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Abstract. — We study a quasilinear parabolic equation of forward-backward type in one space

dimension, under assumptions on the nonlinearity satisfied by important mathematical models (e.g.,
the one-dimensional Perona–Malik equation). We first address a degenerate pseudoparabolic regu-

larization of the equation, which takes time delay e¤ects into account, proving existence and unique-
ness of positive solutions of the regularized problem in a space of Radon measures, as well as qual-

itative properties of such solutions. Then we address the vanishing viscosity limit of the regularized
problem, proving that the limiting points (in a suitable topology) of the family of solutions of the

regularized problem can be regarded as solutions of the original problem. In particular, we charac-
terize the disintegration of the narrow limit of the family of Young measures associated with the ab-

solutely continuous part of the solutions of the regularized problem, proving that it is a superposi-

tion of two Dirac masses with support on the branches of the graph of the nonlinearity j. In the
above study, the existence of a family of infinitely many entropy inequalities plays an important

role.
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1. Introduction

In this paper we describe some recent results concerning the initial-boundary
value problem

Ut ¼ ½jðUÞ�xx in W� ð0;T � ¼: Q

jðUÞ ¼ 0 in qW� ð0;T �
U ¼ U0 in W� f0g;

8<
:ð1:1Þ

referring the reader to [ST1, ST2] for proofs. Here WJR is a bounded interval,
T > 0 and j : R ! R is a nonmonotone odd function, which satisfies the follow-
ing assumptions:



ðiÞ j a ClðRÞBL1ðRÞ; j odd; jðsÞ > 0 for s > 0;

ðiiÞ j 0ðsÞ > 0 for 0 < s < a; j 0ðsÞ < 0 for s > a ða > 0Þ;
ðiiiÞ j 00ðsÞb 0 for any sb s0; for some s0 > 0;

ðivÞ jð jÞ a LlðRÞ for any j a N:

8>>><
>>>:

ðH1Þ

By jð jÞ ð j a NÞ we denote the j-th derivative of the function j, while the usual
notation j 0, j 00 is used for the first and second derivatives. Observe that ðH1Þ-(i)
and (ii) imply jðsÞ ! 0 as s ! l, 0 < jðsÞa jðaÞ for s > 0.

The main feature of j is that there exists a > 0 such that

ðs� aÞj 0ðsÞa 0 for any s > 0

(see assumption ðH1Þ-(ii)). Therefore the first equation in (1.1) is a quasilinear par-
abolic equation of forward–backward type, and problem (1.1) is ill-posed when-
ever the solution U takes values where j 0 < 0.

Motivation for the present study comes from the Perona–Malik equation
[PM] in one space dimension

ut ¼ ½jðuxÞ�x;ð1:2Þ

which also appears in a mathematical model of oceanography [BBDU]. Typical
forms of j in (1.2) are

jðsÞ ¼ s

s2 þ a
; jðsÞ ¼ s exp

�
� s

a

�
ða > 0Þ:ð1:3Þ

In fact, deriving formally equation (1.2) with respect to x and setting U :¼ ux
gives the first equation in (1.1). Since a natural framework to study (1.2) is the
space of real functions of bounded variation [BBDU], the above formal argument
suggests to study problem (1.1) in the space of bounded Radon measures on W.
Let us mention that problem (1.1) also arises (with j as in (1.3)) in models of ag-
gregating populations [Pa] and (with a cubic-like j) in the theory of phase transi-
tions [BS, E2, MTT2].

Since problem (1.1) is ill-posed, several regularizations of it have been con-
sidered [Sl, Sm]. Here we are concerned with the following regularization:

Ut ¼ ½jðUÞ�xx þ e½cðUÞ�txx in Q

jðUÞ þ e½cðUÞ�t ¼ 0 in qW� ð0;T �
U ¼ U0 in W� f0g;

8<
:ð1:4Þ

and its limit as the regularization parameter e > 0 goes to zero. The increasing
odd function c : R ! R in (1.4) is related to j by several assumptions. In fact,
the following will be assumed:
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ðiÞ c a ClðRÞ; c 0 > 0 in R; c odd;

cðsÞ ! g as s ! l for some g a ð0;lÞ;
ðiiÞ cð jÞ a LlðRÞ for any j a N;

ðiiiÞ c 00ðsÞa 0 for any sb s0; for some s0 > 0;

ðivÞ jj 0ja k1c
0 in R for some k1 > 0;

ðvÞ
����j 0

c 0

�0���a k2c
0 in R for some k2 > 0;

ðviÞ jj 00j
ðc 0Þ2

a k3 in R for some k3 > 0:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ðH2Þ

Notations similar to those used in ðH1Þ for j are used above for c. Observe that
ðH2Þ-(i) and (iii) imply c 0ðsÞ ! 0 as s ! l. By abuse of notation, we shall also
denote by c the extension of c to R defined by setting cðlÞ :¼ g.

The term e½cðUÞ�txx in the first equation of (1.4) arises as a formal first order
approximation to a modified version of (1.1), which takes into account time delay
e¤ects ([BBDU]; see also [A] and references therein). By analogy with the theory
of hyperbolic conservation laws, we call problem (1.4) the viscous problem associ-
ated with (1.1), and its limit as e ! 0 the vanishing viscosity limit. Observe that
the first equation in (1.4) is degenerate quasiparabolic [BBDU], for c 0ðsÞ ! 0 as
s ! l. This makes an important di¤erence with respect to the Sobolev regular-
ization, which formally corresponds to the choice cðsÞ ¼ s [Sm]. In fact, for a
function j satisfying assumption ðH1Þ the only bounded invariant domain in Rþ
of problem (1.1) is ½0; a�, where problem (1.1) is well posed. Therefore, to study
(1.1) in the general case, unbounded values of U must be considered.

2. Mathematical preliminaries

We denote by MðWÞ (respectively, MðRÞ) the space of Radon measures on W
(respectively, on R), and by MþðWÞ (respectively, MþðRÞ) the cone of positive
Radon measures on W (respectively, on R). For any m a MðWÞ we denote by mr
and ms the density of the absolutely continuous part, respectively the singular part
of m with respect to the Lebesgue measure on W. Moreover, we denote by 3� ; �4W
(respectively, 3� ; �4R) the duality map between the space MðWÞ (respectively,
MðRÞ) and the space CcðWÞ (respectively, CcðRÞ) of continuous functions with
compact support.

By MðWÞ we denote the space of Radon measures m a MðRÞ such that

supp mJW. For any m a MðWÞ we set

kmk
MðWÞ :¼ kmkMðRÞ

(observe that jmjðRÞ ¼ jmjðWÞ < l). For any m a MðWÞ and any z a CðWÞ we
also define

3m; z4
W
:¼ 3m; ~zz4R;
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where ~zz a CcðRÞ is any continuous function with compact support such that ~zz ¼ z
in W. Observe that the duality map 3m; z4W is well defined for any z a C0ðWÞ :¼
fz a CðWÞ j z ¼ 0 on qWg, and there holds

3m; z4W ¼ 3m; z4
W
:

Similar notations are used for the space of Radon measures on Q, Q and R2.
We denote by Llðð0;TÞ;MþðWÞÞ the set of positive Radon measures U a

MþðQÞ which satisfy the following property: for almost every t a R there exists
a measure Uð�; tÞ a MþðWÞ, Uð�; tÞ ¼ 0 if t B ½0;T �, such that

(i) for any z a CðQÞ the map t ! 3Uð�; tÞ; zð�; tÞ4
W
is Lebesgue measurable, and

3U ; z4
Q
¼

Z T

0

3Uð�; tÞ; zð�; tÞ4
W
dt;ð2:5Þ

(ii) there exists a constant C > 0 such that

ess sup
t A ð0;TÞ

kUð�; tÞk
MðWÞ aC:

Denoting by Ur a L1ðQÞ, Ur b 0 and by Us a MþðQÞ the density of the abso-
lutely continuous part, respectively the singular part of U with respect to the
Lebesgue measure over R2, equality (2.5) implies for any z a CðQÞ

3Ur; z4Q ¼
ZZ

Q

Urz dx dt;

3Us; z4Q ¼
Z T

0

3Usð�; tÞ; zð�; tÞ4W dt:

ð2:6Þ

3. The regularized problem

Concerning the initial data U0, we shall always assume the following:

ðiÞ U0 a MþðWÞ;
ðiiÞ there exists a family fU0kgJCl

c ðWÞ; U0kb 0;

kU0kkL1ðWÞ a kU0kMðWÞ for any k > 0; such that as k ! 0:

ðaÞ
Z
W

U0kz dx ! 3U0; z4W for any z a CðWÞ;

ðbÞ cðU0kÞ * cðU0rÞ in H 1
0 ðWÞ;

ðcÞ kU0k * 0 in H 1
0 ðWÞ

8>>>>>>>>>><
>>>>>>>>>>:

ðH3Þ

Let us make the following definition.

Definition 3.1. By a solution of problem (1.4) we mean any U e a MþðQÞ
such that:
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(i) U e a Llðð0;TÞ;MþðWÞÞ;
(ii) jðU e

r Þ, cðU e
r Þ a Llðð0;TÞ;H 1

0 ðWÞÞ, and ½cðU e
r Þ�t a L2ðð0;TÞ;H 1

0 ðWÞÞ;
moreover,

cðU e
r Þðx; 0Þ ¼ cðU0rÞðxÞ for any x a W;ð3:1Þ

(iii) there holds

suppU e
s JS :¼ fðx; tÞ a Q jcðU e

r Þðx; tÞ ¼ gg;ð3:2Þ

(iv) there holds

ZZ
Q

U e
r zt dx dtþ

Z T

0

3U e
s ð�; tÞ; ztð�; tÞ4W dtð3:3Þ

¼
ZZ

Q

f½jðU e
r Þ�xzx þ e½cðU e

r Þ�txzxg dx dt� 3U0; zð�; 0Þ4W

for any z a C1ð½0;T �;H 1
0 ðWÞÞ, zð�;TÞ ¼ 0 in W.

Remark 3.1. In the above Definition 3.1, as always in the following, we iden-
tify cðU e

r Þ a LlðWÞ with its continuous representative w a CðQÞ, cðU e
r ÞCw,

which exists by Definition 3.1-(ii). Therefore the set S defined in (3.2) is closed.
Similarly, since jðU e

r ÞCjðc�1ðcðU e
r ÞÞÞ in Q, by assumptions ðH2Þ-(iv) and

(v) there holds ½jðU e
r Þ�t a L2ðð0;TÞ;H 1

0 ðWÞÞ. Together with Definition 3.1-(ii),
this implies jðU e

r Þ a CðQÞ. Since jðsÞ ! 0 as s ! l, equality (3.5) below implies
jðU e

r Þ ¼ 0 on the set S.

The following result shows that for any e > 0 there exists a unique measure-
valued function U e, which solves problem (1.4) in the sense of Definition 3.1.
The proof makes use of a family of approximating problems, defined by a regu-
larization of c and U0, and of uniform a priori estimates of their solutions.

Theorem 3.1. Let assumptions ðH1Þ–ðH3Þ be satisfied. Then there exists a
unique solution U e of problem (1.4). Moreover,

(i) for almost every t a ð0;TÞ there holds

kU e
r ð�; tÞkL1ðWÞ þ kU e

s ð�; tÞkMðWÞ a kU0kMðWÞ;ð3:4Þ

(ii) U e
r a H 1ðQ0Þ for any open subset Q0 JQ such that distðQ0;SÞ > 0. More-

over, U e
r a CðQnSÞ and

lim
distððx; tÞ;SÞ!0

U e
r ðx; tÞ ¼ l:ð3:5Þ

Since U e
r a L1ðQÞ, by (3.5) it is reasonable to expect that the set S defined in

(3.2) has zero Lebesgue measure. On this subject the following holds.
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Theorem 3.2. Let assumptions ðH1Þ–ðH3Þ be satisfied. Let U e be the solution of
problem (1.4) given by Theorem 3.1. Then the set S defined by (3.2):

(i) has zero Lebesgue measure;
(ii) has a strictly positive distance from qW� ½0;T �J qQ.

Set

V e
r :¼ jðU e

r Þ þ e½cðU e
r Þ�t ðe > 0Þ:ð3:6Þ

It can be proven that V e
r a LlðQÞBL2ðð0;TÞ;H 1

0 ðWÞÞ [ST1, Lemma 4.6]; more-
over, there exists a constant C > 0 (which does not depend on e) such that

kV e
r kLlðQÞ þ kV e

r kL2ðð0;TÞ;H 1
0
ðWÞÞ aCð3:7Þ

for any e > 0 [ST1, Lemmata 4.6 and 4.7]. Therefore equality (3.3) readsZZ
Q

U e
r zt dx dtþ

Z T

0

3U e
s ð�; tÞ; ztð�; tÞ4W dtð3:8Þ

¼
ZZ

Q

V e
rxzx dx dt� 3U0; zð�; 0Þ4W:

As a consequence of Theorems 3.1–3.2, we can prove that the density U e
r sat-

isfies the first equation of problem (1.4) in a suitable weak sense, out of a set of
arbitrarily small Lebesgue measure. In fact, the following holds.

Theorem 3.3. Let assumptions ðH1Þ–ðH3Þ be satisfied. Let U e be the solution of
problem (1.4) given by Theorem 3.1, S the set defined in (3.2) and AJQ any open
set such that distðA;SÞ > 0. Then:

(i) U e
rt, V

e
rxx a L2ðAÞ, and

U e
rt ¼ V e

rxx in L2ðAÞ;ð3:9Þ

(ii) for almost every t a ð0;TÞ there holds

supp U e
s ð�; tÞJ fx a W jcðU e

r Þðx; tÞ ¼ ggJ fx a W jV e
r ðx; tÞ ¼ 0gð3:10Þ

where the set fx a W jcðU e
r Þðx; tÞ ¼ gg has zero Lebesgue measure.

Further we prove that the couple ðU e
r ;V

e
r Þ satisfies in a weak sense a family of

infinitely many inequalities, which we call viscous entropy inequalities by analogy
with the case of hyperbolic conservation laws. Similar inequalities are known to
hold for the Sobolev regularization, both for a cubic-like j [NP] and for a j of
Perona–Malik type [Sm], and play an important role when studying the vanish-
ing viscosity limit. With respect to [NP], [Sm] we prove an improved version of
these inequalities, which holds for almost every t a ð0;TÞ (in this connection, see
[ST]).
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Define for any g a C1ðRÞ

GðzÞ :¼
Z z

0

gðjðsÞÞ ds ðz a RÞ:ð3:11Þ

Then the following holds.

Theorem 3.4. Let U e be the solution of problem (1.4) given by Theorem 3.1. Let
g a C1ð½0; jðaÞ�Þ, g 0 b 0, gð0Þ ¼ 0. Then GðU e

r Þ a CðQÞ, and for any t1; t2 a ½0;T �,
t1 < t2, there holdsZ

W

GðU e
r Þðx; t2Þzðx; t2Þ dx�

Z
W

GðU e
r Þðx; t1Þzðx; t1Þ dxð3:12Þ

a

Z t2

t1

Z
W

½GðU e
r Þzt � gðV e

r ÞV e
rxzx � g 0ðV e

r ÞðV e
rxÞ

2z� dx dt

for any z a C1ð½0;T �;H 1
0 ðWÞÞ, zb 0.

A major consequence of the above family of inequalities is that the singular
measure U e

s ð�; tÞ is nondecreasing in time. This is the content of the following

Theorem 3.5. Let assumptions ðH1Þ–ðH3Þ be satisfied. Let U e be the solution of
problem (1.4) given by Theorem 3.1. Then for any h a H 1

0 ðWÞ, hb 0 there holds

3U0s; h4W a 3U e
s ð�; tÞ; h4Wð3:13Þ

for almost every t a ð0;TÞ, and also

3U e
s ð�; t1Þ; h4W a 3U e

s ð�; t2Þ; h4Wð3:14Þ

for almost every t1 a t2, t1; t2 a ð0;TÞ.

By the above result, if the singular measure U e
s ð�; tÞ exists at some time tb 0,

it also exists at any later time. It is natural to wonder whether the singular mea-
sure U e

s exists at all. As shown in [BBDU], U e
s ð�; tÞ can arise at some time

t ¼ t > 0 even if the initial data U0 are regular. On the other hand, it can be
proven that for a class of smooth initial data and for a suitable choice of c the
singular measure is always absent [ST1, Theorem 2.8]. Expectedly, this depends
on the order of degeneracy of c (namely, on the rate of growth of c 0) at infinity.

4. The vanishing viscosity limit

Consider the sets

S1 :¼ fðu; jðuÞÞ j u a ½0; a�gC fðs1ðvÞ; vÞ j v a ½0; jðaÞ�g;
S2 :¼ fðu; jðuÞÞ j u a ½a;lÞgC fðs2ðvÞ; vÞ j v a ð0; jðaÞ�g:

ð4:15Þ
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Following [Pl1], we always assume in the sequel:

The functions s 01; s
0
2 are linearly independent

on any open subset of the interval ð0; jðaÞÞ:

�
ðSÞ

Our purpose is to study the behaviour and the limiting points as e ! 0 of the
families fU e

r g, fU e
s g, fV e

r g and fjðU e
r Þg considered above. The main question is

whether describing the limiting points (in some topology) of the family fU eg of
its solutions enables us to define in some suitable sense measure-valued solutions
of the original ill-posed problem (1.1).

To this aim, observe that by inequalities (3.4) and (3.7) there exist a sequence
fekg, ek ! 0, U a MþðQÞ, m1 a MþðQÞ, Vr a LlðQÞBL2ðð0;TÞ;H 1

0 ðWÞÞ such
that

3U ek ; f 4
Q
! 3U ; f 4

Q
ð4:16Þ

3U ek
s ; f 4

Q
! 3m1; f 4Qð4:17Þ

for any f a CðQÞ, and

V ek
r *

�
Vr in LlðQÞ;ð4:18Þ

V ek
r * Vr in L2ðð0;TÞ;H 1

0 ðWÞÞ:ð4:19Þ

Since U e;U e
s a Llðð0;TÞ;MþðWÞÞ, it follows easily from (3.4), (4.16), (4.17)

that U ; m1 a Llðð0;TÞ;MþðWÞÞ as well, and there holds

3U ekð�; tÞ; r4W ! 3Uð�; tÞ; r4Wð4:20Þ

for any function r a C0ðWÞ and almost every t a ð0;TÞ (see [ST1, Propositions
4.2 and 4.3]).

Letting ek ! 0 in equality (3.8) (written with e ¼ ek), by (3.4), (4.19), (4.20) we
obtain the following result.

Theorem 4.1. Let U a Llðð0;TÞ;MþðWÞÞ be the limiting measure in (4.16) and
Vr a LlðQÞBL2ðð0;TÞ;H 1

0 ðWÞÞ the limiting function in (4.18). Then

Z T

0

3Uð�; tÞ; ztð�; tÞ4W dt ¼
ZZ

Q

Vrxzx dx dt� 3U0; zð�; 0Þ4Wð4:21Þ

for any z a C1ð½0;T �;H 1
0 ðWÞÞ, zð�;TÞ ¼ 0 in W.

Let us investigate in more detail the structure of the singular term U . Consider
first the case U e

s ¼ 0 for any e > 0 (for instance, this is the case if U0 a H 1
0 ðWÞ

and c ‘‘grows slowly at infinity’’; see [ST1, Theorem 2.8]). Since the sequence
fU ek

r g ¼ fU ekg is uniformly bounded in L1ðQÞ by inequality (3.4), we can con-
sider the associated sequence ftekg of Young measures (e.g., see [GMS, V]). Let t
denote the narrow limit of the sequence ftekg and nðx; tÞ its disintegration, defined
for almost every ðx; tÞ a Q. By the Prohorov Theorem (e.g., see [V]) we have the
following result.
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Proposition 4.2. Let U e a Llðð0;TÞ;MþðWÞÞ be the unique solution of prob-
lem (1.4), and te the Young measure over Q� R associated to the density U e

r of its
absolutely continuous part ðe > 0Þ. Then there exist a subsequence of the sequence
fekg in (4.16) (denoted again by fekg) and a Young measure t on Q� R such that:

(i) tek ! t narrowly in Q� R;
(ii) for any f a CðRÞ such that the sequence f f ðU ek

r Þg is bounded in L1ðQÞ and
equi-integrable there holds

f ðU ek
r Þ * f� in L1ðQÞ;ð4:22Þ

where

f�ðx; tÞ :¼
Z
½0;lÞ

f ðxÞ dnðx; tÞðxÞ ððx; tÞ a QÞ:ð4:23Þ

In general, the sequence fU ek
r g need not be equi-integrable in the cylinder Q,

thus the above result cannot be applied with f ðxÞ ¼ x. However, we can associate
to fU ek

r g an equi-integrable subsequence ‘‘by removing sets of small measure’’
and using the so-called biting convergence [GMS, V]. This leads to the following

Proposition 4.3. Let the assumptions of Proposition 4.2 be satisfied. Then
there exist a subsequence fU ej

r gC fU ekj
r gJ fU ek

r g and a sequence fAjg of measur-
able sets, with Ajþ1 JAj JQ for any j a N and Lebesgue measure jAjj ! 0 as
j ! l, such that:

(i) the sequence fU ej
r wQnAj

g is equi-integrable and

U ej
r wQnAj

* W :¼
Z
½0;lÞ

x dnðxÞ in L1ðQÞð4:24Þ

(wE denoting the characteristic function of a set EJQ);
(ii) there exists a measure m2 a Llðð0;TÞ;MþðWÞÞ such that

3U ej
r wAj

; f 4
Q
! 3m2; f 4Qð4:25Þ

for any f a CðQÞ.

By the above results, there holds

Z T

0

3Uð�; tÞ; zð�; tÞ4
W
dt ¼ lim

j!l
3U ej ð�; tÞ; z4

Q

¼ lim
j!l

ZZ
Q

U ej
r z dx dt ¼

ZZ
Q

Wz dx dtþ 3m2; z4Q

¼
Z T

0

Z
W

W ðx; tÞzðx; tÞ dxþ 3m2ð�; tÞ; zð�; tÞ4W
� �

dt
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for any z a CðQÞ. Choosing in the above equality zðx; tÞ ¼ rðxÞhðtÞ, with
r a CðWÞ and h a Cð½0;T �Þ, we obtain immediately

U ¼ W þ m2 in Llðð0;TÞ;MþðWÞÞ:ð4:26Þ

The above equality shows that the limiting quantity U in (4.16) is in general
measure-valued, even if U e ¼ U e

r a L1ðQÞ for any e > 0. Let us mention that
when j is cubic-like and cðsÞ ¼ s a uniform Ll-estimate of the family fU eg
holds, which implies its equi-integrability (see [NP, Pl1]). Therefore, the appear-
ance of the measure m2 in (4.26) is related to the behaviour of j at infinity (see
assumption ðH1Þ-(i)).

Similar arguments can be used when U e
s A 0. In this general case, taking

(4.17) into account we obtain the following result.

Theorem 4.4. Let U a Llðð0;TÞ;MþðWÞÞ be the limiting measure in (4.16).
Let W a L1ðQÞ, W b 0 be the barycenter of the Young disintegration n which ap-
pears in (4.24), and m1; m2 a Llðð0;TÞ;MþðWÞÞ the measures in (4.17) and (4.25).
Set

m :¼ m1 þ m2:ð4:27Þ

Then:

(i) there holds

U ¼ W þ m in Llðð0;TÞ;MþðWÞÞ;ð4:28Þ

(ii) for almost every t a ð0;TÞ there holds

supp mð�; tÞJTt :¼ fx a W jVrðx; tÞ ¼ 0g:ð4:29Þ

In the light of the above result, the above measure m is the sum of two contri-
butions, one coming from the convergence in MþðQÞ of the sequence fU ek

s g of
the singular parts of the solutions of the viscous problem (1.4), the other resulting
from the biting convergence of the sequence fU ek

r g of the corresponding regular
parts.

We can now point out more clearly the relationship between U and Vr.
Set

Q1k :¼ fðx; tÞ a Q jU ek
r ðx; tÞa ag; Q2k :¼ QnQ1k;ð4:30Þ

where fekg, ek ! 0 is the sequence in (4.16), and denote by wQ1k
, wQ2k

the charac-
teristic functions of these sets. Since the sequences fwQ1k

g, fwQ2k
g are uniformly

bounded in LlðQÞ, there exist two subsequences (denoted again fwQ1k
g, fwQ2k

g
for simplicity) and a function l a LlðQÞ, 0a la 1 such that

wQ1k
*
�
l; wQ2k

*
�
1� l in LlðQÞ:ð4:31Þ
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Then we have the following result, which shows that for almost every ðx; tÞ a Q
the measure nðx; tÞ is atomic with support

supp nðx; tÞ ¼
fs1ðVrðx; tÞÞ; s2ðVrðx; tÞÞg if Vrðx; tÞ > 0;

f0g if Vrðx; tÞ ¼ 0:

�

Theorem 4.5. Let n be the disintegration of the limiting Young measure t over
Q� R given by Proposition 4.2, l a LlðQÞ, 0a la 1 the limiting function in
(4.31), Vr a LlðQÞBL2ðð0;TÞ;H 1

0 ðWÞÞ the limiting function in (4.18)–(4.19),
and s1, s2 the functions in (4.15). Then for almost every ðx; tÞ a Q

nðx; tÞ ¼
lðx; tÞdð� � s1ðVrðx; tÞÞÞ

þ ½1� lðx; tÞ�dð� � s2ðVrðx; tÞÞÞ if Vrðx; tÞ > 0;

dð� � 0Þ if Vrðx; tÞ ¼ 0

8><
>:ð4:32Þ

with l ¼ 1 almost everywhere in the set T :¼ fðx; tÞ a Q jVrðx; tÞ ¼ 0g.

As a consequence of (4.24) and (4.32) we obtain the following equality, which
together with (4.28) makes the relationship between U and Vr clear:

W ðx; tÞ ¼ lðx; tÞs1ðVrðx; tÞÞ þ ½1� lðx; tÞ�s2ðVrðx; tÞÞ if Vrðx; tÞ > 0;

0 if Vrðx; tÞ ¼ 0

�

for almost every ðx; tÞ a Q, with l a LlðQÞ, 0a la 1, l ¼ 1 almost everywhere
in the set T. This can be interpreted by saying that, when Vrðx; tÞ > 0, the func-
tion W takes the fraction lðx; tÞ of its value at ðx; tÞ on the ‘‘stable branch’’ s1
of the graph of j, and the fraction 1� lðx; tÞ on the ‘‘unstable branch’’ s2 (see
[MTT1, Pl1, Pl2, Pl3] for an analogous result when j is cubic-like, and [Sm] for
the case of Sobolev regularization).

Let us state another result, which is closely related to Theorem 4.5. Since the
family fjðU e

r Þg is uniformly bounded in LlðQÞ, we can consider the associated
family fyeg of Young measures. As in Proposition 4.2, there exist a sequence
fyekg and a Young measure y over Q� R such that

yek ! y narrowly in Q� R:ð4:33Þ

Let sCsðx; tÞ denote the disintegration of the Young measure y, with support
supp sðx; tÞ J ½0; jðaÞ� for almost every ðx; tÞ a Q (see assumption ðH1Þ-(ii)). Then
we have the following result.

Theorem 4.6. Let Vr a LlðQÞBL2ðð0;TÞ;H 1
0 ðWÞÞ be the limiting function in

(4.18)–(4.19), and let s be the disintegration of the limiting Young measure y over
Q� R which appears in (4.33). Then for almost every ðx; tÞ a Q

sðx; tÞ ¼ dð� � Vrðx; tÞÞ:ð4:34Þ
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Finally, we establish a limiting version of the viscous entropy inequalities
stated in Theorem 3.4 above. Set

G�ðx; tÞ :¼
lðx; tÞGðs1ðVrðx; tÞÞÞ

þ ½1� lðx; tÞ�Gðs2ðVrðx; tÞÞÞ if Vrðx; tÞ > 0;

0 if Vrðx; tÞ ¼ 0;

8><
>:ð4:35Þ

where G is the function defined in (3.11).

Theorem 4.7. Let G be the function (3.11) with g a C1ð½0; jðaÞ�Þ, gð0Þ ¼ 0,
g 0 b 0. Then for almost every t1; t2 a ð0;TÞ, t1 a t2, for any g as above and any
z a C1ð½0;T �;H 1

0 ðWÞÞ, zb 0 there holds

Z
W

G�ðx; t2Þzðx; t2Þ dx�
Z
W

G�ðx; t1Þzðx; t1Þ dxð4:36Þ

a

Z t2

t1

Z
W

fG�zt � gðVrÞVrxzx � g 0ðVrÞV 2
rxzgðx; tÞ dx dt:

Inequalities (4.36) are referred to as entropy inequalities. In particular, relying
on them we can prove the following result, which is the analogous of Theorem
3.5.

Theorem 4.8. Let m a Llðð0;TÞ;MþðWÞÞ be the measure defined by (4.27).
Then for any r a H 1

0 ðWÞ, rb 0 there holds:

(i) for almost every t a ð0;TÞ

3U0s; r4W a 3mð�; tÞ; r4W;ð4:37Þ

(ii) for almost every t1; t2 a ð0;TÞ, t1 < t2,

3mð�; t1Þ; r4W a 3mð�; t2Þ; r4W:ð4:38Þ

The above inequality points out a remarkable nondecreasing property of the
map t ! mð�; tÞ ðt a ð0;TÞÞ, which implies that singularities can appear and
spread as time progresses.
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