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ABSTRACT. — In this work we address the issue of Sobolev regularity of solutions of Monge-
Ampere equations in a borderline case and show how this question is related to a rigidity problem
for partial differential inclusions.
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1. INTRODUCTION

In this paper we deal with the regularity of planar optimal transport maps, in a
“critical” case not covered presently in the literature. Following a suggestion by
J. Maly, and the ideas in [1], we relate the regularity problem to a “rigidity”
problem for partial differential inclusions which might be interesting in its own
right.

Let us start with the first problem. We give a formulation in terms of subdif-
ferentials (i.e. cyclically monotone operators), deferring the relations with opti-
mal transport theory to Section 6.

PROBLEM 1. Let u: R?> — P(R?) be a subdifferential, A = Dom(u) open, and let
us assume that

1
ZgﬂLA <JuLA<LZ*_A.

for some L > 1. Show that u is a locally Sobolev map.

The Jacobian measure Ju appearing in the statement of Problem 1 is the
Monge—-Ampére measure of the potential function ¢ whose subdifferential coin-
cides with u, i.e.

u(x) = dp(x) = {p e R* : p(y) > p(x) +<{p,y — x> ¥y}
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In order to state problem 2, we need to define the set of ““admissible” gradients

(1)  A:={MeSym>?: M| <1,(L+1)|Trace(M)| < (L —1)(1 + det(M))},

where || - || is the operator norm, and the subset S of “singular” gradients is
defined by

(1 0
(2) S:=<R 0 1 R:Re SO(2);.

PROBLEM 2. Let B < R? be a connected open set, f : B— R? Lipschitz, and
assume that Df € A %*-a.e. in B. Show that if the set

{x € B: Df(x) € S}
has positive ¥*-measure, then f is locally affine.

Some comments on Problems 1 and 2 are in order. As we will see in Section 6,
maps u = d¢ as in Problem 1 appear in a natural way in the optimal transport
problem, in the case when the target measure has a convex support. In this situa-
tion Caffarelli made clear in [4] the connection with Alexandrov (and viscosity)
solutions to Monge—Ampére equations Det V¢ = f. His regularity theory, de-
veloped in a series of papers [4, 5, 6], and in any number of dimensions, provides
Holder continuity of u; since we use continuity in some proofs, to make our paper
self-contained we provide a brief proof of continuity, based on a simple duality
argument, in Section 5. On the other hand, since u is the gradient of a convex
function, it has BV regularity. So, Problem 1 is equivalent to ruling out a
“Cantor” part of the distributional derivative, a question for which no standard
procedure is available. This fine regularity question arises, for instance, in evolu-
tion problems where the instantaneous coupling between velocity and density is
given by an optimal transport map (see [3], [7]); in this case a positive answer to
Problem 1 would give an optimal regularity result for the velocity.

The differential inclusion considered in problem 2 is an interesting variant of
the typical one, where one requires a Lipschitz map f to take gradients in a
prescribed compact set K and one possibly imposes affine Dirichlet boundary
conditions f(x) = Ax on the boundary of the domain (see for instance [13] [14],
for a nice presentation of the theory); in this situation one calls the set K rigid if
the only solutions are affine. Also, it is well-known that a necessary, but not suf-
ficient, rigidity condition is the absence of rank-one connections inside K. In our
case we are considering the partial differential inclusion with K = A but we are at
the same time requiring that the smaller set S of gradients is attained in a set of
positive measure. Since it is not difficult to show (see Lemma 7.1) that no rank-
one connection exists between matrices in & and matrices in A we can hope for a
rigidity result.

The equivalence between Problems 1 and 2 is provided by Minty’s correspon-
dence between graphs of 1-Lipschitz maps and graphs of monotone operators.
This correspondence, induced by the “z/4 rotation in R>” defined in (3), is heav-
ily exploited in [1] to derive several fine properties of monotone operators.
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At this stage both problems, as stated, are open. We hope that the connection
between them will lead to some progress, either with a positive result or with a
counterexample. We also hope, in future work, to study the relation between
these problems in higher dimensions. The plan of the paper is the following. In
Section 1 we recall the main measure-theoretic notation and the basic facts on
currents associated to Lipschitz graphs. In Section 2 we state the main properties
of monotone maps u, introducing the Jacobian measure Ju, the Cayley trans-
formation and the canonical current G, associated to u, along the lines of [1]. In
Section 3 and 4 we relate the singular part of the distributional derivative Du to
the set of ““singular’ gradients S in (2) and, at the same time, we relate bounds on
the Jacobian measure Ju to the set of admissible gradients A in (1). Using these
informations, in Section 6 we prove the equivalence of the two problems and
relate Problem 1 to optimal transport theory, providing also some additional
motivation for it. Finally in Section 7 we show some properties of a potential
solution of Problem 2.

ACKNOWLEDGEMENT. We thank A. Figalli and J. Maly for very useful discussions on the ques-
tions discussed in this paper. Work supported by the ERC ADG Grant GeMeThNES.

2. NOTATION AND PRELIMINARY RESULTS

In this paper we denote by (e;, ;) the canonical basis of R?; since we will often
consider maps from R? to R?, we prefer to use a distinguished notation (e, )
for the canonical basis in the target space R>. Also, when using the Cayley trans-
formation

Xty

3) v2
,:—x—i—y

V2

we shall always use a ’ to denote the canonical bases in the new system of coor-
dinates. Hence, (e{,e}) and (¢, ¢&)) are respectively the canonical bases in

4) A={(x,»)eR*xR*:x=y}, At:={(x,y) e R*xR*:x=—y}.
These bases are related by

(er +e1)
(ez + &)
( er +ép)
(—ex + ).

(5)

&%%%s%&%

-
& =

The corresponding dual bases shall be denoted by dx!, dx?, dy!, dy* and, in the
rotated system of coordinates, by dx’!, dx'?, dy'!, dy'>.
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We denote with %" the Lebesgue measure on R” and with #* the
k-dimensional Hausdorff measure. Recall that for any k-dimensional subspace
V < R", #%_V coincides with the Lebesgue measure on ¥, where for any
Radon measure x4 and any Borel set B, uLB(A) is given by u(AnB). If
f:X — Y is a Borel map we denote by fu the push-forward of u, i.e. the
measure fyu(B) = u(f~'(B)). We shall occasionally use the fact that continuous
images of Borel sets, though not Borel in general, are measurable with respect to
any positive finite Borel measure; this fact allows to avoid the use of tedious inner
approximations by compact sets.

If 4 = R" is open and u € BVjoc(4;R™) is a map of bounded variation, we
denote with Du its distributional derivative (a m X n-matrix valued measure)
and with Vu its absolutely continuous part with respect to the Lebesgue measure.
We recall also that any BV map is approximately differentiable #”-almost every-
where in its domain and that its approximate differential coincides with .#"-a.e.
with Vu (see [2]). If u e W'? with p € [1, 0] we are going to use, with a slight
abuse of notation, the symbol Du to denote both the distributional derivative
(i.e., strictly speaking a measure) and the weak derivative.

2.1. Currents and graphs of Lipschitz maps

Recall that a 2-current 7 in R*, T e D,(R*), is a linear continuous functional on
the space D?(R*) of compactly supported 2-forms in R*. We will denote the
action of T on a smooth form @ both with (T,w) and with T(w). We write
T, = Tif

Ti(w) — T(w) for any 2-form w.

A current T is said to be rectifiable, T € R,(R*), if its action on 2-forms o can
be expressed as:

T(w) = /M<ca(x),éM(x)>9(x) d%k(x),

where M < R* is a countably #>-rectifiable set, &,,(x) is a simple 2-vector ori-
enting the approximate tangent space ap — 7. M and 6(x) is an integer-valued
positive function, see [8] for precise definitions.

If £ : R* — R? is a Lipschitz map, we shall denote by

(©) MDA =1+ DfP + det® (D)
the area element of f. Thanks to Federer’s area formula [8, Theorem 3.2.3], it

can be used to compute the area of the graph I'y of f. More precisely, for every
Borel set B = R? it holds

(7) #(B) = / M(DS)] dx,



REGULARITY OF OPTIMAL TRANSPORT MAPS AND PARTIAL DIFFERENTIAL INCLUSIONS 315

where B = {(x, y) : y = f(x)} is corresponding set on I's. Denoting also
(8) M(Df) := (e1 + df (e1)) A (e2 + df (e2)),

the definition in (6) is consistent with (8), namely the area factor is precisely the
modulus of the simple 2-vector M(Df).
If f = f'e; + f2e, we have

(9) M<Df> - (61 + Dc’lflgl + Delfzgz) A (62 + Dc’zflgl + Dc’zfzgz)
=e1Ae —|—D€2f1e1 A& +D62f2e1 A&
— D, flexnel — Do, f?er A&y + det Df ey Aes.
We shall also denote by Gy the canonical 2-current associated to I'y. It is

the push-forward of the standard 2-current [R?] in R? under the map x —
(Id x f)(x), namely

(Gr,wy =<[R?), (Id x [) w)

for any smooth 2-form . It is well known [10, Section 3.2] that G, can be
represented as

(G, ) = /r &l ), 0(x, )5 dA(x, )
f

(the bracket inside the integral being the duality between vectors and covec-
tors) where &, the so-called orienting vectorfield of the current, is a unit simple
2-vector linked to f by the relation

_ MDf()
M(DF )]

Since I'y is better than a countably # 2_rectifiable set, namely a Lipschitz graph,
an immediate consequence of the Rademacher theorem is that for ,}le_l“f—
almost every (xo, yo) there exists a classical tangent space to I's, and coincides
with the approximate tangent space. This means that there exists a 2-plane P
such that, if we denote with 7p the orthogonal projection on P,

(10) ¢r(x, f(x))

Ly = %) e = x0, )
X, ¥)—(x0,¥0),(x,y) e’
(x,0)=(x0,30) (x,») €Ty \/|x—xo|2+|y—yo|2

We will denote this plane as Ty, ,,I's, oriented by the unit simple 2-vector &,

in (10).
To write our formulas in components, let

=0.

2 . T .
o =w*dx' Ndx? + Z oV dx' Ady’ + o dy' A dy?,
ij=1
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where 7 is the complement of 7 in {1,2}. Then, the action of Gy on w is

2

(1) Glo) = [ o s )+ Y10 s () ()

i,j=1

+ 0™ (x, f(x)) det Df (x) dx.

Currents with locally finite mass can be canonically extended to bounded Borel
forms with compact support; this way, (11) remains true in this more general
class of forms. Moreover, since /" is locally bounded the mass is finite in products
K x R? with K compact; hence the forms can be taken to be supported in K x R>
with K compact subset of R?. For any Borel set B = R* we can also define

Gubw) = [ (Goyda®
nly

3. MONOTONE MAPS AND CAYLEY TRANSFORMATION

We recall that a multivalued map u : R* — P(R?) is said to be monotone if

p—q,x—y>=0 Vpeu(x),qeu(y).

Notice that u is monotone if and only if its inverse u~'(p) = {x: p € u(x)} is
monotone. Among monotone maps, a distinguished role is played by subdifferen-
tials dp of convex, proper and lower semicontinuous functions ¢ : R*> — Ry
{+00}, namely

dp(x) == {p e R*: p(») = p(x) + {p, y — x» Vy}

if p(x) < 400, and d¢p(x) = 0 otherwise.
In the case when u = dg it is easily seen that u~! = d¢p*, where ¢* is the con-
jugate function of ¢:

9" (y) := sup {xy) — o(x).

xeR?

We shall denote by Dom(u) the domain of u, i.e. the set of points x such that
u(x) # 0, and by T, € R? x R? its graph, i.e. the set {(x, y) : y € u(x)}. We re-
call (see [1] for a simple proof) that the set of points x such that u(x) contains
more than one point is o-finite w.r.t. #'; in particular it is #*-negligible. More-
over, the complement of this set, that we shall denote by C,, is made by continuity
points of u, namely

(12) Xk — X, x; € Dom(u), pi € u(xy) implies pr — u(x) Vx € C,.
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The Jacobian measure Ju of a monotone map u is defined on Borel sets of R? by

Ju(B) = $2< U u(x)).

xeB

It can be easily shown that Ju is g-additive, because the images of disjoint sets
have a #?-negligible intersection (indeed, this intersection is contained in the set
of points where u~! is multi-valued). In addition it is apparent from the definition
that Ju is local, namely JuL B = JvL B whenever B is Borel and u = v in B. In the
case when u = dp the measure Ju, formally correspondent to det V2¢, is called
Monge—Ampére measure of ¢.

Minty noticed that we can put in 1-1 correspondence monotone functions u
and 1-Lipschitz functions f via the Cayley transformation ® : R?> — R? defined
in (3), so that

p—x  /p+tXx
VoA v,

At the level of maximal monotone maps u : R> — P(R?) (where maximality is
defined with respect to inclusion of graphs) we have 1-1 correspondence with
graphs of entire 1-Lipschitz maps f : A — A, via the relation I’y = ®(T,).

With a slight abuse of notation, at all points x where u is single-valued we
denote by u(x) the unique element of the set, so that the functions f and u are
related by

(13) u(x\)/z—x:f(u(x\)/;-X).

at all points where u is single-valued.

In [1] the geometric and analytic implications of this have been widely studied.
First of all, notice that since the graph I'r of a Lipschitz map has a natural struc-
ture of multiplicity one current without boundary and I'y = ®(I",), we can define
the current

(14) (Gy,0) = Gy, (@) (w)).

Heuristically, G, is associated to the integration on the graph of u, including
vertical parts. As for Ju, the action of G, is local, i.e. {(G,,w) = {G,,w) when-
ever u, v are monotone, 1 = v in an open set 4 and w is supported in 4 x R2.

The orientation &, of the current G, is induced in the natural way from the
orientation &, in (10) of Gy, via @. The following definition will play an impor-
tant role in our discussion.

) Vp € u(x).

DEFINITION 3.1 (Vertical and totally vertical points). Let us call V' the vertical
points of the graph of u, i.e

V=A{(xy) el & (x,y) =0}
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We say that a point (x,y) € V is totally vertical if also igz(x, y) vanishes and
denote by V, the collection of these points.

Thanks to the area formula for maps defined on rectifiable sets (see [8,
Corollary 3.2.20]), it is easy to see that éio equals the area factor of the projection
m T, — R?x {0}, ie.

(15) H#?(n1(B)) = / 1E21dA#* for all Borel sets B < T,
B
while ¢% equals the area factor of the projection 7, : I', — {0} x R%:
(16) A (my(B)) = / |E92|da* for all Borel sets B < Ty,
B

The main properties of G, proved in [1] are summarized in the following two
theorems.

THEOREM 3.2. The following properties hold:

(i) If (ux) and u are maximal monotone and I',, — I, in the Kuratowski sense,
then G, — G, as currents. If u is single-valued (and therefore continuous) in
an open set A, then convergence of uy to u is locally uniform in A.

(ii) The maps u, := (el +u~")"" are single-valued, Lipschitz, maximal mono-
tone with Dom(u,) = R" and converge to u £*-a.e. in Dom(u). Moreover, if
u = 0p, then u, = Dp,, where ¢ (x) :=inf {p(y) + |x — yI2/(2)} is the inf-
convolution approximation of .

THEOREM 3.3. Let u: R* — P(R?) be a maximal monotone map and let Q be the
interior of its domain. Then the following assertions hold:

(i) u € BVioe(; R?), T, has locally finite #°-measure in Q x R* and
(17) |Du|(B) < #* (T, n (B x R?))

for every Borel set B < Q.
(ii) Let
D = {(x,y) € I'y such that T\ T, exists}.

Then for every x € Qnm(D\V) the map u is differentiable, with gradient
Vu(x), in the following sense:

lim |p - u(x) - <Vu(x)7 y—- x>| —
y—x,peu(y) |y — x|

0.

In addition, m,(D\V') has full Lebesgue measure in Q, Vu is the density of
Du with respect to ¥* and is symmetric if u is a subdifferential.
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(iii) The density of JuLQ with respect to £?* coincides with det Vu £*-a.e. in Q.
(iv) If u, are defined as in Theorem 3.2(ii), then |Du,| — |Du| and Ju, = det Du, —
Ju as measures in Q.

A simple consequence of the previous properties is the following relation
between G, and Ju, see also [1, Theorem 5.11]:

(18) Ju, 9 = Gy, p(x) dy' Ady*y

for any bounded Borel function with compact support. Coming back to Minty’s
transformation, the following proposition will also be useful.

PROPOSITION 3.4. Let u be a maximal monotone function, then

(1) If u = 0p on Dom(u) for some convex function, then Df is symmetric.
(ii) Conversely if Df is symmetric and Int(Dom(u)) # 0 then u = d¢ for some
convex function ¢ on Int(Dom(u)).

PrROOF. By (13), the first implication is trivial if ¢ € C'!(R"). Consider now
the approximations provided by the point (iii) of Theorem 3.2, in correspondence
to this approximation there are Lipschitz gradients f; such that ®(I';) =T,,.
Since G, weakly converge to G,, it follows that G, weakly converge to
(®~1*(G,). This convergence of graphs easily implies, by compactness, that f;
weak-+ converge in W1 to the function f such that I', = ®(I'y). Since weak-*
convergence preserves the symmetry of distributional derivatives, we obtain the
claim.

For notational simplicity (and since we are going to use it only in this case)
we prove the second implication only for n = 2. Thanks to [1, Equation (5.5)]
for any p € C*(R?) we have

/ D1p(x)u*(x) dx = —( Gy, p(x) dx® A dy*>
and
/ Dap(x)u (x) dx = <Gy, p(x) dx' Ady'.

Thanks to equations (11), (14) and (27) we have

/ !

~(Gyp(x) d* ndy?> = (G, ¢<%) ax? ndy”)

- / p(x + F(X)DLFAY) d’
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and

(G p(x)dx' ndy'y = <Gf7(/’<x,:/r§yl> dx'" ndy")

- / p(x' + F(¥))Daf (x') dx'.

Since D, ! = Dy f? we deduce that Dju?> = D-u' as distributions on the interior
of Dom(u), this and the maximal monotonicity of u easily imply that u = d¢p for
some convex function on Int(Dom(u)). O

In the next lemma we provide a simple representation of G, in cylinders
B x R? corresponding to regions B where u is continuous.

LEMMA 3.5. Let u: R> — P(R?) be a monotone map, and assume that B < C,,
with B Borel set with compact closure in the interior of Dom(u). Then, if

2 . T .
o= dx! Ndx? + Z o' dx' A dy! + o dy' A dy?
ij=1

is a bounded Borel 2-form with support contained in B x R*, we have

2 )
(19) Gy(w) :/szo(x,u(x))dx—i— Z(—l)i/Ba)ij(x,u(x))dDiuj(x)

+ /Ba)oz(x, u(x)) dJu(x).

In addition, if JuLB<« %* and C < T, (Bx R?) is a Borel set satisfying
Py (C)) =0, then

(20) H*(C) = |Dul(n1(C)).

PrOOF. Thanks to Theorem 3.2(i) and Theorem 3.3(iv) we can find a sequence
of Lipschitz maps u, such that I',, — T, in the sense of Kuratowski, |Duy| —
|Du| in the interior of Dom(u), det Duy #* = Ju and G,, = G, as currents. Let
A be an open set contained in the interior of Dom(u). If @ is a smooth 2-form
compactly supported in 4 x R? we have

(21) G,(w) = klim Gy, ().
Splitting G,, (viewed as vector-valued measures) and G, in components and

positive and negative parts and doing the same for the coefficients of w, we are
led to the analysis of the limit

lim Ik dO’k
k— o0
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where: gy is the positive or negative part of some component of G,,, which con-
verge thanks to Lemma 8.1 to the correspondent positive and negative part of G,;
gk(x) = f(x,ux(x)), f being the positive or negative part of the correspondent
component of w. Because of (12), the I'-limits g, in (37) and (39) coincide with
f(x,u(x)) on C,. As a consequence, formula (11) for the action of G, and
Lemma 8.2 give

lim sup
k—o0

Gy, () —/szo(x,u(x))dx

+ Zz:(—l)i/w{f(x,u(x))dDiu-7+/a)oz(x,u(x))d.]u
y

ij=1 4

can be estimated from above with C(ZL?(A4\C,) + |Du|(A\C,) + Ju(A\C,)),
where C depends only on ||w||,,. Since B < C,, combining with (21) and letting
A | B (using the outer regularity of %> + |Du| + Ju) we get

2 B
G, B(w) —/szo(x,u(x))dx—l- Z(—l)i/lga)ij(x,u(x))dDiuj
ij=1

02
—l—/Bw (x,u(x)) dJu.

The extension to Borel forms is immediate.

In order to prove (20) first notice that (19) implies that |Du|(7;(C)) < #*(C)
without any assumption on the Lebesgue measure of 7 (C). The reverse inequal-
ity, follows from the following general fact: if u is a vector-valued measure with
finite total variation and 7 : X — Y is an injective map, then

(22) | Typutl = Tylul.

Indeed, the inequality < is trivial; starting from |Sgv| < Sg|v| with v = Txu and
S:T(X) — X equal to the inverse of T we get |u| < Sy|Txu|. Applying T to
both sides gives Ty |u| < |Txu|.

In particular, since, thanks to (19),

G,LBx R* = (Id x u) ,(£* Dyw',...,Dou*,Ju)L B

as vector valued measures and Ju « % we can apply (22) with T'(x) = (x, u(x))
to obtain that for any Borel set C = I', n (B x R") with negligible projection it
holds

H3(C) = |Gul(C) = |Dul(m1(C)). O

PROPOSITION 3.6. Let B< R? be a Borel set contained in the interior of
Dom(u). Then #*(V (B x R?)) =0 implies |D°u|(B) = 0. A partial converse
holds if B is open, namely u € W,"!(B; R?) implies #*(V, (B x R?)) = 0.

loc
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PROOF. Let us assume by contradiction that ¥ n (B x R?) is #*-negligible,
but [D*u|(B) > 0. By (17) we get #>(B) > 0, where B:=T,n (B x R?). Now,
by assumption #~-almost all points in B are not vertical, hence (15) gives
#?(B) > 0, a contradiction.

To prove the second part when B = A is open we need to implement an
equation in the spirit of (19) for Sobolev maps u, not necessarily continuous,
more precisely

(23) Gu(qodx’TAdy-/) = (—l)i/Ago(x,u(x))D,-u-/(x) dx

for all bounded Borel ¢ whose support has a projection compactly supported
in A. To prove this identity, taking the locality of G, into account, we can assume
with no loss of generality that Dom(u) = R?, so that u is locally bounded. Now
we approximate u by convolution and use [1, Proposition 1.7] to obtain that the
graphs of the mollified functions u, converge in the Kuratowski sense to the
graph of u. From Theorem 3.2(i) we obtain convergence of the currents, so that
(23) can be proved by a limiting procedure when ¢ is smooth. When ¢ is bounded
Borel we perform an additional approximation. Now, suppose by contradiction
that #%(V, n (A4 x R?)) > 0. Then, for some i, j € {1,2} there exists a 2-form

» = pdx' A dy’ with support contained in 4 x R? such that G, V,(®w) > 0, so
that (23) gives

0<G,LVy(w) = (—1)[/ o(x, u(x)) D’ (x) dx.

Aﬁ7Z|(V,,)

This contradicts the fact that £?(r;(V,)) = 0, a simple consequence of (15). O

ExampLE 3.7. Tfue Wlé’cl nothing can be said in general about #(V\V,), to
see this consider the subdifferential of ¢(x) = |x|, namely

x/|x| if x#0
0 = =
CECE RPN
Then u € W\ (R% R?) but #2(V\V,) > 0.

4. SINGULAR PART OF Du AND SINGULAR GRADIENTS OF f

Let u: R> — R? be a monotone gradient and assume that for some Borel set
B < C, the measure JuL B is absolutely continuous with respect to #2. Under
these assumption we are going to investigate more closely the structure of the
orienting 2-vector &, to I', at points (x,u(x)) with x € B. Recall that this con-
cept is well defined, thanks to the fact that ', in the system of coordinates
(ef, €5, ¢1,¢€}) is the graph of a 1-Lipschitz function f.
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Since u is fixed throughout this section we write & = £, and

2
E=EVei ney + Z Eeine + % ne.
ij=1

We have proved in Proposition 3.6 that, for B contained in the interior of
Dom(u), if |D*u|(B) > 0 implies #(V n (B x R?)) > 0. Now we prove that
JuL B « %% implies #2((V\V,) n (B x R?)) =0, so that |D*u|(B) > 0 implies
the stronger conclusion #2(V, n (B x R?)) > 0.

PROPOSITION 4.1. If B = R? is Borel set, then
JuL B« % if and only if  A#*((V\V,) 0 (B x R?)) = 0.

PROOF. Assume JuL B« %2 let L := (V\V,) (B x R*) and set C := 7;(L);
since 7; (V') is Lebesgue negligible we get Ju(C) = 0, hence (16) gives

0=Ju(C) = L*(m((C xR*) AT,)) = / |2 da?.
(CxR?)AT,

Since (C x R?) n T, = L is contained in ¥\ V,,, where &% does not vanish, it fol-
lows that L is #*-negligible.

In order to show the converse, take a #*-negligible compact subset C of B,
then

Ju(C) = L(u(C)) = / o 1

—/ |5°2|dyf2+/ IS E
(T, V)N (CxR?) (CA\V)N(CxR?)

Now the first term is zero since, by hypothesis, the set of vertical points such
that |¢%| > 0 has zero #°-measure, while the second one vanishes since the
set (T,\V) N (C x R?) has a negligible projection on the first coordinate and
£%°| > 0 on it, so it must be #>-negligible according to (15). O

We thus have discovered that, under the additional assumption JuL B « £>
and B is contained in the interior of Dom(u), then |[D*u|(B)> 0 implies
AV, (B x R?*) > 0. Now we show that on the projection of ¥, on the
diagonal A (which has positive measure as well, since 7y : Iy =T, = A is a
bi-Lipschitz map) the gradient of f has a particular structure, equivalent to

()

up to a SO(2) rotation. Moreover, we show that this particular structure charac-
terizes the existence of a singular part in the distributional derivative.
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PROPOSITION 4.2. Let u: R*> — P(R?) be a monotone gradient, B = R*> a Borel
set satisfying JuL B < £* and let D < A be the set of points in na(B x R?) where
Df exists and is equivalent to (24) up to a SO(2) rotation. Then, (B x R*) AV,
coincides up to #*-negligible sets with (D x A*) N T.

Proor. First we prove that at totally vertical points the matrix Df has the given
structure. We know that at these points we have & = Zi/é Ye; ngj, and we can
compare this representation with the one ensured by (9) in the system of coordi-
nates (ef, e}, &f,8):

1
(25) fzm(e{/\eé—kDeéfle{/\s{+De£f2e{/\£§
— D f'ey nel — Do f7ey A&y + det Dfef Ag)).

Recalling that e/ and ¢/ are related to ¢; and ¢; by (5), we get

ej neb :%(€1A€2+61/\82—62/\81 +ene)

! !

eI NEp = e NE

e|nE :%(—el/\eg—l-e] A&yt e nel+eAE)
ey nE] :%(el/\ez—i—el/\ez—i—ez/\sl — &1 NE)

! !

Gy NE = €I NE

g NE) :%(elAez—elAez+eerl + &1 nE).

Hence, taking first the e; A e; component in (25) and then the & A & component
(both null, since we are at totally vertical points) we get

1= Do f' = Do f*+detDf =0, 1+ D f' + Do f? +detDf = 0.

Thus we have that det Df = —1 and tr Df = 0. In addition, since the operator
norm of Df does not exceed 1 (by the bound on the Lipschitz constant), the mod-
ulus of the eigenvalues of the symmetric matrix Df is less than 1. This implies
that, up to a SO(2) rotation, Df is representable as in (24).

To obtain the opposite inclusion, let us call D = D x A", we are going to
show that

(26) G,LD(pdx! Adx*) = G,_D(pdy' ndy*) =0

for any ¢ € C*(R? x R?). This implies that at #*-almost every point in D N T,
the orienting 2-vector ¢ is of the form

f:Zfijei/\Sj

and hence D " T, = V,, n (B x R?) up to #>-negligible sets.
In order to prove (26) notice we have the following relations between the dual
bases in the system of coordinates (ej, ez, &1, ¢2) and (ef, e}, &}, &)):
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dx'! = %(a’x1 +dy!)
dx"? = % (dx? + dy?)
dy'' = \/%(—dxl +dy!)
dy’? = \/%(—dxz + dyz)
and
dx'V Adx? =1 (dx" Adx? + dx Ady? — dxP Ady' + dy' Ady?)
dx'"' Ady'' = dx' A dy!
27) dx'"V Ady'? =3 (—dx! Adx? + dx! Ady? + dxE ady' + dy' Ady?)

dx? ady' =1 (dx! Adx? + dx" Ady? + dx? Ady' — dyt Ady?)
dx'> ndy'? = dx? Ady?
dy'"" ndy =1 (dx" ndx? —dx" Ady? + dx* ady' + dy' Ady?).

On D it holds tr Df = 0 and det Df = —1, hence

- /D B f () (D £ (x') + Doy f2(x')) dA* ()

= GrLD(@(x', ) (—dx"* Ady't + dx"t + dy'?))
= Gu L[)(w(xa y)(_dxl Ade + dyl /\dyz))

and

= [ B0 N1+ det D) dA ()

= GrLD(@(x!, y)(dxX"" Adx"* +dy't Ady'?))

= G,LD(p(x, y)(dx" ndx* + dy' A dy?))
where ¢(x', ') = w(x\g,_’f/;y). By the previous equations we obtain (26) and
hence the desired inclusion. O

In the next theorem, when B is also contained in the interior of Dom(u) we
prove a more precise relation between the Lebesgue measure of the set of points
where Df has the special structure and |Du.

THEOREM 4.3. Let u: R*> — P(R?) be a monotone gradient, B < R*> a Borel set
contained in C, and in the interior of Dom(u) and let D be as in Proposition 4.2.
Then JuL B <« %* implies

1
V2
In particular, since 7t (V) is £ *-negligible, |D*u|(B) > 0 if and only if #*(D) > 0.

(28) |Du| (B (V,)) < #%(D) < |Dul(Bri(Vy)).
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PRrROOE. Since f is a 1-Lipschitz map we have

(29) AH2(D) < AP((D x AY) A T)) < V272(D),

and by applying first Proposition 4.2 we obtain

(30) (D xA")NTy) = A*((Bx R*) A V,) = |Dul(m(B x R*) " V),

where the last equality follows from (20). The inequalities (28) follow immedi-
ately from (29) and (30). O

In the next lemma we relate, in a pointwise way, bounds on the Jacobian of u
to bounds on trace and Jacobian of Df. In the subsequent proposition we prove
the converse in an integral form, so that Ju is bounded also as a measure.

LEMMA 4.4. Suppose u: R> — P(R?) is a monotone gradient and let x be a
differentiability point of u, with

1
Z < det Vu(x) <L

for some L > 1. Let us consider the 1-Lipschitz map f which corresponds to u
under the Cayley transformation and suppose that f is differentiable at x' =
(x + u(x))/V2. If we denote T = tr Df (x) and J = det Df (x'), then

(L+1)
(L-1)

IT|<1+J.

PrROOF. We have

u—1Id ,(Lt—i—ld)
V2 V2 )
thus

V(u—1)(x) = Df (X")(Vu+ I)(x)

(where [ is the identity matrix) and so Vu(x) = (Df (x') —I) " (Df (x') +1). If
A1, 72 € [—1, 1] are the eigenvalues of Df(x'), taking determinants we must have

1 (l—l—il)(lﬁ-/ﬁ{z)
- < —F—F< < L.

L™ (1=4)(1-2)
Notice that (1 — 4;)(1 — 42) > 0 and write the previous inequality as

L +7+7
LST-T+J



REGULARITY OF OPTIMAL TRANSPORT MAPS AND PARTIAL DIFFERENTIAL INCLUSIONS 327
The first inequality gives
(1-TH+J)<LOA+T+J),

which is equivalent to T(L+ 1) > (14 J)(1 — L). Therefore, since L > 1 we
get

(L+1)

T<1+J.
C-1n =7

The second inequality gives
A+T+J)<L(-T+J),
that is equivalent to (L +1)7 < (L — 1)(1 + J). As before, it follows that

(L+1)
(L-1)

T<1+4+J

and the thesis follows. O

Using the elementary computations in the previous lemma we see that the
condition (L + 1)|T| < (L — 1)(1 4+ J) can be written in the equivalent and nicer
form

(I=2)(I=22) <(1+4)(1+4) <L(1 = 4)(1 = 4)

~| —

where 41, 4, are the eigenvalues of Df.

PROPOSITION 4.5. Suppose that the 1-Lipschitz function f satisfies
(31) % det(Id — Df) < det(Id + Df)) < Ldet(Id — Df)
P"-almost everywhere on a Borel B = A. Then

(32) %gzLASJuLASL,g)ZI_A

on the Ju-measurable set A = (1d +u) ' (vV2B) = (Id — f)(B)/V2.

PRrROOF. Let ¢(x) be a Borel nonnegative function whose support is contained
in 4. Let us define ¢(x’, y') = p((x’ — »")/v/2) = p(x). An easy calculation shows
that ¢ is supported in B x R?, hence
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0> 5 [ ' £ (7 detl1d = DF () = det(ld-+ D (')

1 ~ dx/l —d 12 dx/z —d 12
=L<Gf,(ﬂ(x',y/) Y Y >

A
V2 V2
- dx'' + dy"? dx’2+dy’2>
—( Gr,o(x',y' A
< s 9(x', ') 7 7

1
= 7 G p(x) dx' ndx?y = (G o) dy' ndly?

1 p(x)dx — | o(x)dJu(x),
]

where in the last equality we used (18). Since ¢ is arbitrary, this proves the first
inequality in (32), the second one follows along the same lines. O

5. Cl REGULARITY AND STRICTLY CONVEXITY OF ALEXANDROV SOLUTIONS
OF MONGE—AMPERE EQUATIONS

In this section we briefly recall the proof of the C! regularity of solutions of the
Monge—Ampére inequalities

(33) %g%g < (detD’p) LQ < LL*LQ

Here ¢ : R> — R U {+00} is a convex function, Q is an open set of R* contained
in the domain of ¢, L > 1 and det D?p is the Monge—Ampére measure, corre-
sponding to the Jacobian measure of dp, see Section 3. Since we are only inter-
ested in the continuity of the subdifferential map we give here a proof whose
strategy can be summarized in the following way: first of all equation (33) implies
the strict convexity of u in the sense that if p € dp(x) then

o(y) > o(x)+<{p,y —x) forany y # x.

This implies that dp* is univalued and hence continuous. Then we show that if ¢
satisfies (33) then ¢* satisfies a similar property.

PROPOSITION 5.1 ([6]). If (detD%p)LQ > cL*LQ for some ¢ >0 then ¢ is
strictly convex in Q.

PrOOF. By the convexity of ¢, if strict convexity fails at some point x, the con-
tact set {y: ¢(y) = ¢(x) + {p, y — x>} contains a small segment touching x. Up
to scaling and subtracting an affine function we can suppose that x = 0 and that
9 =00n{0} x [-2,2] € Q. Let R = [, 2/] x [—1, 1], then (denoting with det V?¢
the density with respect to #? of the measure det D?¢)
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2y/ch <2 /R \/m dxdy < /R (%Dm(/} + tDyygo) dx dy
1 1 2h
— ;/I(wa(h, y) — Dxp(2h, y)) dy + t/h (Dyp(x, 1) — Dyp(x, —1)) dx

= %11 (h) + tlz(h),

where the last equality must be understood in the sense of traces since the sub-
differential of a convex function coincides with an (univalued) BV function
#"-almost everywhere. Now by the continuity of left and right derivatives of
convex functions and the local Lipschitz property of ¢ we have that I; goes to
zero as h — 0, while I, < Ch? since for any x € [h,2h] and y € [-1,1]

D, < — mi < Ch.
yp(x,y) < max | max p(x,y)— min p(x,y)| <

Choosing ¢ = /I} /h we obtain a contradiction as 4 — 0. O

LEMMA 5.2. If ¢ satisfies (det D’p)LQ < CL*LQ for some C >0, then ¢*
satisfies

(34) (det D*p*) L p(Q) > %32 L dp(Q).
1

PRrROOF. Recall that (0p)~ = dp* as multivalued functions. Then, if 4 = dp(Q)
we have 4 < dp(Q N dp*(A4)) and hence

LHA) < L 0p(Qndp*(A))) < CL*(0p*(A)). O

Since it is well-known that strict convexity of ¢* implies C! regularity of ¢, to
conclude we only have to check that dp(Q) is open, in order to apply Proposition
5.1 to ¢*.

LEMMA 5.3. Let ¢: R*> — RuU {+w} be strictly convex in an open set Q con-
tained in its domain. Then 0p(Q) is open.

PROOF. It is obviously sufficient to show that if 0 € dp(Q) then B.(0) < dp(Q)
for some ¢ > 0. Let x € Q be such that 0 € dp(x) and let » > 0 be such that
B.(x) = Q. Assuming with no loss of generality that ¢(x) = 0, by strict convexity
of ¢ we have that o :=mingp ) ¢ > 0. Let now ¢ € R* with |¢| < o/(2r) and
consider the function g,(y) = ¢(y) — <{q, y). If x, € B.(x) is its minimum point,
we claim that x, ¢ 0B,(x), this completes the proof since x, € B.(x) implies
q € 0p(B,(x)) and, since ¢ is arbitrary, B,/ (0) = dp(€2). To prove the claim,
just notice that g,(0) = 0 while on 0B,(x) we have

g(y)Zoc—|q|r>%>0. m|
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6. EQUIVALENCE OF THE PROBLEMS AND RELATIONS WITH OPTIMAL
TRANSPORTATION

In this section we gather the results of the previous section and we show that the
two problems are equivalent.

So, let u be as in Problem 1 with u ¢ W' (4; R?) and consider the function f
defined on the set B := (Id + u)/v/2(A4), notice that this set is open thanks to the
strict monotonicity of (Id + ) and Lemma 5.3. We claim that Df € A almost
everywhere in B. From Lemma 4.4 we know that this is true on (Id + u)/v/2(D,),
where D, is the set of differentiability points of u in A. From Theorem 3.3 (ii) we
know that

(Id + u) /V2(D,) = ma(TA\V) "D (4 x R?))

up to L’-negligible sets. Proposition 4.2 implies that Df € A also on
7a(Vy (A x R?)), since trivially S = A. Our claim now follows since the previ-
ous inclusions yield that {Df ¢ A} is contained up to #*-negligible sets in

ATy 0 (V\V,) 0D (A x R?)) Una(T,\D).

The latter sets are .#>-negligible since they are the projection of .#>-negligible
sets, thanks to Proposition 4.1 and the existence of the tangent space #>-almost
everywhere.

On the other hand, from the results of the previous section we know that u
is continuous (and single-valued) in A, hence we can apply Theorem 4.3 (see in
particular (28)) to obtain that the set B {Df € S} has positive .#*-measure.
Now, if f were affine we can assume up to a rotation, and passing possibly to a
connected component of B, that

f(x'y)=(x"+a,—y'+b) inB

for some a,b € R. By taking the first component in both sides of (13) we

get x = —a/y/2 in A, a contradiction (this means that monotone functions
corresponding to these functions f have a ‘“thin” domain, contained in
{x =—a/2}).

Conversely, let f : B — R? be a Lipschitz map satisfying Df € A #?-a.e. with
L({Df € 8}) > 0. Assuming with no loss of generality that B is convex, we
obtain that f is 1-Lipschitz gradient, hence we can apply [11, Proposition 3.6] to
extend f to a 1-Lipschitz gradient defined on the whole of R? (still denoted by f)
and denote by u the corresponding monotone operator which is a subdifferential
thanks to Proposition 3.4. From Proposition 4.5 we obtain the two-sided bounds
(32) on Ju, in the set A := (Id 4+ u) ' (v/2B) = (Id — f)(B)/v/2 which is open
thanks to Proposition 7.3. Now we can use the results of the previous section to
obtain that u is continuous in 4. Eventually we use Theorem 4.3 again to obtain
that u is not locally Sobolev in A.
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6.1. Connection with optimal transportation

In the sequel we briefly recall the connection of Problem 1 with the optimal trans-
portation, our main reference is [15]. Given two probability measures x4 and v
in R” with finite second moments:

[ aut, [P <

the optimal transportation problem with quadratic cost consists in looking for a
Borel measurable map 7' : R” — R" which solves the variational problem

Typp=v

(35) min / - T(x)|* du(x).

Actually it is clear that the above problem could have no solution because
there is no admissible map (think for example to the case in which u =, and
v = (0,4 +9,)/2 with g # r) or because the infimum is not attained. However, we
have the following remarkable result.

THEOREM 6.1. If u < ", ie. u = 00 L", then there exists an unique map T solv-
ing (35). Moreover, T coincides p-almost everywhere with the gradient of a convex
function ¢. In addition, if v = 0", the potential function ¢ satisfies the following
Monge-Ampére type equation in a pointwise sense:

01(Vo(x)) det V2p(x) = 0o(x) for p-a.e. x € R",

In the previous theorem we denoted with VZ¢ the absolutely continuous part
with respect to #” of the distributional derivative D*p. Recall also that, accord-
ing to Theorem 3.3(iii), det V¢ is always equal to the absolutely continuous part
of the Monge—Ampére measure

det D*p = Jog.

A natural question left open by the previous theorem is the regularity of the
transport map 7. Without any assumption on the densities gy, 91, it is easy to
construct examples in which 7 is even discontinuous, think for example to the
case in which spt u is connected, while spt v is not. Less trivial is the fact that dis-
continuities can persist even in some cases when spt v is simply connected, see [4].
The main intuition of Caffarelli in [4] is however that the right assumption is the
convexity of sptv, to be more precise the following theorem holds:

THEOREM 6.2. Suppose that 1/L < gy, 01 < L on their supports, that spt o, is
convex and that spt gq is the closure of an open set Q with "-negligible boundary.
If ¢ is the unique (locally in Q, up to additive constants) convex function such that
Vo u = v then ¢ satisfies the following Monge—Ampére inequalities

1
4"Qs detD’p < L’ "L Q.
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In addition
20(9) < sptor.

In particular we recover a sub and supersolution in the sense of Alexandrov
and Caffarelli’s regularity theory can be applied to deduce that ¢ is a C1'* func-
tion, see also Section 5. Under these (minimal) hypotheses, however, it is a still
open and interesting the question to deduce at least Wli"cl regularity of ¢, and this
is one of the motivations for Problem 1.

7. SOME PROPERTIES OF f

To conclude, we prove some properties of a potential solution to Problem 2 and
the statement made in the introduction about the absence of rank-one connec-
tions in Problem 2.

Let’s start with the rank-one connections. Since the involved matrices are sym-
metric, suffices to consider rank-one segments of the form b ® b.
LEMMA 7.1. IfAe Sthen A+b®b ¢ Aunless b = 0.

PROOEF. Let vy, v» be the orthonormal eigenvalues of 4 corresponding respec-
tively to 1 and —1 and write b = b'v; + b*v, so that

2
b®b=> b'bn®uv.
ij=1
By the 1-Lipschitz property of the matrices in .4 we have
L2 [(A+b®b)or]” = |(1+[b'P)or +5'5%0a = (14 |p!*) + (6'6%)°

and hence h! = 0. The matrix 4 +b ® b is diagonal in the basis {v|,v,} with
eigenvalues 1 and —1 + |b2|* and the relation

(L+1)b2* = (L + 1)|trace(A + b ® b)| < (L — 1)(1 + det(d + b ® b))
= (LD

implies b> = 0. O
LEMMA 7.2. There exists a constant K = K(L) > 1 such that
(36) |4 — S| <2K(—det(4d — S)) VAe A VSeS,

where || - || denotes the Hilbert-Schmidt norm.
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Proor. Up to a rotation we can suppose that

1 —¢ 0 cosf —sinf
A = =
( 0 (1 —82))’ S (—sin@ —cosH)’

where the condition 4 € A can be read as

(i) e1,60 > 0
(11) (L+ 1)|81 —82| < (L— 1)(81 + & —8182).

Moreover we can assume without loss of generality that (1 —¢;) > —(1 — &),
that is 2 — ¢; — & > 0. With this assumptions in force we have

4_S— (1—81')—0089 sin 0 .
sin 6 —((1 — &) —cos )
A straightforward calculation gives
2 e + &3
HA—SH:ZQme@@—m—Q%+I22)

and
—det(A — S) = (1 — COsS 0)(2 — & — 82) + &18.

Now it is clear that the lemma follows if we are able to find a constant K > 1
such that (¢f +¢&3) < 2Keje. In order to prove the previous inequality notice
that we can suppose ¢ > & > 0 and that we only have to find a bound for
€1/&. Condition (ii) above implies that & = 0 if and only if ¢ = 0 (this is just
another instance of the absence of rank-one connections between A and S) so
we can assume & > 0 and rewrite the condition as

L-1 L-1
-1 < —g) <
(1 1)_L+1(t+1 al)_L+1(t+1)
where 7 = ¢ /¢;. Now it is straightforward to verify that r < L. O

We point out an interesting consequence of the previous lemma: suppose
f: B — R? satisfies the differential inclusion on a ball B and #*({Df € S}) > 0.
Then, by well-known rigidity properties of SO(2), if *({Df € A\S}) = 0 then f
is affine (see [14]). So, gradients in A are attained in a set of positive measure for
non trivial maps; on the other hand, for any S € § the map ¢g := J(f — Sx),
where J is the linear transformation such that J(v!,v?) = (v!, —0?), is quasi-
conformal. In particular, by well known properties of quasi-conformal maps
(see [12, Theorem 16.10.1]), the set {Dg = 0} = {Df = S} must have null Leb-
esgue measure if f is not affine in B. As a consequence, the map can attain a fixed
singular gradient only on a set of measure zero unless it is affine. It is easy to
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show that at the level of the map u this means that for any v € S"~! we have
|D*u|(B,) = 0, where

,  dDu
Bv.z{xeB .dlDu|(x)—v®v}.

This indicates that a negative answer to Problem 1 should involve the construc-
tion of a rather complex example.

Another consequence of the previous lemma is that if f satisfies Df € A
#*-ae. in B, the set (Id — f)(B) is open if 4 is open.

PROPOSITION 7.3. Let f be a non locally affine solution of the partial differential
inclusion Df € A on an open set B. Then the set A := (Id — f)(B) is open.

PrOOF. Without loss of generality we can assume that B is convex and that f
is not affine in B. Since f solves the differential inclusion its gradient is sym-
metric, moreover I — Df is nonnegative definite, so there exists a convex func-
tion G: B— R such that DG =1d — f. Thanks to Lemma 5.3 we have just
to prove that G is strictly convex. Suppose this is not the case then up to an
affine transformation we can suppose that G(x’) = a-x" on [0,1] x {0} = B and
G(x') = a - x’ everywhere in B for some vector a. Since G is continuously differ-
entiable this implies that DG = @ on [0, 1] x {0}. This means that on [0, 1] x {0}
the function f(x’) coincides with x” + a. Now take the matrix S in (24), thanks
to Lemma 7.2 we know that the map g(x') = J(f(x') — S - x’) is quasi confor-
mal (here again J(v',v?) = (v!, —1?)), moreover it is constant on the segment
[0, 1] x {0}. Since the inverse image of a point by a non constant quasi conformal
map is discrete (see [12, Theorem 16.12.1]) we have that f(x") = S - x’ + a every-
where on B, a contradiction to the assumption that f is not affine. O

8. APPENDIX

LemMma 8.1. Let wy, € M(Q;R”) be a sequence of vector-valued measures with
finite total variation in Q <= R" open, satisfying

pe = pand ] = ul.

Then the positive and negative parts of all components of u, weakly*-converge to
the corresponding parts of .

PrOOF. It is a direct application of Reshetnyak continuity theorem (see for
example [2, Proposition 3.15]). O

LemMa 8.2. Let f. : Q — [0, +0) be nonnegative Borel functions and define

(37) fo(x) = inf{liin inf fic (o), v — x}.
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Then

k—oo

liminf/fkd,ukz /f_du
Q Q

whenever p;, are nonnegative and w, — p in Q.

ProOF. By Cavalieri’s formula for the integral and Fatou’s lemma, suffices to
show that liminfy g ({fi > t}) > n({f- > t}) for all # > 0. To this aim, given a
compact set K = {f_ > t}, the definition of f_ immediately implies that there is
an open neighborhood U of K such that U < {f; > ¢} for k sufficiently large.
Then

liminf 4 ({/i > 1}) = liminf 44, (U) = u(U) = u(K)
— 00 — 00
and the conclusion follows letting K increase to {f_ > t}. O

Analogously, if all f; > 0 are equibounded and supported in an compact set
K < Q, then

(38) iimsup [ fidi < [ £ du
k— o0 Q Q
where
(39) filx) = sup{lim sup fi(xi), xx — x}.
k—o0
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