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1. Introduction

Variational methods have long been used to find solutions of di¤erential equa-
tions as critical points of corresponding functionals. This work was generally for
bounded temporal and spatial domains, although some research used variational
results for bounded temporal domains together with limit arguments to treat
unbounded domains. See e.g. Morse [14] and Hedlund [11] for heteroclinic
geodesics, and [5] for homoclinics to a critical point of a Hamiltonian system.
However in the late 1980’s, direct methods were developed for problems on
unbounded domains, in particular to find heteroclinic and homoclinic solutions
of Hamiltonian systems (see e.g. Coti Zelati, Ekeland, and Sèrè [8], Sèrè [18],
and [9]) and of partial di¤erential equations (see e.g. [10]). These solutions gener-
ally correspond to minima or mountain pass critical points of the associated func-
tionals. More importantly, variational ‘‘gluing’’ arguments were discovered to
find additional critical points of the functionals near sums of the basic ones
just mentioned and corresponding solutions of the equations which are near
formal concatenations of the basic heteroclinics/homoclinics. See e.g. Mather
[13] for discrete Hamiltonian systems (area preserving maps), Sèrè [18, 19] for
Hamiltonian systems, and [9, 10] for Hamiltonian systems and elliptic PDEs.
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See also Angenent [1] for another gluing method for elliptic PDEs based on the
implicit function theorem.

Aside from the one dimensional case, the only work we know of using such
variational gluing arguments treats critical points and solutions of the same
type, i.e. minima are glued to minima and mountain pass solutions to mountain
pass solutions. Our main goal in this note is to describe a situation in which
minima and mountain pass critical points both exist and one can find ‘‘hybrid
solutions’’ of the equations corresponding to critical values near the sum of a
minimum and mountain pass critical value. Another novelty here is that we can
give a simple variational characterization of the new solutions and also provide
geometrical information on their location.

Historically our work is related to results of Poincaré and Birkho¤ on homo-
clinic orbits of Hamiltonian systems. For example Poincaré showed that if a time
periodic Hamiltonian system with 1 degree of freedom has an isolated homoclinic
orbit to a hyperbolic periodic orbit, then there exists an infinite number of homo-
clinic orbits. Poincaré used geometrical methods. The approach we take is also
geometrical, but instead of working in the phase space, we work in the configura-
tion space and use variational methods. A key tool for us is the construction
of invariant regions for the heat flow associated with our equation. Such an
approach has been used by many authors such as Bessi [3] and de la Llave–
Valdinoci [12], just to mention a couple, who work in settings related to ours.
The heat flow enables us to carry out the variational arguments in these invariant
regions and the shape of the region provides information on the form of the asso-
ciated solution.

In §2, the family of equations we treat will be introduced and our main results
will be presented in §3. A more detailed description of our results together with
full proofs will appear in [7].

2. Preliminaries

Consider the equation

Du ¼ Fuðx; uÞ; x a Rn:ð2:1Þ

We assume that F a C2ðTnþ1;RÞ, where Tnþ1 ¼ Rnþ1=Znþ1 is the torus, i.e. F is
1-periodic in its arguments. The study of this equation, and in fact a much more
general family of equations, was initiated by Moser [15] as a step towards an
Aubry–Mather theory for PDE’s. A classical example of (2.1) is a pendulum
with an oscillating suspension point:

€uu ¼ f ðtÞ sin u

where f > 0 is periodic. For this example our results go back to Poincaré and
they are strongly related to well known results in the dynamics of area preserving
maps (see e.g. [13]).
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Set

Lðx; u;‘uÞ ¼ 1

2
j‘uj2 þ F ðx; uÞ:

Then equation (2.1) is the Euler–Lagrange equation for the functional

FðuÞ ¼
Z
Tn

Lðx; u;‘uÞ dx; u a W 1;2ðTnÞ:

Standard results imply that F attains its minimum on W 1;2ðTnÞ and any
minimizer is a classical periodic solution of (2.1). Moser further showed that,
as in classical Aubry–Mather theory [2], the set M0 of minimizers is ordered:
v;w a M0 implies v ¼ w, or v < w, or v > w. Thus either the graphs of minimizers
foliate or laminate Tnþ1. The latter is the generic case and then there is a pair of
minimizers u� < uþ such that there are no other minimizers between them.

We are interested in solutions of (2.1) lying in the gap between u� and uþ and
periodic in all variables except the first one. Let N ¼ R� Tn�1 and

W ¼ fu a W
1;2
loc ðNÞ j u� a ua uþg:

Let t : N ! N be the right translation: tðxÞ ¼ ðx1 þ 1; x2; . . . ; xnÞ. Then
tu ¼ u � t�1 moves the graph of u to the right. A solution u a W will be called
heteroclinic from u� to uþ if teku ! uH in the C0

loc topology as k ! l. For us
‘‘solution’’ always means a solution of equation (2.1) and ‘‘heteroclinic’’ always
refers to heteroclinics in x1. Let Hðu�; uþÞ be the set of heteroclinic solutions
from u� to uþ and Hðuþ; u�Þ the analogous set of heteroclinic solutions from
uþ to u�.

A solution u a W will be called minimal if for all f a W 1;2ðNÞ with compact
support, Z

N

ðLðx; u;‘ðuþ fÞÞ � Lðx; u;‘uÞÞ dxb 0:

We say that u a W is 1-monotone in x1 or simply 1-monotone if tu < u or
tu > u. Equivalently, the graph of u in Tnþ1 is non self-intersecting. Moser and
Bangert called such solutions non self-intersecting.

Bangert (in the more general setting of Moser) [4] proved the existence of min-
imal monotone solutions of (2.1) heteroclinic from u� to uþ and from uþ to u�.
Let MeHHðuH; ueÞ be the sets of minimal monotone heteroclinic solutions.
Then as Bangert showed, Me is an ordered set. His argument is not variational.
However for our gluing arguments, a direct variational characterization of mini-
mal heteroclinics is needed. In particular, one appropriate for the current setting
was given in [17]. To describe it, without loss of generality let minW 1; 2ðTnÞ F ¼ 0.
Set Ti ¼ ½i; i þ 1� � Tn�1 and define a functional J on W by

JðuÞ ¼
Xl
i¼�l

Z
Ti

Lðx; u;‘uÞ dx:ð2:2Þ
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It was proved in [17] that for any u a W, the series (2.2) either converges or
diverges to þl. Let

Gþ ¼ Gðu�; uþÞ ¼ u a W j lim
i!el

ku� uekL2ðTiÞ ¼ 0

� �
;

G� ¼ Gðuþ; u�Þ ¼ u a W j lim
i!el

ku� uHkL2ðTiÞ ¼ 0

� �
:

It was shown in [17] that the functional J attains its minimum, ce, on Ge
with any minimizer a classical solution of (2.1) heteroclinic from uH to ue.
The set fu a Ge j JðuÞ ¼ ceg of minimizers is precisely the set Me of minimal
1-monotone heteroclinics obtained by Bangert.

There are also mountain pass and multitransition solutions in W provided
that we make a

(*) No foliation assumption: there are gaps in Me.

Assumption (*) is generic [17]. Its dynamical systems analogue is that the stable
and unstable manifolds of a fixed point are not doubled. If (*) holds, every gap in
Me is bounded by a pair of minimal heteroclinics ve < we which we call a gap
pair. In [17], it is proved that we� ve a W 1;2ðNÞ. Let Ee ¼ veþW 1;2ðNÞ be
the a‰ne space through ve and set

Le ¼ fu a Ee j vea uaweg:

From [10, 6], we have that the functional J is C1 on Ee and it satisfies the
Palais–Smale condition (PS) in Le: if ðukÞHLe is a sequence such that JðukÞ
is bounded and kJ 0ðukÞkW 1; 2ðNÞ ! 0, then uk has a subsequence which is conver-
gent in the W 1;2 norm to some u a Le.

With the aid of the (PS) condition, mountain pass heteroclinic solutions can be
obtained between the gap pair, ve < we. Set I ¼ ½0; 1� and define

be ¼ inf
h

max
hðIÞ

J;

where the infimum is taken over all continuous paths h : I ! Le connecting ve
with we. Equivalently, be is the supremum of all a such that ve and we are in
di¤erent path connected components of La

e ¼ fu a Le j JðuÞa ag. It was shown
in [6] that be > ce and there exists a critical point u a Le of J with JðuÞ ¼ be.
Any u given by this minimax will be called a mountain pass critical point since it
lies in the mountain pass critical level, J�1ðbeÞ.

The mountain pass heteroclinic solution u a J�1ðbeÞ is obtained in [6] by a
variant of the usual Deformation Theorem [16]. An alternate approach is to use
a heat flow argument. Since such an argument plays an important role in our
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main results, it will be sketched here. Let uðtÞ ¼ F tðu0Þ, tb 0, be the solution of
the parabolic initial value problem

ut ¼ Du� Fuðx; uÞ; uð0Þ ¼ u0:

By a parabolic comparison principle, F t : Le ! Le, tb 0. Since J decays
along the heat flow F t, the (PS) condition implies that for any u0 a Le and any
sequence tk ! l, there exists a subsequence such that F tkðu0Þ converges in
W 1;2 to a critical point u a Le of J with JðuÞ ¼ limt!l JðF tðu0ÞÞ. With the aid
of these observations, that be are critical values readily follows.

A similar argument holds for any F t-invariant set LHW such that J is finite
and di¤erentiable at every point in L and satisfies the (PS) condition in L such as
the setting of §3 that follows.

3. The main results

In this section, we turn to multitransition homoclinic solutions. The simplest
cases are 2-transition homoclinics which will be discussed next. Up to permuta-
tions, there are three possibilities:

• gluing a minimal heteroclinic in Mþ ¼ Mðu�; uþÞ corresponding to cþ to one
in M� ¼ Mðuþ; u�Þ corresponding to c� to obtain a locally minimal homo-
clinic solution in Hðu�; u�Þ.

• gluing a mountain pass heteroclinic in Hðu�; uþÞ corresponding to bþ to a
minimizer in Mðuþ; u�Þ corresponding to c� to obtain a mountain pass homo-
clinic solution in Hðu�; u�Þ.

• gluing a pair of mountain pass heteroclinics in Hðu�; uþÞ and Hðuþ; u�Þ cor-
responding to bþ and b�.

The first case was already carried out in [17]. However in contrast to [17]
where the goal was merely to construct a 2-transition homoclinic solution, here
we need one that shadows two particular heteroclinics. This requires a more care-
ful construction. To describe it, let c ¼ c� þ cþ and wk ¼ minðwþ; t

kw�Þ. Then
with the aid of a result from [17], JðwkÞ < c and JðwkÞ ! c as k ! l. Set
m ¼ ðmþ;m�Þ a Z2 and r ¼ ðrþ; r�Þ with

0 < re < r ¼ kuþ � u�kL2ðT0Þ:

The parameters m and r must be chosen carefully. Postponing the choice for the
moment, for k a N, define

Yk ¼ fu a W j uawk; ku� uþkL2ðTmþÞ a rþ; ku� uþkL2ðTm�þkÞ a r�g

and

ck ¼ inf
u AYk

JðuÞ:
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Then J attains its minimum ck in Yk and any minimizer uk a Yk is in the interior
of Yk. Thus uk is a classical heteroclinic solution of (2.1).

To choose the parameters m, r, note that since the sets Me of minimal hetero-
clinics are ordered,

Se ¼ fkv� uþkL2ðT0Þ j v a Meg

is an ordered set in ð0; rÞ which contains gaps. Since Me ¼ tMe, is t-invariant,

Se ¼ fkv� uþkL2ðTiÞ j v a Meg

for any i a Z. Choose re in a gap, i.e.

re a ð0; rÞnSe:ð3:1Þ

In fact we can choose re as close to 0 as we please. By (3.1), there is a unique
me a Z such that

kwe� uþkL2ðTmeÞ
< re < kve� uþkL2ðTmeÞ

:

By the choice of m, the functions wþ, tkw� satisfy, respectively, the rþ, r�
inequalities in the definition of Yk. Therefore for any large k, wk belongs to Yk

so Yk Aj and by slight modifications of the proof in [17], we have

Theorem 3.2. There is a K > 0 such that for any k a N with kbK, there exists
a homoclinic uk a Hðu�; u�Þ such that

• uk < wk.

• JðukÞ < JðwkÞ.
• uk is locally minimizing, i.e. JðvÞb JðukÞ for any v a W which is Ll close to uk.

• As k ! l, JðukÞ ! c and kuk � wkkLlðNÞ ! 0.

Since uk and we are solutions of the elliptic PDE (2.1), the last item implies
that uk ! wþ and t�kuk ! w� in C2

loc as k ! l. In fact more can be proved:
uk ! wþ in W 1;2ðð�l; 0� � Tn�1Þ and t�kuk ! w� in W 1;2ð½0;lÞ � Tn�1Þ.
Moreover under the nondegeneracy condition ðNDþÞ introduced below,
kuk � wkkW 1; 2ðNÞ ! 0. The details will be given in [7].

Now we turn to gluing a mountain pass heteroclinic to a minimizing hetero-
clinic. Define a region invariant under the heat flow F t by e.g.

Sk ¼ fu a W j tuk�1 a uawk; u� wk a Eg:

Then wk ¼ minðvþ; tkw�Þ a Sk. Let d ¼ bþ þ c�. Our first theorem is a conse-
quence of a topological result:

Proposition 3.3. For any d a ð0; bþ � c�Þ, there exists a K > 0 such that for
kbK, wk and wk are in di¤erent path connected components of Sd�d

k but in the
same path connected component of Sdþd

k .
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Let dk be the infimum of a a R such that wk and wk are in the same path con-
nected component of

Sa
k ¼ fu a Sk j JðuÞa ag:

Equivalently,

dk ¼ inf
h

max
hðIÞ

J;

where the infimum is taken over all continuous paths h : I ! Sk connecting wk

and wk. Then dk is a mountain pass critical level. Indeed, since Sk is F
t-invariant,

the heat flow argument implies:

Theorem 3.4. There exists a K > 0 such that for any kbK, the functional J has
a critical point Uk a Sk with JðUkÞ ¼ dk.

We call Uk a Hðu�; u�Þ a hybrid homoclinic obtained by gluing a mountain
pass and a minimal heteroclinic. To really justify this, the asymptotic behavior of
Uk as k ! l must be studied. By Proposition 3.3, dk ! d as k ! l. With the
aid of Theorems 3.2 and 3.4, we have:

• t�kUk ! w� in C2
loc,

• there exists a heteroclinic V lying between twþ and wþ and a subsequence
k ! l such that Uk ! V in C2

loc.

With a more complicated choice of Sk as in [7], we can conclude that Uk con-
verges to V a Lþ. However for ease in exposition, we have chosen to simplify
the construction here and therefore get a slightly weaker result. It seems probable
that V is a mountain pass heteroclinic, with JðVÞ ¼ bþ, but we are unable to
prove this without a further mild nondegeneracy assumption:

(NDe) The minimizer ue of the functional F on W 1;2ðTnÞ is a nondegenerate
critical point of F.

By (NDe), the second variation quadratic form is positive definite: there is a con-
stant m > 0 such that

F 00ðueÞðf; fÞb mkfk2L2ðTnÞ f a W 1;2ðTnÞ:

A dynamical systems analogue of this condition is that the fixed point of the map
is hyperbolic.

With the aid of some additional estimates we now obtain:

Theorem 3.5. Suppose ðNDþÞ holds. Then there exists a mountain pass solution,
V, lying between twþ and wþ with JðVÞ ¼ bþ and a K > 0 such that for each
kbK, there is a solution Uk a Sk such that JðUkÞ ¼ dk and along a subsequence
of k ! l,

kUk � VkkW 1; 2ðNÞ ! 0; Vk ¼ minðV ; tkw�Þ:
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For our final result in this section, two mountain pass heteroclinics will be
glued together. To begin, first note that the region in which the curves of Sk lie
consists of two subregions. There is a ‘‘thick’’ part between tuk�1 and where
wk ¼ wþ. This is coupled to a ‘‘thin’’ part between tuk�1 and where wk ¼ tkw�.
Now we consider the heat flow invariant region between tuk�2 and wk consisting
of two ‘‘thick’’ parts in which a critical point of J can now be obtained. Set

Wk ¼ fu a W j tuk�2 a uawk; u� wk a Eg:

Then Sk HWk and uk ¼ minðvþ; tkv�Þ a Wk.
Let I 2 ¼ ½0; 1� � ½0; 1� and b ¼ bþ þ b�. The topological basis for finding the

critical point is provided by the next result.

Proposition 3.6. Let d a ð0; b� cÞ. For any e a ð0; dÞ, there is a K > 0 such
that for any k > K, there exists a continuous map g : ðI 2; qI 2Þ ! ðWbþe

k ;Wb�d
k Þ

which is not homotopic to a map ðI 2; qI 2Þ ! ðWb�e
k ;Wb�d

k Þ in the class of maps

ðI 2; qI 2Þ ! ðWk;W
b�d
k Þ.

As before, Wa
k ¼ fu a Wk j JðuÞa ag. Following standard notation, we write

g : ðI 2; qI 2Þ ! ðX ;Y Þ if Y HX , and g : I 2 ! X is a continuous map such that
gðqI 2ÞHY . The map g in Proposition 3.3 is obtained by appropriately com-
bining paths he : ½0; 1� ! Le joining vþ with wþ and tkv� with tkw� respec-
tively. The idea goes back to Séré [19].

Now take d a ð0; b� cÞ and define

ak ¼ inf
h

sup
hðI 2Þ

J;

where the infimum is taken over all maps h : ðI 2; qI 2Þ ! ðWk;W
b�d
k Þ homotopic

to g in the class of maps ðI 2; qI 2Þ ! ðWk;W
b�d
k Þ. By Proposition 3.6, ak ! b

as k ! l and the earlier heat flow argument gives:

Theorem 3.7. There exists a K > 0 such that for any kbK, J has a critical
point Vk a Wk such that JðVkÞ ¼ ak.

We conclude this note with some remarks.
For each large k, the above arguments give seven homoclinics in Wk, four of

them being local minimizers of J with J close to cþ þ c�, two of mountain pass
type with J close to ceþ bH, and one has J close to bþ þ b�.

By the arguments of Theorems 3.5, when ðNDþÞ holds, as k ! l;Vk of
Theorem 3.7 converges to V , a solution of (2.1) between twþ and wþ that is het-
eroclinic from u� to uþ and t�kVk converges to W , a solution between t�1w�
and w� that is heteroclinic from uþ to u�. Moreover JðVÞ þ JðW Þ ¼ bþ þ b�.
However we are unable at this point to prove that V , W are mountain pass solu-
tions with JðVÞ ¼ bþ and JðW Þ ¼ b�.

The existence arguments giving the hybrid solution, Uk, and the solution, Vk,
involve the construction of invariant regions for the associated heat flow. In par-
ticular the invariant region for the former consisted of a ‘‘thick’’ part and a
‘‘thin’’ part while its analogue for the latter consisted of two ‘‘thick’’ parts. In a
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related but more elaborated fashion, invariant regions can be constructed and
variational arguments given that yield hybrid multitransition homoclinic solu-
tions with critical values near Ca ¼

Pp
i¼1 ai where in the sequence a ¼ ðaiÞpi¼1

alternate elements belong to our choice of cþ or bþ and c� or b�. When
ai ¼ be, the regions will have a ‘‘thick’’ part corresponding roughly to a phase
shift of the region between ve and we. Likewise when ai ¼ ce, there is a ‘‘thin’’
part corresponding to a phase shift of we.

For a precise statement, suppose for definiteness that p is even and
ai a fcþ; bþg for odd i and ai a fc�; b�g for even i. For an increasing integer
sequence q ¼ ðqiÞpi¼1 define

ki ¼ qiþ1 � qi; vq ¼ max
i odd

ðtqiwkiÞ;

where wk ¼ minðwþ; t
kw�Þ is as in Theorem 3.2. From the results of [17], it fol-

lows that for an integer sequence m ¼ ðmiÞpi¼1 with su‰ciently large separation pa-
rameter k ¼ mini ki, there exists a locally minimizing homoclinic vq a Hðu�; u�Þ
such that vq < vq. Moreover by arguments from the proof of Theorem 3.2, as
k ! l, kvq � vqkLlðNÞ ! 0 and JðvqÞ ! ðc� þ cþÞp=2.

The homoclinics vq can now be used to construct an invariant region con-
taining hybrid multitransition homoclinics. To do so, take another integer se-
quence q 0 ¼ ðq 0

i Þ
p
i¼1 with qi ¼ qi if ai ¼ ce, q

0
i ¼ qi þ 1 if ai ¼ bþ and q 0

i ¼ qi � 1
if ai ¼ b�. Then one can show there is a locally minimizing homoclinic
vq 0 a Hðu�; u�Þ with vq 0 < vq. The region

Lq ¼ fu a W j vq 0 < u < vqg

is invariant under the parabolic semiflow Ft, tb 0. A topological property simi-
lar to Proposition 3.6 shows that for large k, the functional J has a critical point
uq a Lq which is a hybrid multitransition homoclinic solution and as k ! l,
JðuqÞ ! Ca.

As in Theorem 3.5, whenever we have a ‘‘thin’’ region, i.e. ai ¼ ce, for an
appropriate phase shift t�qiuq of uq we have t�qiuq ! we. If the nondegeneracy
conditions ðNDeÞ hold, we expect that for ‘‘thick’’ regions, i.e. ai ¼ be, a phase
shift t�qiuq converges to some v, a heteroclinic solution of (2.1) with JðvÞ ¼ be as
the case may be. However this has not yet been established.
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