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Abstract. — In this paper, we briefly outline the definition of Zilber field, which is a structure

analogue to the complex field with the exponential function. An open conjecture, including Scha-

nuel’s Conjecture, is whether the complex field is itself one of these structure.
In view of this conjecture, a natural question raised by Zilber, Kirby, Macintyre and others is

whether they have an automorphism of order two akin to complex conjugation.
We announce, without proof, the positive answer: for cardinality up to the continuum there exists

an involution of the field commuting with the exponential function. Moreover, in the case of cardi-
nality of the continuum, the automorphism can be taken such that its fixed field is exactly R, and the

kernel of the exponential function is 2piZ.
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1. Introduction

In [6] Zilber defined a new algebraic structure, commonly called ‘‘Zilber field’’,
which is an analogue of the complex field equipped with the exponential function,
but with good model-theoretic properties.

In more details, a Zilber field is a pair ðK ;EÞ, where K is an (uncountable)
algebraically closed field of characteristic 0 and E is a function from K to K �

such that the fundamental relation

Eðxþ yÞ ¼ EðxÞ � EðyÞ

holds, and several other axioms are satisfied. These axioms are either some
known facts about the classical exp which we want to be true for E, or deep con-
jectures, among which, most notably, Schanuel’s Conjecture. A function E satis-
fying such properties is generally called ‘‘pseudoexponentiation’’. We will give a
full account of the axioms in Section 2.

The remarkable result by Zilber is that, in an appropriate infinitary language,
the sentence C expressing the axioms is uncountably categorical. In particular,
there is just one model of cardinality 2@0 , up to isomorphism. In Zilber’s view,
categorical structures should correspond to natural mathematical objects, so he



conjectured that the model of cardinality 2@0 is just the classical field ðC; expÞ. If
true, it would imply Schanuel’s Conjecture as well.

Motivated by this idea, a natural question has been raised by Macintyre,
Kirby, Zilber and others: can we find a ‘pseudoconjugation’ on ðK ;EÞ analogous
to the complex conjugation? In other words, is there a field automorphism of
order two which commutes with E? Its fixed field would be a real closed field,
and it would constitute an example of a ‘Zilber’s real exponentiation’, together
with a ‘Zilber’s cosine’.

Here we announce the positive answer for the Zilber fields of cardinality up to
2@0 ; the proof itself, with all the details, will be the subject of a subsequent paper.

Theorem 1. Let ðK ;EÞ be a Zilber field. If jKja 2@0 , then there exists an
involution on ðK ;EÞ, i.e., a field automorphism s : K ! K of order two such that
s � E ¼ E � s.

We deduce this theorem from a quite stronger statement, which in some
sense is the reverse: we show that given s, we can construct an appropriate
function E such that ðK ;EÞ is a Zilber field. On the other hand, by categoricity
of Zilber’s axioms, we obtain that the existence of s transfers to all Zilber fields of
the same cardinality.

At the present moment, our method works only for some special s’s, and
this is the reason for the restriction on the cardinality. The full statement is the
following:

Theorem 2. Let K be an uncountable algebraically closed field of characteristic
0, and s : K ! K a field automorphism of order two. If the order topology on K s

is second-countable, then there is a function E : K ! K � such that ðK ;EÞ is a
Zilber field, and s � E ¼ E � s.

If we take K ¼ C and s as the complex conjugation, then Cs ¼ R is second-
countable, and we obtain that there is a pseudoexponentiation E on C commut-
ing with s. In particular, by categoricity, the Zilber field of cardinality 2@0 has an
involution. Since Zilber fields form an abstract elementary class, we can use the
downward Löwenheim-Skolem property to recover the same statement for
smaller fields, and deduce the full statement of Theorem 1.

In Section 3 we will sketch, without proofs, an explicit construction of such a
function E. The verification that the resulting structure ðK ;EÞ is a Zilber field is
not immediate, and it will be the subject of a subsequent paper. As hinted above,
we can use the construction on C with the complex conjugation, obtaining the
following special case.

Theorem 3. There is a function E : C ! C� such that ðC;EÞ is a Zilber field,
EðzÞ ¼ EðzÞ for all z a C, and E

�
2pi

p

q

�
¼ e2piðp=qÞ for all p a Z, q a Z�.

This answers specifically to the question posed in [3, 3.10], and moreover
it says that there is a s whose fixed field is R itself. However, our construction
produces a function E on C which certainly does not coincide with exp, although
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a priori there could be an automorphism of the complex field C which brings E
to exp (see the comments in Section 4).

2. Zilber’s axioms

Here is a list of the axioms defining Zilber fields. As we anticipated in the intro-
duction, some of the axioms are just properties of ðC; expÞ, while the others are
conjecturally true on ðC; expÞ but still unknown.

2.1. Trivial properties of ðC; expÞ. The first ‘trivial’ axioms of ðK ;EÞ are easy to
state:

(ACF) K is an algebraically closed field of characteristic 0;
(E) E is a homomorphism E : ðK ;þÞ ! ðK �; �Þ;
(LOG) E is surjective;
(STD) the kernel is a cyclic group, i.e., kerE ¼ oZ for some o a K �.

These axioms can be stated in just one Lo1;o sentence: an infinite conjunction for
the first ones, and an infinite disjunction for the last one.

2.2. Conjecturally true axioms. The following two axioms are not known to be
true on the structure ðC; expÞ.

(SC) Schanuel’s Condition: for any x1; . . . ; xn a K linearly independent over Q,

tr:deg:Qðx1; . . . ; xn;Eðx1Þ; . . . ;EðxnÞÞb n:

One can interpret Schanuel’s Condition as stating that there are not too many
algebraic relations among the values of the exponential, except for the trivial
ones forced by the Q-linear dependence of x1; . . . ; xn (which induce monomial re-
lations between the values Eðx1Þ; . . . ;EðxnÞ). Indeed, one can see that Schanuel’s
Condition implies that the smallest subfield closed under E is always isomorphic
to the same structure, the ‘‘free E-field over j’’ [4, Theorem 4].

A consequence of (SC) is that the function dðxÞ :¼ tr:deg:Qðx;EðxÞÞ�
lin:d:QðxÞ is always non-negative. As such, d is a suitable predimension for
Hrushovski amalgamation, and it is exactly how it is used in Zilber’s proof of
categoricity.

Under axiom (STD), the field Q is definable, so (SC) is a countable conjunc-
tion of first order formulae.

(SEC) Strong Exponential-algebraic Closure: for any ‘free rotund’1 irreducible
variety V HKn � ðK �Þn (see below), and any finite tuple a a K<o with
V defined over a, there is an x a Kn such that

ðx;EðxÞÞ a V ;

and tr:deg:aðx;EðxÞÞ ¼ dimV .

1 In the original paper by Zilber, this is called ‘‘free ex-normal’’. Here we prefer to use the nota-
tion proposed in [1], in order to distinguish it from the classical concept of ‘‘normal variety’’ in alge-

braic geometry.
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Analogously to other situations where we introduce the existential closure, e.g.
for di¤erential fields, we ask that each non-over-determined system of equations
involving one iteration of the exponential has a solution. A system of equations
can be seen as an absolutely irreducible a‰ne variety containing all the solutions,
which are the points of the form ðx;EðxÞÞ, and (SC) imposes severe restrictions to
the shape of this variety.

Indeed, a point of the form ðx;EðxÞÞ must have high transcendence degree,
and the same must be true for any Q-linear combination of the element of x;
this implies that V has large dimension, and the same is true for the varieties
obtained composing the coordinate functions of V .

If we write the action of Z on the group K � K � as ½m� : ðx;wÞ 7! ðmx;wmÞ,
and for each M a Mk;nðZÞ the induced map ½M� : Kn � ðK �Þn ! Kk � ðK �Þk as
M : ðx; wÞ 7! ðM � x; wMÞ, we can see that (SC) implies

tr:deg:QðM � ðx;EðxÞÞÞb rankM;

when the coordinates of x are Q-linearly independent. If V is a variety containing
ðx;EðxÞÞ as a generic point (in the geometric sense), an analogous condition on
the dimension of V holds. This is the meaning of rotund:

Definition 4. A variety V HKn � ðK �Þn is rotund if for any k a N�, and for
any matrix M a Mk;nðZÞ, we have

dimM � V b rankM:

Moreover, we want our system of equations not to be ‘‘over-determined’’. In
our case it translates to the following.

Definition 5. A variety V HKn � ðK �Þn is free if, for any vector m a Zn, the
two projections of m � V HK � K � on the coordinates are not constant.

Note that indeed when the variety is not free, we can eliminate one variable
from the system of equations.

The property of being free and rotund for a variety can be expressed with a
first-order formula [6, Theorem 3.2]. Under the axioms already stated, the exis-
tence of generic points can be also formulated as a countable conjunction of
first-order formulas [2, Proposition 5].

2.3. A non-trivial property of ðC; expÞ. This last axiom is known to be true
on ðC; expÞ [6, Lemma 5.12].

(CCP) Countable Closure Property: for any given free rotund irreducible
variety V HKn � ðK �Þn, defined over a finite tuple c a K<o, such that
dimV ¼ n, there are at most countably many points ðx;EðxÞÞ a V such
that tr:deg:cðx;EðxÞÞ ¼ dimV .

This condition is the reformulation for Zilber fields of a general property that one
can impose on the closure operator of a so called ‘‘quasi-minimal excellent class’’,
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as the class of Zilber fields themselves: it says that the closure of a finite set must
be at most countable (hence the name). It is the last ingredient needed to get cat-
egoricity [5, Theorem 2].

3. The construction

We can prove Theorem 2 by e¤ectively building the function E starting from the
knowledge of the involution s. Let us call R the fixed field K s. The field R is
necessarily real closed, with K ¼ R½

ffiffiffiffiffiffiffi
�1

p
� ¼ R½i�, and as such, it is an ordered

field equipped with the corresponding topology.
It is easy to see that s � E ¼ E � s if and only if

(1) EðRÞHR>0;
(2) EðiRÞHS1ðRÞ ¼ fz a K : z � sðzÞ ¼ 1g.

Moreover, R and iR are Q-linearly independent. This means that we can build
the function E on R and on iR independently, and we will do so that the restric-
tions (1), (2) are satisfied.

For the sake of simplicity, let us assume that K ¼ C and that s is the complex
conjugation; in this case, R ¼ R, and we can use the standard notation <, = for
real and imaginary parts, and j � j for the modulus. We will denote by Y the
‘phase’, i.e., the quantity YðzÞ ¼ z=jzj.

We proceed by back-and-forth, using transfinite induction: at each step, we
take an element in C or in C� and we define E so that the chosen element appears
in the domain or in the image; at the end, the function E will be surjective and
defined everywhere. Moreover, at each step we also take a free rotund irreducible
variety, and we define E on some new points such in a way that the variety gets
solutions.

We carefully do this construction, so that the domain of E is always a
Q-vector space, and consequently its image is a divisible group. This is crucial
to make sure that E is well defined.

In our basic step we take a transcendental element o a iR, and we define
E
�p
q
o
�
:¼ z p

q , where ðzqÞ is a coherent system of roots of unity. As o is arbitrary,
we can choose in particular o ¼ 2pi.

After that, we take an enumeration fajgj<2@0 of R, an enumeration fbjgj<2@0

of the multiplicative group C�, and an enumeration fVjgj<2@0 of all free
‘‘perfectly’’ rotund irreducible varieties (a particular subset of all rotund varieties;
see below). We proceed by transfinite induction.

Suppose that we are at the stage ja 2@0 , and that the function E has already
been defined on some elements of C. We extend it as follows:

(1) If E is already defined on aj, we proceed to the next step; otherwise, we
choose an element b in R>0 transcendental over the current domain, the cur-
rent image of E, and aj, and we define E

�p
q
aj
�
:¼ b p=q for some coherent

choice of positive roots of b. We repeat the same for iaj, taking b in S1ðRÞ
and setting E

�
i
p

q
aj
�
:¼ b p=q.
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(2) If bj is already in the image of E, we proceed to the next step; otherwise, we
choose an element a in R transcendental over the current domain of E, the
current image of E, and jbjj, and we define E

�p
q
a
�
:¼ jbjj

p=q. We repeat the

same for YðbjÞ, taking another a in R and setting Eði p
q
aÞ :¼ YðbjÞ

p=q.

(3) This is more complicated. Given Vj , let V be the family of all the irreducible
components of the varieties m

n
� Vj, i.e., all the irreducible varieties W such

that ðm IdÞ �W ¼ ðn IdÞ � Vj, for some m; n a N�.
If for all W a V we can find countably many algebraically independent

generic points of the form ðx;EðxÞÞ in W , such that they are dense in the or-
der topology over W , we proceed to the next step.

Otherwise, we take a countable dense set of such points on each W , with
the restriction that they must be ‘‘real generic’’ (see below) over the current
domain of E, the current image of E, and the field of definition of W . If
ðxþ iy; ryÞ is one of such points, we define E

�p
q
xk
�
:¼ r

p=q
k , E

�
i
p

q
yk
�
:¼ y

p=q
k .

(4) On limit ordinals, we define E taking the union of the previously defined
functions, as usual.

By ‘‘perfectly rotund’’ varieties we mean the rotund varieties which in some sense
are ‘irreducible components’ of other rotund varieties. They correspond to simple
extensions in Hrushovski’s amalgamation. The actual definition is almost the
same as [1, Definition 6.3], where it corresponds to simple algebraicity, but we
drop the assumption ‘‘dimV ¼ n’’, taking algebraicity out of the picture.

By ‘‘real generic point’’ of a variety V over some set A, we mean a point
ðxþ iy; ryÞ a V , where x; y are the real and imaginary parts, and r; y are the
moduli and the phases, such that not only tr:deg:Aðxþ iy; ryÞ ¼ dimV , as in the
usual definition of generic, but also tr:deg:<ðAÞ;=ðAÞðx; y; r; yÞ ¼ 2 dimV .

This construction clearly yields a function E such that s � E ¼ E � s, thanks
to requirements (1) and (2). Moreover, the domain of E is the whole set C, and
the image is C�, and it is easy to verify that the kernel is exactly oZ. Hence, the
trivial axioms are verified.

It is also easy to see that (SEC) holds in the resulting ðK ;EÞ, thanks to step (3).
Axiom (SC) is true at the basic step, and it is easy to see that it is preserved by
steps (1), (2) and (4). However, verifying that step (3) preserves (SC) is more dif-
ficult, as it involves a careful study of rotund varieties. It is even more di‰cult to
verify (CCP) in the final structure.

Indeed, axiom (CCP) is the reason why we have to take a dense set of points
in step (3). Suppose that (CCP) is not true. Let j be the least ordinal such that at
the stage j there is a rotund variety X HKn � ðK �Þn, with dimX ¼ n, containing
uncountably many generic points of the form ðx;EðxÞÞ (note that it can be
j ¼ 2@0 ). One can see that for this to happen, there must be a sequence ðVlÞ of
uncountably many rotund varieties, such that we have added solutions to all of
them before the stage j, and when adding new solutions, they induce new solu-
tions on X too. In this situation, one can prove that there is a sequence of open
sets ðUlÞ in X such that the solutions in Vl induce solutions in Ul , and vice versa
(strictly speaking, it happens between the sets

S
m;n a Z

m
n
� Vl and

S
m;n a Z

m
n
�Ul).
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However, since the topology on X is second-countable, one can see that the
contributions of the Vl ’s to the solutions of X actually come all from a countable
subsequence of ðVlÞ. This implies that X must have gained uncountably many
solutions at an earlier stage than j, a contradiction.

4. Comments

As stated in the introduction, our construction is able to produce a function E
on C which commutes with the complex conjugation. However, our function E
cannot happen to be exp itself, as the set of generic points of the form ðx;EðxÞÞ
on a free rotund variety V HCn � ðC�Þn, with dimV ¼ n, is dense, while Zilber
proved that for exp the corresponding set is discrete [6, Lemma 5.12]. Taking the
opposite point of view, under Zilber’s conjecture that EG exp, it means that we
have picked a class of involutions which does not contain complex conjugation.

Moreover, this approach isn’t able to guarantee that E0R is monotone.
Note that if E0R were monotone, there would be a real number c a R such that
E0RðxÞ ¼ exp

0Rðc � xÞ, and this would imply Schanuel’s Conjecture for the func-
tion exp

0Rðc � xÞ.
The question if there is an involution s on ðK;EÞ such that E0K s is also a

monotone function remains open, and it seems to be much more di‰cult. Work
is in progress about finding a way to adapt the above construction, but most
probably we have to renounce to some axioms, such as (CCP).
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