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1. Introduction

In this paper we deal with the regularity of planar optimal transport maps, in a
‘‘critical’’ case not covered presently in the literature. Following a suggestion by
J. Maly, and the ideas in [1], we relate the regularity problem to a ‘‘rigidity’’
problem for partial di¤erential inclusions which might be interesting in its own
right.

Let us start with the first problem. We give a formulation in terms of subdif-
ferentials (i.e. cyclically monotone operators), deferring the relations with opti-
mal transport theory to Section 6.

Problem 1. Let u : R2 ! PðR2Þ be a subdi¤erential, AHDomðuÞ open, and let
us assume that

1

L
L2

O
Aa Ju

O
AaLL2

O
A:

for some L > 1. Show that u is a locally Sobolev map.

The Jacobian measure Ju appearing in the statement of Problem 1 is the
Monge–Ampére measure of the potential function j whose subdi¤erential coin-
cides with u, i.e.

uðxÞ ¼ qjðxÞ ¼ fp a R2 : jðyÞb jðxÞ þ 3p; y� x4 Eyg:



In order to state problem 2, we need to define the set of ‘‘admissible’’ gradients

A :¼ fM a Sym2�2 : kMka1; ðLþ 1ÞjTraceðMÞja ðL� 1Þð1þ detðMÞÞg;ð1Þ

where k � k is the operator norm, and the subset S of ‘‘singular’’ gradients is
defined by

S :¼ R�1 1 0

0 �1

� �
R : R a SOð2Þ

� �
:ð2Þ

Problem 2. Let BHR2 be a connected open set, f : B ! R2 Lipschitz, and
assume that Df a A L2-a.e. in B. Show that if the set

fx a B : Df ðxÞ a Sg

has positive L2-measure, then f is locally a‰ne.

Some comments on Problems 1 and 2 are in order. As we will see in Section 6,
maps u ¼ qj as in Problem 1 appear in a natural way in the optimal transport
problem, in the case when the target measure has a convex support. In this situa-
tion Ca¤arelli made clear in [4] the connection with Alexandrov (and viscosity)
solutions to Monge–Ampére equations Det‘2j ¼ f . His regularity theory, de-
veloped in a series of papers [4, 5, 6], and in any number of dimensions, provides
Hölder continuity of u; since we use continuity in some proofs, to make our paper
self-contained we provide a brief proof of continuity, based on a simple duality
argument, in Section 5. On the other hand, since u is the gradient of a convex
function, it has BV regularity. So, Problem 1 is equivalent to ruling out a
‘‘Cantor’’ part of the distributional derivative, a question for which no standard
procedure is available. This fine regularity question arises, for instance, in evolu-
tion problems where the instantaneous coupling between velocity and density is
given by an optimal transport map (see [3], [7]); in this case a positive answer to
Problem 1 would give an optimal regularity result for the velocity.

The di¤erential inclusion considered in problem 2 is an interesting variant of
the typical one, where one requires a Lipschitz map f to take gradients in a
prescribed compact set K and one possibly imposes a‰ne Dirichlet boundary
conditions f ðxÞ ¼ Ax on the boundary of the domain (see for instance [13] [14],
for a nice presentation of the theory); in this situation one calls the set K rigid if
the only solutions are a‰ne. Also, it is well-known that a necessary, but not suf-
ficient, rigidity condition is the absence of rank-one connections inside K . In our
case we are considering the partial di¤erential inclusion with K ¼ A but we are at
the same time requiring that the smaller set S of gradients is attained in a set of
positive measure. Since it is not di‰cult to show (see Lemma 7.1) that no rank-
one connection exists between matrices in S and matrices in A we can hope for a
rigidity result.

The equivalence between Problems 1 and 2 is provided by Minty’s correspon-
dence between graphs of 1-Lipschitz maps and graphs of monotone operators.
This correspondence, induced by the ‘‘p=4 rotation in R2’’ defined in (3), is heav-
ily exploited in [1] to derive several fine properties of monotone operators.
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At this stage both problems, as stated, are open. We hope that the connection
between them will lead to some progress, either with a positive result or with a
counterexample. We also hope, in future work, to study the relation between
these problems in higher dimensions. The plan of the paper is the following. In
Section 1 we recall the main measure-theoretic notation and the basic facts on
currents associated to Lipschitz graphs. In Section 2 we state the main properties
of monotone maps u, introducing the Jacobian measure Ju, the Cayley trans-
formation and the canonical current Gu associated to u, along the lines of [1]. In
Section 3 and 4 we relate the singular part of the distributional derivative Du to
the set of ‘‘singular’’ gradients S in (2) and, at the same time, we relate bounds on
the Jacobian measure Ju to the set of admissible gradients A in (1). Using these
informations, in Section 6 we prove the equivalence of the two problems and
relate Problem 1 to optimal transport theory, providing also some additional
motivation for it. Finally in Section 7 we show some properties of a potential
solution of Problem 2.

Acknowledgement. We thank A. Figalli and J. Maly for very useful discussions on the ques-
tions discussed in this paper. Work supported by the ERC ADG Grant GeMeThNES.

2. Notation and preliminary results

In this paper we denote by ðe1; e2Þ the canonical basis of R2; since we will often
consider maps from R2 to R2, we prefer to use a distinguished notation ðe1; e2Þ
for the canonical basis in the target space R2. Also, when using the Cayley trans-
formation

x 0 ¼ xþ yffiffiffi
2

p

y 0 ¼ �xþ yffiffiffi
2

p

8>><
>>:

ð3Þ

we shall always use a 0 to denote the canonical bases in the new system of coor-
dinates. Hence, ðe 01; e 02Þ and ðe 01; e 02Þ are respectively the canonical bases in

D :¼ fðx; yÞ a R2 � R2 : x ¼ yg; D? :¼ fðx; yÞ a R2 � R2 : x ¼ �yg:ð4Þ

These bases are related by

e 01 ¼ 1ffiffi
2

p ðe1 þ e1Þ
e 02 ¼ 1ffiffi

2
p ðe2 þ e2Þ

e 01 ¼ 1ffiffi
2

p ð�e1 þ e1Þ
e 02 ¼ 1ffiffi

2
p ð�e2 þ e2Þ:

8>>>>>><
>>>>>>:

ð5Þ

The corresponding dual bases shall be denoted by dx1, dx2, dy1, dy2 and, in the
rotated system of coordinates, by dx 01, dx 02, dy 01, dy 02.
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We denote with Ln the Lebesgue measure on Rn and with Hk the
k-dimensional Hausdor¤ measure. Recall that for any k-dimensional subspace
V HRn, Hk

O
V coincides with the Lebesgue measure on V , where for any

Radon measure m and any Borel set B, m
O
BðAÞ is given by mðABBÞ. If

f : X ! Y is a Borel map we denote by fam the push-forward of m, i.e. the
measure famðBÞ ¼ mð f �1ðBÞÞ. We shall occasionally use the fact that continuous
images of Borel sets, though not Borel in general, are measurable with respect to
any positive finite Borel measure; this fact allows to avoid the use of tedious inner
approximations by compact sets.

If AHRn is open and u a BVlocðA;RmÞ is a map of bounded variation, we
denote with Du its distributional derivative (a m� n-matrix valued measure)
and with ‘u its absolutely continuous part with respect to the Lebesgue measure.
We recall also that any BV map is approximately di¤erentiable Ln-almost every-
where in its domain and that its approximate di¤erential coincides with Ln-a.e.
with ‘u (see [2]). If u a W 1;p with p a ½1;l� we are going to use, with a slight
abuse of notation, the symbol Du to denote both the distributional derivative
(i.e., strictly speaking a measure) and the weak derivative.

2.1. Currents and graphs of Lipschitz maps

Recall that a 2-current T in R4, T aD2ðR4Þ, is a linear continuous functional on
the space D 2ðR4Þ of compactly supported 2-forms in R4. We will denote the
action of T on a smooth form o both with 3T ;o4 and with TðoÞ. We write
Tk *

�
T if

TkðoÞ ! TðoÞ for any 2-form o:

A current T is said to be rectifiable, T aR2ðR4Þ, if its action on 2-forms o can
be expressed as:

TðoÞ ¼
Z
M

3oðxÞ; xMðxÞ4yðxÞ dHkðxÞ;

where MHR4 is a countably H2-rectifiable set, xMðxÞ is a simple 2-vector ori-
enting the approximate tangent space ap� TxM and yðxÞ is an integer-valued
positive function, see [8] for precise definitions.

If f : R2 ! R2 is a Lipschitz map, we shall denote by

jMðDf Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDf j2 þ det2ðDf Þ

q
ð6Þ

the area element of f . Thanks to Federer’s area formula [8, Theorem 3.2.3], it
can be used to compute the area of the graph Gf of f . More precisely, for every
Borel set BHR2 it holds

H2ð ~BBÞ ¼
Z
B

jMðDf Þj dx;ð7Þ
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where ~BB ¼ fðx; yÞ : y ¼ f ðxÞg is corresponding set on Gf . Denoting also

MðDf Þ :¼ ðe1 þ df ðe1ÞÞbðe2 þ df ðe2ÞÞ;ð8Þ

the definition in (6) is consistent with (8), namely the area factor is precisely the
modulus of the simple 2-vector MðDf Þ.

If f ¼ f 1e1 þ f 2e2, we have

MðDf Þ ¼ ðe1 þDe1 f
1e1 þDe1 f

2e2Þbðe2 þDe2 f
1e1 þDe2 f

2e2Þð9Þ
¼ e1be2 þDe2 f

1e1be1 þDe2 f
2e1be2

�De1 f
1e2be1 �De1 f

2e2be2 þ detDf e1be2:

We shall also denote by Gf the canonical 2-current associated to Gf . It is
the push-forward of the standard 2-current ½R2� in R2 under the map x 7!
ðId � f ÞðxÞ, namely

3Gf ;o4 ¼ 3½R2�; ðId � f Þao4

for any smooth 2-form o. It is well known [10, Section 3.2] that Gf can be
represented as

3Gf ;o4 ¼
Z
Gf

3xf ðx; yÞ;oðx; yÞ4 dH2ðx; yÞ

(the bracket inside the integral being the duality between vectors and covec-
tors) where xf , the so-called orienting vectorfield of the current, is a unit simple
2-vector linked to f by the relation

xf ðx; f ðxÞÞ ¼
MðDf ðxÞÞ
jMðDf ðxÞÞj :ð10Þ

Since Gf is better than a countably H2-rectifiable set, namely a Lipschitz graph,

an immediate consequence of the Rademacher theorem is that for H2
O
Gf -

almost every ðx0; y0Þ there exists a classical tangent space to Gf , and coincides
with the approximate tangent space. This means that there exists a 2-plane P
such that, if we denote with pP the orthogonal projection on P,

lim
ðx;yÞ!ðx0;y0Þ; ðx;yÞ AGf

jðx� x0; y� x0Þ � pPðx� x0; y� x0Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� x0j2 þ jy� y0j2

q ¼ 0:

We will denote this plane as Tðx0;y0ÞGf , oriented by the unit simple 2-vector xf
in (10).

To write our formulas in components, let

o ¼ o20 dx1bdx2 þ
X2

i; j¼1

oij dxibdy j þ o02 dy1bdy2;
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where i is the complement of i in f1; 2g. Then, the action of Gf on o is

Gf ðoÞ ¼
Z
R2

o20ðx; f ðxÞÞ þ
X2

i; j¼1

ð�1Þ ioijðx; f ðxÞÞDi f
jðxÞð11Þ

þ o02ðx; f ðxÞÞ detDf ðxÞ dx:

Currents with locally finite mass can be canonically extended to bounded Borel
forms with compact support; this way, (11) remains true in this more general
class of forms. Moreover, since f is locally bounded the mass is finite in products
K � R2 with K compact; hence the forms can be taken to be supported in K � R2

with K compact subset of R2. For any Borel set BHR4 we can also define

Gf OBðoÞ ¼
Z
BBGf

3xf ;o4 dH
2:

3. Monotone maps and Cayley transformation

We recall that a multivalued map u : R2 ! PðR2Þ is said to be monotone if

3p� q; x� y4b 0 Ep a uðxÞ; q a uðyÞ:

Notice that u is monotone if and only if its inverse u�1ðpÞ ¼ fx : p a uðxÞg is
monotone. Among monotone maps, a distinguished role is played by subdi¤eren-
tials qj of convex, proper and lower semicontinuous functions j : R2 ! RA
fþlg, namely

qjðxÞ :¼ fp a R2 : jðyÞb jðxÞ þ 3p; y� x4 Eyg

if jðxÞ < þl, and qjðxÞ ¼ j otherwise.
In the case when u ¼ qj it is easily seen that u�1 ¼ qj�, where j� is the con-

jugate function of j:

j�ðyÞ :¼ sup
x AR2

3xy4� jðxÞ:

We shall denote by DomðuÞ the domain of u, i.e. the set of points x such that
uðxÞA j, and by Gu HR2 � R2 its graph, i.e. the set fðx; yÞ : y a uðxÞg. We re-
call (see [1] for a simple proof ) that the set of points x such that uðxÞ contains
more than one point is s-finite w.r.t. H1; in particular it is L2-negligible. More-
over, the complement of this set, that we shall denote by Cu, is made by continuity
points of u, namely

xk ! x; xk a DomðuÞ; pk a uðxkÞ implies pk ! uðxÞ Ex a Cu:ð12Þ
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The Jacobian measure Ju of a monotone map u is defined on Borel sets of R2 by

JuðBÞ ¼ L2
� [

x AB

uðxÞ
�
:

It can be easily shown that Ju is s-additive, because the images of disjoint sets
have a L2-negligible intersection (indeed, this intersection is contained in the set
of points where u�1 is multi-valued). In addition it is apparent from the definition
that Ju is local, namely Ju

O
B ¼ Jv

O
B whenever B is Borel and u ¼ v in B. In the

case when u ¼ qj the measure Ju, formally correspondent to det‘2j, is called
Monge–Ampére measure of j.

Minty noticed that we can put in 1-1 correspondence monotone functions u
and 1-Lipschitz functions f via the Cayley transformation F : R2 ! R2 defined
in (3), so that

p� xffiffiffi
2

p ¼ f
� pþ xffiffiffi

2
p

�
Ep a uðxÞ:

At the level of maximal monotone maps u : R2 ! PðR2Þ (where maximality is
defined with respect to inclusion of graphs) we have 1-1 correspondence with
graphs of entire 1-Lipschitz maps f : D ! D?, via the relation Gf ¼ FðGuÞ.

With a slight abuse of notation, at all points x where u is single-valued we
denote by uðxÞ the unique element of the set, so that the functions f and u are
related by

uðxÞ � xffiffiffi
2

p ¼ f
� uðxÞ þ xffiffiffi

2
p

�
:ð13Þ

at all points where u is single-valued.
In [1] the geometric and analytic implications of this have been widely studied.

First of all, notice that since the graph Gf of a Lipschitz map has a natural struc-
ture of multiplicity one current without boundary and Gf ¼ FðGuÞ, we can define
the current

3Gu;o4 :¼ 3Gf ; ðF�1Þaðo4Þ:ð14Þ

Heuristically, Gu is associated to the integration on the graph of u, including
vertical parts. As for Ju, the action of Gu is local, i.e. 3Gu;o4 ¼ 3Gv;o4 when-
ever u; v are monotone, uC v in an open set A and o is supported in A� R2.

The orientation xu of the current Gu is induced in the natural way from the
orientation xf in (10) of Gf , via F. The following definition will play an impor-
tant role in our discussion.

Definition 3.1 (Vertical and totally vertical points). Let us call V the vertical
points of the graph of u, i.e

V ¼ fðx; yÞ a Gu : x
20
u ðx; yÞ ¼ 0g:
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We say that a point ðx; yÞ a V is totally vertical if also x02u ðx; yÞ vanishes and
denote by Vu the collection of these points.

Thanks to the area formula for maps defined on rectifiable sets (see [8,
Corollary 3.2.20]), it is easy to see that x20u equals the area factor of the projection
p1 : Gu ! R2 � f0g, i.e.

H2ðp1ðBÞÞ ¼
Z
B

jx20u j dH2 for all Borel sets BHGu;ð15Þ

while x02 equals the area factor of the projection p2 : Gu ! f0g � R2:

H2ðp2ðBÞÞ ¼
Z
B

jx02u j dH2 for all Borel sets BHGu:ð16Þ

The main properties of Gu proved in [1] are summarized in the following two
theorems.

Theorem 3.2. The following properties hold:

(i) If ðukÞ and u are maximal monotone and Guk ! Gu in the Kuratowski sense,
then Guk *

�
Gu as currents. If u is single-valued (and therefore continuous) in

an open set A, then convergence of uk to u is locally uniform in A.
(ii) The maps ue :¼ ðeI þ u�1Þ�1

are single-valued, Lipschitz, maximal mono-
tone with DomðueÞ ¼ Rn and converge to u L2-a.e. in DomðuÞ. Moreover, if
u ¼ qj, then ue ¼ Dje, where jeðxÞ :¼ infyfjðyÞ þ jx� yj2=ð2eÞg is the inf-
convolution approximation of j.

Theorem 3.3. Let u : R2 ! PðR2Þ be a maximal monotone map and let W be the
interior of its domain. Then the following assertions hold:

(i) u a BVlocðW;R2Þ, Gu has locally finite H2-measure in W� R2 and

jDujðBÞaH2ðGuB ðB� R2ÞÞð17Þ

for every Borel set BHW.
(ii) Let

D ¼ fðx; yÞ a Gu such that Tðx;yÞGu existsg:

Then for every x a WBp1ðDnVÞ the map u is di¤erentiable, with gradient
‘uðxÞ, in the following sense:

lim
y!x;p A uðyÞ

jp� uðxÞ � 3‘uðxÞ; y� x4j
jy� xj ¼ 0:

In addition, p1ðDnVÞ has full Lebesgue measure in W, ‘u is the density of
Du with respect to L2 and is symmetric if u is a subdi¤erential.
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(iii) The density of Ju
O
W with respect to L2 coincides with det‘u L2-a.e. in W.

(iv) If ue are defined as in Theorem 3.2(ii), then jDuej *� jDuj and Jue ¼ detDue *
�

Ju as measures in W.

A simple consequence of the previous properties is the following relation
between Gu and Ju, see also [1, Theorem 5.11]:

3Ju; j4 ¼ 3Gu; jðxÞ dy1bdy24ð18Þ

for any bounded Borel function with compact support. Coming back to Minty’s
transformation, the following proposition will also be useful.

Proposition 3.4. Let u be a maximal monotone function, then

(i) If u ¼ qj on DomðuÞ for some convex function, then Df is symmetric.
(ii) Conversely if Df is symmetric and IntðDomðuÞÞA j then u ¼ qj for some

convex function j on IntðDomðuÞÞ.

Proof. By (13), the first implication is trivial if j a C1;1ðRnÞ. Consider now
the approximations provided by the point (iii) of Theorem 3.2, in correspondence
to this approximation there are Lipschitz gradients fe such that FðGfeÞ ¼ Gue .
Since Gue weakly converge to Gu, it follows that Gfe weakly converge to
ðF�1ÞaðGuÞ. This convergence of graphs easily implies, by compactness, that fe
weak-� converge in W 1;l to the function f such that Gu ¼ FðGf Þ. Since weak-�
convergence preserves the symmetry of distributional derivatives, we obtain the
claim.

For notational simplicity (and since we are going to use it only in this case)
we prove the second implication only for n ¼ 2. Thanks to [1, Equation (5.5)]
for any j a Cl

c ðR2Þ we have
Z

D1jðxÞu2ðxÞ dx ¼ �3Gu; jðxÞ dx2bdy24

and

Z
D2jðxÞu1ðxÞ dx ¼ 3Gu; jðxÞ dx1bdy14:

Thanks to equations (11), (14) and (27) we have

�3Gu; jðxÞ dx2bdy24 ¼ �
D
Gf ; j

� x 0 þ y 0ffiffiffi
2

p
�
dx 02bdy 02

E

¼
Z

jðx 0 þ f ðx 0ÞÞD1 f
2ðx 0Þ dx 0

319regularity of optimal transport maps and partial differential inclusions



and

3Gu; jðxÞ dx1bdy14 ¼
D
Gf ; j

� x 0 þ y 0ffiffiffi
2

p
�
dx 01bdy 01

E

¼
Z

jðx 0 þ f ðx 0ÞÞD2 f
1ðx 0Þ dx 0:

Since D2 f
1 ¼ D1 f

2 we deduce that D1u
2 ¼ D2u

1 as distributions on the interior
of DomðuÞ, this and the maximal monotonicity of u easily imply that u ¼ qj for
some convex function on IntðDomðuÞÞ. r

In the next lemma we provide a simple representation of Gu in cylinders
B� R2 corresponding to regions B where u is continuous.

Lemma 3.5. Let u : R2 ! PðR2Þ be a monotone map, and assume that BHCu,
with B Borel set with compact closure in the interior of DomðuÞ. Then, if

o ¼ o20 dx1bdx2 þ
X2

i; j¼1

oij dxibdy j þ o02 dy1bdy2

is a bounded Borel 2-form with support contained in B� R2, we have

GuðoÞ ¼
Z
B

o20ðx; uðxÞÞ dxþ
X2

i; j¼1

ð�1Þ i
Z
B

oijðx; uðxÞÞ dDiu
jðxÞð19Þ

þ
Z
B

o02ðx; uðxÞÞ dJuðxÞ:

In addition, if Ju
O
BfL2 and CHGuB ðB� R2Þ is a Borel set satisfying

L2ðp1ðCÞÞ ¼ 0, then

H2ðCÞ ¼ jDujðp1ðCÞÞ:ð20Þ

Proof. Thanks to Theorem 3.2(i) and Theorem 3.3(iv) we can find a sequence
of Lipschitz maps uk, such that Guk ! Gu in the sense of Kuratowski, jDukj *�
jDuj in the interior of DomðuÞ, detDukL

2 *
�
Ju and Guk *

�
Gu as currents. Let

A be an open set contained in the interior of DomðuÞ. If o is a smooth 2-form
compactly supported in A� R2 we have

GuðoÞ ¼ lim
k!l

GukðoÞ:ð21Þ

Splitting Guk (viewed as vector-valued measures) and Gu in components and
positive and negative parts and doing the same for the coe‰cients of o, we are
led to the analysis of the limit

lim
k!l

Z
gk dsk
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where: sk is the positive or negative part of some component of Guk , which con-
verge thanks to Lemma 8.1 to the correspondent positive and negative part of Gu;
gkðxÞ ¼ f ðx; ukðxÞÞ, f being the positive or negative part of the correspondent
component of o. Because of (12), the G-limits ge in (37) and (39) coincide with
f ðx; uðxÞÞ on Cu. As a consequence, formula (11) for the action of Guk and
Lemma 8.2 give

lim sup
k!l

�����GukðoÞ �
Z
A

o20ðx; uðxÞÞ dx

þ
X2

i; j¼1

ð�1Þ i
Z
A

oijðx; uðxÞÞ dDiu
j þ

Z
A

o02ðx; uðxÞÞ dJu
�����

can be estimated from above with CðL2ðAnCuÞ þ jDujðAnCuÞ þ JuðAnCuÞÞ,
where C depends only on kokl. Since BHCu, combining with (21) and letting
A # B (using the outer regularity of L2 þ jDuj þ Ju) we get

Gu OBðoÞ ¼
Z
B

o20ðx; uðxÞÞ dxþ
X2

i; j¼1

ð�1Þ i
Z
B

oijðx; uðxÞÞ dDiu
j

þ
Z
B

o02ðx; uðxÞÞ dJu:

The extension to Borel forms is immediate.
In order to prove (20) first notice that (19) implies that jDujðp1ðCÞÞaH2ðCÞ

without any assumption on the Lebesgue measure of p1ðCÞ. The reverse inequal-
ity, follows from the following general fact: if m is a vector-valued measure with
finite total variation and T : X ! Y is an injective map, then

jTamj ¼ Tajmj:ð22Þ

Indeed, the inequality a is trivial; starting from jSanjaSajnj with n ¼ Tam and
S : TðX Þ ! X equal to the inverse of T we get jmjaSajTamj. Applying T to
both sides gives Tajmja jTamj.

In particular, since, thanks to (19),

Gu OB� R2 ¼ ðId � uÞaðL2;D1u
1; . . . ;D2u

2; JuÞ
O
B

as vector valued measures and JufL2 we can apply (22) with TðxÞ ¼ ðx; uðxÞÞ
to obtain that for any Borel set CHGuB ðB� RnÞ with negligible projection it
holds

H2ðCÞ ¼ jGujðCÞ ¼ jDujðp1ðCÞÞ: r

Proposition 3.6. Let BHR2 be a Borel set contained in the interior of
DomðuÞ. Then H2ðV B ðB� R2ÞÞ ¼ 0 implies jDsujðBÞ ¼ 0. A partial converse

holds if B is open, namely u a W 1;1
loc ðB;R2Þ implies H2ðVuB ðB� R2ÞÞ ¼ 0.
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Proof. Let us assume by contradiction that V B ðB� R2Þ is H2-negligible,
but jDsujðBÞ > 0. By (17) we get H2ð ~BBÞ > 0, where ~BB :¼ GuB ðB� R2Þ. Now,
by assumption H2-almost all points in ~BB are not vertical, hence (15) gives
L2ðBÞ > 0, a contradiction.

To prove the second part when B ¼ A is open we need to implement an
equation in the spirit of (19) for Sobolev maps u, not necessarily continuous,
more precisely

Guðj dxibdy jÞ ¼ ð�1Þ i
Z
A

jðx; uðxÞÞDiu
jðxÞ dxð23Þ

for all bounded Borel j whose support has a projection compactly supported
in A. To prove this identity, taking the locality of Gu into account, we can assume
with no loss of generality that DomðuÞ ¼ R2, so that u is locally bounded. Now
we approximate u by convolution and use [1, Proposition 1.7] to obtain that the
graphs of the mollified functions ue converge in the Kuratowski sense to the
graph of u. From Theorem 3.2(i) we obtain convergence of the currents, so that
(23) can be proved by a limiting procedure when j is smooth. When j is bounded
Borel we perform an additional approximation. Now, suppose by contradiction
that H2ðVuB ðA� R2ÞÞ > 0. Then, for some i; j a f1; 2g there exists a 2-form

o ¼ j dxibdy j with support contained in A� R2 such that Gu OVuðoÞ > 0, so
that (23) gives

0 < Gu OVuðoÞ ¼ ð�1Þ i
Z
ABp1ðVuÞ

jðx; uðxÞÞDiu
jðxÞ dx:

This contradicts the fact that L2ðp1ðVuÞÞ ¼ 0, a simple consequence of (15). r

Example 3.7. If u a W 1;1
loc nothing can be said in general about H2ðVnVuÞ, to

see this consider the subdi¤erential of jðxÞ ¼ jxj, namely

qjðxÞ :¼ uðxÞ ¼ x=jxj if xA 0

fp : jpja 1g if x ¼ 0:

�

Then u a W
1;1
loc ðR2;R2Þ but H2ðVnVuÞ > 0.

4. Singular part of Du and singular gradients of f

Let u : R2 ! R2 be a monotone gradient and assume that for some Borel set
BHCu the measure Ju

O
B is absolutely continuous with respect to L2. Under

these assumption we are going to investigate more closely the structure of the
orienting 2-vector xu to Gu at points ðx; uðxÞÞ with x a B. Recall that this con-
cept is well defined, thanks to the fact that Gu in the system of coordinates
ðe 01; e 02; e 01; e 02Þ is the graph of a 1-Lipschitz function f .
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Since u is fixed throughout this section we write x ¼ xu and

x ¼ x20e1be2 þ
X2

i; j¼1

x ijeibej þ x02e1be2:

We have proved in Proposition 3.6 that, for B contained in the interior of
DomðuÞ, if jDsujðBÞ > 0 implies H2ðV B ðB� R2ÞÞ > 0. Now we prove that
Ju

O
BfL2 implies H2ððVnVuÞB ðB� R2ÞÞ ¼ 0, so that jDsujðBÞ > 0 implies

the stronger conclusion H2ðVuB ðB� R2ÞÞ > 0.

Proposition 4.1. If BHR2 is Borel set, then

Ju
O
BfL2 if and only if H2ððVnVuÞB ðB� R2ÞÞ ¼ 0:

Proof. Assume Ju
O
BfL2, let L :¼ ðVnVuÞB ðB� R2Þ and set C :¼ p1ðLÞ;

since p1ðVÞ is Lebesgue negligible we get JuðCÞ ¼ 0, hence (16) gives

0 ¼ JuðCÞ ¼ L2ðp2ððC � R2ÞBGuÞÞ ¼
Z
ðC�R2ÞBGu

jx02j dH2:

Since ðC � R2ÞBGu ¼ L is contained in VnVu, where x
02 does not vanish, it fol-

lows that L is H2-negligible.
In order to show the converse, take a L2-negligible compact subset C of B,

then

JuðCÞ ¼ L2ðuðCÞÞ ¼
Z
GuBðC�R2Þ

jx02j dH2

¼
Z
ðGuBVÞBðC�R2Þ

jx02j dH2 þ
Z
ðGunVÞBðC�R2Þ

jx02j dH2:

Now the first term is zero since, by hypothesis, the set of vertical points such
that jx02j > 0 has zero H2-measure, while the second one vanishes since the
set ðGunVÞB ðC � R2Þ has a negligible projection on the first coordinate and
jx20j > 0 on it, so it must be H2-negligible according to (15). r

We thus have discovered that, under the additional assumption Ju
O
BfL2

and B is contained in the interior of DomðuÞ, then jDsujðBÞ > 0 implies
H2ðVuB ðB� R2ÞÞ > 0. Now we show that on the projection of Vu on the
diagonal D (which has positive measure as well, since pD : Gf ¼ Gu ! D is a
bi-Lipschitz map) the gradient of f has a particular structure, equivalent to

1 0

0 �1

� �
ð24Þ

up to a SOð2Þ rotation. Moreover, we show that this particular structure charac-
terizes the existence of a singular part in the distributional derivative.
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Proposition 4.2. Let u : R2 ! PðR2Þ be a monotone gradient, BHR2 a Borel
set satisfying Ju

O
BfL2 and let DHD be the set of points in pDðB� R2Þ where

Df exists and is equivalent to (24) up to a SOð2Þ rotation. Then, ðB� R2ÞBVu

coincides up to H2-negligible sets with ðD� D?ÞBGf .

Proof. First we prove that at totally vertical points the matrix Df has the given
structure. We know that at these points we have x ¼

P
ij x

ijeibej, and we can
compare this representation with the one ensured by (9) in the system of coordi-
nates ðe 01; e 02; e 01; e 02Þ:

x ¼ 1

jMðDf Þj ðe
0
1be 02 þDe 0

2
f 1e 01be 01 þDe 0

2
f 2e 01be 02ð25Þ

�De 0
1
f 1e 02be 01 �De 0

1
f 2e 02be 02 þ detDf e 01be 02Þ:

Recalling that e 0i and e 0i are related to ei and ei by (5), we get

e 01be 02 ¼ 1
2 ðe1be2 þ e1be2 � e2be1 þ e1be2Þ

e 01be 01 ¼ e1be1

e 01be2 ¼ 1
2 ð�e1be2 þ e1be2 þ e2be1 þ e1be2Þ

e 02be 01 ¼ 1
2 ðe1be2 þ e1be2 þ e2be1 � e1be2Þ

e 02be 02 ¼ e2be2

e 01be 02 ¼ 1
2 ðe1be2 � e1be2 þ e2be1 þ e1be2Þ:

8>>>>>>>><
>>>>>>>>:

Hence, taking first the e1be2 component in (25) and then the e1be2 component
(both null, since we are at totally vertical points) we get

1�De 0
1
f 1 �De 0

2
f 2 þ detDf ¼ 0; 1þDe 0

1
f 1 þDe 0

2
f 2 þ detDf ¼ 0:

Thus we have that detDf ¼ �1 and trDf ¼ 0. In addition, since the operator
norm of Df does not exceed 1 (by the bound on the Lipschitz constant), the mod-
ulus of the eigenvalues of the symmetric matrix Df is less than 1. This implies
that, up to a SOð2Þ rotation, Df is representable as in (24).

To obtain the opposite inclusion, let us call ~DD ¼ D� D?, we are going to
show that

Gu O
~DDðj dx1bdx2Þ ¼ Gu O

~DDðj dy1bdy2Þ ¼ 0ð26Þ

for any j a Cl
c ðR2 � R2Þ. This implies that at H2-almost every point in ~DDBGu

the orienting 2-vector x is of the form

x ¼
X

x ijeibej

and hence ~DDBGu HVuB ðB� R2Þ up to H2-negligible sets.
In order to prove (26) notice we have the following relations between the dual

bases in the system of coordinates ðe1; e2; e1; e2Þ and ðe 01; e 02; e 01; e 02Þ:
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dx 01 ¼ 1ffiffi
2

p ðdx1 þ dy1Þ
dx 02 ¼ 1ffiffi

2
p ðdx2 þ dy2Þ

dy 01 ¼ 1ffiffi
2

p ð�dx1 þ dy1Þ
dy 02 ¼ 1ffiffi

2
p ð�dx2 þ dy2Þ

8>>>>>><
>>>>>>:

and

dx 01bdx 02 ¼ 1
2 ðdx1bdx2 þ dx1bdy2 � dx2bdy1 þ dy1bdy2Þ

dx 01bdy 01 ¼ dx1bdy1

dx 01bdy 02 ¼ 1
2 ð�dx1bdx2 þ dx1bdy2 þ dx2bdy1 þ dy1bdy2Þ

dx 02bdy 01 ¼ 1
2 ðdx1bdx2 þ dx1bdy2 þ dx2bdy1 � dy1bdy2Þ

dx 02bdy 02 ¼ dx2bdy2

dy 01bdy 02 ¼ 1
2 ðdx1bdx2 � dx1bdy2 þ dx2bdy1 þ dy1bdy2Þ:

8>>>>>>>><
>>>>>>>>:

ð27Þ

On D it holds trDf ¼ 0 and detDf ¼ �1, hence

0 ¼
Z
D

~jjðx 0; f ðx 0ÞÞðDe 0
1
f 1ðx 0Þ þDe 0

2
f 2ðx 0ÞÞ dH2ðx 0Þ

¼ Gf O
~DDð~jjðx 0; y 0Þð�dx 02bdy 01 þ dx 01 þ dy 02ÞÞ

¼ Gu O
~DDðjðx; yÞð�dx1bdx2 þ dy1bdy2ÞÞ

and

0 ¼
Z
D

~jjðx 0; f ðx 0ÞÞð1þ detDf ðx 0ÞÞ dH2ðx 0Þ

¼ Gf O
~DDð~jjðx 0; y 0Þðdx 01bdx 02 þ dy 01bdy 02ÞÞ

¼ Gu O
~DDðjðx; yÞðdx1bdx2 þ dy1bdy2ÞÞ

where ~jjðx 0; y 0Þ ¼ j
�
xþyffiffi

2
p ;

�xþyffiffi
2

p
�
. By the previous equations we obtain (26) and

hence the desired inclusion. r

In the next theorem, when B is also contained in the interior of DomðuÞ we
prove a more precise relation between the Lebesgue measure of the set of points
where Df has the special structure and jDuj.

Theorem 4.3. Let u : R2 ! PðR2Þ be a monotone gradient, BHR2 a Borel set
contained in Cu and in the interior of DomðuÞ and let D be as in Proposition 4.2.
Then Ju

O
BfL2 implies

1ffiffiffi
2

p jDujðBBp1ðVuÞÞaH2ðDÞa jDujðBBp1ðVuÞÞ:ð28Þ

In particular, since p1ðVuÞ isL2-negligible, jDsujðBÞ > 0 if and only ifH2ðDÞ > 0.
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Proof. Since f is a 1-Lipschitz map we have

H2ðDÞaH2ððD� D?ÞBGf Þa
ffiffiffi
2

p
H2ðDÞ;ð29Þ

and by applying first Proposition 4.2 we obtain

H2ððD� D?ÞBGf Þ ¼ H2ððB� R2ÞBVuÞ ¼ jDujðp1ðB� R2ÞBVuÞÞ;ð30Þ

where the last equality follows from (20). The inequalities (28) follow immedi-
ately from (29) and (30). r

In the next lemma we relate, in a pointwise way, bounds on the Jacobian of u
to bounds on trace and Jacobian of Df . In the subsequent proposition we prove
the converse in an integral form, so that Ju is bounded also as a measure.

Lemma 4.4. Suppose u : R2 ! PðR2Þ is a monotone gradient and let x be a
di¤erentiability point of u, with

1

L
a det‘uðxÞaL

for some L > 1. Let us consider the 1-Lipschitz map f which corresponds to u
under the Cayley transformation and suppose that f is di¤erentiable at x 0 :¼
ðxþ uðxÞÞ=

ffiffiffi
2

p
. If we denote T ¼ trDf ðx 0Þ and J ¼ detDf ðx 0Þ, then

ðLþ 1Þ
ðL� 1Þ jT ja 1þ J:

Proof. We have

u� Idffiffiffi
2

p ¼ f
� uþ Idffiffiffi

2
p

�
;

thus

‘ðu� IÞðxÞ ¼ Df ðx 0Þð‘uþ IÞðxÞ

(where I is the identity matrix) and so ‘uðxÞ ¼ ðDf ðx 0Þ � IÞ�1ðDf ðx 0Þ þ IÞ. If
l1; l2 a ½�1; 1� are the eigenvalues of Df ðx 0Þ, taking determinants we must have

1

L
a

ð1þ l1Þð1þ l2Þ
ð1� l1Þð1� l2Þ

aL:

Notice that ð1� l1Þð1� l2Þ > 0 and write the previous inequality as

1

L
a

1þ T þ J

1� T þ J
aL:
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The first inequality gives

ð1� T þ JÞaLð1þ T þ JÞ;

which is equivalent to TðLþ 1Þb ð1þ JÞð1� LÞ. Therefore, since L > 1 we
get

�ðLþ 1Þ
ðL� 1ÞT a 1þ J:

The second inequality gives

ð1þ T þ JÞaLð1� T þ JÞ;

that is equivalent to ðLþ 1ÞT a ðL� 1Þð1þ JÞ. As before, it follows that

ðLþ 1Þ
ðL� 1ÞT a 1þ J

and the thesis follows. r

Using the elementary computations in the previous lemma we see that the
condition ðLþ 1ÞjT ja ðL� 1Þð1þ JÞ can be written in the equivalent and nicer
form

1

L
ð1� l1Þð1� l2Þa ð1þ l1Þð1þ l2ÞaLð1� l1Þð1� l2Þ

where l1, l2 are the eigenvalues of Df .

Proposition 4.5. Suppose that the 1-Lipschitz function f satisfies

1

L
detðId�Df Þa detðIdþDf ÞaL detðId�Df Þð31Þ

Ln-almost everywhere on a Borel BHD. Then

1

L
L2

O
Aa Ju

O
AaLL2

O
Að32Þ

on the Ju-measurable set A :¼ ðIdþ uÞ�1ð
ffiffiffi
2

p
BÞ ¼ ðId� f ÞðBÞ=

ffiffiffi
2

p
.

Proof. Let jðxÞ be a Borel nonnegative function whose support is contained
in A. Let us define ~jjðx 0; y 0Þ ¼ jððx 0 � y 0Þ=

ffiffiffi
2

p
Þ ¼ jðxÞ. An easy calculation shows

that ~jj is supported in B� R2, hence
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0b
1

2

Z
B

~jjðx 0; f ðx 0ÞÞ
� 1

L
detðId�Df ðx 0ÞÞ � detðIdþDf ðx 0ÞÞ

�
dx 0

¼ 1

L
Gf ; ~jjðx 0; y 0Þ dx

01 � dy 02ffiffiffi
2

p b
dx 02 � dy 02ffiffiffi

2
p

	 


� Gf ; ~jjðx 0; y 0Þ dx
01 þ dy 02ffiffiffi

2
p b

dx 02 þ dy 02ffiffiffi
2

p
	 


¼ 1

L
3Gu; jðxÞ dx1bdx24� 3Gu; jðxÞ dy1bdy24

¼ 1

L

Z
A

jðxÞ dx�
Z
A

jðxÞ dJuðxÞ;

where in the last equality we used (18). Since j is arbitrary, this proves the first
inequality in (32), the second one follows along the same lines. r

5. C1
regularity and strictly convexity of Alexandrov solutions

of Monge–Ampére equations

In this section we briefly recall the proof of the C1 regularity of solutions of the
Monge–Ampére inequalities

1

L
L2

O
Wa ðdetD2jÞ

O
WaLL2

O
Wð33Þ

Here j : R2 ! RA fþlg is a convex function, W is an open set of R2 contained
in the domain of j, Lb 1 and detD2j is the Monge–Ampére measure, corre-
sponding to the Jacobian measure of qj, see Section 3. Since we are only inter-
ested in the continuity of the subdi¤erential map we give here a proof whose
strategy can be summarized in the following way: first of all equation (33) implies
the strict convexity of u in the sense that if p a qjðxÞ then

jðyÞ > jðxÞ þ 3p; y� x4 for any yAx:

This implies that qj� is univalued and hence continuous. Then we show that if j
satisfies (33) then j� satisfies a similar property.

Proposition 5.1 ([6]). If ðdetD2jÞ
O
Wb cL2

O
W for some c > 0 then j is

strictly convex in W.

Proof. By the convexity of j, if strict convexity fails at some point x, the con-
tact set fy : jðyÞ ¼ jðxÞ þ 3p; y� x4g contains a small segment touching x. Up
to scaling and subtracting an a‰ne function we can suppose that x ¼ 0 and that
jC 0 on f0g � ½�2; 2�HW. Let R ¼ ½h; 2h� � ½�1; 1�, then (denoting with det‘2j

the density with respect to L2 of the measure detD2j)
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2
ffiffiffi
c

p
ha 2

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det‘2j

q
dx dya

Z
R

� 1

t
Dxxjþ tDyyj

�
dx dy

¼ 1

t

Z 1

�1

ðDxjðh; yÞ �Dxjð2h; yÞÞ dyþ t

Z 2h

h

ðDyjðx; 1Þ �Dyjðx;�1ÞÞ dx

:¼ 1

t
I1ðhÞ þ tI2ðhÞ;

where the last equality must be understood in the sense of traces since the sub-
di¤erential of a convex function coincides with an (univalued) BV function
Hn�1-almost everywhere. Now by the continuity of left and right derivatives of
convex functions and the local Lipschitz property of j we have that I1 goes to
zero as h ! 0, while I2 aCh2 since for any x a ½h; 2h� and y a ½�1; 1�

Dyjðx; yÞa max
x A ½h;2h�

max
y A ½�2;2�

jðx; yÞ � min
y A ½�2;2�

jðx; yÞ
� �

aCh:

Choosing t ¼
ffiffiffiffi
I1

p
=h we obtain a contradiction as h ! 0. r

Lemma 5.2. If j satisfies ðdetD2jÞ
O
WaCL2

O
W for some C > 0, then j�

satisfies

ðdetD2j�Þ
O
jðWÞb 1

C
L2

O
qjðWÞ:ð34Þ

Proof. Recall that ðqjÞ�1 ¼ qj� as multivalued functions. Then, if AH qjðWÞ
we have AH qjðWB qj�ðAÞÞ and hence

L2ðAÞaL2ðqjðWB qj�ðAÞÞÞaCL2ðqj�ðAÞÞ: r

Since it is well-known that strict convexity of j� implies C1 regularity of j, to
conclude we only have to check that qjðWÞ is open, in order to apply Proposition
5.1 to j�.

Lemma 5.3. Let j : R2 ! RA fþlg be strictly convex in an open set W con-
tained in its domain. Then qjðWÞ is open.

Proof. It is obviously su‰cient to show that if 0 a qjðWÞ then Beð0ÞH qjðWÞ
for some e > 0. Let x a W be such that 0 a qjðxÞ and let r > 0 be such that
BrðxÞHW. Assuming with no loss of generality that jðxÞ ¼ 0, by strict convexity
of j we have that a :¼ minqBrðxÞ j > 0. Let now q a R2 with jqj < a=ð2rÞ and
consider the function gqðyÞ ¼ jðyÞ � 3q; y4. If xq a BrðxÞ is its minimum point,
we claim that xq B qBrðxÞ, this completes the proof since xq a BrðxÞ implies
q a qjðBrðxÞÞ and, since q is arbitrary, Ba=ð2rÞð0ÞH qjðWÞ. To prove the claim,
just notice that gqð0Þ ¼ 0 while on qBrðxÞ we have

gðyÞb a� jqjr > a

2
> 0: r
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6. Equivalence of the problems and relations with optimal

transportation

In this section we gather the results of the previous section and we show that the
two problems are equivalent.

So, let u be as in Problem 1 with u B W
1;1
loc ðA;R2Þ and consider the function f

defined on the set B :¼ ðIdþ uÞ=
ffiffiffi
2

p
ðAÞ, notice that this set is open thanks to the

strict monotonicity of ðIdþ uÞ and Lemma 5.3. We claim that Df a A almost
everywhere in B. From Lemma 4.4 we know that this is true on ðIdþ uÞ=

ffiffiffi
2

p
ðDuÞ,

where Du is the set of di¤erentiability points of u in A. From Theorem 3.3 (ii) we
know that

ðIdþ uÞ=
ffiffiffi
2

p
ðDuÞI pDððGunVÞBDB ðA� R2ÞÞ

up to L2-negligible sets. Proposition 4.2 implies that Df a A also on
pDðVuB ðA� R2ÞÞ, since trivially S HA. Our claim now follows since the previ-
ous inclusions yield that fDf B Ag is contained up to L2-negligible sets in

pDðGuB ðVnVuÞBDB ðA� R2ÞÞA pDðGunDÞ:

The latter sets are L2-negligible since they are the projection of H2-negligible
sets, thanks to Proposition 4.1 and the existence of the tangent space H2-almost
everywhere.

On the other hand, from the results of the previous section we know that u
is continuous (and single-valued) in A, hence we can apply Theorem 4.3 (see in
particular (28)) to obtain that the set BB fDf a Sg has positive L2-measure.
Now, if f were a‰ne we can assume up to a rotation, and passing possibly to a
connected component of B, that

f ðx 0; y 0ÞC ðx 0 þ a;�y 0 þ bÞ in B

for some a; b a R. By taking the first component in both sides of (13) we
get x ¼ �a=

ffiffiffi
2

p
in A, a contradiction (this means that monotone functions

corresponding to these functions f have a ‘‘thin’’ domain, contained in
fx ¼ �a=2g).

Conversely, let f : B ! R2 be a Lipschitz map satisfying Df a A L2-a.e. with
L2ðfDf a SgÞ > 0. Assuming with no loss of generality that B is convex, we
obtain that f is 1-Lipschitz gradient, hence we can apply [11, Proposition 3.6] to
extend f to a 1-Lipschitz gradient defined on the whole of R2 (still denoted by f )
and denote by u the corresponding monotone operator which is a subdi¤erential
thanks to Proposition 3.4. From Proposition 4.5 we obtain the two-sided bounds
(32) on Ju, in the set A :¼ ðIdþ uÞ�1ð

ffiffiffi
2

p
BÞ ¼ ðId� f ÞðBÞ=

ffiffiffi
2

p
which is open

thanks to Proposition 7.3. Now we can use the results of the previous section to
obtain that u is continuous in A. Eventually we use Theorem 4.3 again to obtain
that u is not locally Sobolev in A.
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6.1. Connection with optimal transportation

In the sequel we briefly recall the connection of Problem 1 with the optimal trans-
portation, our main reference is [15]. Given two probability measures m and n
in Rn with finite second moments:Z

Rn

jxj2 dmðxÞ;
Z
Rn

jyj2 dnðyÞ < l;

the optimal transportation problem with quadratic cost consists in looking for a
Borel measurable map T : Rn ! Rn which solves the variational problem

min
Tam¼n

Z
Rn

jx� TðxÞj2 dmðxÞ:ð35Þ

Actually it is clear that the above problem could have no solution because
there is no admissible map (think for example to the case in which m ¼ dp and
n ¼ ðdq þ drÞ=2 with qA r) or because the infimum is not attained. However, we
have the following remarkable result.

Theorem 6.1. If mfLn, i.e. m ¼ %0L
n, then there exists an unique map T solv-

ing (35). Moreover, T coincides m-almost everywhere with the gradient of a convex
function j. In addition, if n ¼ %1L

n, the potential function j satisfies the following
Monge–Ampére type equation in a pointwise sense:

%1ð‘jðxÞÞ det‘2jðxÞ ¼ %0ðxÞ for m-a:e: x a Rn:

In the previous theorem we denoted with ‘2j the absolutely continuous part
with respect to Ln of the distributional derivative D2j. Recall also that, accord-
ing to Theorem 3.3(iii), det‘2j is always equal to the absolutely continuous part
of the Monge–Ampére measure

detD2j ¼ Jqj:

A natural question left open by the previous theorem is the regularity of the
transport map T . Without any assumption on the densities %0, %1, it is easy to
construct examples in which T is even discontinuous, think for example to the
case in which spt m is connected, while spt n is not. Less trivial is the fact that dis-
continuities can persist even in some cases when spt n is simply connected, see [4].
The main intuition of Ca¤arelli in [4] is however that the right assumption is the
convexity of spt n, to be more precise the following theorem holds:

Theorem 6.2. Suppose that 1=La %0; %1 aL on their supports, that spt %1 is
convex and that spt %0 is the closure of an open set W with Ln-negligible boundary.
If j is the unique (locally in W, up to additive constants) convex function such that
‘jam ¼ n then j satisfies the following Monge–Ampére inequalities

1

L2
Ln

O
Wa detD2jaL2Ln

O
W:
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In addition

qjðWÞH spt %1:

In particular we recover a sub and supersolution in the sense of Alexandrov
and Ca¤arelli’s regularity theory can be applied to deduce that j is a C1;a func-
tion, see also Section 5. Under these (minimal) hypotheses, however, it is a still
open and interesting the question to deduce at least W 2;1

loc regularity of j, and this
is one of the motivations for Problem 1.

7. Some properties of f

To conclude, we prove some properties of a potential solution to Problem 2 and
the statement made in the introduction about the absence of rank-one connec-
tions in Problem 2.

Let’s start with the rank-one connections. Since the involved matrices are sym-
metric, su‰ces to consider rank-one segments of the form bn b.

Lemma 7.1. If A a S then Aþ bn b B A unless b ¼ 0.

Proof. Let v1, v2 be the orthonormal eigenvalues of A corresponding respec-
tively to 1 and �1 and write b ¼ b1v1 þ b2v2, so that

bn b ¼
X2

i; j¼1

bib jvi n vj :

By the 1-Lipschitz property of the matrices in A we have

1b jðAþ bn bÞv1j2 ¼ jð1þ jb1j2Þv1 þ b1b2v2j2 ¼ ð1þ jb1j2Þ2 þ ðb1b2Þ2

and hence b1 ¼ 0. The matrix Aþ bn b is diagonal in the basis fv1; v2g with
eigenvalues 1 and �1þ jb2j2 and the relation

ðLþ 1Þjb2j2 ¼ ðLþ 1ÞjtraceðAþ bn bÞja ðL� 1Þð1þ detðAþ bn bÞÞ
¼ ðL� 1Þjb2j2

implies b2 ¼ 0. r

Lemma 7.2. There exists a constant K ¼ KðLÞ > 1 such that

kA� Sk2 a 2Kð�detðA� SÞÞ EA a A; ES a S ;ð36Þ

where k � k denotes the Hilbert-Schmidt norm.
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Proof. Up to a rotation we can suppose that

A ¼ 1� e1 0

0 �ð1� e2Þ

� �
; S ¼ cos y �sin y

�sin y �cos y

� �
;

where the condition A a A can be read as

(i) e1; e2 b 0
(ii) ðLþ 1Þje1 � e2ja ðL� 1Þðe1 þ e2 � e1e2Þ.

Moreover we can assume without loss of generality that ð1� e1Þb�ð1� e2Þ,
that is 2� e1 � e2 b 0. With this assumptions in force we have

A� S ¼ ð1� e1Þ � cos y sin y

sin y �ðð1� e2Þ � cos yÞ

� �
:

A straightforward calculation gives

kA� Sk2 ¼ 2
�
ð1� cos yÞð2� e1 � e2Þ þ

e21 þ e22
2

�

and

�detðA� SÞ ¼ ð1� cos yÞð2� e1 � e2Þ þ e1e2:

Now it is clear that the lemma follows if we are able to find a constant K > 1
such that ðe21 þ e22Þa 2Ke1e2. In order to prove the previous inequality notice
that we can suppose e1 b e2 b 0 and that we only have to find a bound for
e1=e2. Condition (ii) above implies that e2 ¼ 0 if and only if e1 ¼ 0 (this is just
another instance of the absence of rank-one connections between A and S ) so
we can assume e2 > 0 and rewrite the condition as

ðt� 1Þa L� 1

Lþ 1
ðtþ 1� e1Þa

L� 1

Lþ 1
ðtþ 1Þ

where t ¼ e1=e2. Now it is straightforward to verify that taL. r

We point out an interesting consequence of the previous lemma: suppose
f : B ! R2 satisfies the di¤erential inclusion on a ball B and L2ðfDf a SgÞ > 0.
Then, by well-known rigidity properties of SOð2Þ, ifL2ðfDf a AnSgÞ ¼ 0 then f
is a‰ne (see [14]). So, gradients in A are attained in a set of positive measure for
non trivial maps; on the other hand, for any S a S the map g :¼ Jð f � SxÞ,
where J is the linear transformation such that Jðv1; v2Þ ¼ ðv1;�v2Þ, is quasi-
conformal. In particular, by well known properties of quasi-conformal maps
(see [12, Theorem 16.10.1]), the set fDg ¼ 0g ¼ fDf ¼ Sg must have null Leb-
esgue measure if f is not a‰ne in B. As a consequence, the map can attain a fixed
singular gradient only on a set of measure zero unless it is a‰ne. It is easy to
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show that at the level of the map u this means that for any v a Sn�1 we have
jDsujðBvÞ ¼ 0, where

Bv :¼ x a B 0 :
dDu

djDuj ðxÞ ¼ vn v

� �
:

This indicates that a negative answer to Problem 1 should involve the construc-
tion of a rather complex example.

Another consequence of the previous lemma is that if f satisfies Df a A
L2-a.e. in B, the set ðId� f ÞðBÞ is open if A is open.

Proposition 7.3. Let f be a non locally a‰ne solution of the partial di¤erential
inclusion Df a A on an open set B. Then the set A :¼ ðId� f ÞðBÞ is open.

Proof. Without loss of generality we can assume that B is convex and that f
is not a‰ne in B. Since f solves the di¤erential inclusion its gradient is sym-
metric, moreover I �Df is nonnegative definite, so there exists a convex func-
tion G : B ! R such that DG ¼ Id� f . Thanks to Lemma 5.3 we have just
to prove that G is strictly convex. Suppose this is not the case then up to an
a‰ne transformation we can suppose that Gðx 0Þ ¼ a � x 0 on ½0; 1� � f0gHB and
Gðx 0Þb a � x 0 everywhere in B for some vector a. Since G is continuously di¤er-
entiable this implies that DG ¼ a on ½0; 1� � f0g. This means that on ½0; 1� � f0g
the function f ðx 0Þ coincides with x 0 þ a. Now take the matrix S in (24), thanks
to Lemma 7.2 we know that the map gðx 0Þ ¼ Jð f ðx 0Þ � S � x 0Þ is quasi confor-
mal (here again Jðv1; v2Þ ¼ ðv1;�v2Þ), moreover it is constant on the segment
½0; 1� � f0g. Since the inverse image of a point by a non constant quasi conformal
map is discrete (see [12, Theorem 16.12.1]) we have that f ðx 0Þ ¼ S � x 0 þ a every-
where on B, a contradiction to the assumption that f is not a‰ne. r

8. Appendix

Lemma 8.1. Let mk a MðW;R pÞ be a sequence of vector-valued measures with
finite total variation in WHRn open, satisfying

mk *
�
m and jmkj *

� jmj:

Then the positive and negative parts of all components of mk weakly�-converge to
the corresponding parts of m.

Proof. It is a direct application of Reshetnyak continuity theorem (see for
example [2, Proposition 3.15]). r

Lemma 8.2. Let fk : W ! ½0;þlÞ be nonnegative Borel functions and define

f�ðxÞ :¼ inf lim inf
k!l

fkðxkÞ; xk ! x

� �
:ð37Þ

334 l. ambrosio, g. de philippis and b. kirchheim



Then

lim inf
k!l

Z
W

fk dmk b

Z
W

f� dm

whenever mk are nonnegative and mk *
�
m in W.

Proof. By Cavalieri’s formula for the integral and Fatou’s lemma, su‰ces to
show that lim infk mkðf fk > tgÞb mðf f� > tgÞ for all t > 0. To this aim, given a
compact set K H f f� > tg, the definition of f� immediately implies that there is
an open neighborhood U of K such that U H f fk > tg for k su‰ciently large.
Then

lim inf
k!l

mkðf fk > tgÞb lim inf
k!l

mkðUÞb mðUÞb mðKÞ

and the conclusion follows letting K increase to f f� > tg. r

Analogously, if all fk b 0 are equibounded and supported in an compact set
KHW, then

lim sup
k!l

Z
W

fk dmk a

Z
W

fþ dm;ð38Þ

where

fþðxÞ :¼ sup lim sup
k!l

fkðxkÞ; xk ! x

� �
:ð39Þ
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