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ABSTRACT. — We consider the semilinear hyperbolic equations of the form
Ol u+ay ()0 Oxu+ -+ @y (1) 00U = f(u)
with f(u«) entire analytic, where the characteristic roots satisfy
(1) + 27 (1) < M(a(r) = 2(0)*, i # .

We prove that, if the a;(7)’s are analytic functions, all the solutions bounded in #“ enjoy the prop-
agation of analyticity; while, if the g, (¢)’s are € functions, such a property holds for those solutions
which are bounded in some Gevrey class.
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1. INTRODUCTION

The linear operator, on [0, T] x R”"

(1) LU =U+ Y Ant,x)Uy,
h=1

where U(t,x) € RY and the 4,’s are N x N matrices, is hyperbolic when, for all
& e R”, the matrix ) Aj(t,x)¢;, has real eigenvalues 4;(¢,x,&), 1 < j < N.
Denoting by u(4;) the multiplicity of /;, the integer (among 1 and N)

m = max max (71, x,£)
J 1,x,¢C
is called multiplicity of (1). When m = 1, the system is strictly hyperbolic.

We study the regularity of the solutions to a nonlinear weakly hyperbolic
system, in particular, a semilinear system of the fom

(2) LU= f(t,x,U),
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where U : [0, 7] x R" — RY, and f(t,x, U) is a R"-valued, entire analytic func-
tion (typically a polynomial) of the scalar components of U.

More precisely, assuming the coefficients of % analytic in x, we investigate
under which additional assumptions a given solution U(z,x) of (2), analytic at
the initial time, keeps its analyticity, i.e.,

(3) U©0,) e 4(R") = U(t-)eR") Vrelo,T].

Actually, we consider two versions of (3), the first weaker and the second one
stronger than (3):

(4) UO,) e = Ut)edy Yeel0,T],
(5) U©,) e 4(Ty) = Ut,)eT,) Vtelo,T],

where 7> = o/;2(R") is the class of analytic functions ¢ € H*(R") such that
lloll 7, < CAYjl, while T is a cone of determinacy for the operator ¥ with base
I'y (at ¢ = 0) and sections {I;}.

The propagation of analyticity is a natural property for nonlinear hyperbolic
equations. Indeed, on one side, Cauchy-Kovalewsky ensures the validity of (3) on
some time interval [0, z[, on the other side, after Bony and Schapira ([BS], 1972)
we know that the Cauchy problem for any linear (weakly) hyperbolic system is
globally well posed in the class of analytic functions.

The first results of analytic propagation go back to Lax ([L], 1953), who con-
sidered (2), with n = 1, in the strictly hyperbolic case, and proved (5) for those
solutions which are a priori bounded in %!. Later on, Alinhac and M¢étivier
([AM], 1984) extended this results to several space dimensions, assuming now
that U(t,-) is bounded in H*(R") for s > §(n).

The first investigations in the weakly hyperbolic (nonlinear) case were devoted
the second order equations of the form

1,n

(6) Lou= Y dy(ay(t,x)0u) = f(u), Y azé& =0,
iJ

where f(u) and the a;(¢, x)’s are analytic.

THEOREM A ([S], 1988).

(i) In the special case when a; = By(t)o;i(x), a solution of (6) enjoys (5) as long as
u(t,-) remains bounded in €~ .

(i) In the general case, a solution enjoys (5) provided u(t,-) is bounded in some
Gevrey class y* of order s < 2.

We recall that the Cauchy problem for any strictly hyperbolic linear system is
globally wellposed in €. On the other hand, the Cauchy problem for the linear
equation Lou = 0 is globally wellposed in ¥* in the special case (i), while it is
only globally wellposed in y* for s < 2 in the general case (ii). Thus, it is natural
to formulate the following
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CONJECTURE. In order to get the analytic propagation for a given solution of a
weakly hyperbolic system LU = f(t,x, U), it will be sufficient to assume a priori
that U(t,-) is bounded in some functional class % in which the Cauchy problem for
the linear systems U + B(t,x)U = f(t,x) is globally well posed.

Typically the space Z is equal to ¥~ or to some Gevrey class y*.

If ¥ is a weakly hyperbolic operator of the general type (1), the Conjecture
says that a solution U(z,-) enjoys the analytic propagation as long as it remains
bounded in some Gevrey class y* of order s < m/(m — 1), m being the multi-
plicity of #. Indeed, Bronshtein’s Theorem ([B], 1979) states that the Cauchy
problem for any linear system LU + B(t,x)U = f(¢, x), with coefficients analytic
in x, is well-posed in each of these Gevrey classes.

Actually, this fact was proved in two special cases: time depending coefficients,
and one space variable. More precisely:

THEOREM B ([DS] 1999; [J2] 2009). A4 solution of

U+ AUy = f(t,x.U), xeR",
j=1

satisfies (4) as long as U(t,-) remains bounded in some y* with s < m/(m — 1).
THEOREM C ([ST], 2010). A4 solution of

U+ A(t,x)U, = f(t,x,U), xeR,
satisfies (5) as long as U(t,-) remains bounded in some y* with s < m/(m — 1).

The study of the general case, when n > 2 and the coefficients are depending
on (¢, x), is in progress.

OPEN PROBLEM. To prove (or disprove) the sharpness of the bound
s <m/(m—1) in Theorems B and C. In particular, to construct a hyperbolic non-
linear system admitting a solution U € € (R"*Y) which is analytic on the halfplane
{t < 0} but non-analytic at some point of the line {t = 0}.

This questions are related to the “nonlinear Holmgren Theorem™ (see [M]).

2. MAIN RESULTS
Here, we consider the scalar equations of the form
(7) Lu=0"u+ay ()" o+ -+ an(t)0™u = f(u),

on [0, 7] x R, where f(u) = > u" is an entire analytic, real function on R. We
assume that the characteristic roots of the equation are real functions, say
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M(t) < Aa(t) < -+ < (1),

which satisfy the condition
(8) ) + 73 (1) < M(ult) = 2(0)?, Ve [0,T], i # .

REMARK 1 ([KS], 2006). Due to its symmetry w.r. to the roots this condition
can be rewritten in term of the coefficients {a;} (Newton theorem).
In particular, for a second order equation (8) becomes, for some ¢ > 0,

A1) = ai(t) — 4aa(t) = cai (1)
while for a third order equation, it becomes

A(1) = e(ar(Dax(t) = 9a3(1))?,

the discriminant being now A = —4a3 — 2743 + a?a3 — 4ajas + 18a1ara;.

Particularly simple are the thlrd order traceless equatlons i.e., when a; =0:
here we have a=—(AF+ 3 +)v3) /2, A= —4a3 —27a3, so that (8) becomes
A > —ca3, or equivalently A > ca3.

Condition (8) for the linear equation Lu = 0 was introduced in [CO] as a suf-
ficient, and almost necessary, condition for the wellposedness in ™.

A different proof of such a result (based on the theory of quasi-symmetrizer)
was given in [KS] where also the case of non-analytic coefficients was considered
and it was proved that, if a;(r) € € ([0, T]) and (8) is fulfilled, then the Cauchy
problem for Lu = 0 is well posed in each Gevrey class ¢, s > 1.

By these existence results, it is natural to expect some kind of analytic propa-
gation for the solutions bounded in ¥* in case of analytic coefficients, and for
those which are bounded in some Gevrey class in case of ¥* coefficients. Before
stating our results we introduce the following analytic and Gevrey classes:

A2 = {p(x) € H*(R) : |9ll 1) < CAIJ},
712 = {0(x) € H*(R) : [0l ) < CA}.

THEOREM 1. Assume that the a;(t)’s are analytic functions on [0, T). Then, for
any solution of (7) satisfying

9) sup /|6 u(t,x)|dx < oo VjeN,0<h<m-—1,
0<t<T

(10) u(0,) ety 0<h<m—1,

it holds

(11) ue 6" 0, T], ).
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Under the same assumptions, we have also
(12) ue (0, T] x R).

THEOREM 2. If the aj(t)’s are €™ functions on [0, T, the implication (10) = (11)
holds true for those solutions which belong to €™ ([0, T, y;.) for some s > 1.

PRrROOF OF THEOREM 1. For the sake of simplicity, we shall give the proof only
in the case when the nonlinear term f(u) is a monomial function, the general case
requiring only minor additional computations. Thus, for a given integer v > 1, we
consider the equation

(13) OMu+ ay (00" 4+ a4 (007U = u'.

By performing the partial Fourier transform

u(t, &) = /JrOC e~ u(t, x) dx,

oe]

we transform (13) into the ODE’s system

(14) V' +ilA()V = F(t,¢),
where
(i) "a 0 -1
i) SO
(15) V(1,9 = " , A = . )
: 0o -1
I:lon*l) am(l) Clz(l) al(t)
and
0
0 .
(16) F(t,¢) = 3 with f(£,E) =g+ 4.
VALHS)
Our target is to prove that, if (for some constants K;, K, and A) one has
(17) sup /Iél"lV(t,é)IdésKj v,
0<i<TJR

(18) / &1 V(0,0) dé < KAl V),
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then, for some new constants K and A, it holds

(19) sup / V(1 8) dé < RAIR, V).

0<t<T

Indeed, (9) gives

sup_[¢l|V(1,6)] < oo,

0<t<T

and hence (17). On the other hand (10) implies

. 1/2 .
{ /R |é|2f|V<o,f>|2dé} < KoAJ !,

and hence (18). Finally, (19) implies (11) since |V (z, )| is bounded.

To get the target, we firstly prove an apriori estimate for the /inear system (14),
without taking (16) into account. We follow [KS], but some modifications are
needed in order to get an estimate suitable to the nonlinear case. The main tool
is the theory of quasi-symmetrizer developed in [J1], [DS], and [J2].

REMARK 2. In the following we’ll denote by C;, C various positive constants
depending only on the coefficients of the equation (13).

RECALLS ON QUASI-SYMMETRIZER.

[DS] 1998, [J2] 2009: For any Sylvester matrix A(7) (see (15)) with real eigenval-
ues, we can find a family of Hermitian matrices of the form

(20) Qu(t) = 20(1) + &2 (1) + - + &2 V2,1 (1)
in such a way that the entries of each matrix 2,(¢) are polynomial functions of the
coefficients a;(?), ..., a,(t) (hence inherit their regularity in #) and, for some con-

stant Cp > l and all V€ C™, 0 < ¢ < 1, it holds

(21 G eI < @)V, V) < VTP,
(22) [(Q:()A(1) = A" () Q:(1)) V, V)| < Coe(Qe()V, V).

[KS] 2006: If the eigenvalues of A(z) satisfy condition (8), Q.(?) is a nearly diago-
nal matrix, i.e. satisfies, for some constant C; independent on ¢,

(23) S gDyl < GV, V) YV eC™,
j=1

where ¢, ; are the entries of Q,, and v; the scalar components of V. O
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In our assumptions, the functions «;(¢) are analytic on [0, 7], consequently
also the entries ¢, ;(¢) of the matrix 2,(¢) will be analytic. Therefore, putting to-
gether all the isolated zeroes of all these functions, we form a partition of [0, 7]
independent on ¢, say

OZZ()<11<"'<ZN71<IN:T,
such that, foreach r=0,1,...,m—1,and i,j = 1,...,m, it holds:
either ¢, ; =0, or ¢, ;(t)#0 Vtel,=]|th, 4.

Now observe that, if a solution u(¢, -) of (13) belongs to .7, » together with its time
derivatives of order < m, at some point 7, then the same holds in a right neighbor-
hood of 7 (Cauchy-Kovalewski). Thus, it will be sufficient to put ourselves inside
one of the intervals 7;, ..., Iy; in other words it is not restrictive to assume that,
for each r, i, j,

either ¢, ;; =0, or ¢q.;(1)#0 forO<tr<T.

Therefore, by the analyticity of g, ; on [0, 7] we easily derive that

G
(24) lg, ()] < 7 sl on [0, TT.

Next, following [KS], for any fixed £ € R we prove two different apriori estimates
for a solution V(z,&) of (14): a Kovalewskian estimate in a (small) left neighbor-
hood of T, [z, T, and a hyperbolic estimate on [0, 7].

LemMA 1. Let V(t,&) be a solution of (14) on [0, T|. Then, for any fixed & € R,
the following estimates hold for some constant C:

29 IV (D)) < CII V(9] + 1F (1)

@) alVER) = f g+ el VEGRS + F)
where

@ E(1,8) = (Q0V (68, V(1,9))

In particular, defining

E.=E, withe, =&, (& =1+,

we have

(28) O{VE.(1,)} < C{Tl_t+ 1}«/E*(t7 E) + |F(t,¢)).
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PRrROOE. The estimate (25), with C = sup ||4(7)]|, can be easily derived by multi-
t

plying each term of (14) by V(z,&) in the scalar product C™”. To prove (26) we
differentiate (27) in time. Then, by (21), we find

E[(1,8) = (QV. V) +(QV", V) +(Q:V, V)
=(QV. V) —ic((QeA — A7 Q) V, V) + 2R(Q.F, V)
< Ke(1, Q) Ee(1,8) + 2|F (1, )|V Eo(1,€)

where
9V, V) ((QeA —A"Q,)V, V)|
29 K. (1,¢) = .
) 9=t T )
Hence, we have to prove that
1
(30) K(08) < Of o+ el

To this purpose let us firstly note that, thanks to (22), the second quotient in
(29) is estimated by Cype. To estimate the first quotlent we apply to (24) and (23):
recalling (20), and noting that |q. ;| < {q-ii - ¢, ]]} /2 since 2,(1) > 0, we find

—1 m

(v, V) Z Z 47,4l loil o] < Co(T ZﬁerI% il 1oi] [vj]
r=0 i,j=
Zezlmz% //‘U/| = Cm(T Z% //|U/|

< szC1(T — 1)7 (QL-V, V).
This completes the proof of (30), hence of Lemma 1. O

Next, putting

Tt it >
") = {0 if |6 <7

we define, for each fixed & € R, the phase function

~1
(1) ®(1,8) = 1 +min{(T - )", ]]} = {1+|(5T| 0 22%“%1[

Therefore, (25) and (28) imply that

I{IV(, QI < CO(, V(1O + |[F(1,E)] on[2(&), T
5,{ \% E*<[a é)} < C(I)(l‘, ‘f) \% E*([a é) + |F<[a é)' on [O’T(é)[v
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and hence it follows

o{e’ NV (1,9} < PCI|F(1,¢)| fore(é) <t<T
0{e’ B OVE, (1,6)) < e BO|F(1,E)| for 0 <t < 1(&)

where
T
(32) p(0.8)=C [ 0ls)ds
13
By integrating in time we find (we omit ¢ everywhere)
t
(33) YO (o)) < e’V (e )I+/ " F(s)| ds,
(34) "\ /E, 9E —|—/ e”O|F(s)] ds.

Now, by (21) with ¢ = (&>~!, we know that (for some Cy > 1)
GO (18P < E(r,8) < V(1.6
hence from (33) and (34) it follows

Oy (1)) = Gy erJEL +/ /0| F(s)] ds

143

SCo<é>””{ IVED + [ el >|ds}+ / 0 |F(s)) ds

< CodEY™ l{e/’ \VE. +/ ") |F( )|ds}

< C0<§>'”l{e”(0)|V(0)| + /[e”(‘v)|F(s)|ds}.
0

Recalling the definitions of ® and p, we get

T (9
p0.0=c [Coapsc [T i or - w@)e,

and hence we derive, since 9;p < 0 and 7(¢) = max{T — &', 0},
(35) p(t,&) < Clogdéy+ C5 forallte|0,T], ¢ e R.

Therefore, if N > (m — 1) + C, we get the wished /linear estimate

(36) e’V (1,E)| < ColEHN|V(0,8)| + CocEY™! /0 e’ S| F (s, )| ds.
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By the way, we note that (36) ensures the ¥ wellposedness of the Cauchy
problem for the linear system (14).

Now we go back to the nonlinear equation Lu = u". More precisely, we con-
sider the more general equation

Lu=u...uy,

where u;, 1 < j<v, are given functions of (z,&) (actually, the u;’s will be
x-derivatives of u). Such an equation can be regarded as a linear equation of
type (14), where the function F is given by (16) with

f(t,E) =y« *1,,

the convolutions being effected w.r. to &. Thus we have

(37) wmmzvum£/‘ (66 (1,8 dog,.c.

{4 +é=¢

The function ¢ — min{C, ||} is sub-additive; consequently for each fixed 7 (see
(31), (32)) the function ®(z, &), hence also p(z, &), are sub-additive in &.
On the other hand, & — (&) is sub-multiplicative. Thus, for & =& +--- +¢&,,

p(1,8) < p(t,&) + -+ +p(1,&), O™ <"
eﬂ(t-,é)<5>m*l < eﬂ(t-,51)<fl>m*1 ...e”(’*é“)<fv>’”7l,

and hence, by (37), it follows the pointwise estimate
P HF| < (PO i) % (<™ i)

Now, if Vj(¢,&) is the vector formed as V' (z,&) in (15), with u; in place of u, we
have

<é>n171|ﬁj(t7é)| < |V}(t7€)|7 j: 17"°7V7

and thus the linear estimate (36) gives
NV (1,8)] < CONV(0,8)] + Co/ol(e’JIVll #oxel[V[)(s, ) ds.
Finally, we integrate in ¢ € R to define the ¥* -energy
(38) s(tu) = [ V(0] de
hence the last inequality gives

(39)  E(tu) < CO/R<é>N|V(0,§)|d¢+ CO/O E(s,ur) ... E(s,uy)ds.
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At this point we notice that, thanks to our assumption (17) (and to (35)),

(40) sup &(t,u) = My < 0.

0<t<T

Next, differentiating in x our originary equation Lu = u", we get the equation

L) =) ) % : % (where 0 = d,),
hite+hy=j v
to which we apply (39) with u; = ¢/u. Thus, putting
&(1) = 8(1,u),
we obtain:

50 <G [ @M Kool any [ Dby

|hl=J !

or also
(41) (1) < Cooy(1),

with the position

~ [<oMvo.oa Y / n(s) @”Iu 5 g

|h|=j

Then, following [DS], we introduce the super-energies

) #0=3 60"
=0
B © r(l‘)j - - V(t)‘/;l
(43) %(1) —jzoocj(f)j—!a gl([)_j:l %(1) (-1

where r(t) is a decreasing, positive function on [0, 7] to be defined later.
By differentiating in time, we find

pin hy

=S g S = L X e

J=0 |h|=j

0 AN
- {Z @@h%} PG =T g

h=0
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and hence, noting that 7 (1) < Cy%(t) by (41), it follows
(44) G'(1) < Cyg(t) +1' ()% (1).

Now, by (17) and (40),

(i) = [ V0,00 de+ [ 66 ds < Ky M= b,
and hence, by the definitions (43),
G(t) < op(t) +r()9 (1) < M +r()9'(1).
From this inequality it follows, arguing by induction w.r. to k,
40" < M*+ ()G (IM + 90}, k=12,...,
and consequently by (44) we obtain, for ¢(%) = CJ{M +%}"",
(45) 9'(1) <" (0" (1)) + r()p(%(1))} + CoM.

On the other hand, by virtue of our assumption (18), we know that

o0 7 J
(0) = 20:{/@ EVV(0,8)] ds} (]L,) <o

provided r(0) = ry is small enough. Therefore, taking
(46) 0=2%(0)+(CM)'T, r(t) =roe """,
we can derive from (45) the estimate

(47) 4(t) <0 foralltel0,T].

S. SPAGNOLO

PROOF OF (47). Since 0 > %(0), (47) holds true in a right neighborhood of 7 = 0

by Cauchy-Kovalewsky. Therefore, assuming that (47) holds for all
some 7, < T, but fails at 7 = 7., we have %(z,) = 6. Hence it follows,
as in (40),

') +r(t)p(4(1) <r'(1) +r()¢(0) <0 on [0,7],

whence, going back to (45), we derive a contradiction:

Y1) <90)+ CyM’'t, <0 onl0,7,].

t < 1, for
taking r(z)
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CONCLUSION OF THE PROOF OF THEOREM 1. Recalling that 7 (1) < Cy%(1),
(47) says that 7 (¢) < Co0 on [0, T']. Therefore, by (42), we get our goal (19):
/IéIjIV(f, )lde < /e”("f)lfle(t, §)lde = &(1) < F(1)r(1) !
R R
< Coﬁ{r61e¢(0>T}-/j! = KA/j.

To prove (12), i.e., the analyticity of the solution u in (¢, x), it is sufficient to
apply to Cauchy-Kovalewski. O

REMARK 3. The previos proof of (47) is somewhat formal, since it assumes not
only that %(¢) < oo, but also that %'(¢) < oo on [0, z,[. To make the proof more
precise we must replace the radius function r(#) by r, (1) = nroexp(—¢(0)t), n < 1,
and apply the previous computation to the corresponding functions %,(¢) and
%, (1). Finally we let # — 1 (see [ST] for the details).

PrROOF OF THEOREM 2. The proof is not very different from that of Thm. 1,
thus we give only a sketch of it.

The main difference is that now the entries ¢, ;;(¢) are not analytic but only ¢~
functions, hence (24) fails. However, for any function f € ¢*([0, T]) it holds

7@ < AOLOF U Mo, )™
for some A = Ay € L'(0, T). This was proved in [CJS] in the case f(7) > 0, and
in [T] in the general case.
Therefore, using that Q,(¢) is a nearly diagonal matrix, and proceeeding as in

[KS], for all integer k > 1 there is some function A, € L'(0, T'), independent of e,
such that

(48) QY (1.9, V(1O < A Qu(D)V(2,), ¥ (1,0) Y (1.

Differently from Theorem 1, we can now consider only the Ahyperbolic energy
E.(t,&) = (0, ()V,V) withe, = (&)L

Thanks to (48) we prove, for each integer k > 1, an estimate

at{ V E*(lv é)} < qu)k(lv f) V E*(la é) + |F(l7 é)|

on the interval [0, 7], where
Dy (1,) = Ae(0) |V 41

The phase function @y is sub-additive w.r. to & as soon as k > 2(m — 1).
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Next, putting

T T
put.8) = G [ el de = G [ Ao ds+ CuT )

we define the Gevrey-energy

Eu(t,u) = /R 1) ST 8V de,

and we conclude as in the proof of Theorem 1. O
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