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ABSTRACT. — In view of the fundamental role played by the ternary reaction-diffusion dynamical
systems of P.D.Es for the description of the behaviour of continuous media and other phenomena
(biological, chemical, . ..), this paper is devoted to their nonlinear L>-stability. General conditions
guaranteeing the (local) nonlinear L>-stability via the stability of reduced or symmetric ternary lin-
ear systems of O.D.Es are found. The results obtained are applied to a triply convective-diffusive
fluid mixture saturating a porous layer and to a biological problem.
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1. INTRODUCTION

The ternary reaction-diffusion dynamical systems of P.D.Es model or take part
in the models of many phenomena of the real world. In particular their role is
fundamental for the description of the motion of continuous media and the be-
haviour of many other (biological, chemical, . ..) phenomena. In fact the momen-
tum (vectorial) equation is nothing else that a (scalar) ternary reaction-diffusion
system of P.D.Es. Further, the convection-diffusion of a triply mixture in a po-
rous layer can be reduced rigorously to the study of such kind of dynamical sys-
tems [13]. As concerns other phenomena, many applications of ternary reaction-
diffusion systems of P.D.Es can be found, for instance, in [1]-[5]. In the present
paper we consider the L2-stability of such systems aimed to finding conditions
guaranteeing the asymptotic stability via the asymptotic stability of linear re-
duced or symmetric systems of O.D.Es. The plan of the paper is as follows: Sec-
tion 2 is devoted to preliminaries. Successively, in Section 3, the condition guar-
anteeing the nonlinear L’-stability via the stability of a linear reduced ternary
system of O.D.Es are found. Section 4 is devoted to obtaining the stability via
the stability of a symmetric linear system of O.D.Es. In Section 5, two applica-
tions are furnished concerned with: (1) the stability of a triply convective-diffusive
fluid mixture saturating a porous layer (subsection 5.1); (2) the stability of a bio-
logical model. The paper ends with an appendix (Section 6) in which some details
concerned with the Liapunov functional V' introduced in Section 3 are recalled.
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2. PRELIMINARIES

Let Q =« RY, (¢ = 1,2,3), be a smooth bounded domain. This paper is concerned
with the reaction-diffusion systems

F .
(2.1) a—l;:Lu—f—F, in Qx R*,

with u = (uy,1,u3)", F = (F1, P, F3) ",

an + A apn a
(2.2) L= a an + A an ;
as) as azz + y3A

F; = Fi(uy,uz, us, Vuy, Vun, Vus), (i = 1,2,3), being (generally) nonlinear and

(23) {aij =const. e R, y,=const. >0, i, je{l,2,3},

ui: (x,1) e Qx R —ui(x, 1) e R, Vie{l,2,3}.
To (2.1) we append the Robin boundary conditions

(2.4) pu+ (1—=pB)Vu-n=0, ondQx R,
where n is the outward unit normal to 0Q,

{ﬁ:xeﬁQHﬁ(x)eR,

2.5
2:5) 0<p<l1, VxedQ,

S being a sufficiently regular function not identically zero.
The nonlinear functions F; = F;(uy, uz,u3, Vuy, Vua, Vus) are assumed to be
sufficiently regular and such that

(2.6) (F)u iy = 0, Vi€ {1,2,3},

Therefore (2.1)—(2.6) admits the zero solution. To the L>-stability of this solution
is precisely devoted the present paper.

REMARK 2.1. As it is well known, the stability of a non zero solution of a sys-
tem S can be reduced to the stability of the zero solution of a system S* easily
linked to S.

We assume that Q is of class C? (p > 2) and has the interior cone property. We
denote by

e (.,-> the scalar product of L*(Q);
o (-, ->aq the scalar product of L?(0Q);
e || -|| the norm of L*(Q);
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e || ||.q the norm of L*(0Q);
o W2(Q,p) the functional space such that

WhA(Q,B) = {p e W' Q) n W3(0Q), fp + (1~ f)Vp -n =0, on 0Q}.
For >0, f # 1, it follows {cfr. [2 pp 92-98} that

27 H, |2

where & = a(Q, f) = const. > 0, is the smallest eigenvalue of the spectral problem

Ap+ 29 =0, in Q,
po+(1—-p)Vp-n=0, oniQ,

+ Vol = o],
0Q

(2.8)
i.e. the principal eigenvalue of —A in W2(Q, ).
In the sequel we assume that

(1) (2.1)-(2.5) has the properties of a dynamical system [4] embedded in
Ww2(Q, ) and hence

(2.9) u € Wh(Q, p)
(i1) the functions F; are such that

3 3
(2.10) <Z il D |Fi|> < ey ([l + e + flss] )

i=1 =1
2 2 2\ e
+ ko[l [|7 + [Jual|” + [Jus]|7)*

2 2 2
X (Ve || + [V ||” + [ Vs |7),
with k;, &, (i = 1,2), non negative constants.

REMARK 2.2. In the applications, it is of interest to know the value of @ and the
influence of the domain size on &. Having this in mind, we remark that if Q < R is
given by

(2.11) 0<x</, [=-const >0,
and (2.8) reduces to

"4 =0, inQ
(212) ¢ +/L‘¢ J n ) ,
p=0, onx=0; ¢ =0 onx=1I,

then the sequence {p,} with

(2.13) ¢, = sin {(n - %)
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is a complete orthogonal system of eigenfunctions of (2.12) in W'2(Q, B), and

(2.14) p0)=1, p(1)=0.
Further the principal eigenvalue a is given by

2
(2.15) =

ﬁ.
Analogously if Q is given by
(2.16) Q={(x,y):0<x<,0<y<h},

with I; (i = 1.2), positive constants, and (2.8) reduces to

Ap+ lp =0, in Q,
(2.17) p=0 on 0Q — %,
Vp-n=0 onx,

E={(x,y):x=104,y€[0,h]},

then the eigenfunctions are given by
(2.18) @y = SIN (n—l)zx sin@y7
’ 11 12

with (n,m € NV), B is defined by

ﬁ(oay)zl fOI"yE[O,lz],
<219) ﬂ(xvo) :ﬂ(x7 12) =1 fOV.X € [07 11]7

ﬁ(lay):() fOl’yE[O,b],
and the principal eigenvalue is given by

1 N\ 5, (3 + 413)m?
(2'20) o= <4—112+g>727 —T,

with Q. = measure of Q = L.

Obviously in the case (2.12) the diffusion through x = [ is not allowed, while in
the case (2.17) the diffusion is not allowed through X.
Setting

(2.21) by =an —ay;, by =an—ay,, by =azy—ay;,

our aim, in the guideline of [6]-[10], is precisely o find conditions on a;, with
i # J, able to reduce the stability of the zero solution of (2.1)—(2.6) to the stability
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of the zero solution of the linear system of O.D.Es

du
2.22 — =Y
(2.22) o= s
with either

by 0 0
(223) ¥ = 0 b22 any

0 axn b3y

or—when aza; >0, (i,j=1,2,3)—

b b b3
(2.24) L=\ by bn by
by1 by b33

b11, b, b3z being given by (2.21) and

(2.25) bjj = bj = (signay)./a;aj;.

We end this section by recalling the conditions governing the stability of the
zero solution of (2.22)—(2.23).

THEOREM 2.1. The zero solution of (2.22)—(2.23) is asymptotically stable if and
only if
(226) b1 <0, I=by+byz<0, A=bybyz—axyayp >0,

and is only stable either when {b;; =1 =0,4 >0} or {b;; =0,1 < 0,4 >0} or
{bn <0,1=0,4> 0}.

PrOOF. The proof is well-know and easily found.

3. REDUCTION TO THE STABILITY OF THE ZERO SOLUTION OF (2.22)—(2.23)

For the sake of simplicity and concreteness, we will confine ourselves to the case
of Q given by (2.11) with / = 1 and the boundary conditions (2.12),. Setting

fi = (anup + aizus),  fo = anuy,  f3 = azu,

gi = yi(Au; + (1 — o), F=Fi+ fi+gi, (i=123),

F* = (Ff F5 L F)', by =an—(1—e)dy, b3 =an—(1 -2,
b, 00

by =ay — (1 —e)day, L =| 0 by as |,
0 aszn b;%
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(2.1) becomes

ou
3.2 — =" F*.
(3.2) 5 u-+

Introducing the scalings y; (to be chosen suitably), and setting

(3.3) w=mUs bj=ayl i%)

(3.2) becomes

U

QD

(3.4) 7:1:U+F,
with
bi, 0 0
U= (U, U, Us)", L= 0 b3 b3 |,
0 b3 by
- 1 1 1 T 1 1
F: —F*7—F*,—F* , —FI*Z_F+f+qa
(3.5) (m Vi y PR

| |
—fi :(QIZ&UZ+QI3&U3)7 _J‘ZZQZI&UM
M H H Ho Ho

1 1 _
—fi=an" U, —gi = p(AU+ (1 - &)al)).
3 3 M

LemMa 3.1. Let Q be given by (2.11) with | =1 and (2.12), hold. Then Yo €
W2(Q,p), the inequalities

4 16
lol* < S IVell®,  lle*I” < — [IVoll*,
(3.6)

2
T
9. Ap) < —(1 =) Vg|* - e loll?,

with ¢ = const. € [0, 1], hold.

PrOOF. (3.6); is the well-known Poincare inequality in the case at hand {cfr. [4],
p- 338}. The Sobolev inequality (3.6); is easily obtained since, by virtue of (3.6);,
it follows that

1

2
530°(x) = / oo’ dx < ||l - [IVoll < = [[Vol?,
0 T
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and hence squaring and integrating on [0, 1], (3.6), is immediately obtained.
Finally, in view of (2.12),—(2.12)3, one obtains

2
T
(9, A9y =<, Vg o0 — [Voll” = —(1 = &) [Voll” — 2 lloll”.
Setting

A* = bybiy — bisbyy, = byybyy —anazn,  Ar = A"+ (b)) + (b3y)?,
(3.7) Ay = A"+ (b3) + (b3)%, A = byby, + bisbis,
D) = AUy — A3U3, 9, (AU, + aUs))
+ (A Us — A3Us, p3(AU3 4 aU3) ),

the following Lemma holds

LEMMA 3.2. Let

(38) A* > O7 (yz -+ y3)A3 < 2\/ A1A2y2y3.
Then
(3.9) @, <0.

PrOOF. Assuming for simplicity y, < y;, by virtue of (3.8), the following cases
are possible

(3.10) (72 4 73)[43] = 23/ A1 427375,

(3.11) 72 <73 (12 +73)|4s] <29,/ 4142,
(3.12) 72 <73 29V A1Ar < (py +93)|A3] < 24/ A142),)5.

In view of the boundary data it turns out that

(3.13) @ = 1A=V + 8| Ua|*) + p342(— VU5 |1* + 3| U3 ?)
+(y +73) 43KV U2, VU3 ) — (5 + 73) A3 Us, U3 ).

In the case (3.10) it turns out that

(3.14) (72 +v3)43 = £/ A1 427273,

which, by virtue of (3.6);, implies

(3.15) @y = —[|V(\/1A1Us £ /134 U3)|1> = 8|/, 41 Us + /7342 U]
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When (3.11) holds, then exists a positive number 7 < y, such that setting {, =
Y5 — P, 13 = 3 — 7}, it follows that

(3.16) (72 + 73)143] = 27/ 4142,
(3.17) D — — Ay (|VU||* = &l Ua||?) — Aans(|VUS||* — & Us|1?)
—FVVA Uz + VA Us||* = @||VAL Uy + Jaa Us ||

Finally in the case (3.12), there exists a positive constant y < y; such that, setting
n=7y;—7>0,(3.10) continues to hold with 7 in place of y; and, analogously, @,
is given by the right-hand side of (3.15) with 7 in place of y;, plus the negative
term —nA>(|VUs|1* — & Us ).

REMARK 3.1. We remark that

(1) in the case yy = y5, (3.9) holds for any positive value of the ratio o} appearing

in b3y and b3, #
(i) when
(3.18) b§2b3*3a23a32 <0,
choosing
, 1/2
(3.19) o _ [bhan|”
1 |bnasn

it follows that (3.9) holds for any y, > 0 and y; > 0.

The proof of (1) can be easily reached by the reader and, anyway, found in [7]. In the
case (3.18), by virtue of (3.19), it follows that A3 = 0 and hence (3.8) holds.

LEmMMA 3.3. Let

(3.20) bi, <0, I"=b{+by <0, A">0,
and either

(3.21) ap = a3 =0,

or

(3.22) axy = az =0,

or

(3.23) a3 =az =0, apay <0, byananby; <0,
or

(3.24) ap =ay =0, apay < 0, b2*2a23a32b§3 < 0,
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or
(325) sup(bfl, b;z,b;3) <0, apn=ap=0, ajdj < 0, i#].

Then, setting

[(Alazl % — Azas; %) +an Zz] (UL Uy +
(3.26) O = ’ ’

[(Azam A Azan ﬂ*) +anz ] (U, Usy,
Ha Hy Hn

in each of the cases (3.21)—(3.25), exist suitable values for u,, 1, 1y such that it
turns out that

* 1 * g%
(3.27) o < §Hb11\||U1||2+1 A (|G| + 1 Gs1%)].

PROOF. In fact in the case (3.21), choosing u, = u; = 1 and setting
(328) m = sup(|A1a21 — A3a31|, |A2a31 — A3a21|),
it follows that

" < muy ([UL [ U] + Us[5) < mu (| UL |([ G2 + 11 U5 1)

mzﬂ% ) 1 2 2
< U —|I*A*|(|| U U
< |I*A*|H "+ 5 (I Ga[I” + 1| Us]]7),
and hence
2_\b111*A*|

A completely analogous procedure can be used in the case (3.22). In the cases

(3.23)-(3.24), for 12 2 given by (3.19) one obtains 43 = 0 and in the case (3.23),
s

choosing 1, = 1, it follows that

(3.30) o —(A1a21ﬂ1+ )<U1,Uz>,
with
* 61%2 * \2
(3.31) Ar=4 +F+(b33) ;
3

independent of u,;. Therefore—when aj,a2; < 0—choosing

1/2
(3.32) =
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one obtains ®* = 0. If ajpas; = 0, with (for example) a;; = 0, (3.30) reduces to

l(AlCIZl)z

2 2
—— i ||U

1
(3.33) @ = Aianu (Ui, Ua)y < |17 A7] 101 +

and (3.27) is reached choosing

by 174"

3.34 2 —
( ) lul A]CZZ]

Obviously an analogous procedure can be used in the case (3.24).
Finally, in the case (3.25), being

(3.35) I" =03+ b33 <0, A" =b3b3 >0,

one obtains by, < 0, b3; < 0. Further by virtue of

(3.36) Al = A+ (b))%, Ay = A"+ (b}))?, A3 =0,
for y; =1 it follows that

Asraz

. Ara
(337) @ = ( L 2! +a12#2)<U1, U2 +< +a13ﬂ3><U1, Us),

2 3

with 4; and A3 independent of u, and p;. Therefore choosing

Ayay |'? Araz; 12
3.38 e ; =
( ) o apn ,u3 aps
when
(3.39) anap <0, aza;z <0,

it follows that ®* = 0. If, for instance {a;» = 0,a13a3; < 0} then, for u; given by
(3.38),, one obtains
A
o ="y, ),
M

and it is very easy to choose i, in such a way that (3.18) hold. If {a;; =0,
az; = 0} then (3.29) reduces to

A
ot — A1t

p (UL Uy + aizs Uy, Us),
2

and one can choose 1, and x4 in such a way that (3.27) holds.

THEOREM 3.1. Let the assumptions of Lemma 3.3 hold and let [i}, [i,, fiy be scal-
ings guaranteeing the applicability of Lemma 3.3. If (3.8) holds with n, = [;
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(i =1,2,3), then the zero solution of (2.1)—(2.4) is asymptotically stable with re-
spect to the L*(Q)-norm.

Proor. For the sake of simplicity we assume A3 = 0, as happens in the case
(3.25) for any g, u,, pus and in the cases (3.23), (3.24) for Z—z given by (3.19). In
3

that cases there are no restrictions imposed by (3.8) on y, and y;.

Introducing the functional

1
(3.40) W:§HU1||2+ v,
with
1 * * * * *
(3.41) V=S [4"(| Ua|)* + |Us]1%) + [1b3, Us — b3 sl + ||b33 Us — b33 Un 1],

it follows that {cfr Appendix} the temporal derivative of I along the solutions
of (3.4) is given by

(3.42) W =bj|U1* + A (| Ua]* + | Us]|?) + @7 + @,
with
(3.43) CI):yl(l—8)<U1,AU1—|—0?U1>+CI)1—|—(I)2—|—(D3+CD4,

®; being given by (3.7)s and

D) = &[p,{A1 Uz, AUy + 934, U3, AU3 ),

1 1 1
O3 = — UL F ) +—LA1 Uy, o) +— <Ay Us F3),
(3.44) 1 H 3

3
Oy = EZ 7:<Ui, AU.
i-1

In view of Lemmas 3.1-3.3, it follows that
(3.45) ® < —g* (VU] + [VU|* + VU3 ||?) + @5,

with y* = inf(y;,7,,73). On the other hand, by virtue of (2.10), it follows that
exist two positive constants m; and m; such that

(3.46) @3 <m(|UI|]* + | Ga)* + | Us|P) 2 +mo(| UL + (| s + | Us 1)
2 2 2
~([IVUL]|" + VL[| + VU3 ().
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Therefore (3.42)—(3.46) imply

(3.47) W< §[b11||U1H2+1 A (|G + 1 Us)1%)]

+m (| O]+ |G + | Us |5
— ey —ma(| UL ) + | )P+ || Us]1P)™)
(VUL + VG| + VU |P).

In view of (3.42), it turns out that
(3.48) PUGI + 1UsI1") < V < q(| Ual* + | Us]1*),

with

1 1 * * * * *
(3.49) D= EA*’ q= EA + [(b22)2 + (b23)2 + (b32)2 + (b33)2]-

Hence one obtains

. 1. I A" | ita
630 W < 3 [ IO+ L0l + 1) |+ (j010P 45 7)

1 \&
o= ma (1wl 5 V) VG IR + 19l + v,
ie.
(3.51) W <—@=a W)W = (0= W)([VU" + [VU|* + IVUs|1),

with

5= Lint(Ip |,w ,
(3.52) 2ol “1 L ) .
51:m1(1+;) , Oy =¢&y", 53:mz(1+;> )

Therefore—by recursive argument—it follows that

(3.53) Wy < inf{(g—)l/gl, (g—j)l/gz],

implies

(3.54) W < Wyexp[—(0 — o1 W)t
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REMARK 3.2. We remark that

(1)

4.

the assumptions (3.20) are implied by
(3.55) b1 <0, I<0, A4>0,

and—as put in evidence at the end of Section 2—(3.55) are the conditions nec-
essary and sufficient for the asymptotic stability of the zero solution of the re-
duced linear system of O.D.Es (2.22)—(2.23);

In fact—for continuity reasons—when (3.55) hold—exist positive ¢ € |0, 1|
such that (3.20) hold too.
When F depends only on Vu and depends linearly on it, then Theorem 3.1—in
the case Az = 0—guarantees the global stability. In fact then one easily finds
that (3.46) holds with ¢, = & = 0.
When F depends on w quadratically, then (3.6, is useful in evaluating {1,u?,
(i=1,2,3).
It is easily verified {cfr. |9] Theorem 3} that when the assumptions of Lemma
3.3 hold, then the Routh-Hurwitz conditions [11], guaranteeing the stability of
the matrix £, are verified.

REDUCTION TO THE STABILITY OF THE ZERO SOLUTION OF (2.22) WITH ¥
SYMMETRIZED ACCORDING TO (2.24)—(2.25)

LEMMA 4.1. Let

(41) agaj; > 0, i+# 7,
and
(4~2) djpdp3ds3l = d13d1ds).

Then, choosing the scalings u; in such a way that

(4.3) B % yig
H; dji
system (2.1) can be reduced to
(4.4) a—lj = LU +F,
with
biy b bis

L=\|by b3 by|, F=(F,BER),
bs1 by b3y
| T
E:_E+gl7 U:(ﬂvﬁaﬁ)
K ety 3

where (b{|,b3,,b3;) and (g1, g2, 93) are given in (3.1) and by are given by (2.25).
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PROOF. Obviously one has only to check the consistency of (4.3). This consis-
tency is guaranteed by (4.2). In fact, in view of

)
My M3 ajp a3

ity [ an

dajpdr3ds)

and taking into account that (4.2) implies ap a3 = , it turns out that

a3
e W S (0 Y o0 |

Ky M3 aiz M

Analogously the consistency of Fi B _H gnd of 4280 _ H2gg immediately
verified. Hy My Hy M My M3

REMARK 4.1. Let us notice that, obviously, (4.2), holds when both the right and
left sides are zero. This is the case, for instance, of aj» = ay =0. Then if

.. . . . a)
apzaz; > 0, arzasy > 0, the symmetrization is obtained by choosing 1, = us B
asy

S

Uy = 34 /? with any constant value of p.
32

LEMMA 4.2. Let the assumptions of Lemma 4.1 hold. Then (2.24)—with b; ,

(i # j), given by (2.25)—has the same characteristic values (invariants) of

b an a3
(4.5) L =|an bn ax |,
azyy axy b

and hence, in particular, the following identities hold
b
(4.6) det<”“ "”) = det( e )
o2 02 a by

(4.7) det & = det 4.
PRrOOF. The proof is immediate.
LEmMA 4.3. Let

1-3
(4.8) 0=> 0,

ij
be a definite symmetric quadratic form. Then, setting

o %12 %13
o1 o2

49) Dy=1, Dy=oy, Dy= , Dy=oy oo o3|,

o1 %22
31 %32 33
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it turns out that

X2 X} X2
(4.10) 0= 2 N
DyDy DDy D,D;

where X1, X5, X3 are the Jacobi’s variables given by

o y 11 12
(4.11) Xi=dA, X=| " "' Xs=|oy am
wy Az
31 %32
with
3
(4.12) A=) g
=1

PRrROOF. The proof can be found in {[12], p. 302}.

259

LEMMA 4.4. Let (4.8) be a definite symmetric quadratic form and let (X1, X2, X3)
be the Jacobi’s variables associated to (&1,&y,&3). Then exist two positive con-

stants p and q such that

3 3 3
(4.13) Py Gy x<q) &
i=1 i=1 i=1

PrOOF. In fact it easily follows that

D&y + apéy + a13és = X7,

(4.14) D&, +0&5 = X3,
D3é3 - X3a
with
(4.15) 0 = o103 — 021013,
and hence
1 o112 1
& D { '~ D, 2+D3 (0120 — o13) X3,
(4.16) b= (-2 x)
D, D; ’
1
&G =X
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By virtue of the Cauchy inequality, (4.14) and (4.16) imply respectively

X2 < 2D} + oy + o) (& + &+ D),
(4.17) X2 <2(D} +6%) (3 + D),
X7 < D3,
2

D2D2D2 [(D3D3 + i, D3) + D3 (2120 — o13) ](XIZ + X7 4+ X},
1723

2
=<

(4.18) &< (D3 + %) (X7 + XD),

2
D3D3
1
D2

X37

&=

and hence (4.13) immediately follows with

2 2112 2 N2 2 2
p= Sup{ W [D2D3 + d12D3 + D2 (06125 — 0613) ],

1

(4.19) D20

(DS +52) Dlz}

1
g= Zsup{Dl2 + oy + oy, D3 +52,§D§}.

THEOREM 4.1. Let the assumptions of Lemma 4.1 hold together with

b an a3
>0, |an bn ax| <0,
azyy ayp by

b
(4.20) by <0, |71 92

a» by

and (2.10). Then the zero solution of (4.4) is asymptotically stable with respect to
the L*-norm.

PRrOOF. When (4.20) hold, then exists a positive constant ¢ € ]0, 1| such that

by, an

Dy=1, Dy =b{;<0, D= >0,

ay by,
(4.21) by, ann ap
[)3: ar b;z ay; | < 0.
azyi axn by

On the other hand, setting

(4.22) (1T + G + 1Ts 1),

I\JI'—‘
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in view of (4.4), one obtains

(4.23) E= / PdQ+ (U,F),
Q
with
1-3
(4.24) P=bj\ Ul + b3, U3 + b3 U3 + Y b Ui,
i#]

and b;; given by (2.25). Then, by virtue of Lemmas 4.2-4.3, it follows that

x2|12 X212 x2|2 3
w29 [ paasIHE IR IRE
Q DyDy DD, D)Ds i1
with
1 1 1
D\| |D\D;| |DyDs|

and hence, in view of (4.13), one obtains

m
| paa <=2 (U + Ul + |UsI) = ~dE.
(4.27) . P
d= ;, with p given by (4.19), with D; at the place of D;.

Since—in view of (2.10)—one obtains

(4.28) UFY < —ey*(IVUI? + [VU|* + [V Us|1?) + d B

3
+dEY VU,
=1
with d, d; positive constants, then by virtue of (4.23) it turns out that
. 3
(4.29) E<—(d—diE")E — (&7 — dhE?) Y " |VU|)%,
=1

and hence the asymptotic stability under the local condition

(4.30) E < inf[(dil)lm, (%)1/}
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5. APPLICATIONS

We furnish here, in the Subsection 5.1, an application of the results obtained in
Section 3 to a triply convective diffusive fluid mixture saturating a porous layer
and, in the Subsection 5.2, an application of the results of Section 2 to a model
concerned with the dispersal of epidemics.

5.1. Triply convective-diffusive fluid mixture saturating a porous horizontal layer
in the Darcy-Oberbeck-Boussinesq scheme

The equations governing the perturbations to the conduction solution in the
porous horizontal layer {z = 0,z = 1} are found to be [13]

Vp = —u-+ (R@ — qu)l — RZCDQ) . k,
V-u=0,

(5.1) 0, +u-V0— HRu-k+ A,
P]((I)lt—Fll- V(Dl) = H{Rju-k+ Ad,
PQ((I)2, +u- V(Dz) = H)Ryu-k + AD,,

under the boundary conditions
(5.2) (w-i),=(u-j).,=u-k=0=0, =0, =0, onz=0,1.

In (5.1)—(5.2) (u, p, 0, ®,,®,) are respectively the perturbation to the velocity v,
pressure 7, temperature 7 and concentrations C,, (a = 1,2), to different chemical
species ) and S, dissolved in the porous fluid layer. Oxyz is a Cartesian frame
of reference with fundamental unit vectors i, j, k, with k pointed vertically up-
ward. R is the temperature Rayleigh number, while R, and P, are the Rayleigh
and Prandtl numbers respectively of S,, (¢ = 1,2). The boundary equations (5.2)
are obtained via the boundary data on the temperature 7', concentration C;,
(i =1,2), and velocity v given by

TO)=T,, T(1)=Ty Cyu0)=C,, ao=12;

(5.3)
v-k=0, onz=0,1,

and H, H,, H, are given by

H =sign(oT), H, =sign(0C,),

(5.4)
5T=T1—T2, 5Ca=C11—CW, OC=1,2.

The perturbations (u,d,®;, ;) are assumed—as usual—periodic with periods
2n

2
" and =% in the x and y directions (with a, >0, a, > 0) and belonging to
ay a
L*(Q), Vt > 0, Q being the periodicity cell,
2 2
(5.5) Q= {0,—”] X {o,—”] % [0, 1].

x ay
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As it is well known the set of functions {sin(nznz)}, .y is a complete orthogonal
set for L2[0, 1]. Then for any function f € {w =u -k, 0§, ®;,®,} it follows that

o0
(5.6) = Zf,;(x, v, 1) sin(nnz),
n=1
with (by virtue of periodicity in the x and y directions)
o*  o°
(5.7) Afy ==, M Zﬁ—l-ﬁ, a’ :a§+a§.

In particular setting @ = Y77 @y, 0 =77 0,, @y = > 77| @y, it follows that
(x, y,t)sin(nnz),  Aw, = (a + n*n?)w,,

X, y, 1) sin(nnz), A0, = —(a* + n’n?)0,,
(x, y, 1) sin(nnz)

Wy =
(5.8) 0, =

®,, = Oy (x, y, 1) sin(nnz), AD,, = (a +n*n?)D,,.
The double curl of (5.1) multiplied by k gives easily

o
0,

2
(59) WOn = ’7W<R0n — Ry, — RZ(I)Zn)a én = Cl + n2n2 M = Z
n
and hence
0= (a0, + ) gy, + ) s,) —u- V0,
n=1
- (n) (n)
(510) ¢1[ - Z(Clz’; H” + a<22)¢ln + a2'; ¢2n) —u- V¢17
n=1
- (n) (n)
¢y = Z(aﬂ 0, + ag;)qﬁln + a3 $ry) — - Vs,
n=1
with

agrll) — HR277,1 e asn) = —HRRy,, a%) — —HRRy,,
o) _ HiRRwm, oy _ (H\Rin+&) o _ HiRiRo,

(511) 4y = P, ’ 2 P, s 3 = — 2
o) = TRy oy HR R, oy (HaRon, + )
31 P, ) 32 P, ) 33 Py .
In view of
Sy HHRRIE ) ) HHR?Rn,
12 %21 P, » A3 dsy PP, .
2
) (n H1H2R R 77
(5.12) ag agz) = TZ"

) () (ny _ HHH>

2 (n) (n) (n)
djp dyydz) = PP, RRRznn—a13a2la32,
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it follows that in the case {HH, > 0, HH; < 0, HH, < 0} the assumptions of
Lemma 4.1 are verified. We consider now the case {H > 0,H; <0,(i=1,2)}
which is the most destabilizing case, since the fluid in this case is heated from
below and salted from above by the two salts.

Introducing the scalings—independent of n—

1/2 1/2

H,

(5.13) w =1, B s

and setting
0}1 = Xna Dy, = Ho Yn, Dy, = ,U3Zm

5.14 s 1 1
514 X=> Xy, Y=—0,, Z=—,
U

n=1 253 3

it follows that

= Z(alan + donity Y, + a3n/13Zn) —u-VX,

X;
n=1
- bln U3
(5.15) Yt:Z(—Xn—i-bzn,qun—i-bgn—Zn)—u~VY,
n=1 253 Ho
7, = (‘LX Ly C3nzn) —u-vZ,
n=1 M3 M3
with
HH V2
ai, = HR?, — &,y anpty = — Tll RRy1,,
HH, 1/2
wlty = —|—=|  RRon,,
aA3pls ' P2 21,
bu_ _|HH\ ey RN, £G)
(516) Ho Pl " Pl
HyH> 1/2
by, = RiRo,,
3n P.P, 14321,
1/2 1/2
Cln HH Hle
n— =221 RR y = R\Ray,,
13 P 2N €2 PIPZ 1148277,
L (H2R§77n + én)
C3p = —
P,
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Setting

1

(5.17) E=3(IXI* +11Y]* +11Z]1%),

|

and taking into account that

(sin(nnz), sin(maz)y =0, n#m, <{u-VF?)=0,

along (5.15) it follows that

(5.18)

£=Y [ o0
n=1

with

1/2
(5.19)

HH,
Qn = cSnZ,f + b2n Ynz + aln/Ynz - 2‘ P,

1/2 1/2

HH>
PP

B 2’HH2
2

P

RR X, Z,, + 2'

Since Q, is symmetric, Q, is definite negative if and only if

RiR;
Dln =3 < 07 D2n == C3nb2n - H1H2 n > 07
PP,
HH, 1/2
" —|—— RR
( ) ap Pl My
5.20
HH,|'? HH
Dy, = | —|=2 RRyn, by, —
Py
HH, |2 H 12
—|——=| RR ———| RiR
P 21, PP 120,

Y.Z,.

’7;1 n

265

Fe(X,Y,Z);

RR X, Y,

R1R2’7ﬂ < 0

C3p

Conditions (5.20) coincide with the stability conditions (108) of [13] where the fol-

lowing theorem has been shown.

THEOREM S5.1. Let H >0, H; <0, (i =1,2). Then the conduction solution is

globally asymptotically stable if and only if

(5.21) HR® + |H,|R} + |Hy|R; < 4n°.

We confine ourselves here to remark that in view of Theorem 4.1—since the con-
tribution of the nonlinear terms u- VX,u- VY u-VZ is zero—(5.21) guarantees
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that (5.20) hold Vr and hence exists a constant ¢* > 0, independent of #, such that
(5.22) Oy < —d*(X] + Y] +27).
Finally (5.4)—(5.5) give
(5.23) E<-d'Es E < Epe".

5.2. Stability of a SIR system

In this subsection we consider the SIR system

oS
ol
(5.24) = = ~(a+ )l + AL+ IS,
R
aa_[: —dR+CI+y3AR,

with R, S and I densities of removed, susceptibles and infectives respectively {cfr.
[14], p. 150} and a, b, ¢, d, y,, (i = 1,2,3), positive constants. We consider (5.24)
in the domain (2.11) with / = 1, under the boundary conditions

(5.25) {S:& I=1I, R=R, inx=0,

VS =VI=VR=0, inx=1,

with (S, 1, R) constant solution of (5.24). As constant solutions we consider

(i) the disease-free equilibrium state {S = 1,1 = R = 0},
(1) the endemic equilibrium state

{— a—]l—cj:d[b—(c+d)]’R:c[b—(c+d)]

S = 1 d 1 d }, with b > ¢ +d.

Denoting by (s,i,r) the perturbation to an equilibrium state (S, 7, R), it follows
that

(5.26) i, = bls — (a+ ¢ — bS)i + yp,Ai + bis,

{S, = —(a+ bl)s — bSi+ y,As — bis,
ry = —dr+ ci + y;Ar,

under the boundary conditions

(527) {s:r:i:O, inx=0,

Vs=Vr=Vi=0, inx=1.
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One easily verifies that (3.22) holds and Theorem 3.1 can furnish the conditions
necessary and sufficient for the stability-instability of (S,7, R). In particular, in

the case of the disease-free equilibrium (S = 1,1 = R = 0), denoting by

b

5.28 Ry=——,

(5.28) *Tatctap,

the basic reproductive number it turns out immediately that the disease-free equi-
librium is (locally) asymptotically stable if and only if Ry < 1.

6. APPENDIX: THE BASIC PECULIAR LIAPUNOV FUNCTION FOR BINARY
SYSTEMS

We define sharp the peculiar Liapunov functions able to give for the nonlinear

stability-instability, exactly the same conditions of the linear stability. We here re-

call the construction of a such Liapunov function for a binary system of O.D.Es,

since is this function integrated on Q and named V' that appears in Section 3.
Let us consider the stability of the zero solution of the system

d
%zaX+by+f(x,y),

d
%: ex+dy +g(x,y),

6.1)

(f, g being nonlinear and such that f(0,0) = ¢g(0,0) = 0) and introduce the func-
tion

1
(6.2) VZEI[A(xzﬂLyz) +(ay — ex)* + (by — dx)’],
with
(6.3) I=a+d=21+44, A=ad—bc=21 1,

b
A1, 4o eigenvalues of <a ) Since
c d
(6.4) {x*:“x2+bxy+Xf7 ¥y =cxy +dy* + yg,
' yx = axy +by* + yf, xy=cx? +dxy + xg,
by straightforward calculations it follows that

dw
(6.5) — = TA(X* + y%) + VP,
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with

(6.6) ¥ = [(ux —o3)f + (2p — a3x)g],
’ v=A+c*+d>, wm=A+ada>+b* o3=ac+bd.
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