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Abstract. — We present recent existence results of quasi-periodic solutions for Schrödinger equa-

tions with a multiplicative potential on Td , db 1, finitely di¤erentiable nonlinearities, and tangential
frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity

both in time and space. If the nonlinearity and the potential are in Cl then the solutions are
in Cl. The proofs are based on an improved Nash–Moser iterative scheme and a new multiscale

inductive analysis for the inverse linearized operators.
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1. Introduction

The aim of this Note is to present the recent results of [3] concerning the existence
of quasi-periodic solutions for d-dimensional Schrödinger equations

iut � Duþ VðxÞu ¼ ef ðot; x; juj2Þuþ egðot; xÞð1:1Þ

with periodic boundary conditions

x a Td :¼ ðR=ð2pZÞÞd ;

where the multiplicative potential V is in CqðTd ;RÞ for some q large enough,
e > 0 is small, the frequency vector o a Rn is colinear to a fixed Diophantine
vector o a Rn, namely

o ¼ lo; l a L :¼ ½1=2; 3=2�HR; jo � ljb g0
jljt0 ; El a Znnf0g;ð1:2Þ

1This research was supported by the European Research Council under FP7 ‘‘New Connections

between dynamical systems and Hamiltonian PDEs with small divisors phenomena’’.



for some g0 a ð0; 1Þ, t0 > n� 1 (for definiteness t0 :¼ n), jlj :¼ maxfjl1j; . . . ; jlnjg,
and the nonlinearity is quasi-periodic in time and only finitely many times
di¤erentiable, more precisely

f a CqðTn � Td � R;RÞ; g a CqðTn � Td ;CÞð1:3Þ

for some q a N large enough.
The dynamics of the linear Schrödinger equation

iut � Duþ VðxÞu ¼ 0

is well understood. All its solutions are the linear superpositions of normal mode
oscillations

uðt; xÞ ¼
X
j

aje
imj tcjðxÞ; aj a C; where ð�Dþ VðxÞÞcjðxÞ ¼ mjcjðxÞ;ð1:4Þ

hence periodic, quasi-periodic or almost periodic in time. The eigenvalues
mj ! þl as j ! þl and the corresponding eigenfunctions cjðxÞ form a Hilbert
basis in L2ðTdÞ.

• Question: do there exist quasi-periodic solutions of (1.1) for positive measure
sets of ðe; lÞ?

Note that, if gðot; xÞ2 0, then u ¼ 0 is not a solution of (1.1) for eA 0.
The above question amounts to looking for ð2pÞnþd -periodic solutions uðj; xÞ

of

io � qju� Duþ VðxÞu ¼ ef ðj; x; juj2Þuþ egðj; xÞ:ð1:5Þ

The solutions uðj; xÞ will be in some Sobolev space

Hs :¼ HsðTn � Td ;CÞ with s a ½s0; q�; s0 >
d þ n

2
;

which is a Banach algebra. The functions in Hs are characterized in Fourier
series

uðj; xÞ :¼
X

ðl; jÞ AZ n�Z d

ul; je
iðl�jþj�xÞ

by the condition

kuk2s :¼ K0

X
ðl; jÞ AZ nþd

jul; jj23l; j42s < þl where 3l; j4 :¼ maxð1; jlj; j jjÞ:ð1:6Þ
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The constant K0 is fixed (large enough) so that jujLl a kuks0 and the interpola-
tion inequality

ku1u2ks a
1

2
ku1ks0ku2ks þ

CðsÞ
2

ku1ksku2ks0 ; Esb s0; u1; u2 a Hs;ð1:7Þ

holds with CðsÞ ¼ 1, Es a ½s0; s1� for some s1 :¼ s1ðd; nÞ (defined along the proof ).
The above question can be regarded as a bifurcation problem for equation

(1.5) from the trivial solution ðu; eÞ ¼ ð0; 0Þ. The main di‰culty is that the unper-
turbed linear operator

io � qj � Dþ VðxÞ

possesses arbitrarily small eigenvalues,

�o � l þ mj;

called the ‘‘small divisors’’. As a consequence, its inverse operator, if any, is
unbounded and the standard implicit function theorem can not be applied.

The main strategies which have been developed to overcome the small divisors
di‰culty are KAM (Kolmogorov–Arnold–Moser) theory and Newton–Nash–
Moser Implicit function theorems.

1.1. Some literature

The first existence results of quasi-periodic solutions of Hamiltonian PDEs have
been proved via KAM theory by Kuksin [17] and Wayne [19] for one dimen-
sional, analytic, nonlinear perturbations of linear wave and Schrödinger equa-
tions. These pioneering results were limited to Dirichlet boundary conditions
because the eigenvalues of qxx had to be simple. In this case one can impose the
‘‘second order Melnikov’’ non-resonance conditions to solve the homological
equations, which are linear PDEs with constant coe‰cients, at each KAM step.
Already for periodic boundary conditions, where two consecutive eigenvalues are
possibly equal, these non-resonance conditions are violated.

Then, another more direct bifurcation approach has been proposed by Craig
and Wayne [12], who introduced the Lyapunov–Schmidt decomposition method
for PDEs and solved the small divisors problem, for periodic solutions, with an
analytic Newton iterative scheme. The advantage of this approach is to require
only the ‘‘first order Melnikov’’ non-resonance conditions, which are essentially
the minimal assumptions. On the other hand, the main di‰culty of this strategy
lies in the inversion of the linearized operators obtained at each step of the
iteration, and in achieving suitable estimates for their inverses in high (analytic)
norms. Indeed these operators come from linear PDEs with non-constant coe‰-
cients and are small perturbations of a diagonal operator having arbitrarily small
eigenvalues.
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For solving this problem, Craig and Wayne developed a coupling technique
whose key properties are:

(i) ‘‘separations’’ between the singular sites, namely the Fourier indices of the
small divisors,

(ii) ‘‘localization’’ of the eigenfunctions of �qxx þ VðxÞ with respect to the
exponentials.

Roughly speaking, property (ii) means that, if we expand the eigenfunctions of
�qxx þ VðxÞ with respect to the exponentials, the Fourier coe‰cients converge
to zero, at a speed which increases with the regularity of VðxÞ. It implies that
the matrix which represents, in the eigenfunction basis, the multiplication opera-
tor for an analytic (resp. Sobolev) function has an exponentially (resp. polyno-
mially) fast decay o¤ the diagonal. Then the ‘‘separation properties’’ (i) imply a
very ‘‘weak interaction’’ between the singular sites.

Property (ii) holds in dimension 1, but, for x a Td , db 2, some counterexam-
ples are known, see [16].

The ‘‘separation properties’’ (i) are quite di¤erent for periodic or quasi-
periodic solutions. In the first case the singular sites are ‘‘separated at infinity’’,
namely the distance between distinct singular sites increases when the Fourier
indices tend to infinity. On the contrary, this property never holds for quasi-
periodic solutions, neither for finite dimensional systems. For example, in the
ODE case where the small divisors are o � l, l a Zn, if the frequency vector
o a Rn is diophantine, then the singular sites l where jo � lja r are ‘‘uniformly
distributed’’ in a neighborhood of the hyperplane o � l ¼ 0, with nearby indices
at distance Oðr�aÞ for some a > 0.

Nevertheless Bourgain extended in [6] the approach of Craig–Wayne via a
multiscale inductive argument, proving the existence of quasi-periodic solutions
with Gevrey regularity of 1-dimensional wave and Schrödinger equations with
polynomial nonlinearities.

At present, the theory for 1-dimensional semilinear PDEs has been su‰ciently
understood, but much work remains for PDE in higher space dimensions, due to
the more complex spectral analysis of �Dþ VðxÞ. The main di‰culties for PDEs
in higher dimensions are:

1. the eigenvalues mj of �Dþ VðxÞ appear in clusters of unbounded sizes,
2. the eigenfunctions cjðxÞ are, in general, ‘‘not localized’’ with respect to the

exponentials.

Problem 2 has been often bypassed considering pseudo-di¤erential PDEs
substituting the multiplicative potential VðxÞ with a ‘‘convolution potential’’

V � ðe ij�xÞ :¼ mje
ij�x; mj a R; j a Zd ;

which is diagonal on the exponentials. The scalars mj are called the ‘‘Fourier
multipliers’’.

Concerning problem 1, since the approach of Craig–Wayne and Bourgain
requires only the first order Melnikov non-resonance conditions it works well, in
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principle, in the case of multiple eigenvalues. Actually, the first existence results
of periodic solutions for NLW and NLS on Td , db 2, has been established by
Bourgain in [7], [10]. The nonlinearities are polynomials and the solutions are
Gevrey regular. Here the singular sites form huge clusters (not only points as in
d ¼ 1) but are still ‘‘separated at infinity’’.

Recently these results were extended in [4]–[5] to prove the existence of
periodic solutions, with only Sobolev regularity, for NLS and NLW in any
dimension and with finitely di¤erentiable nonlinearities. Actually [4], [5] deal
with PDEs defined not only on tori, but on any compact Zoll manifold, Lie
group and homogeneous space. For PDEs on Lie groups only weak properties
of ‘‘localization’’ (ii) of the eigenfunctions hold.

Regarding quasi-periodic solutions, Bourgain [10]–[11] was the first to prove
their existence for PDEs in higher dimension, actually for nonlinear Schrödinger
and wave equations with Fourier multipliers and polynomial nonlinearities on Td

with db 2. The Fourier multipliers, in number equal to the tangential frequen-
cies of the quasi-periodic solution, play the role of ‘‘external parameters’’.

The techniques used in [11]—sub-harmonic function theory, semi-algebraic
sets, Cartan theorem—mainly concern fine properties of rational and analytic
functions.

We also remark that, in the last years, the KAM approach has been extended
by Eliasson–Kuksin [15] for nonlinear Schrödinger equations on Td with a
convolution potential and analytic nonlinearities. The potential plays the role of
‘‘external parameters’’. The quasi-periodic solutions are Cl in space. An advan-
tage of the KAM approach is to provide also a stability result, made available by
the fact that the linearized equations on the perturbed invariant tori are reducible
to constant coe‰cients.

1.2. Main result

The main result proved in [3] concerning the existence of quasi-periodic solutions
of NLS is:

Theorem 1.1 [3]. Assume (1.2). There is s :¼ sðd; nÞ, q :¼ qðd; nÞ a N, such that:
EV a Cq satisfying

�Dþ VðxÞb b0I ; b0 > 0;ð1:8Þ

Ef ; g a Cq, there exist e0 > 0, a map

u a C1ð½0; e0� �L;HsÞ with uð0; lÞ ¼ 0;

and a Cantor like set Cl H ½0; e0� �L of asymptotically full Lebesgue measure, i.e.

jClj=e0 ! 1 as e0 ! 0;ð1:9Þ

such that, Eðe; lÞ a Cl, uðe; lÞ is a solution of (1.5) with o ¼ lo.
Moreover, if V, f , g are of class Cl then uðe; lÞ a ClðTd � Tn;CÞ.
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The main improvements of this result with respect to the previous literature
are that we prove the existence of quasi-periodic solutions for nonlinear Schrö-
dinger equations on Td , db 1, with:

1. finitely di¤erentiable nonlinearities, see (1.3),
2. a multiplicative (finitely di¤erentiable) potential VðxÞ, see (1.8),
3. a pre-assigned (Diophantine) direction of the tangential frequencies, see (1.2).

1. Theorem 1.1 confirms the natural conjecture about the persistence of quasi-
periodic solutions for Hamiltonian PDEs into a setting of finitely many deriva-
tives (as in the classical KAM theory), stated for example by Bourgain [9], page
97. The nonlinearities in Theorem 1.1, as well as the potential, are su‰ciently
many times di¤erentiable, depending on the dimension and the number of the
frequencies. Of course we cannot expect the existence of quasi-periodic solutions
of the Schrödinger equation under too weak regularity assumptions on the non-
linearities. Actually, for finite dimensional Hamiltonian systems, it has been
rigorously proved that, if the vector field is not su‰ciently smooth, then all the
invariant tori could be destroyed and only discontinuous Aubry-Mather invariant
sets survive. We have not tried to estimate the minimal smoothness exponents.

2. Theorem 1.1 is the first existence result of quasi-periodic solutions with
a multiplicative potential VðxÞ on Td , db 2. We do not exploit properties of
‘‘localizations’’ of the eigenfunctions of �Dþ VðxÞ with respect to the exponen-
tials, that actually might not be true, see [16]. Along the multiscale analysis we
use the exponential basis which diagonalizes �Dþm where m is the average
of VðxÞ, and not the eigenfunctions of �Dþ VðxÞ. In [10] Bourgain considered
also analytic periodic potentials of the special form V1ðx1Þ þ � � � þ VdðxdÞ to
ensure localization properties of the eigenfunctions, leaving open the natural
problem for a general multiplicative potential VðxÞ.

In the setting of Theorem 1.1, the potential VðxÞ is fixed: we do not extract
parameters from V , since the role of the parameters is played by o ¼ lo. The
positivity condition (1.8) is used for the measure estimates. We note that, for
autonomous NLS it is always verified after a gauge-transformation u 7! e�istu
for s large enough.

3. For finite dimensional systems, the existence of quasi-periodic solutions
with tangential frequencies constrained along a fixed direction has been proved
by Eliasson [13] (with KAM theory) and Bourgain [8] (with a multiscale
approach). The main di‰culty relies in satisfying the Melnikov non-resonance
conditions, required at each step of the iterative process, using only one param-
eter. Bourgain raised in [8] the question if a similar result holds true also for
infinite dimensional Hamiltonian systems. This has been recently proved in [1]
for 1-dimensional PDEs, verifying the second order Melnikov non-resonance
conditions of KAM theory. Theorem 1.1 (and its method of proof ) answers
positively to Bourgain’s conjecture also for PDEs in higher space dimension.
The non-resonance conditions to be fulfilled are of first order Melnikov type.

Finally, we note that Theorem 1.1 is stated for quasi-periodically forced NLS
but the small divisors di‰culty for autonomous NLS is the same.
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The proof of Theorem 1.1 is based on a Nash–Moser iterative scheme and a
multiscale analysis of the linearized operators as in [11]. However, our approach
presents many novelties with respect to that of Bourgain [11], concerning:

1. the iterative scheme,
2. the multiscale proof of the Green’s functions polynomial decay estimates.

We outline in section 2 the main ideas of the proof of Theorem 1.1. All the
techniques employed are elementary and based on abstract arguments valid for
many PDEs. Only the ‘‘separation properties’’ of the ‘‘singular’’ sites will change,
of course, for di¤erent PDEs.

2. Ideas of the proof

Vector NLS. We prove Theorem 1.1 finding solutions of the ‘‘vector’’ NLS equa-
tion

io � qjuþ � Duþ þ VðxÞuþ ¼ ef ðj; x; u�uþÞuþ þ egðj; xÞ
�io � qju� � Du� þ VðxÞu� ¼ ef ðj; x; u�uþÞu� þ egðj; xÞ

�
ð2:1Þ

where

u :¼ ðuþ; u�Þ a Hs :¼ Hs �Hs

(the second equation is obtained by formal complex conjugation of the first one).
In the system (2.1) the variables uþ, u� are independent. However (2.1) reduces to
the scalar NLS equation (1.1) in the set

U :¼ fu :¼ ðuþ; u�Þ : uþ ¼ u�g

in which u� is the complex conjugate of uþ (and viceversa). In ð2:1Þ we choose,
for example, the following smooth extension of f ðj; x; �Þ to C,

f ðj; x; zÞ :¼ ð1� iÞ f ðj; x;ReðzÞÞ þ if ðj; x;ReðzÞ þ ImðzÞÞ; z a C:

Note that with this choice the di¤erential of f ðj; x; �Þ at s a R is C-linear.

Linearized equations. We look for solutions of the vector NLS equation (2.1) in
HsBU by a Nash–Moser iterative scheme. The main step concerns the inverti-
bility of (any finite dimensional restriction of ) the family of linearized operators
at any u a HsBU, namely

LðuÞ :¼ Lo � eT1ð2:2Þ

where
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Lo :¼
io � qj � Dþ VðxÞ 0

0 �io � qj � Dþ VðxÞ

� �
;ð2:3Þ

T1 :¼
pðj; xÞ qðj; xÞ
qðj; xÞ pðj; xÞ

� �
;

and

pðj; xÞ :¼ f ðj; x; juþj2Þ þ f 0ðj; x; juþj2Þjuþj2;ð2:4Þ
qðj; xÞ :¼ f 0ðj; x; juþj2ÞðuþÞ2;

with f 0 denoting the derivative of f with respect to s. The functions p, q depend
also on e, l through u. Note that pðj; xÞ is real valued and so the operator LðuÞ
is symmetric in H0, i.e.

ðLðuÞh; kÞ ¼ ðh;LðuÞkÞ

for all h, k in the domain of LðuÞ. As a consequence, the eigenvalues of all its
finite dimensional restrictions vary smoothly with respect to one dimensional
parameter.

The operator LðuÞ in (2.2) can also be written as

LðuÞ ¼ Do þ T ; T :¼ T2 � eT1;

where Do is the constant coe‰cient operator

Do :¼ io � qj � Dþm 0

0 �io � qj � Dþm

� �
; T2 :¼

V0ðxÞ 0

0 V0ðxÞ

� �
;

m is the average of VðxÞ and V0ðxÞ :¼ VðxÞ �m has zero mean value.
In the exponential basis LðuÞ is represented by the infinite dimensional self-

adjoint matrix

Aðe; lÞ :¼ Do þ Tð2:5Þ

of 2� 2 complex matrices, where

Do :¼ diagi AZb

�o � l þ k jk2 þm 0

0 o � l þ k jk2 þm

 !
;ð2:6Þ

i :¼ ðl; jÞ a Zb :¼ Zn � Zd ;

with k jk2 :¼ j21 þ � � � þ j2d , and

T :¼ ðT i 0

i Þi AZb; i 0 AZb ; T i 0

i :¼ �eðT1Þ i
0

i þ ðT2Þ i
0

i ;ð2:7Þ

ðT1Þ i
0

i ¼ pi�i 0 qi�i 0

ðqÞi�i 0 pi�i 0

� �
; ðT2Þ i

0

i ¼
ðV0Þj� j 0 0

0 ðV0Þj�j 0

� �
;

where pi, qi, ðV0Þj denote the Fourier coe‰cients of pðj; xÞ, qðj; xÞ, V0ðxÞ.
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Note that the matrix T is Töplitz, namely T i 0
i depends only on the di¤erence

of the indices i � i 0. Moreover, since the functions p, q in (2.4), as well as the
potential V , are in Hs, then T i 0

i ! 0 as ji � i 0j ! l at a polynomial rate.
We introduce the one-parameter family of infinite dimensional matrices

Aðe; l; yÞ :¼ Aðe; lÞ þ yY :¼ Do þ T þ yY where Y :¼ diagi AZb

�1 0

0 1

� �
:

The reason for adding yY is the crucial covariance property (2.8) below.
The core of the proof of Theorem 1.1 is a polynomial o¤-diagonal decay for

the inverse of the ð2N þ 1Þb-dimensional sub-matrices of Aðe; l; yÞ centered at
ðl0; j0Þ denoted by

AN; l0; j0ðe; l; yÞ :¼ Ajl�l0jaN; j j�j0jaNðe; l; yÞ:

If l0 ¼ 0 we use the simpler notation

AN; j0ðe; l; yÞ :¼ AN;0; j0ðe; l; yÞ:

If also j0 ¼ 0, we write ANðe; l; yÞ :¼ AN;0ðe; l; yÞ, and, for y ¼ 0, we denote
AN; j0ðe; lÞ :¼ AN; j0ðe; l; 0Þ.

Since the matrix T is Töplitz, the following covariance property holds:

AN; l0; j0ðe; l; yÞ ¼ AN; j0ðe; l; yþ lo � l0Þ:ð2:8Þ

Matrices with o¤-diagonal decay. In the space of matrices

MB
C :¼ fM ¼ ðMk 0

k Þk 0 AB;k AC ;M
k 0

k a Cg;

where B, C are finite subsets of Zb � f0; 1g (the indices 0, 1 are introduced to
distinguish thee sign in matrices like (2.6)), we consider the s-norm

SM S2s :¼ K0

X
n AZb

½MðnÞ�23n42s where 3n4 :¼ maxð1; jnjÞ;

½MðnÞ� :¼
max

i�i 0¼n; i AC; i 0 AB
jMi 0

i j if n a C � B

0 if n B C � B

8<
:

with B :¼ projZb B, C :¼ projZb C, and K0 > 0 is introduced in (1.6).
The s-norm is designed to estimate the o¤-diagonal decay of matrices like T

in (2.7): if p; q;V a Hs then

ST1Ss aKkðq; pÞks; ST2SsaKkVks:

The set of (square) matrices with finite s-norm form an algebra. Hence products
and powers of matrices with finite s-norm will exhibit the same o¤-diagonal decay.
We refer to section 3 of [3] for more details.
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Improved Nash–Moser iteration. We construct inductively better and better
approximate solutions

un a Hn :¼ u ¼ ðuþ; u�Þ a Hs : u ¼
X

jðl; jÞjaNn

ul; je
iðl�jþj�xÞ; ul; j a C2

8<
:

9=
;

of the NLS equation (2.1), solving, by a Nash–Moser iterative scheme, the
‘‘truncated’’ equations

PnðLou� eð f ðuÞ þ gÞÞ ¼ 0; u a Hn;ðPnÞ

where Pn : H
s ! Hn denote the orthogonal projectors onto Hn and Nn :¼ N 2n

0 ,
see Theorem 7.1 in [3].

The main step is to prove that the finite dimensional matrices

Ln :¼ Lnðun�1Þ :¼ PnLðun�1ÞjHn

are invertible for ‘‘most’’ parameters ðe; lÞ a ½0; e0� �L and satisfy

SL�1
n Ss ¼ OðN t 0þds

n Þ; d a ð0; 1Þ; t 0 > 0; Es > 0:ð2:9Þ

The bound (2.9) implies the interpolation estimates

kL�1
n hksaCðsÞðN t 0þds

n khks0 þN t 0þds0
n khksÞ; Esb s0;

which are su‰cient for the Nash–Moser convergence, see section 7 in [3]. Note
that the exponent t 0 þ ds in (2.9) grows with s, unlike the usual Nash–Moser
theory where the ‘‘tame’’ exponents are s-independent. Actually the condi-
tions (2.9) are optimal for the convergence, as a famous counter-example of
Lojasiewicz–Zehnder [18] shows: if d ¼ 1 the Nash–Moser iterative scheme does
not converge.

L2-bounds. The first step is to show that, for ‘‘most’’ parameters ðe; lÞ a ½0; e0� �L,
the eigenvalues of the restricted linearized operators Ln :¼ PnLðun�1ÞjHn

are in
modulus bounded from below by OðN�t

n Þ and so the L2-norm of the inverse
satisfies

kL�1
n k0 ¼ OðN t

n Þ:ð2:10Þ

The proof is based on an eigenvalue variation argument. Dividing Ln by l, and
setting x :¼ 1=l, we observe that the derivative with respect to x satisfies

qxðxLnÞ ¼ Pn

�Dþ VðxÞ 0

0 �Dþ VðxÞ

� �
jHn

þOðekT1k0 þ ekqlT1k0Þ b
ð1:8Þ b0

2
;
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for e small, i.e. it is positive definite. So, the eigenvalues ml; jðx; eÞ (which depend
C1-smoothly on x for fixed e) of the self-adjoint matrix xLn satisfy

qxml; jðx; eÞb
b0
2
; Ejðl; jÞjaNn;

which easily implies (2.10) except in a set of measure Oðe0N�tþdþn
n Þ, see Lemma

6.7 in [3].

Remark 2.1. The L2-estimate (2.10) alone implies only that

SL�1
n Ss aNsþdþn

n kL�1
n k0 ¼ OðNsþdþnþt

n Þ; Es > 0;

which has the form (2.9) with d ¼ 1.

In order to prove the sublinear decay (2.9) for the Green functions we have to
exploit (mild) ‘‘separation properties’’ of the small divisors: not all the eigen-
values of Ln are OðN�t

n Þ small. We have to worry only about the singular sites
ðl; jÞ such that

jeo � l þ j jj2 þmjaY;ð2:11Þ

where Yb 1 is a fixed constant, depending, in particular, on V .

Multiscale Step. The bounds (2.9) follow by an inductive application of a ‘‘multi-
scale argument’’.

A matrix A a ME
E , EHZb � f0; 1g, with diamðEÞaN is called N-good if

SA�1Ss aN t 0þds; Es a ½s0; s1�;

for some s1 :¼ s1ðd; nÞ large. Otherwise we say that A is N-bad.
The aim of the multiscale step is to deduce that a matrix A a ME

E with

diamðEÞaN 0 ¼ N w with wg 1;

is N 0-good, knowing

• (H1) (O¤-diagonal decay) SA�DiagðAÞSs1 a1 where DiagðAÞ :¼
ðdkk 0Ak 0

k Þk;k 0 AE .

Condition (H1) means that A is ‘‘polynomially localized’’ close to the diagonal.
For the matrix A in (2.5) the constant 1 ¼ OðkVks1 þ ekðp; qÞks1Þ and Y, defined
in (2.11), must be Yg1.

• (H2) (L2-bound) kA�1k0 a ðN 0Þt.

Condition (H2) is usually verified with an exponent tb d þ n large, imposing
lower bounds on the modulus of the eigenvalues of A.
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In order to prove an o¤-diagonal decay for A�1, we need assumptions con-
cerning the N-dimensional submatrices centered along the diagonal of A. We
define an index k a E to be

1. regular for A if jAk
k jbY. Otherwise, k is singular.

2. ðA;NÞ-regular if there is F HE such that diamðFÞa 4N, dðk;EnF ÞbN
and AF

F is N-good.
3. ðA;NÞ-good if it is regular for A or ðA;NÞ-regular. Otherwise we say that k is

ðA;NÞ-bad.

We suppose that

• (H3) (Separation properties) There is a partition of the ðA;NÞ-bad sites
B ¼

S
a Wa with

diamðWaÞaNC1 ; dðWa;WbÞbN 2; EaA b;ð2:12Þ

for some C1 :¼ C1ðd; nÞb 2.

The goal of the multiscale proposition is to deduce that A is N 0-good, from (H1)–
(H2)–(H3), with suitable relations between the constants w, C1, d, s1, see Proposi-
tion 4.1 in [3] for a precise statement. Roughly, the main conditions on the
exponents are C1 < dw and 2s1 g wt. The first means that the size NC1 of any
bad clusters Wa is small with respect to the size N 0 :¼ N w of the matrix. The
second means that s1 is large enough to ‘‘separate’’ the resonance e¤ects of two
nearby bad clusters Wa, Wb.

The proof of Proposition 4.1-[3] is based on ‘‘resolvent identity’’ arguments.

Separation properties. We apply the previous multiscale step to the matrix
ANnþ1

ðe; lÞ. The key property to verify is (H3). It is su‰cient to prove the
‘‘separation properties’’ (2.12) for the Nn-bad sites of Aðe; lÞ, namely the
indices ðl0; j0Þ which are singular and for which there exists a site ðl; jÞ, with
jðl; jÞ � ðl0; j0ÞjaN, such that ANn; l; jðe; lÞ is Nn-bad.

Such separation properties are obtained for all the parameters ðe; lÞ which are
Nn-good, namely such that

E j0 a Zd ; BNn
ð j0; e; lÞ :¼ fy a R : ANn; j0ðe; l; yÞ is Nn-badgð2:13Þ

H
[

q¼1;...;N 2dþnþ4
n

Iq where Iq are disjoint

intervals with jIqjaN�t
n :

We first use the covariance property (2.8) and the ‘‘complexity’’ information
(2.13) to bound the number of ‘‘bad’’ time-Fourier components (this idea goes
back to [14]). Indeed

ANn; l0; j0ðe; lÞ is Nn-bad , ANn; j0ðe; l;o � l0Þ is Nn-bad , o � l0 a BNn
ð j0; e; lÞ:
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Then, using that o is Diophantine, the complexity bound (2.13) implies that,
for each fixed j0, there are at most CN 3dþ2nþ4

n sites ðl0; j0Þ, jl0jaNnþ1, which
are Nn-bad, see Corollary 5.1 in [3].

Next, we prove that a N 2
n -‘‘chain’’ of singular sites, i.e. a sequence of integers

k1; k2; . . . ; kL satisfying ð2:11Þ with jkiþ1 � kijaN 2
n ;

which are also Nn-bad, has a ‘‘length’’ L bounded by

LaNCðd; nÞ
n ;

see Lemma 5.2 in [3]. The proof uses ideas similar to [11]. This implies a partition
of the ðANnþ1

ðe; lÞ;NnÞ-bad sites as in (2.12) at order Nn, see Proposition 5.1 in [3]

Measure and ‘‘complexity’’ estimates. In order to conclude the inductive proof
we have to verify that ‘‘most’’ parameters ðe; lÞ are Nn-good. For this, we do
not invoke sub-harmonicity and semi-algebraic set theory as in [11].

We prove first that, except a set of measure Oðe0N�1
n Þ, all parameters

ðe; lÞ a ½0; e0� �L are Nn-good in a weak sense, namely

E j0 a Zd ; B0
Nn
ð j0; e; lÞ :¼ fy a R : kA�1

Nn; j0
ðe; l; yÞk0 > N t

ngð2:14Þ

H
[

q¼1;...;N 2dþnþ4
n

Iq; Iq interval; jIqjaN�t
n :

The proof is again based on simple eigenvalue variation arguments, using that
�Dþ VðxÞ is positive definite, and performing the measure estimates in the set
of variables x :¼ 1=l, h :¼ y=l. In this way we prove that, except a set of param-
eters ðe; lÞ a ½0; e0� �L of measure Oðe0N�1

n Þ, the set B0
Nn
ð j0; e; lÞ in (2.14) (of

‘‘strongly’’ bad y) has a small measure OðN�tþ2dþnþ4
n Þ. This and the Lipschitz

dependence of the eigenvalues with respect to parameters imply also the complex-
ity bound (2.14), see section 6 in [3].

Finally, the multiscale Proposition step, and the fact that the separation prop-
erties of the Nn-bad sites of Aðe; l; yÞ hold uniformly in y a R, imply inductively
that most of the parameters ðe; lÞ are actually Nn-good (in the strong sense), con-
cluding the inductive argument, see Lemma 7.6 in [3].
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