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1. Introduction

In this note we report on some of the results obtained in [18, 19], concerning the
possibility of giving pointwise bounds for the gradient of solutions to possibly
degenerate parabolic equations of the type

ut � div aðDuÞ ¼ m;ð1:1Þ

defined in cylindrical domains WT ¼ W� ð�T ; 0Þ, where WHRn is a bounded
domain, nb 2, and T > 0. In the most general case m is a Borel measure with
finite total mass: jmjðWTÞ < l. From now on, without loss of generality, we shall
assume that the measure is defined on Rnþ1 by letting mbRnþ1nWT

¼ 0; therefore

we shall assume that jmjðRnþ1Þ < l. A chief model example for the equations
treated here is given by the familiar evolutionary p-Laplacean equation

ut � divðjDujp�2
DuÞ ¼ m;ð1:2Þ

and in fact, when considering (1.1), we shall consider the following growth and
parabolicity assumptions on the C1-vector field a : Rn ! Rn

jaðzÞj þ jqaðzÞjðjzj2 þ s2Þ1=2 aLðjzj2 þ s2Þðp�1Þ=2

nðjzj2 þ s2Þðp�2Þ=2jxj2 a 3qaðzÞx; x4

(
ð1:3Þ

whenever z; x a Rn, where 0 < naL and sb 0. In the following l will always
denote a finite and positive real number.



1.1. Review of the elliptic background. Let us consider the Poisson equation
�su ¼ m in Rn—here we take nb 3, m being an integrable function and u being
the only solution decaying to zero at infinity. In this case the classical representa-
tion formula

uðx0Þ ¼
1

nðn� 2ÞjB1j

Z
Rn

dmðxÞ
jx0 � xjn�2

;

allows to derive the Riesz potential estimates

juðx0Þja cI
jmj
2 ðx0;lÞ; and jDuðx0Þja cI

jmj
1 ðx0;lÞ;ð1:4Þ

where

I
m
b ðx0; rÞ ¼

Z r

0

jmjðBðx0; %ÞÞ
%n�b

d%

%
; b > 0;

is the (truncated) Riesz potentials of the measure jmj. Whilst such a result seems
to be very much linked to the linearity of the equation considered, a break-
through of Kilpeläinen & Malý [16] established a nonlinear analog of the first for-
mula in (1.4) for solutions to general quasilinear equations

�div aðDuÞ ¼ mð1:5Þ

by means of Wol¤ potentials

W
m
b;pðx0; rÞ :¼

Z r

0

�jmjðBðx0; %ÞÞ
%n�bp

�1=ðp�1Þ d%

%
; b > 0:ð1:6Þ

These are natural objects in classical linear and nonlinear potential theory, and
coincide with classical Riesz potentials when p ¼ 2, as W

m
b=2;2 ¼ I

m
b for non-

negative measures. The estimate of Kilpeläinen & Malý [16] is

juðx0Þja c

Z
Bðx0; rÞ

ðjuj þ rsÞ dxþ cW
m
1;pðx0; 2rÞ;ð1:7Þ

and holds whenever Bðx; 2rÞHW is a ball centered at x0 with radius 2r, with x0
being a Lebesgue point of u; the constant c depends only on n, p, n, L. Another
interesting approach to (1.7) was later given by Trudinger & Wang in [24, 25].
Estimate (1.7) has been upgraded to the gradient level in [22] for the case p ¼ 2,
and then in [10, 11] for pA 2, where the following estimates have been proved:

jDuðx0Þja c

Z
Bðx0; rÞ

ðjDuj þ sÞ dxþ cW
m
1=p;pðx0; 2rÞð1:8Þ

for pb 2 and

jDuðx0Þja c

Z
Bðx0; rÞ

ðjDuj þ sÞ dxþ c½Ijmj1 ðx0; 2rÞ�1=ðp�1Þ;ð1:9Þ
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for 2� 1=n < pa 2. The importance of estimates as (1.7)–(1.9) mainly relies in
the fact that they allow to deduce several basic properties of solutions to quasi-
linear equations by simply analyzing the behavior of related Wol¤ potentials,
providing estimates in rearrangement invariant function spaces [21, 22]. We refer
to [23] for an outline of the main issues. In turn, Wol¤ potentials are essential
tools in order to study the fine properties of Sobolev functions and, more in gen-
eral, to build a reasonable nonlinear potential theory [14].

2. Parabolic potential estimates

In [18, 19] we concentrate on the most delicate case of the higher order estimates
(1.8)–(1.9) and give a natural analog of them in the case of possibly degenerate/
singular parabolic equations of p-Laplacean type as those in (1.1) and (1.2). The
nondegenerate case p ¼ 2 has been already dealt within [10], and in that case
the proof of the Wol¤ potential (spatial) gradient estimate is similar to the one
for the elliptic case. The case pA 2 requires instead very di¤erent means as
the equations considered become anisotropic (multiple of solutions no longer
solve similar equations) and as a consequence all the a priori estimates available
for solutions—starting from those concerning the homogeneous case m ¼ 0—
are not scaling invariant. Ultimately, the iteration methods introduced in [16,
24, 25, 21, 22, 10, 11] and that are based on the use of homogeneous estimates,
cannot be any longer applied. As a matter of fact, even the notion of potentials
used must be revisited in a way that fits the local structure of the equations con-
sidered. This is not only a technical fact but is instead linked to behavior that the
p-Laplacean type degeneracy exhibits in the parabolic case. Indeed, as we shall
see in the next section, the so-called intrinsic geometry of the equations consid-
ered will appear [5, 6].

Remark 2.1 (Approximation and a priori estimates). In view of the standard
approximation theory available, it is not restrictive to consider in the following
energy solutions, i.e. to start with solutions u a Lpð�T ; 0;W 1;pðWÞÞ and such
that Du is continuous in WT , while the measure m will be considered as being
actually an integrable function, that is m a L1ðRnþ1Þ. Indeed, solutions u to
Cauchy-Dirichlet problems involving equations as (1.1)—with m being now a
general measure—are usually found via approximation arguments, and actually
as limits of solutions to suitably regularized problems where both solutions
um ! u and and data L1 C mm ! m are more regular. We refer to [18] for a com-
prehensive discussion and references.

2.1. The intrinsic approach, and intrinsic potentials. The anisotropic structure of
the equations considered here naturally leads to the concept of intrinsic geometry,
widely discussed in [5, 6]. This prescribes that, although the equations considered
are anisotropic, they behave as isotropic equations when considered in space/time
cylinders whose size depend on the solution itself. To outline how the intrinsic
approach works, let us consider a domain, actually a cylinder Q, where, roughly
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speaking, the size of the gradient norm is approximately l—possibly in some
integral averaged sense—i.e.

jDujQl > 0:ð2:1Þ

In this case we shall consider intrinsic cylinders, i.e. cylinders of the type

Q ¼ Ql
r ðx0; t0ÞCBðx0; rÞ � ðt0 � l2�pr2; t0Þ;ð2:2Þ

where Bðx0; rÞHRn is the usual Euclidean ball centered at x0 and with radius
r > 0. Note, when lC 1 or when p ¼ 2, the cylinder in (2.2) reduces to the stan-
dard parabolic cylinder given by

Qrðx0; t0ÞCQ1
r ðx0; t0ÞCBðx0; rÞ � ðt0 � r2; t0Þ:

Indeed, the case p ¼ 2 is the only one admitting a non-intrinsic scaling and local
estimates have a natural homogeneous character. In this case the equations in
question are automatically non-degenerate. The heuristics of the intrinsic scaling
method can now be easily described as follows: assuming that in the cylinder Q
as in (2.2), the size of the gradient is approximately l as in (2.1). Then we have
that the equation ut � divðjDujp�2

DuÞ ¼ 0 looks like ut ¼ divðlp�2DuÞ ¼ lp�2su
which, after a scaling, that is considering vðx; tÞ :¼ uðx0 þ %x; t0 þ l2�p%2tÞ in
Bð0; 1Þ � ð�1; 0Þ, reduces to the heat equation vt ¼sv in Bð0; 1Þ � ð�1; 0Þ. This
equation, in fact, admits favorable a priori estimates for solutions. The success of
this strategy is therefore linked to a rigorous construction of such cylinders in the
context of intrinsic definitions. Indeed, the way to express a condition as (2.1) is
typically in an averaged sense like for instance

� 1

jQl
r j

Z
Ql

r

jDujp�1
dx dt

�1=ðp�1Þ
¼
�Z

Ql
r

jDujp�1
dx dt

�1=ðp�1Þ
Ql:ð2:3Þ

A problematic aspect in (2.3) occurs as the value of the integral average must be
comparable to a constant which is in turn involved in the construction of its sup-
port Ql

r CQl
r ðx0; t0Þ, exactly according to (2.2). As a consequence of the use of

such intrinsic geometry, all the a priori estimates for solutions to evolutionary
equations of p-Laplacean type admit a formulation that becomes natural only
when formulated in terms of intrinsic parameters and cylinders as Ql

r and l.
We shall present the result distinguishing the usually called degenerate case

pb 2 from the singular one, that is when 2� 1=ðnþ 1Þ < pa 2.

2.2. The case pb 2. The first novelty of [18, 19] is in that we adopt the intrinsic
geometry approach in the context of nonlinear potential estimates. This will
naturally give raise to a class of intrinsic Wol¤ and Riesz potentials that reveal
to be the natural objects to be considered, as their structure allows to recast
the behavior of the Barenblatt solution—the so-called nonlinear fundamental
solution—see Section 2.4 below.
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Theorem 2.1 (Intrinsic potential bound). Let u be a solution to (1.1) such that
Du is continuous in WT and that m a L1; assume that (1.3) hold with pb 2. There
exists a constant cb 1, depending only on n, p, n, L, such that if l > 0 is a gener-
alized root of

l ¼ cb þ c

Z 2r

0

�jmjðQl
%ðx0; t0ÞÞ

l2�p%nþ1

�1=ðp�1Þ d%

%
;ð2:4Þ

and if

�Z
Ql

r

ðjDuj þ sÞp�1
dx dt

�1=ðp�1Þ
a b;

where Ql
2rCQl

2rðx0; t0ÞCBðx0; 2rÞ � ðt0 � l2�p4r2; t0ÞHWT is an intrinsic cylin-
der with vertex at ðx0; t0Þ, then

jDuðx0; t0Þja l:

By saying that l is a generalized root of equation (2.4), where b > 0 and cb 1
are given constants, we mean a positive solution of (2.4) (the smallest can be
taken), with the word generalized referring to the possibility that no root exists
in which case we simply set l ¼ l. The finiteness of the integral in the right
hand side of (2.4) anyway rules this case out. Statements as the one of Theorem
2.1, i.e. involving intrinsic quantities and cylinders, are completely natural when
describing the local properties of the evolutionary p-Laplacean equation (see for
instance [6]). The last integral appearing in (2.4) is the natural intrinsic counter-
part of the Wol¤ potential Wm

1=p;p intervening in (1.8). In fact, when considering
the associated elliptic stationary problem and m is time independent, Theorem 2.1
gives back (1.8); for this see also Theorem 2.3 below. Moreover, in the case p ¼ 2
it is easy to see that Theorem 2.1 implies the bound

jDuðx0; t0Þja c

Z
Qr

jDuj dx dtþ cI
m
1 ðx0; t0; 2rÞð2:5Þ

whenever Q2rCQ2rðx0; t0ÞHWT is a standard parabolic cylinder, where

I
m
b ðx0; t0; 2rÞ :¼

Z 2r

0

jmjðQ%ðx0; t0ÞÞ
%N�b

d%

%
; b < Nð2:6Þ

is the parabolic Riesz potential of m and N ¼ nþ 2 is the parabolic dimension.
Estimate (2.5) has been originally obtained in [10].

The formulation of Theorem 2.1 involves intrinsic quantities and conditions,
and appears therefore at the first sight to be problematic. This is not actually the
case as shown in the next Theorem, which in fact follows as a corollary. In other
words, Theorem 2.1 always implies local a priori estimates via parabolic Wol¤
potentials, on arbitrary parabolic cylinders Qr HWT .
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Theorem 2.2 (Parabolic Wol¤ potential bound). Let u be a solution to (1.1)
such that Du is continuous in WT and m a L1; assume that (1.3) hold with pb 2.
There exists a constant c, depending only on n, p, n, L, such that

jDuðx0; t0Þja c

Z
Qr

ðjDuj þ sþ 1Þp�1
dx dtð2:7Þ

þ c

Z 2r

0

�jmjðQ%ðx0; t0ÞÞ
%nþ1

�1=ðp�1Þ d%

%

� �p�1

holds whenever Q2rCQ2rðx0; t0ÞCBðx0; 2rÞ � ðt0 � 4r2; t0ÞHWT is a standard
parabolic cylinder with vertex at ðx0; t0Þ.

To check the consistency of estimate (2.7) with the ones already present in
the literature we observe that when mC 0, estimate (2.7) reduces the classical
Ll-gradient bound available for solutions to the evolutionary p-Laplacean equa-
tion; see [6, Chapter 8, Theorem 5.1 0]. It is interesting to see that when switching
to a non-intrisic formulation, local estimates immediately show anisotropicity
under the form of a deficit scaling exponent, which in this case is p� 1 and
precisely reflects the lack of homogeneity of the equations. This is typical when
considering anisotropic problems, and similar deficit scaling exponents typically
appear in the a priori estimates from [1, 2].

Finally, when m is time independent, or admits a favorable decomposition, it is
possible to get rid of intrinsic geometry e¤ect in the potential terms and we go
back to the elliptic regime.

Theorem 2.3 (Elliptic-Parabolic Wol¤ potential bound). Let u be a solution to
(1.1) such that Du is continuous in WT and m a L1; assume that (1.3) hold with
pb 2. Assume that the measure m satisfies

jmja m0 n f ;ð2:8Þ

where f a Llð�T ; 0Þ and m0 is a Borel measure on W with finite total mass. Then
there exists a constant c, depending only on n, p, n, L, such that

jDuðx0; t0Þja c

Z
Qr

ðjDuj þ sþ 1Þp�1
dx dtþ ck f k1=ðp�1Þ

Ll W
m0
1=p;pðx0; 2rÞ

whenever Q2rðx0; t0ÞCBðx0; 2rÞ � ðt0 � 4r2; t0ÞHWT is a standard parabolic
cylinder having ðx0; t0Þ as vertex. The (elliptic) Wol¤ potential W

m
1=p;p is defined

in (1.6).

2.3. The case 2� 1=ðnþ 1Þ < pa 2. Let us immediately remark that the as-
sumed lower bound on p is the standard one allowing for the existence of Sobolev
solutions to measure data problems, as for instance proved in [3, 4]. In the
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subquadratic case the intrinsic geometry associated to the problem changes in the
sense that the relevant intrinsic cylinders are of the type

~QQl
r ðx0; t0Þ ¼ Ql

rl
ðx0; t0Þ ¼ Bðx0; lðp�2Þ=2rÞ � ðt0 � r2; t0Þ; rl ¼ lðp�2Þ=2r:

Moreover, we shall pass from nonlinear intrinsic potentials of Wol¤ type to
intrinsic Riesz potentials. The main result is the following:

Theorem 2.4 (Intrinsic linear potential bound). Let u be a solution to (1.1)
such that Du is continuous in WT and m a L1; assume that (1.3) hold with
2� 1=ðnþ 1Þ < pa 2. There exists a constant cb 1, depending only on n, p, n,
L, such that if l > 0 is a generalized root of

l ¼ cb þ c

Z 2rl

0

�jmjðQl
%ðx0; t0ÞÞ
%nþ1

� d%

%
; rl ¼ lðp�2Þ=2r;

and if Z
Ql

rl

ðjDuj þ sÞ dx dta b;

where Ql
2rl

CQl
2rl
ðx0; t0ÞCBðx0; 2lðp�2Þ=2rÞ � ðt0 � 4r2; t0ÞHWT is an intrinsic

cylinder with vertex at ðx0; t0Þ, then

jDuðx0; t0Þja l:

As for the case pb 2, Theorem 2.4 implies a priori estimates on non-intrinsic
cylinders, and involving the parabolic Riesz potentials defined in (2.6).

Theorem 2.5 (Parabolic Riesz potential bound). Let u be a solution to (1.1)
such that Du is continuous in WT and m a L1; assume that (1.3) hold with
2� 1=ðnþ 1Þ < pa 2. There exists a constant c, depending only on n, p, n, L,
such that

jDuðx0; t0Þja c
�Z

Qr

ðjDuj þ sþ 1Þ dx dt
�2=½2�nð2�pÞ�

ð2:9Þ

þ c½Im1 ðx0; t0; 2rÞ�
2=½ðnþ1Þp�2n�

holds whenever Q2rCQ2rðx0; t0ÞCBðx0; 2rÞ � ðt0 � 4r2; t0ÞHWT is a standard
parabolic cylinder with vertex at ðx0; t0Þ.

Finally, also in this case we have that when m is time independent or admits
a favorable decomposition, the elliptic Riesz potentials come back exactly as in
(1.9).

Theorem 2.6 (Elliptic Riesz potential bound). Let u be a solution to (1.1)
such that Du is continuous in WT and m a L1; assume that (1.3) hold with
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2� 1=ðnþ 1Þ < pa 2. Assume that the measure m satisfies (2.8), where
f a Llð�T ; 0Þ and m0 is a Borel measure on W with finite total mass. Then there
exists a constant c, depending only on n, p, n, L, such that

jDuðx0; t0Þja c
�Z

Qr

ðjDuj þ sþ 1Þ dx dt
�2=½2�nð2�pÞ�

þ ck f k1=ðp�1Þ
Ll ½Im01 ðx0; 2rÞ�1=ðp�1Þ

whenever Q2rðx0; t0ÞCBðx0; 2rÞ � ðt0 � 4r2; t0ÞHWT is a standard parabolic cyl-
inder having ðx0; t0Þ as vertex. The (elliptic) Riesz potential Im01 is defined in (1.6).

Remark 2.2. It is interesting to analyze the exponents appearing in (2.9). The
exponent 2=½2� nð2� pÞ� is the same one appearing in the typical gradient esti-
mates for homogeneous equations and reflects the gradient nature of the estimate
in question. Indeed, when mC 0 estimate (2.9) reduces to the classical one ob-
tained in [6, Chapter 8, Theorem 5.2 0]. The exponent 2=½ðnþ 1Þp� 2n� instead
blows-up when p ! 2n=ðnþ 1Þ and reflects the non-homogeneity of the equation
studied, as well as the structure of the fundamental solution. Such exponent
indeed intervenes in those estimates related to the Barenblatt solution, as for
instance the Harnack inequalities in [8, 9].

2.4. Comparison with the Barenblatt solution. For the sake of brevity we shall
concentrate here on the case p > 2. The standard quality test for potential esti-
mates as for instance those in (1.7)–(1.9) consists of measuring the extent they
allow to reproduce the behavior of fundamental solutions, i.e. the behavior of
those special solutions obtained by taking mC d, where d is the Dirac measure
charging one point. In the case of the evolutionary p-Laplacean equations with
Dirac datum d charging the origin, the equation

ut � divðjDujp�2
DuÞ ¼ d in Rnþ1

has an explicit solution—so-called Barenblatt solution—given by

Bpðx; tÞ ¼ t�n=y
�
y1=ð1�pÞ p� 2

p

�
cb �

� jxj
t1=y

�p=ðp�1Þ�
þ

�ðp�1Þ=ðp�2Þ
t > 0

0 ta 0:

8<
:

Here y :¼ nðp� 2Þ þ p and cb is a constant normalizing the solution so thatZ
Rn

Bpðx; tÞ dx ¼ 1 for all t > 0. A direct computation reveals that the gradient of

Bpðx; tÞ satisfies the estimate

jDBpðx0; t0Þja ct
�ðnþ1Þ=y
0ð2:10Þ

whenever ðx0; t0Þ a Rn � ð0;lÞ; in turn this prescribes the blow-up behaviour
at the origin of the fundamental solution, which is typical of a situation where a
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Dirac measure appears. The crucial point is now that the bound appearing in (2.10)
is directly implied by Theorem 2.1. Moreover, as Theorem 2.1 holds for general
equations, the same bound also holds for solutions to general equations of the
type

ut � div aðDuÞ ¼ d in Rnþ1;ð2:11Þ

under assumptions (1.3); see also [20]. This result should be anyway compared to
the one in [6, Chapter 11, Theorem 2.1, (2.4)]. Of course, when considering equa-
tions with genuine measure data as (2.11), we have to consider those solutions
considered in [3, 4], and obtained by approximation processes, as limits of solu-
tions with more regular data. As our estimates are stable under such approxima-
tion methods, Theorem 2.1 applies to solutions of (2.11) modulo considering
Lebesgue points ðx0; t0Þ of Du rather than any point.

3. Techniques employed—extensions

The proof of the potential estimates of the Section 2 employs and extends virtu-
ally all the known aspects of the gradient regularity theory for evolutionary
p-Laplacean type equations. A preliminary part consists of deriving suitable a
priori estimate for homogeneous equations of the type

wt � div aðDwÞ ¼ 0:ð3:1Þ

The Hölder regularity of the (spatial) gradient of w has been established in the
papers of DiBenedetto & Friedman in [7] for equations and systems of the type

wt � divðgðjDwjÞDwÞ ¼ 0; gðjDwjÞQ jDwjp�2ð3:2Þ

via suitable linearization methods, that in general do not apply for general cases
as (3.1). Moreover, even in the model case (3.2) the estimates available in [6] are
not immediately usable in problems involving measure data, as these typically
need estimates below the natural growth exponent. This means we need estimates
formulated in terms of decay of suitable excess functionals in terms of Lq-spaces,
for low values of q (see also (5.2) below). These aspects are briefly discusses in the
next Section, and lead to a new treatment of the Hölder regularity theory of the
gradient of solutions. The central result in this respect is Theorem 5.1 below.

The proof of the potential estimates of Section 2 is now based on a delicate
iteration procedure where the size of the gradient is uniformly controlledZ

Ql
ri

jDujp�1
dx dta lp�1

over a chain of shrinking intrinsic cylinders with vertex ðx0; t0Þ

� � �HQl
riþ1

HQl
ri
HQl

ri�1
H � � �ð3:3Þ
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where l is the one from Theorem 2.1 (we confine to this case for brevity). The
essence is the following: either the gradient Du stays bounded (in mean) from
above by some fraction of l on infinitely many scales i, say for instance

Z
Ql

ri

jDujp�1
dx dta

lp�1

100

and in this case we immediately arrive at jDuðx0; t0Þja l; or this doesn’t happen
and therefore we argue after the exit time with respect to the previous condition,
i.e. the first index ie such that

Z
Ql

ri

jDujp�1
dx dtb

lp�1

100
:

holds for every i > ie. This alternative condition in turn allows to argue by induc-
tion using a two-sided inequality given by

lp�1

100
a

Z
Ql

ri

jDujp�1
dx dta lp�1:ð3:4Þ

The point is that via suitable comparison estimates with solutions to homoge-
neous equations as (3.1), it is possible to prove that if (3.4) holds for a certain
index i > ie, then it also holds at stage i þ 1, and therefore we conclude with
(3.3) for every i > ie. In turn, this ultimately gives jDuðx0; t0Þja l. A main point
in the proof of the inductive step is that the conditions in (3.4) allow in turn to
apply Theorem 5.1 (via (5.1)) to solutions wCwi of (3.1) in Ql

ri
, sharing the

same Cauchy-Dirichlet data of u on qparQ
l
ri
. In turn the decay estimate of

Theorem 5.1 can be transferred to u modulo a remainder term—giving raise to
the potential term—and allows to prove the induction step.

In this note we are concentrating on the basic case in (1.1). Moreover, more
general cases as

ut � div aðx; t;DuÞ ¼ m

can be treated, assuming suitable forms of Hölder continuity on the partial map
x 7! aðx; t; zÞ (while just measurability is needed on t 7! aðx; t; zÞ).

Another extension in the case pb 2 concerns an alternative exponent allow-
able in Theorem 2.1, where the potential in (2.4) can be replaced by

Z 2r

0

�jmjðQl
%ðx0; t0ÞÞ

l2�p%nþ1

�p=½2ðp�1Þ� d%

%

" #2=p

:ð3:5Þ

This is no longer a Wol¤ potential, but it allows for slightly better conditions
when looking for corollaries formulated in terms of rearrangement invariant
function spaces.
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4. Gradient continuity estimates

The techniques leading to the pointwise gradient bounds of Section 2 also lead to
establish continuity criteria for Du, thereby extending those recently obtained in
[12]. The results we are summarizing here are contained in [19] and for the sake of
brevity we shall confine ourselves to report those for the case pb 2. We again
refer to [19] for the subquadratic case.

Theorem 4.1 (Gradient continuity criterium). Let u be a weak solution to (1.1)
in WT; assume that (1.3) hold with pb 2. If

lim
r!0

Z r

0

�jmjðQ%ðx; tÞÞ
%nþ1

�1=ðp�1Þ d%

%
¼ 0

holds locally uniformly with respect to ðx; tÞ in WT , then Du is continuous in WT .

This criterium in particular extends the analogous elliptic one obtained in [11].
Weakening the condition of the previous result by requiring that the convergence
occurs for the integrand leads to a weaker form of continuity.

Theorem 4.2 (Gradient VMO-regularity). Let u be a weak solution to (1.1) in
WT; assume that (1.3) hold with pb 2. If the function

ðx; tÞ 7!
Z r

0

�jmjðQ%ðx; tÞÞ
%nþ1

�1=ðp�1Þ d%

%

is locally bounded in WT and if furthermore

lim
r!0

jmjðQrðx; tÞÞ
rnþ1

¼ 0

holds locally uniformly with respect to ðx; tÞ in WT , then Du is locally VMO-regular
in WT .

It is worthwhile remarking that Theorem 4.1 extends the results obtained by
Kilpeläinen and Lieberman to the parabolic case, actually catching a borderline
case. In fact, for solutions to elliptic equations as (1.5), in [15, 17] it has been
proved that Du is Hölder continuous provided the density condition jmjðB%Þa
c%n�1þa is satisfied. Theorem 4.1 extends this type of result to the parabolic case,
furthermore catching a borderline case. Another corollary of Theorem 4.1 worth
of stating concerns a formulation via Lorentz spaces.

Corollary 4.1 (Lorentz spaces regularity). Let u be a weak solution to (1.1)
in WT; assume that (1.3) hold with pb 2. If m a Lðnþ 2; 1=ðp� 1ÞÞ, then Du is
continuous.

Observe that the previous result is a considerable improvement of those in [6],
where the author proves the boundedness of the gradient provided m a Lq for
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some q > nþ 2. Similar statements, using the nonlinear quantities as in (3.5), can
be used as well to get an alternative and slightly stronger form of the results in
this section. In this case which on the other hand do not make use of Wol¤
potentials, but rather of the alternative non-linear quantities in (3.5).

5. Revisiting the gradient Hölder continuity theory

In this section we illustrate a few a priori regularity estimates for solutions to
homogeneous equations of the type (3.1). They play an essential role in the proof
of the nonlinear potentials estimates of Sections 2.2 and 2.3.

Theorem 5.1. Suppose that w is a weak solution to (3.1) in Ql
r under assumptions

(1.3) with p > 1, and consider numbers

A;B; qb 1 and e a ð0; 1Þ:

Then there exists a constant de a ð0; 1=2Þ depending only on n, p, n, L, A, B, e but
otherwise independent of s, q, of the solution w considered and of the vector field
að�Þ, such that if

l=Ba sup
Ql

der

kDwka sþ sup
Ql

r

kDwkaAlð5:1Þ

holds, then

EqðDw; deQ
l
r Þa eEqðDw;Ql

r Þ

holds too, where Eq denote the excess functional

EqðDw;Ql
%Þ :¼

�Z
Ql

%

jDw� ðDwÞQl
%
jq dx dt

�1=q
; %a r:ð5:2Þ

The main novelty of Theorem 5.1 is that it allows to get a precise homogeneous
decay estimate for the excess functional of the gradient. This point is really crucial
as it allows to employ Theorem 5.1 in iteration processes, where homogeneity
estimates are necessary. This is typical when for instance performing perturbation
arguments. Indeed, one of the main missing point in the parabolic regularity
theory is a suitable machinery to perform perturbation arguments, eventually
leading to nonlinear Schauder estimates. Theorem 5.1 is a suitable to tackle
such issue, as it is shown in [19]. We remark that the main assumption (5.1) is
typically satisfied in various iteration process, where the parameters A, B depend
on the kind of regularity considered.

As a matter of fact, as the exponent q considered is arbitrary, Theorem 5.1
encodes all the information about the gradient Hölder continuity and, indeed,
the following result, which is essentially contained in [6, Chapter 9], can be also
directly proved using Theorem 5.1 (actually a small variant of it stated in [19]).
This novel approach to the gradient Hölder continuity is presented in [19].
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Theorem 5.2. Let w be a weak solution to (3.1) in a given cylinder Q, under as-
sumptions (1.3) with p > 1. Then Dw is locally Hölder continuous in Q. Moreover,
let Ql

r HQ be an intrinsic cylinder such that

sþ sup
Ql

r

kDwkaAl

holds for a certain constant Ab 1. Then

jDwðx; tÞ �Dwðx1; t1Þja chl
�%
r

�a

holds whenever ðx; tÞ; ðx1; t1Þ a Ql
% for constants chC chðn; p; n;L;AÞb 1 and

aC aðn; p; n;L;AÞ a ð0; 1Þ which are independent of s, of the solution w considered
and of the vector field að�Þ. Here Ql

% HQl
r are intrinsic cylinders sharing the same

vertex.
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[14] L. I. Hedberg - T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier
(Grenoble) 33 (1983), 161–187.
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Università di Parma

Parco Area delle Scienze 53/a

Campus, 43100 Parma

Italy

giuseppe.mingione@unipr.it.

174 t. kuusi and g. mingione


	mk1
	mk10
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk20
	mk21
	mk22
	mk23
	mk24
	mk25
	mkEnd-page

