the literature there are not many results relative to this problem (we
know only [18], [19], [21]). In any case X seems to be an appropriate space to
study the Cauchy problem.

In the following we will denote by ðX ; gÞ the dynamical system relative to
NKGM.
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4. Solitary waves and solitons in NKGM

An interesting fact concerning NKGM is the existence of solitary waves and
solitons, provided that W satisfies suitable assumptions. Roughly speaking a
solitary wave is a solution of a field equation whose energy travels as a localized
packet and which preserves this localization in time. A soliton is a solitary wave
which exhibits some form of stability so that it has a particle-like behavior (see
e.g. [1], [8], [22], [25]). In theoretical physics, the solitons occurring in NKGM
are called charged Q-balls.

In this section we will describe some recent results concerning the existence
and the nature of such solitons.

4.1. Definition of solitary waves and solitons

Now we will give a rigorous definition of solitary waves and solitons in NKGM.
Solitary waves and solitons are particular states of the dynamical system ðX ; gÞ
described by the nonlinear Klein-Gordon-Maxwell equations (see (86) and the
end of section 3.5).

Definition 6. A state uðxÞ a X is called solitary wave if

jgtuðxÞj ¼ f ðx� vtÞ:

In particular, if v ¼ 0, then uðxÞ is called standing wave.

The solitons are solitary waves characterized by some form of stability. To
define them, we need to recall some well known notions in the theory of dynam-
ical systems.

A set GHX is called invariant if Eu a G, Et a R, gtu a G.

Definition 7. Let ðX ; dÞ be a metric space and let ðX ; gÞ be a dynamical sys-
tem. An invariant set GHX is called stable, if Ee > 0, bd > 0, Eu a X ,

dðu;GÞa d;

implies that

Et a R; dðgtu;GÞa e:

Let G be the group induced by the translations in RN , namely, for every
t a RN , the transformation gt a G is defined as follows:

ðgtuÞðxÞ ¼ uðx� tÞ:ð87Þ

A subset GHX is called G-invariant if

Eu a G; Et a RN ; gtu a G:
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Definition 8. A closed set GHX is called G-compact if it is G-invariant and
for any sequence unðxÞ in G there is a sequence tn a RN , such that unðx� tnÞ has
a converging subsequence.

Now we are ready to give the definition of soliton:

Definition 9. A standing wave uðxÞ is called (standing) soliton if there is a
closed set G such that

• (i) Et, gtuðxÞ a G,

• (ii) G is stable,

• (iii) G is G-compact.

Some times, in the literature, the kind of stability described by the above
definition is called orbital stability.

Remark 10. The above definition needs some explanations. For simplicity, we
assume that G is a manifold (actually, it is possible to prove that this is the generic
case if the problem is formulated in a suitable function space). Then (iii) implies
that G is finite dimensional. Since G is invariant, u0 a G ) gtu0 a G for every
time. Thus, since G is finite dimensional, the evolution of u0 is described by a finite
number of parameters. Thus the dynamical system ðG; gÞ behaves as a point in a
finite dimensional phase space. By the stability of G, a small perturbation of u0
remains close to G. However, in this case, its evolution depends on an infinite
number of parameters. Thus, this system appears as a finite dimensional system
with a small perturbation, namely as a ‘‘particle’’ perturbed by a field.

Remark 11. We recall that (NKGM) are defined by a Lagrangian which is in-
variant under the action of the Lorentz group. If u0 is a standing wave, it is possible
to obtain a travelling wave just making a Lorentz boost (see e.g. [8] or [4]). More
precisely, let Tv be the representation of a Lorentz boost relative to our system and
let

uðt; xÞ ¼ gtu0ðxÞ

be the evolution of our standing wave u0ðxÞ; then

u 0ðt 0; x 0Þ :¼ Tvuðt; xÞ

is a solution of our equation which moves in time with velocity v. In [4] you can see
the details and how this principle works in some particular cases. Obviously, if u0 is
a standing soliton, uv is orbitally stable and hence it is a travelling soliton.

4.2. The charge and hylomorphic solitons

In recent papers (see e.g. [2], [3], [4], [7], [9], [10]), the notion of hylomorphic
soliton has been introduced and analyzed. The existence and the properties of
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hylomorphic solitons are guaranteed by the interplay between energy E and
another integral of motion which is called hylenic charge and it will be denoted
by C. More precisely, a soliton u0 a X is hylomorphic if

Eðu0Þ ¼ minfEðuÞ jCðuÞ ¼ Cðu0Þg:

In NKGM, the hylenic charge coincides with the electric charge and we will
refer to it just using the word charge. The charge, by definition, is the quantity
which is preserved by the gauge action (36), (37), (38). Using (34), we see that it
has the following expression

C ¼
Z

r dx:ð88Þ

Using the variables u and y, by (83), the charge becomes:

CðuÞ ¼ �q

Z
yu dx:ð89Þ

We make the following assumptions on W :

• (W-i) (Positivity) W ðsÞb 0

• (W-ii) (Nondegeneracy) W ¼ WðsÞ (sb 0Þ is C2 near the origin with W ð0Þ ¼
W 0ð0Þ ¼ 0; W 00ð0Þ ¼ m2 > 0

• (W-iii) (Hylomorphy) bs > 0 and a a ð0;mÞ such that W ðsÞa 1
2 a

2s2

• (W-iiii) (Growth condition) There are constants a; b > 0, 6 > p > 2 s.t.
jN 0ðsÞja asp�1 þ bs2�2=p where N is defined by eq. (82).

Here there are some comments on assumptions (W-i), (W-ii), (W-iii), (W-iiii).
(W-i) Clearly (see (84)) (W-i) implies that the energy is positive; if this con-

dition does not hold, it is possible to have solitary waves, but not hylomorphic
waves (cf. the discussion in section 4.2 of [7]).

(W-ii) In order to have solitary waves it is necessary to haveW 00ð0Þb 0. There
are some results also when W 00ð0Þ ¼ 0 (null-mass case, see e.g. [11]), however the
most interesting situation occurs when W 00ð0Þ > 0.

(W-iii) This is the crucial assumption which characterizes the potentials which
might produce hylomorphic solitons. By this assumption there exists s0 such that
Nðs0Þ < 0.

(W-iiii) This assumption contains the usual growth condition at infinity which
guarantees the C1 regularity of the functional. Moreover it implies that jN 0ðsÞj ¼
Oðs2�2=pÞ for s small.

We have the following results (for the proof see ([10])):

Theorem 12. Assume that (W-i), (W-ii), (W-iii), (W-iiii) hold, then there exists
q such that for every q a ½0; q�, equations (86) have a continuous family ud
(d a ð0; dðqÞÞ) of independent, hylomorphic solitons (two solitons ud1 , ud2 are called
independent if ud1 A gud2 for every g a G).
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Theorem 13. The solitons ud ¼ ðud; ûud; yd;Yd;Ed;HdÞ in Theorem 12 are station-
ary solutions of (86), this means that ûud ¼ Yd ¼ Hd ¼ 0, Ed ¼ �‘jd and ud, yd, jd
solve the equations

�Dud þW 0ðudÞ �
y2d
ud

¼ 0

�Djd þ qydud ¼ 0:

References

[1] M. Badiale - V. Benci - S. Rolando, Solitary waves: physical aspects and mathe-

matical results, Rend. Sem. Math. Univ. Pol. Torino 62 (2004), 107–154.

[2] J. Bellazzini - V. Benci - C. Bonanno - A. M. Micheletti, Solitons for the

nonlinear Klein-Gordon-Equation, Advanced Nonlinear Studies 10 (2010), 481–500,
(arXiv:0712.1103).

[3] J. Bellazzini - V. Benci - C. Bonanno - E. Sinibaldi, Hylomorphic solitons in the

nonlinear Klein-Gordon equation, Dynamics of Partial Di¤erential Equations 6 (2009),
311–336.

[4] V. Benci, Hylomorphic solitons, Milan J. Math. 77 (2009), 271–332.

[5] V. Benci - D. Fortunato, Solitary waves of the nonlinear Klein-Gordon field equation

coupled with the Maxwell equations, Rev. Math. Phys. 14 (2002), 409–420.

[6] V. Benci - D. Fortunato, Solitary waves in Abelian Gauge Theories, Adv. Nonlinear
Stud. 3 (2008), 327–352.

[7] V. Benci - D. Fortunato, Existence of hylomorphic solitary waves in Klein-Gordon

and in Klein-Gordon-Maxwell equations, Rend. Lincei Mat. Appl. 20 (2009).

[8] V. Benci - D. Fortunato, Solitary waves in the Nonlinear Wave equation and in

Gauge Theories, Journal of fixed point theory and Applications 1 n.1 (2007), 61–86.

[9] V. Benci - D. Fortunato, Spinning Q-balls for the Klein-Gordon-Maxwell equations,
Commun. Math. Phys. 295 (2010), 639–668.

[10] V. Benci - D. Fortunato, On the existence of stable charged Q-balls, arXiv:1011
.5044.

[11] H. Berestycki - P. L. Lions, Nonlinear scalar field equations, I—Existence of a

ground state, Arch. Rational Mech. Anal. 82 (1983), 313–345.

[12] S. Coleman, Q-Balls, Nucl. Phys. B262 (1985) 263–283; erratum: B269 (1986)
744–745.

[13] J. D’Alembert, Recherches sur les cordes vibrantes, Histoire de l’Académie des
Sciences et Belles-Lettres de Berlin (1747).

[14] T. D’Aprile - D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and

Schrödinger-Maxwell equations, Proc. of Royal Soc. of Edinburgh, section A Mathe-
matics 134 (2004), 893–906.

[15] T. D’Aprile - D. Mugnai, Non-existence results for the coupled Klein-Gordon-

Maxwell equations, Advanced Nonlinear studies 4 (2004), 307–322.

[16] P. D’Avenia - L. Pisani, Nonlinear Klein-Gordon-Maxwell equations coupled with

Born-Infeld type equations, Electron. J. Di¤erential equations 26 (2002), 1–13.

[17] O. Druet - E. Hebey, Existence and a priori bounds for electrostatic Klein-Gordon-

Maxwell systems in fully inhomogeneous spaces, Communications in Contemporary
Mathematics, to appear.

133hamiltonian formulation of the klein-gordon-maxwell equations



[18] D. Eardley - V. Moncrief, The global existence of Yang-Mills-Higgs fields in R3þ1,
Comm. Math. Phys. 83 (1982), 171–212.

[19] S. Klainerman - M. Machedon, On the Maxwell-Klein-Gordon equation with finite

energy, Duke Math. Journal 74 (1994), 19–44.

[20] E. Long, Existence and stability of solitary waves in nonlinear Klein-Gordon-Maxwell

equations, Rev. Math. Phys. 18 (2006), 747–779.

[21] D. M. Petrescu, Time decay of solutions of coupled Maxwell-Klein-Gordon equations,
Comm. Math. Phys. 179 (1996), 11–24.

[22] R. Rajaraman, Solitons and instantons, North-Holland, Amsterdam 1989.

[23] G. Rosen, Particlelike solutions to nonlinear complex scalar field theories with positive-

definite energy densities, J. Math. Phys. 9 (1968), 996–998.

[24] V. Rubakov, Classical theory of Gauge fields, Princeton University Press, Princeton
(2002).

[25] A. Vilenkin - E. P. S. Shellard, Cosmic strings and other topological defects,
Cambridge monographs on mathematical physics, 1994.

[26] Y. Yang, Solitons in field theory and nonlinear analysis, Springer, New York, Berlin,
2000.

Received 14 December 2010,
and in revised form 20 December 2011.

Vieri Benci

Dipartimento di Matematica Applicata ‘‘U. Dini’’

Università di Pisa
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