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Abstract. — We consider the semilinear hyperbolic equations of the form

qm
t uþ a1ðtÞqm�1

t qxuþ � � � þ amðtÞqm
x u ¼ f ðuÞ

with f ðuÞ entire analytic, where the characteristic roots satisfy

l2i ðtÞ þ l2j ðtÞaMðliðtÞ � ljðtÞÞ2; iA j:

We prove that, if the ahðtÞ’s are analytic functions, all the solutions bounded in Cl enjoy the prop-
agation of analyticity; while, if the ahðtÞ’s are Cl functions, such a property holds for those solutions

which are bounded in some Gevrey class.
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1. Introduction

The linear operator, on ½0;T � � Rn

LU ¼ Ut þ
Xn

h¼1

Ahðt; xÞUxhð1Þ

where Uðt; xÞ a RN and the Ah’s are N �N matrices, is hyperbolic when, for all
x a Rn, the matrix

P
Ahðt; xÞxh has real eigenvalues ljðt; x; xÞ, 1a jaN.

Denoting by mðljÞ the multiplicity of lj, the integer (among 1 and N)

m ¼ max
j

max
t;x;x

mðljðt; x; xÞÞ

is called multiplicity of (1). When m ¼ 1, the system is strictly hyperbolic.
We study the regularity of the solutions to a nonlinear weakly hyperbolic

system, in particular, a semilinear system of the fom

LU ¼ f ðt; x;UÞ;ð2Þ



where U : ½0;T � � Rn ! RN , and f ðt; x;UÞ is a RN -valued, entire analytic func-
tion (typically a polynomial) of the scalar components of U .

More precisely, assuming the coe‰cients of L analytic in x, we investigate
under which additional assumptions a given solution Uðt; xÞ of (2), analytic at
the initial time, keeps its analyticity, i.e.,

Uð0; �Þ a AðRnÞ ) Uðt; �Þ a AðRnÞ Et a ½0;T �:ð3Þ

Actually, we consider two versions of (3), the first weaker and the second one
stronger than (3):

Uð0; �Þ a AL2 ) Uðt; �Þ a AL2 Et a ½0;T �;ð4Þ
Uð0; �Þ a AðG0Þ ) Uðt; �Þ a AðGtÞ Et a ½0;T �;ð5Þ

where AL2 CAL2ðRnÞ is the class of analytic functions j a HlðRnÞ such that
kjkH j aCL j j!, while G is a cone of determinacy for the operator L with base
G0 (at t ¼ 0) and sections fGtg.

The propagation of analyticity is a natural property for nonlinear hyperbolic
equations. Indeed, on one side, Cauchy-Kovalewsky ensures the validity of (3) on
some time interval ½0; t½, on the other side, after Bony and Schapira ([BS], 1972)
we know that the Cauchy problem for any linear (weakly) hyperbolic system is
globally well posed in the class of analytic functions.

The first results of analytic propagation go back to Lax ([L], 1953), who con-
sidered (2), with n ¼ 1, in the strictly hyperbolic case, and proved (5) for those
solutions which are a priori bounded in C1. Later on, Alinhac and Métivier
([AM], 1984) extended this results to several space dimensions, assuming now
that Uðt; �Þ is bounded in HsðRnÞ for sb sðnÞ.

The first investigations in the weakly hyperbolic (nonlinear) case were devoted
the second order equations of the form

L0uC
X1;n
i; j

qxiðaijðt; xÞqxj uÞ ¼ f ðuÞ;
X

aijxixj b 0;ð6Þ

where f ðuÞ and the aijðt; xÞ’s are analytic.

Theorem A ([S], 1988).

(i) In the special case when aij ¼ b0ðtÞaijðxÞ, a solution of (6) enjoys (5) as long as
uðt; �Þ remains bounded in Cl.

(ii) In the general case, a solution enjoys (5) provided uðt; �Þ is bounded in some
Gevrey class gs of order s < 2.

We recall that the Cauchy problem for any strictly hyperbolic linear system is
globally wellposed in Cl. On the other hand, the Cauchy problem for the linear
equation L0u ¼ 0 is globally wellposed in Cl in the special case (i), while it is
only globally wellposed in gs for s < 2 in the general case (ii). Thus, it is natural
to formulate the following

136 s. spagnolo



Conjecture. In order to get the analytic propagation for a given solution of a
weakly hyperbolic system LU ¼ f ðt; x;UÞ, it will be su‰cient to assume a priori
that Uðt; �Þ is bounded in some functional class X in which the Cauchy problem for
the linear systems LU þ Bðt; xÞU ¼ f ðt; xÞ is globally well posed.

Typically the space X is equal to Cl or to some Gevrey class gs.
If L is a weakly hyperbolic operator of the general type (1), the Conjecture

says that a solution Uðt; �Þ enjoys the analytic propagation as long as it remains
bounded in some Gevrey class gs of order s < m=ðm� 1Þ, m being the multi-
plicity of L. Indeed, Bronshtein’s Theorem ([B], 1979) states that the Cauchy
problem for any linear systemLU þ Bðt; xÞU ¼ f ðt; xÞ, with coe‰cients analytic
in x, is well-posed in each of these Gevrey classes.

Actually, this fact was proved in two special cases: time depending coe‰cients,
and one space variable. More precisely:

Theorem B ([DS] 1999; [J2] 2009). A solution of

Ut þ
Xn

j¼1

AjðtÞUxj ¼ f ðt; x;UÞ; x a Rn;

satisfies (4) as long as Uðt; �Þ remains bounded in some gs with s < m=ðm� 1Þ.

Theorem C ([ST], 2010). A solution of

Ut þ Aðt; xÞUx ¼ f ðt; x;UÞ; x a R;

satisfies (5) as long as Uðt; �Þ remains bounded in some gs with s < m=ðm� 1Þ.

The study of the general case, when nb 2 and the coe‰cients are depending
on ðt; xÞ, is in progress.

Open Problem. To prove (or disprove) the sharpness of the bound
s < m=ðm� 1Þ in Theorems B and C. In particular, to construct a hyperbolic non-
linear system admitting a solution U a ClðRnþ1Þ which is analytic on the halfplane
ft < 0g but non-analytic at some point of the line ft ¼ 0g.

This questions are related to the ‘‘nonlinear Holmgren Theorem’’ (see [M]).

2. Main results

Here, we consider the scalar equations of the form

LuC qm
t uþ a1ðtÞqm�1

t qxuþ � � � þ amðtÞqm
x u ¼ f ðuÞ;ð7Þ

on ½0;T � � R, where f ðuÞ ¼
Pl

n¼0 u
n is an entire analytic, real function on R. We

assume that the characteristic roots of the equation are real functions, say
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l1ðtÞa l2ðtÞa � � �a lmðtÞ;

which satisfy the condition

l2i ðtÞ þ l2j ðtÞaMðliðtÞ � ljðtÞÞ2; Et a ½0;T �; iA j:ð8Þ

Remark 1 ([KS], 2006). Due to its symmetry w.r. to the roots this condition
can be rewritten in term of the coe‰cients fahg (Newton theorem).

In particular, for a second order equation (8) becomes, for some c > 0,

DðtÞC a21ðtÞ � 4a2ðtÞb ca21ðtÞ

while for a third order equation, it becomes

DðtÞb cða1ðtÞa2ðtÞ � 9a3ðtÞÞ2;

the discriminant being now D ¼ �4a32 � 27a23 þ a21a
2
2 � 4a31a3 þ 18a1a2a3.

Particularly simple are the third order traceless equations. i.e., when a1C 0:
here we have a2 ¼ �ðl21 þ l22 þ l23Þ=2, D ¼ �4a32 � 27a23 ; so that (8) becomes
Db�ca32 , or equivalently Db ca23 .

Condition (8) for the linear equation Lu ¼ 0 was introduced in [CO] as a suf-
ficient, and almost necessary, condition for the wellposedness in Cl.

A di¤erent proof of such a result (based on the theory of quasi-symmetrizer)
was given in [KS] where also the case of non-analytic coe‰cients was considered
and it was proved that, if ahðtÞ a Clð½0;T �Þ and (8) is fulfilled, then the Cauchy
problem for Lu ¼ 0 is well posed in each Gevrey class gs, sb 1.

By these existence results, it is natural to expect some kind of analytic propa-
gation for the solutions bounded in Cl in case of analytic coe‰cients, and for
those which are bounded in some Gevrey class in case of Cl coe‰cients. Before
stating our results we introduce the following analytic and Gevrey classes:

AL2 ¼ fjðxÞ a HlðRÞ : kjkH jðRÞ aCL j j!g;
gsL2 ¼ fjðxÞ a HlðRÞ : kjkH jðRÞ aCL j j!sg:

Theorem 1. Assume that the ajðtÞ’s are analytic functions on ½0;T �. Then, for
any solution of (7) satisfying

sup
0ataT

Z
R

jqh
t q

j
xuðt; xÞj dx < l E j a N; 0a ham� 1;ð9Þ

qht uð0; �Þ a AL2 0a ham� 1;ð10Þ

it holds

u a Cm�1ð½0;T �;AL2Þ:ð11Þ
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Under the same assumptions, we have also

u a Að½0;T � � RÞ:ð12Þ

Theorem 2. If the ajðtÞ’s are Cl functions on ½0;T �, the implication (10) ) (11)
holds true for those solutions which belong to Cmð½0;T �; gs

L2Þ for some sb 1.

Proof of Theorem 1. For the sake of simplicity, we shall give the proof only
in the case when the nonlinear term f ðuÞ is a monomial function, the general case
requiring only minor additional computations. Thus, for a given integer nb 1, we
consider the equation

qm
t uþ a1ðtÞqm�1

t qxuþ � � � þ amðtÞqm
x u ¼ un:ð13Þ

By performing the partial Fourier transform

ûuðt; xÞ ¼
Z þl

�l
e�ixxuðt; xÞ dx;

we transform (13) into the ODE’s system

V 0 þ ixAðtÞV ¼ Fðt; xÞ;ð14Þ

where

Vðt; xÞ ¼

ðixÞm�1
ûu

ðixÞm�2
ûu 0

..

.

ûuðm�1Þ

0
BBBB@

1
CCCCA; AðtÞ ¼

0 �1

. .
. . .

.

0 �1

amðtÞ � � � a2ðtÞ a1ðtÞ

0
BBB@

1
CCCA;ð15Þ

and

F ðt; xÞ ¼

0

0

..

.

f ðt; xÞ

0
BBB@

1
CCCA with f ðt; xÞ ¼ ûu � � � � � ûu|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n

:ð16Þ

Our target is to prove that, if (for some constants Kj, K, and L) one has

sup
0ataT

Z
R

jxj jjVðt; xÞj dxaKj E j;ð17Þ

Z
R

jxj jjVð0; xÞj dxaKL j j! E j;ð18Þ
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then, for some new constants ~KK and ~LL, it holds

sup
0ataT

Z
R

jxj jjVðt; xÞj dxa ~KK ~LL j j!; E j:ð19Þ

Indeed, (9) gives

sup
0ataT

jxj jjVðt; xÞj < l;

and hence (17). On the other hand (10) implies

Z
R

jxj2jjVð0; xÞj2 dx
� �1=2

aK0L
j
0 j!;

and hence (18). Finally, (19) implies (11) since jVðt; xÞj is bounded.
To get the target, we firstly prove an apriori estimate for the linear system (14),

without taking (16) into account. We follow [KS], but some modifications are
needed in order to get an estimate suitable to the nonlinear case. The main tool
is the theory of quasi-symmetrizer developed in [J1], [DS], and [J2].

Remark 2. In the following we’ll denote by Cj, C various positive constants
depending only on the coe‰cients of the equation (13).

Recalls on quasi-symmetrizer.

[DS] 1998, [J2] 2009: For any Sylvester matrix AðtÞ (see (15)) with real eigenval-
ues, we can find a family of Hermitian matrices of the form

QeðtÞ ¼ Q0ðtÞ þ e2Q1ðtÞ þ � � � þ e2ðm�1ÞQm�1ðtÞð20Þ

in such a way that the entries of each matrix QrðtÞ are polynomial functions of the
coe‰cients a1ðtÞ; . . . ; amðtÞ (hence inherit their regularity in t) and, for some con-
stant C0 b 1 and all V a Cm, 0 < ea 1, it holds

C�1
0 e2ðm�1ÞjV j2 a ðQeðtÞV ;VÞa jV j2;ð21Þ

jðQeðtÞAðtÞ � A�ðtÞQeðtÞÞV ;VÞjaC0eðQeðtÞV ;VÞ:ð22Þ

[KS] 2006: If the eigenvalues of AðtÞ satisfy condition (8), QeðtÞ is a nearly diago-
nal matrix, i.e. satisfies, for some constant C1 independent on e,

Xm
j¼1

qe; jjðtÞjvjj2 aC1ðQeðtÞV ;VÞ EV a Cm;ð23Þ

where qe; ij are the entries of Qe, and vj the scalar components of V . r
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In our assumptions, the functions ahðtÞ are analytic on ½0;T �, consequently
also the entries qr; ijðtÞ of the matrix QrðtÞ will be analytic. Therefore, putting to-
gether all the isolated zeroes of all these functions, we form a partition of ½0;T �
independent on e, say

0 ¼ t0 < t1 < � � � < tN�1 < tN ¼ T ;

such that, for each r ¼ 0; 1; . . . ;m� 1, and i; j ¼ 1; . . . ;m, it holds:

either qr; ij C 0; or qr; ijðtÞA 0 Et a Ih ¼ �th�1; th½:

Now observe that, if a solution uðt; �Þ of (13) belongs to AL2 together with its time
derivatives of order < m, at some point t, then the same holds in a right neighbor-
hood of t (Cauchy-Kovalewski). Thus, it will be su‰cient to put ourselves inside
one of the intervals I1; . . . ; IN ; in other words it is not restrictive to assume that,
for each r, i, j,

either qr; ij C 0; or qr; ijðtÞA 0 for 0a t < T :

Therefore, by the analyticity of qr; ij on ½0;T � we easily derive that

jq 0
r; ijðtÞja

C2

T � t
jqr; ijðtÞj on ½0;T ½:ð24Þ

Next, following [KS], for any fixed x a R we prove two di¤erent apriori estimates
for a solution Vðt; xÞ of (14): a Kovalewskian estimate in a (small) left neighbor-
hood of T , ½t;T ½, and a hyperbolic estimate on ½0; t�.

Lemma 1. Let Vðt; xÞ be a solution of (14) on ½0;T ½. Then, for any fixed x a R,
the following estimates hold for some constant C:

qtfjVðt; xÞjgaCjxj jVðt; xÞj þ jFðt; xÞjð25Þ

qtf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðt; xÞ

p
gaC

1

T � t
þ ejxj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðt; xÞ

p
þ jF ðt; xÞjð26Þ

where

Eeðt; xÞ ¼ ðQeðtÞVðt; xÞ;Vðt; xÞÞ:ð27Þ

In particular, defining

E� ¼ Ee� with e� ¼ 3x4�1; 3x4 ¼ 1þ jxj;

we have

qtf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
gaC

1

T � t
þ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
þ jF ðt; xÞj:ð28Þ
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Proof. The estimate (25), with C ¼ sup
t

kAðtÞk, can be easily derived by multi-

plying each term of (14) by Vðt; xÞ in the scalar product Cm. To prove (26) we
di¤erentiate (27) in time. Then, by (21), we find

E 0
eðt; xÞ ¼ ðQ 0

eV ;VÞ þ ðQeV
0;VÞ þ ðQeV ;V 0Þ

¼ ðQ 0
eV ;VÞ � ixððQeA� A�QeÞV ;VÞ þ 2<ðQeF ;VÞ

aKeðt; xÞEeðt; xÞ þ 2jF ðt; xÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðt; xÞ

p
where

Keðt; xÞ ¼
jðQ 0

eV ;VÞj
ðQeV ;VÞ þ jxj jððQeA� A�QeÞV ;VÞj

ðQeV ;VÞ :ð29Þ

Hence, we have to prove that

Keðt; xÞaC
1

T � t
þ ejxj

� �
:ð30Þ

To this purpose let us firstly note that, thanks to (22), the second quotient in
(29) is estimated by C0e. To estimate the first quotient, we apply to (24) and (23):
recalling (20), and noting that jqr; ijja fqr; ii � qr; jjg1=2 since QrðtÞb 0, we find

jðQ 0
eV ;VÞja

Xm�1

r¼0

e2r
Xm
i; j¼1

jq 0
r; ijj jvij jvjjaC2ðT � tÞ�1

X
r

e2r
X
i; j

jqr; ijj jvij jvjj

aC2ðT � tÞ�1
X
r

e2rm
X
j

qr; jjjvjj2 ¼ C2mðT � tÞ�1
X
j

qe; jjjvjj2

aC2mC1ðT � tÞ�1ðQeV ;VÞ:

This completes the proof of (30), hence of Lemma 1. r

Next, putting

tðxÞ ¼ T � jxj�1 if jxj > T�1

0 if jxjaT�1

(
;

we define, for each fixed x a R, the phase function

Fðt; xÞ ¼ 1þminfðT � tÞ�1; jxjg ¼ 1þ ðT � tÞ�1 on ½0; tðxÞ�
1þ jxj on ½tðxÞ;T ½

(
:ð31Þ

Therefore, (25) and (28) imply that

qtfjVðt; xÞjgaCFðt; xÞjVðt; xÞj þ jF ðt; xÞj on ½tðxÞ;T ½
qtf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
gaCFðt; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
þ jF ðt; xÞj on ½0; tðxÞ½;
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and hence it follows

qtferðt;xÞjVðt; xÞjga erðt;xÞjF ðt; xÞj for tðxÞa taT

qtferðt;xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
ga erðt;xÞjF ðt; xÞj for 0a ta tðxÞ

where

rðt; xÞ ¼ C

Z T

t

Fðs; xÞ ds:ð32Þ

By integrating in time we find (we omit x everywhere)

erðtÞjVðtÞja erðtÞjVðtÞj þ
Z t

t

erðsÞjFðsÞj ds;ð33Þ

erðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
E�ðtÞ

p
a erð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E�ð0Þ

p
þ
Z t

0

erðsÞjF ðsÞj ds:ð34Þ

Now, by (21) with e ¼ 3x4�1, we know that (for some C0 b 1)

C�1
0 3x4�2ð1�mÞjVðt; xÞj2 aE�ðt; xÞa jVðt; xÞj2;

hence from (33) and (34) it follows

erðtÞjVðtÞj ¼ C03x4
m�1erðtÞ

ffiffiffiffiffiffiffiffiffiffiffi
E�ðtÞ

p
þ
Z t

t

erðsÞjF ðsÞj ds

aC03x4
m�1 erð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E�ð0Þ

p
þ
Z t

0

erðsÞjF ðsÞj ds
� �

þ
Z t

t

erðsÞjF ðsÞj ds

aC03x4
m�1 erð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E�ð0Þ

p
þ
Z t

0

erðsÞjFðsÞj ds
� �

aC03x4
m�1 erð0ÞjVð0Þj þ

Z t

0

erðsÞjFðsÞj ds
� �

:

Recalling the definitions of F and r, we get

rð0; xÞ ¼ C

Z T

0

Fðs; xÞ dsaC

Z tðxÞ

0

1þ 1

T � t

� �
dtþ CðT � tðxÞÞ3x4;

and hence we derive, since qtr < 0 and tðxÞ ¼ maxfT � jxj�1; 0g,

rðt; xÞaC log3x4þ C3 for all t a ½0;T �; x a R:ð35Þ

Therefore, if Nb ðm� 1Þ þ C, we get the wished linear estimate

erðt;xÞjVðt; xÞjaC03x4
N jVð0; xÞj þ C03x4

m�1

Z t

0

erðs;xÞjFðs; xÞj ds:ð36Þ
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By the way, we note that (36) ensures the Cl wellposedness of the Cauchy
problem for the linear system (14).

Now we go back to the nonlinear equation Lu ¼ un. More precisely, we con-
sider the more general equation

Lu ¼ u1 . . . un;

where uj, 1a ja n; are given functions of ðt; xÞ (actually, the uj’s will be
x-derivatives of u). Such an equation can be regarded as a linear equation of
type (14), where the function F is given by (16) with

f ðt; xÞ ¼ ûu1 � � � � � ûun;

the convolutions being e¤ected w.r. to x. Thus we have

jF ðt; xÞj ¼ j f ðt; xÞja
Z
fx1þ���þxn¼xg

jûu1ðt; x1Þ . . . ûunðt; xnÞj dsðx1;...;xnÞ:ð37Þ

The function x 7! minfC; jxjg is sub-additive; consequently for each fixed t (see
(31), (32)) the function Fðt; xÞ, hence also rðt; xÞ, are sub-additive in x.

On the other hand, x ! 3x4 is sub-multiplicative. Thus, for x ¼ x1 þ � � � þ xn,

rðt; xÞa rðt; x1Þ þ � � � þ rðt; xnÞ; 3x4m�1
a 3x14

m�1 . . . 3xn4
m�1;

erðt;xÞ3x4m�1
a erðt;x1Þ3x14

m�1 . . . erðt;xnÞ3xn4
m�1;

and hence, by (37), it follows the pointwise estimate

er3x4m�1jF ja ðer3x4m�1jûu1jÞ � � � � � ðer3x4m�1jûunjÞ:

Now, if Vjðt; xÞ is the vector formed as Vðt; xÞ in (15), with uj in place of u, we
have

3x4m�1jûujðt; xÞja jVjðt; xÞj; j ¼ 1; . . . ; n;

and thus the linear estimate (36) gives

erðt;xÞjVðt; xÞjaC03x4
N jVð0; xÞj þ C0

Z t

0

ðerjV1j � � � � � erjVnjÞðs; xÞ ds:

Finally, we integrate in x a R to define the Cl-energy

Eðt; uÞ ¼
Z
R

erðt;xÞjVðt; xÞj dx;ð38Þ

hence the last inequality gives

Eðt; uÞaC0

Z
R

3x4N jVð0; xÞj dxþ C0

Z t

0

Eðs; u1Þ . . .Eðs; unÞ ds:ð39Þ
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At this point we notice that, thanks to our assumption (17) (and to (35)),

sup
0ataT

Eðt; uÞCM0 < l:ð40Þ

Next, di¤erentiating in x our originary equation Lu ¼ un, we get the equation

Lðq juÞ ¼ j!
X

h1þ���þhn¼ j

qh1u

h1!
. . .

qhnu

hn!
ðwhere q ¼ qxÞ;

to which we apply (39) with uj ¼ q ju. Thus, putting

EjðtÞ ¼ Eðt; q juÞ;

we obtain:

EjðtÞaC0

Z
R

3x4N jVjð0; xÞj dxþ C0 j!
X
jhj¼ j

Z t

0

Eh1ðsÞ
h1!

. . .
EhnðsÞ
hn!

ds;

or also

EjðtÞaC0ajðtÞ;ð41Þ

with the position

ajðtÞ ¼
Z
R

3x4N jVjð0; xÞj dxþ j!
X
jhj¼ j

Z t

0

Eh1ðsÞ
h1!

. . .
EhnðsÞ
hn!

ds:

Then, following [DS], we introduce the super-energies

FðtÞ ¼
Xl
j¼0

EjðtÞ
rðtÞ j

j!
;ð42Þ

GðtÞ ¼
Xl
j¼0

ajðtÞ
rðtÞ j

j!
; G1ðtÞ ¼

Xl
j¼1

ajðtÞ
rðtÞ j�1

ð j � 1Þ! ;ð43Þ

where rðtÞ is a decreasing, positive function on ½0;T � to be defined later.
By di¤erentiating in time, we find

G 0 ¼
Xl
j¼0

a 0
j

r j

j!
þ
Xl
j¼1

aj
r j�1

ð j � 1Þ! r
0 ¼

Xl
j¼0

X
jhj¼ j

Eh1

rh1

h1!
. . .Ehn

rhn

hn!
þ r 0G1ðtÞ

¼
Xl
h¼0

Eh

rh

h!

( )n

þ r 0G1 ¼ Fn þ r 0G1;
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and hence, noting that FðtÞaC0GðtÞ by (41), it follows

G 0ðtÞaCn
0GðtÞ

n þ r 0ðtÞG1ðtÞ:ð44Þ

Now, by (17) and (40),

a0ðtÞ ¼
Z
R

3x4N jVð0; xÞj dxþ
Z t

0

EðsÞ dsaKN þM0CM;

and hence, by the definitions (43),

GðtÞa a0ðtÞ þ rðtÞG1ðtÞaM þ rðtÞG1ðtÞ:

From this inequality it follows, arguing by induction w.r. to k,

GðtÞk aMk þ rðtÞG1ðtÞfM þ GðtÞgk�1; k ¼ 1; 2; . . . ;

and consequently by (44) we obtain, for fðGÞ ¼ C n
0fM þ Ggn�1,

G 0ðtÞaG1ðtÞfr 0ðtÞ þ rðtÞfðGðtÞÞg þ C n
0M

n:ð45Þ

On the other hand, by virtue of our assumption (18), we know that

Gð0Þ ¼
Xl
j¼0

Z
R

3x4N jVjð0; xÞj dx
� �

rð0Þ j

j!
< l:

provided rð0ÞC r0 is small enough. Therefore, taking

y ¼ Gð0Þ þ ðCMÞnT ; rðtÞ ¼ r0e
�fðyÞt;ð46Þ

we can derive from (45) the estimate

GðtÞ < y for all t a ½0;T �:ð47Þ

Proof of (47). Since y > Gð0Þ, (47) holds true in a right neighborhood of t ¼ 0
by Cauchy-Kovalewsky. Therefore, assuming that (47) holds for all t < t�, for
some t� < T , but fails at t ¼ t�, we have Gðt�Þ ¼ y. Hence it follows, taking rðtÞ
as in (46),

r 0ðtÞ þ rðtÞfðGðtÞÞa r 0ðtÞ þ rðtÞfðyÞa 0 on ½0; t�½;

whence, going back to (45), we derive a contradiction:

GðtÞaGð0Þ þ C n
0M

nt� < y on ½0; t��:
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Conclusion of the Proof of Theorem 1. Recalling that FðtÞaC0GðtÞ,
(47) says that FðtÞ < C0y on ½0;T �. Therefore, by (42), we get our goal (19):Z

R

jxj jjVðt; xÞj dxa
Z
R

erðt;xÞjxj jjVðt; xÞj dx ¼ EjðtÞaFðtÞrðtÞ�j
j!

aC0yfr�1
0 efðyÞTg j

j! ¼ ~KK ~LL j j!:

To prove (12), i.e., the analyticity of the solution u in ðt; xÞ, it is su‰cient to
apply to Cauchy-Kovalewski. r

Remark 3. The previos proof of (47) is somewhat formal, since it assumes not
only that GðtÞ < l, but also that G1ðtÞ < l on ½0; t�½. To make the proof more
precise we must replace the radius function rðtÞ by rhðtÞ ¼ hr0 expð�fðyÞtÞ, h < 1,
and apply the previous computation to the corresponding functions GhðtÞ and
G1

hðtÞ. Finally we let h ! 1 (see [ST] for the details).

Proof of Theorem 2. The proof is not very di¤erent from that of Thm. 1,
thus we give only a sketch of it.

The main di¤erence is that now the entries qr; ijðtÞ are not analytic but only Cl

functions, hence (24) fails. However, for any function f a Ckð½0;T �Þ it holds

j f 0ðtÞjaLðtÞj f ðtÞj1�1=kðk f kCkð½0;T �ÞÞ
1=k;

for some LCLf a L1ð0;TÞ. This was proved in [CJS] in the case f ðtÞb 0, and
in [T] in the general case.

Therefore, using that QeðtÞ is a nearly diagonal matrix, and proceeeding as in
[KS], for all integer kb 1 there is some function Lk a L1ð0;TÞ, independent of e,
such that

jðQ 0
eðtÞVðt; xÞ;Vðt; xÞÞjaLkðtÞðQeðtÞVðt; xÞ;Vðt; xÞÞ1�1=kjVðt; xÞj2=k:ð48Þ

Di¤erently from Theorem 1, we can now consider only the hyperbolic energy

E�ðt; xÞ ¼ ðQe�ðtÞV ;VÞ with e� ¼ 3x4�1:

Thanks to (48) we prove, for each integer kb 1, an estimate

qtf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
gaCkFkðt; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
þ jF ðt; xÞj

on the interval ½0;T �, where

Fkðt; xÞ ¼ LkðtÞjxj2ðm�1Þ=k þ 1:

The phase function Fk is sub-additive w.r. to x as soon as kb 2ðm� 1Þ.
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Next, putting

rkðt; xÞ ¼ Ck

Z T

t

Fkðt; xÞ dx ¼ Ckjxj2ðm�1Þ=k
Z T

t

LkðsÞ dsþ CkðT � tÞ;

we define the Gevrey-energy

EðkÞðt; uÞ ¼
Z
R

erkðt;xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðt; xÞ

p
dx;

and we conclude as in the proof of Theorem 1. r
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