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ABSTRACT. — We present necessary and sufficient conditions to guarantee that at least one solu-
tion of an infinite dimensional stochastic differential equation, which starts from a regular closed
subset K of an Hilbert space, remains in K for all times.
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1. INTRODUCTION AND SETTING OF THE PROBLEM

Let H be a separable Hilbert space with scalar product <-,-» and norm |- |. We
are concerned with a stochastic differential equation of the form

{dX = b(X)dt+a(X)dW (1),

) X(0)=xeH.

We shall assume the following:

HypotHesis 1. (i) b: H — H is continuous.

(i) 0: H— Ly(H) is continuous, where Ly(H) is the space of all Hilbert—
Schmidt operators on H.

(iii) W (t), t >0, is a H-valued cylindrical Wiener process defined in a filtered
probability space (Q, 7 ,(F1),-¢, P).

We recall that W (1) is formally defined by

(2) W(l) = zoo:eka(l),
k=1

where (e ) is an orthonormal basis of K and (W},) a sequence of one-dimensional
Brownian motions in (Q, #,(%),.,, ), mutually independent and adapted to
the filtration (4),.,. Notice that, although the series in (2) is not convergent
in L2(Q, 7,P), SW(t) == Y02, Sex Wi (t) (where S € Ly(H)) is.
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We say that an adapted continuous stochastic process X (¢), t € [0, 7], is a
solution of (1) if

(3) X()=x+ /O b (5)) ds + /O G(X(s) dW(s), 120, Pas.

Existence and uniqueness results for equation (1) are easily found in the litera-
ture, see, e.g., [5].

In this paper, we are interested in viability for equation (1) with respect to a
regular closed set K. We recall that K is viable if, for any x € K, there exists a
solution X (-, x) of (1) which remains in K for all times.

When H is finite dimensional, stochastic viability for closed sets has been
extensively studied. In connection with this paper, let us quote [3], [4], where a
characterization of viability of K is given in terms of the distance function

dg(x) ;== inf{|x — y|: y € K},

and several references on related works can be found.

Recently, strong interest in viability for stochastic partial differential equa-
tions was motivated by mathematical finance problems, see e.g. [1] and [6]. In
that case, it is important to see if there exist viable finite dimensional subspaces
for the stochastic flow. A new approach to viability for SPDEs was developed in
[7], [11] and [8]. Such an approach is based on an infinite dimensional generaliza-
tion of the support theorem, proved in the finite dimensional case in [10]. The
avantage of this method is that it reduces the problem to the well known Nagumo
condition for deterministic systems. The price to pay is that one has to assume the
coefficient ¢ to be at least C!.

When trying to extend finite dimensional results to the Hilbert space setting,
one has to confront the major difficulty that, in euclidean space, the distance
function d(x) is twice differentiable almost everywhere (with respect to Lebesgue
measure), which allows to apply 1t0’s formula to some power of di. In infinite
dimensional Hilbert spaces, on the contrary, one only has that dZ(x) is twice dif-
ferentiable on a dense set in general (except for very special K), see [9]. Therefore,
suitable regularity assumptions have to be imposed on 0K to be able to use It0’s
formula (that holds true for functions of class C? in Hilbert spaces, see, e.g., [5]).
We do so as follows:

HYPOTHESIS 2. di € C*(U) for some open neighborhood U of K with bounded
first and second derivatives.

Observe that Hypothesis 2 allows for closed sets K with empty interior.

As in [3] and [4], our analysis relies on the use of the Kolmogorov operator
restricted to K, that is,

(4) Lgo(x) = % trla(Tlk (x)) D?p(x)] + <b(I1k (x), Do(x)),
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where
(5) a(x) :=a(x)o"(x) VYxeH,

and ITk(x) denotes the projection of x onto K, defined for each x € U as the
unique element ¥ € K such that |x — X| = dg(x). We observe that the fact ITg(x)
is nonempty and reduces to a singleton is a (nontrivial) consequence of the
C'-smoothness of dx in U\K. Indeed, in view of Hypothesis 2, dx is of class
C! on U\K. Then, the Density Theorem (see e.g., [2]) yields the existence and
uniqueness of the projection onto K for a dense subset of U\K, hence for all
points of U\K by an approximation argument.

Before stating our main results, let us introduce further notation. Recall that,
under Hypothesis 2, d2 € C'(U), dx € C'(U\K), and so

(6) Ddi(x) = 2(x — Tg(x)), Vxe U,
and
— Dag(x) = XK
(7) n(x) := Ddg(x) = e Vx e U\K.
Now, define
(8) V(x) :%dl‘i(x) Vxe U.
Then
9) DV (x) = (x — Tg(x))dz(x) = di(x)n(x), Vxe U
and
(10) DV (x) = 3dg(x)n(x) ® n(x) + di(x)Dn(x), Vxe U

where D?V(x) is a bounded linear operator on H in view of Hypothesis 2. So,

(11) DV(x) = {Sd,%\gz)z;(? ® n(x) + di(x)Dn(x) Vx e U\K

Finally, let us point out, for future use, the useful inequality
(12) dg(x —Hg(x)+y) <dg(x), VxeU,Vyek
which is derived as follows:

d[((x— HK(X) + y) = leéllf; ‘X— HK(X) +y-— Z| < |X — H[((X)| = dK(x).
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It is convenient to introduce the following modified system,
" aX (1) = b(T(X (1)) dr + o(TTk (X (1)) dW (1),
X(0)=xeKk.

It is obvious that K is viable for system (1) if and only if it is viable for system
(13). So, we shall restrict our considerations from now on to system (13), a ge-
neric solution of which will be denoted by Xk (z, x). Recall that the corresponding
Kolmogorov operator is L defined by (4).

We can now state the main results of the paper. Hypothesis 1 will be assumed
hereafter, without further notice.

THEOREM 3. Let Hypothesis 2 be fulfilled. Then K is viable if and only if
(14) LgV(x) <0, VxeU.

Under a stronger regularity assumption on K we can characterize viability
imposing a simpler set of conditions just on dK. We shall express such conditions
in terms of the signed distance from 0K, that is,

dK(X) = dK(X) - dH\Ié

(x) VxeH

where K denotes the interior of K. Notice that the smoothness of dk requires K
to be the closure of its interior. Also, if d is differentiable, then the exterior nor-
mal at every point x € 0K is given by Ddg(x).

THEOREM 4. Let dy be of class C? with bounded first and second derivatives on
some neighborhood of 0K. Then, K is viable if and only if

(15) 3 tla(y) D ()] + <b(»), Ddx(1)> <0 ¥y K
and
(16) a(y)Ddk(y), Ddx(y)> =0 Vy e K.

2. PROOFS AND EXAMPLES
2.1. Proof of Theorem 3

NECESSITY. Suppose K is viable. Let x € U and let Xk (#,I1x(x)) be a solution
of (13) which remains in K for all # > 0. Then, owing to (12),

(17) V(x —Tg(x) + Xx(t,g(x))) < V(x), Ve=>0.
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Now, by Itd’s formula we have, for any ¢ > 0,

dV(X — HK(X) + XK(I, HK(X)))
= <DV(X - HK(X) + X]{(Z, HK()C))>,dXK(l, HK(X))>
5 trla(Xi (1, T () DV (x Tk (x) + X0, T ()] de
=Lk V(X — HK(X) + XK(t, HK(X))) dt
+ DV (x — Hg(x) + X (2, g (x))), 0(Xg (2, g (x))) dW(2)).

Hence, integrating between 0 and 7 and taking expectation,
E[V (x — g (x) + Xk (1, g (x))) — V(x)]
t
= [E|:/ Lk V(X — HK(X) + XK(S, HK(X))) dS:| <0.
0

Consequently,

%[E|:/OILKV(X — HK(X) + XVK(S7 HK(X))) dS:| <0,

which, letting ¢t — 0, yields (14).

SUFFICIENCY. Assume that (14) holds and let x € K. Consider the exit time
from U

ty(x) :=1inf{r = 0 : Xk(¢,x) € OU}.

We claim that 7y (x) = oo almost surely. Indeed, applying 1t6’s formula with a
stopping time, for every ¢ > 0 we have

Aty (x)
V(X(t nto(x),x) = /0 L V(Xk(s,x)) ds

Aty (x)
+ /0 DV (X (s,x)),0(Xk(s,x)) dW (s),

or

t
V(X (t A o(x), X)) = / Ty eyoey L V (X (5, %)) ds
0

4 /0 Vo (20 <DV (Xk (5, %)), 0( Xk (5, X)) dW (5)>.
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Hence, taking expectation,
t
[E[V(XK(I A Tu(x), x))] =F |:/ ﬂ{fu(x)Zs}LK V(XK(S, HK(X))) ds| <0
0

for every >0 on account of (14). This implies Xk (#A7y(x),x) € K a.s. for
every ¢ > 0, so that

P(ty(x) < 0) = lim P(ry(x) <i) =0.

i— 0
The proof is thus complete. |
2.2. Proof of Theorem 4

To begin with, we observe that our assumption on dg implies that d¢ is of class
C? with bounded first and second derivatives on some neighborhood of K, say U.
So, Theorem 3 can be applied. Denoting by 7 the gradient Ddk, in light of (9)
and (11) we have

(18)  LgV(x) = %di () tefa(TIk (x)) Dn(x)] + dg (x) < (T (x), n(x)>
2 0 ()n(). (), Ve U.
Suppose K is viable. Then, by Theorem 3,
1
(19) 5 i (x) trla(TTk (x)) Dn(x)] + dig (x)<b(TTk (x)), n(x))
+ %d,%(x)(a(HK(x))n(x),n(x)> <0, VxeU\K.
Hence, dividing both sides of (19) by dZ(x) to obtain (16) as x — 0K, i.e.,
(20) Ca(y)n(y),n(y)) =0, Vye dK.
Moreover, since n(Ilx(x)) = n(x), the above equality yields
(21) (a(TIg(x))n(x),n(x)> =0, Vxe U\K.
Therefore, (19) reduces to

%d3(x) trla(Tg (x))Dn(x)] + d*(x)<b(Tgx(x)),n(x)> <0, Vxe U\K.

Consequently, as x — 0K, we obtain (15).
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Next, assume (15) and (16). Then, (21) also holds true. So, by (15),

LgV(x) = %d;((x) trla(Tg (x)) Dn(x)] + dg (x)<b(Mg (x), n(x)

- dé@){i trfa(Ti(x)) DTk (x))] + <b<nK<x>,n<HK<x>>>} <0

for all x € U. Hence, Theorem 3 ensures that K is viable. O
2.3. Examples

In this section, we apply the above theory to three examples characterizing via-
bility for a ball, a half-space, and a subspace of H.

EXAMPLE 5 (The ball By). Let K = B; := {x € H : |x| < 1}. Then,

n(x) =—, Vxe By.

Therefore,

1 x®x

Dn(x) = — ————
() X |x

Vx € By.

Thus, (15) and (16) become, respectively,

3 tela()] + <b(2). 35 — 5 al¥)y ¥> <0 Yy € 0B,

2
and
a(y)y,y> =0 Vye dB.
So,
1
5 wWla(]+<b(y),y> <0 and la(y)y.y> =0 VyedB
are necessary and sufficient conditions for B; to be viable. O

ExaMPLE 6 (Half-space). Let {e;} be an orthonormal basis of H, let x; =
{x,ery, k € N, and define

K={xeH:x >0}
Then, 0K = {x € H : x; = 0} and dg(x) = x; = —min{x;,0}. So,

O

n(x) = —ely, <0, xe(K)°,
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and

Therefore, the two conditions
bi(y) <0, and a;(y)=0, Vyedk,

where b;(y) = <b(»),e1) and a; 1(y) = <a(y)e1,e1 ), are necessary and sufficient
for the viability of K. |

ExAaMPLE 7 (Subspace). Let Z be a closed subspace of H and let P be the
orthogonal projector onto Z. Then, I1,(x) = Px,

n(x) = x — Px
C|x—Px|’
and

I-P (x—Px)® (x— Px)

Dn(x) = -
n(x) |x — le |x — Px|3

for all x € V. Thus, Z is viable if and only if

%d%(x) trla(Px)(I — P)] + d2(x){b(Px),x — Px)

+ <a(Px)(x — Px),x — Px) <0 VxeH.

3. EQUATIONS IN MILD FORM

Let us consider the stochastic differential equation
(22) dX = (AX + b(X)) dt + a(X) dW (1),
X(0)=xeH,

where A : D(A) € H — H is the infinitesimal generator of a strongly continuous
semigroup ¢4, and b, ¢ and W are assumed to satisfy Hypothesis 1. Let K be a
closed convex set in H such that d} is of class C.

A mild solution of equation (22) is a stochastic process X which solves the
integral equation

(23)  X(1)=e"x+ /O te(’_S>Ab(X(s))ds+ /O re”_S)Ao(X(s))dW(s).
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It is useful to consider the approximate equation

o4 {dX,, = (AX, + b(X,)) dt + a(X,) dW (1),

X,(0)=x€e H,

where for eachn € N, 4, = nA(nl — A)fl is the Yosida approximation of A4.
The following result follows from Theorem 3.

PRrOPOSITION 8. Let Hypothesis 2 be fulfilled. Then K is viable for problem (24)
if and only if
(25) % trla(Tgx)D*V (x)] + {A,JIgx + b(IIgx), DV (x)> <0, VYxe U.

Moreover, if (25) holds for any n € N, then K is viable for problem (22).
Applying Theorem 4 we obtain the following.

PROPOSITION 9. Let dg be of class C?* with bounded first and second derivatives
on some neighborhood of 0K. Then K is viable for problem (24) if and only if, for
every y € 0K,

(26) 3 5la()Dn(3)] + <Auy + b(3),n(3)) <0
and
(27) Ca(y)n(y),n(y)> = 0.

Moreover, if (26) holds for any n € N, then K is viable for problem (22).

REFERENCES

[1] T. BYORK - B. G. CHRISTENSEN, Interest rate dynamics and consistent forward rate
curves, Mathematical Finance, 9, 323-348, 1999.

[2] F. H. CLARKE - Yu. S. LEDYAEV - R. J. STERN - P. R. WOLENSKI, Nonsmooth Anal-
ysis and Control Theory, Springer, New York, 1998.

[3] G. DA PrATO - H. FRANKOWSKA, Stochastic Viability for compact sets in terms of the
distance function, Dynamic Systems and Applications, vol. 10, 177-184, 2000.

[4] G. Da PraTO - H. FRANKOWSKA, Stochastic viability of convex sets, J. Math. Anal.
Appl. 333, no. 1, 151-163, 2007.

[5] G. DA PrATO - J. ZABCZYK, Stochastic equations in infinite dimensions, Cambridge
University Press, 1992.

[6] D. FiLirovic, Consistency problems for Heath-Jarrow—Morton interest rate models,
Springer, 2001.

[7] W. JAKIMIAK, A4 note on invariance for semilinear differential equations, Bull. Pol. Sci.,
179-183, 1996.



346 P. CANNARSA AND G. DA PRATO

[8] T. NAKAYAMA, Viability Theeorem for SPDE’s Including HIM Framework, J. Math.
Sci. Univ. Tokyo, 11, 313-324, 2004.
[9] D. Preiss, Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91,
no. 2, 312-345, 1990.
[10] D. V. STROOCK - S. R. S. VARHADAN, Multidimensional Diffusion Processes,
Springer—Verlag, 1979.
[11] J. ZaBczYK, Stochastic invariance and consistency of financial models, Rend. Math.
Acc. Lincei, s 9, 11, 67-80, 2000.

Received 26 April 2011,
and in revised form 12 May 2011.

P. Cannarsa

Dipartimento di Matematica
Universita di Roma “Tor Vergata”
Via della Ricerca Scientifica 1
00133 Roma (Italy)
cannarsa@mat.uniroma?2.it

G. Da Prato

Scuola Normale Superiore di Pisa
Piazza dei Cavalieri 7

1-56125 Pisa (Italy)
daprato@sns.it



	mk1
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk10
	mk11
	mk8
	mk9
	mkEnd-page

