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ABSTRACT. — Zanaboni in 1937 published three notes in the Rendiconti in which he proposed
a modified version and new proof of Saint-Venant’s principle applicable to bodies not necessarily
cylindrical in shape. Examples are presented to illustrate that Zanaboni’s version is not universally
applicable.
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1. INTRODUCTION

Saint-Venant’s principle, first proposed in 1855, has been accepted by most
engineers as an heuristic argument for disposing of edge effects in the ele-
mentary theory of beams and similar mechanical structures. Nevertheless, its
validity was challenged from the outset, and its history (briefly recounted in
[11], [7]) has been characterised by attempts to provide a precise mathe-
matical statement accompanied by rigorous proof. Early contributors include
Boussinesq, Dougall, Southwell and Goodier, the last two using the potential
energy to measure the spatial decay of edge effects to justify the principle.
Counter-examples are provided by Toupin [17] (twisted thin walled I-beam),
and, of direct relevance to the present study, by Hoff [6] for a body of nar-
rowing central cross-sections loaded by equilibrated surface forces distributed
over opposite almost contiguous surfaces. Zanaboni [18, 19, 20], although
aware of these contributions, separately developed an alternative approach
that concerns a bounded elastic body €(;) in equilibrium subject to zero
body force and a given system of self-equilibrated loads P;, i =1,2,3, dis-
tributed over a part I' of the otherwise free smooth surface d€)(). His version
of Saint-Venant’s principle states that the strain energy contained in the sub-
region remote from the load surface diminishes to zero with increasing distance
of the sub-region from the load surface. (See Fig. 1.)
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Figure 1. (a) Isolated body ;) (b) Bonded bodies Q) and Q).

Note that a self-equilibrated system of forces P; on the surface I" satisfies the
conditions

(11) /P,'dS_/(X,'Pj—XjP,’)dS_O,
r r

where x;, i = 1,2, 3 are orthogonal Cartesian coordinates. Let u,-(l)(x), to within a

rigid body displacement, be the Cartesian components of the small displacement
produced in Q) by the loads P;, and define components of the corresponding
linear strain to be

1 1 1
(1.2) el = (ufﬁj) + u]{,?),

<
| =

where here, and throughout, the standard comma notation for partial differentia-
tion is employed, along with the usual convention of summation over repeated
subscripts.

Later sections consider examples in which the distributed load system is
specialised to various point forces. Meanwhile, we extend the formulation of
Zanaboni’s analysis to include linear anisotropic nonhomogeneous elasticity for
which the cartesian components of stress a,-(jl) satisfy the constitutive relations

1 1
(13) O'I<J) = C[/klelg-).
The nonhomogeneous elastic moduli ¢;p;(x) possess the symmetries
(1.4) Cijki = Cklij = Cjiki
and are positive-definite in the sense that

(1.5) oYy < Cpy Wiy < by, YW =y,

where ¢y, ¢; are positive constants.
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Under these assumptions, the boundary value problem to be treated is speci-
fied by

(1.6) 111—0 XEQ(I)
(1.7) O'l(jl)l’lj =P, xeT,
(1.8) oi'n =0, xeaQu\r,

where n; are the Cartesian components of the unit outward normal on 9€Q )

Zanaboni considers a second bounded elastic body ;) of the same composi-
tion that is bonded to Q) along a part X; of the surface 0Q;)\I" so that there is
contmulty of dlsplacement and traction across X; = 0€)(1) N 0Qy). The enlarged
body Q' = Q) U, is in equilibrium subject to the same self equilibrated
system dlstrlbuted over F now regarded as belonging to dQ?). Accordingly, the
stress a( )in Q@ is related to the strain e by

(1.9) o = cuel)), xeQ?

while the appropriate boundary value problem becomes

(1.10) o1 =0, xeQ® =040
(1.11) of'n =P, xel,
(1.12) o'n =0, xedQ\I.

The solutions, unique to within a rigid body displacement, to the respective
problems (1.6)—(1.8), and (1.10)—(1.12) enable various strain energies to be deter-
mined. Thus, the strain energy stored in €)(y), considered as isolated, is given by

1

(1.13) ng(u(l)) = 5/ afjl)e,(jmdx;
Q(l

while the strain energy stored in the enlarged body Q@ is:

2) (2
(1.14) Voo u®) = _/Q<2> afj )el-(j ) dx;

1
(1.15) Voo, @?) =% / oel?) dx.
2 Q)

Mainly heuristic arguments are employed by Zanaboni to relate these quanti-
ties by the inequality

(1.16) Voo, @®) < Vo, (uV) = Ve (u?).
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Inequality (1.16) can be extended by considering successive accretions that
create a sequence of enlarged bodies, Qm(: Q), Q" n=273,...p, each
loaded by the same self-equilibrated system of forces P; distributed over the com-
mon boundary I'. In an obvious notation, repeated application of (1.16) yields
the general bound

(1.17) Vo, @™ ™) < Vaw ™) — Vo ™), n=1,...,

(n+1)
where Q1) = QUIN\Q™ A new simplified mathematical proof of (1.17),
based solely on the positive-definiteness assumption (1.5), has been constructed
by the authors [9].

Observe that inequality (1.17) implies that Vi (u™), n=1,2,..., form a
decreasing sequence which by (1.5) is bounded below and therefore convergent
by Cauchy’s theorem. Consequently, Vo, (u'?)) decreases to zero with increas-
ing p and Saint-Venant’s principle is confirmed.

It must be emphasised that the full inequality (1.17) is crucial for Saint-
Venant’s principle. The property that the respective energies form a decreasing
bounded sequence, equivalent to the well-known result that increasing the size
of a loaded elastic body decreasess the strain energy. (cp., [15, p. 103]), is a
necessary but not sufficient condition for the proof since no information is
provided per se regarding the distribution of strain energy between component
sub-regions.

Inequality (1.17) may be extended to bounded regions whose surfaces have
a single point in common that is subjected to the same force singularity, and, in
particular, to a force dipole of interest here. A further generalisation includes
unbounded regions provided that the displacement, rotation, and stress vanish
in the neigbourhood of infinity.

A version of Saint-Venant’s principle dual to Zanaboni’s formulation was pro-
posed by Aymerich [1]. The system of loads P; is replaced by a given distribution
of displacements and similar conclusions are established. Books that include ac-
counts of Zanaboni’s approach are [2], [4], and [16], while his work is referenced
in the surveys [11], [5], and [7]. The classic paper [17] also discusses Zanaboni’s
contributions, but subsequent to these often brief descriptions, there is scant
mention in the literature of Zanaboni’s method which appears to have become
overshadowed by techniques based upon differential inequalities pioneered by
Toupin, Payne, and others. The advantage of such methods is the ability to esti-
mate decay rates of the energy not immediately accessible by Zanaboni’s argu-
ments even for cylindrical bodies.

This paper seeks to partially remedy this deficiency by examining solutions to
selected plane elastic problems. The strain energy is compared between bodies of
increasing size but loaded by the same traction on the same part of the common
boundary. Some problems involve a series of bodies touching at a common point
which is subjected to a force dipole. The main conclusion indicates that the decay
rate of the energy in regions remote from the load region strongly depends upon
the particular geometries of the regions under study. We construct, however, two
examples that contravene Saint-Venant’s principle.
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2. PLANE ISOTROPIC ELASTICITY

Known exact explicit solutions to boundary value problems in two- and three-
dimensional linear elasticity are not numerous, and furthermore, few are suitable
to illustrate the various formulations of Saint-Venant’s principle mentioned in the
literature. Other difficulties are created when the load is concentrated in the form
of point forces or couples for which the exact solution possesses a displacement,
rotation, and stress that become singular. This feature must be taken into account
when deriving the external work and strain energy whose spatial behaviour de-
termines decay rates appropriate to Zanaboni’s formulation of Saint-Venant’s
principle.

We analyse several examples from plane isotropic elasticity and for definiteness
restrict consideration to problems in plane stress. Several methods of solution are
available, but we select the complex variable approach for its conciseness.

Let x, y be rectangular Cartesian coordinates, and introduce the complex vari-
able z = x + iy and its conjugate Z = x — iy. In terms of the notation adopted in
[12, §1.22], the scalar functions ® and @ represent the fundamental stress combi-
nations expressed as

(2.1) O =0n+0,, O=0,—0n+2,,

where 0.y, 0),, 0\, are the symmetric plane stress components.

When the elastic material is homogoneous and isotropic, the functions ®, ®©
can be expressed in terms of two sectionally holomorphic functions W (z), w(z)
such that ([12, §20]:

(2.2) O=W()+ W(E), ©=zW'(z)+w(z),

where a superposed prime indicates differentiation with respect to the indicated
argument, and a superposed bar denotes the complex conjugate. It may be shown
that the Cartesian components u, v of the displacement are determined from the
relation

(2.3) du(u+ iv) = kW*(z) — zW(2) — w*(2),
where a superposed asterisk denotes indefinite integration with respect to the
argument of the function, x is the shear modulus, x = (3 — 4v) is the Kosolov

constant, and v is Poisson’s ratio. Indefinite integration introduces an arbitrary
rigid body displacement neglected for the purposes of our analysis.

3. EXPLICIT SOLUTIONS
3.1. First example

The first example concerns an elastic circular disc of radius « loaded by a force
dipole at a point on its circumference. (See Figure 2.) The dipole, alternatively
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Figure 2. Disc loaded by a dipole.

termed a “nucleus of strain” (cf., [10, §151], is defined as the limit when ¢ — 0 of
two equal and opposite forces, say +iY, applied at the circumferential points
z = ae’ and z = a. In the limit, Y tends to infinity in such a way that the product
Yae remains finite at the constant value D. For this problem, the function W (z) is
known to be (see, [12, §5.27])

(3.1) W(z) —<l_))2+A,

where 4 is a complex constant. The second stress function w(z), derived from the
expression (see [12, §5.21])

a —ra
(3.2) w(z) :Z—Z(W(z) + W(Z—z) —zW’(z)),
consequently becomes
2 D D:z? - 2D
(3.3) w(z):a—2 ——+A+ : 5+ A+ : 31
% | n(z — a) na*(z — a) n(z —a)

Because this function is supposed holomorphic inside the disc, we may elimi-
nate singular terms by setting

D
2na?’

(3.4) A=
After substitution of (3.4) in (3.3), we obtain the simple expression

(3.5) w(z) =—
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Furthermore, on insertion of the expressions (3.5) and (3.1) into (2.3), we
conclude after appropriate integration that the displacement is given by

) it ) :_K(ﬁ_‘_%)_z&z(z‘?@z_%iﬂ)

D
+ 7612 +4u(o+iff + iyz),
n(Z —a)

where the last terms on the right represent an arbitrary rigid body displacement
and are subsequently ignored. As z approaches a, the non-singular lower order
terms in (3.6) likewise may be discarded to yield

o D . D Da
(3.7) Aulu + iv) = Kn(zfa) n(Z—a)2+7T(Z__a)2.

We conclude that the displacement at a point on the circumference close to the
dipole, say z = ae™ =~ a(l + ig), is given by

kD e“D D
3.8 4u(u+iv) = — : — . +
B8 M= ) w1 ate e 1)

ixD  D(1 —e%)
nag  ga(l —e~#)

i(1 4+x)D

)

nae

to first order in ¢~!. The work done by the dipole is the limit

(3.9) L(a) = 1in(1) Dv
&—
D2
— M lim 17
4una =0 ¢

which demonstrates the otherwise predictable result that the work done (and
hence the strain energy) becomes infinite. Nevertheless, some useful information
may be extracted from the expression (3.9). Consider a second circular disc of
radius a; > a, which contains the first disc and touches it at the point z = a where
it is subject to the same dipole D. The corresponding work done L(a;) is again
given by the limit (3.9) but with « replaced by ;. We immediately establish that
the ratio

(3.10)
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is finite, and that L(a;) < L(a). The last result is predicted by the right side of
Zanaboni’s inequality (1.17) showing that the strain energy decreases due to
additional material. As already remarked, however, this conclusion of itself is
insufficient to establish Saint-Venant’s principle, the chief element of which as-
serts that the strain energy or similar measure decays to zero in regions
increasingly remote from the load surface.

To obtain the decay envisaged in Saint-Venant’s principle, we successively
use (1.17). Suppose a series of circular discs of radii @, > a,—; > - >a; >a
enclose each other and touch at the point z = @ where a common dipole D is
applied. Upon representing the respective strain energies of each disc by L(a,),
p=1,2,...n, Zanaboni’s inequality (1.17), in an obvious notation, may be
written as

(3.11) Voo (1) < L(ar) — L{ans1)
- L)
)

(3.12) < aﬁnL(a)(l - a"ﬂ)

(3.13)

:D2(1+K)(1 1 )

4une a,  dyaq

from which Vg, (u"V) — 0 as @, — oo, in confirmation of Saint-Venant’s
principle. To be explicit, we set, for example,

(3.14) any| — @y = ne =k,
for positive constant k, and when @, = O(n) obtain from (3.13) the estimate

D?*(1 + x) 1
4y (an+ k)’

(3.15) Vo, (D) <

(n+1)

demonstrating a decay rate that is at most linear.
An alternative bound for the decay rate, obtained from (3.12), is given by

(u<n+1)) < M

— )

ay

(3.16) Vo,
which also is at most linear. Note that in the limit @, — oo, the circular disc tends
to the half-plane subjected to a dipole at a point on the otherwise traction free
straight boundary. We conclude that the strain energy vanishes in the neighbour-
hood of infinity to the order at most o(a,).

Inequality (1.17) provides further information. Suppose Q!
sequence of plane regions with smooth boundary such that Q" +V

) denotes a
is contained
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between the discs C, C0+1) respectively of radii @, and a,.; and touches
these discs at the common contact point z = a. As before, we suppose a dipole
D is separately applied at z=a to Q(H] and the discs. On recalling Q.5 =
QU2\ Q"+ and other previous notation, we obtain from (1.17) the bound

(3.17) V., @) < Vo (") — Ve ()

< L(an) - L(Cl,,_;,.z),

(n+2)

which is of the same form as (3.11) and similar conclusions may be deduced.
3.2. Second example

As a second example, we examine a similar problem but for a nested sequence of
regions exterior to a family of parabolas with common vertex z = xj to which is
applied a dipole of magnitude D. (See Figure 3). With respect to the origin O of
coordinates, let us introduce the conformal mapping (cp., [14, §4.2.5])

(3.18) z=m() == (E+in),

that transforms the point (&,#) of the {-plane into the point (x, y) of the z-plane
according to the transformation

(3.19) x=&-n} y=28n
Lines & = &, a constant, in the {-plane are transformed into the parabola
(3.20) x=& -t y=2&n,

where 7 is a parameter. We take & = &, to be the internal parabolic boundary of
the exterior region. The focus of the parabola is at the origin, and the vertex in
the z-plane has coordinates (£7,0).

Figure 3. Exteriors of parabola with common vertex and focii at 0 and 0’.
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We assume the rotation and stress vanish in the neighbourhood of infinity.
The appropriate forms ([14, §4.25]) for the complex potentials with respect to
the variables in the {-plane are given firstly by

(3.21) m' (W (L) = 20w (()
_b_1
o ({=&)

Note that the parabola is given by { +{ = 2¢,, and so by the principle of
reflexion, the second complex potential is related to the first by

m'(Ow(l) = 2Lw(()

=m'(2& = O)[W() + W(2& — )] — m(2&) — OW'(0)

2¢ 2{(C = &)+ 20 = &)}
L —&)° 20%(C - &)

after we have substituted from (3.21).
The representation (2.3) of the displacement is modified to the expresssion

D

T

+ (28 - )

)

(3.22) Au(u + iv) = kW*(C) — m(O) W) —w* (D),

where

(3.23) W) = /0 W) d

4
—Awmm@mc
D 1

T o ((-&)

¢
(3.24) w*(C):/ w(z)dz

= [ wom©
D 11 2¢ 1 9 1
:‘;“7‘39@Tgﬁ(fv49@ig;~

To determine the work done by the dipole, we first obtain the component v of
the displacement from (3.22), (3.23), and (3.24). On setting { = &y(1 + ie), where
¢ « 1, and on neglecting first and higher order powers of &, we obtain

D
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Consequently, the work done by the dipole is

(3.26) L&) =lim e

(k+7/2).

Now consider the parabolas generated by ¢ = &,, n = 1,2... and successively dis-
place the origin to the focii of the respective parabolas whose vertices are trans-
lated to coincide with that for the parabola & = &,. The parabola &, bounds an
exterior region containing regions exterior to the parabolas &, m =0,...n— 1.
The same dipole D is applied at the common vertex to all exterior regions, and we
assume that the strain energy is finite in all regions thus constructed. Accordingly,
the work done by the dipole on the region bounded by the curve & = &,(< &) is
the expression (3.26) but with &, replaced by &,, where f,f is the distance between
the common vertex and the displaced origin O,. Note that as &, — 0 for n — oo,
the boundary becomes a straight line and the region is the whole plane with the
negative x-axis deleted. Upon taking the ratios of the work done by the dipole on
the respective regions, we have

L&) _ &

1.

But decreasing &, increases the area of the exterior region and we conclude from
(3.27) that additional material increases the strain energy in the ratio &,/&, =
\/Xn /X0, where xy, x, are the distances of the foci from the common vertex. The
conclusion is perhaps counter-intuitive until it is realised that the operation of
increasing &, enlarges the part of the exterior region in the vicinity of the dipole
singularity. As a consequence, the magnitude of the stress and strain components
and therefore the strain energy density in such parts is large, which contributes to
the increasing total strain energy in the region as &, — 0. The example contra-
dicts inequality (1.17) and therefore contravenes Zanaboni’s version of Saint-
Venant’s principle.

4. INTERNAL BOUNDARY

Zanaboni also considered enlargements that possess a commom internal closed
load boundary I', such that each body in the sequence contains its predeccessors;
for example, a sequence of rings with increasing diameters that are loaded on the
common internal boundary. The problem is discussed by Aymerich [1]. Here, we
present another, less elementary, example to help further elucidate Zanaboni’s
version of Saint-Venant’s principle.

We consider the whole x, y-plane pierced by a circular hole of radius a, cen-
tered at the origin, and loaded at the point z = a by a dipole of magnitude D par-
allel to the y-axis. (See Figure 4.) The displacement, rotation, and stress are as-
sumed to vanish in the neighbourhood of infinity.
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Figure 4. Exteriors to holes of radii a and a;.

Similar arguments leading to (3.1) yield the representations

@) WE =7

4.2) w(z) = ‘7‘;? a(za(z +_ 222))2 - 322)3] |
which on integration give

@3) e =2

(4.4) W (2) :% [—Z(a“_:)z 4 (aiz)].

We ignore arbitrary rigid body displacements, and apply (2.3) to obtain

D| « 1 (a* — z2)
4.5 du(u + iv) = — — — .
“3 Hlt ) nlw—n @9 2@—@4
On setting z = aexpig, or z = a(l + i) when ¢ « 1, the last expression reduces

to

. iD (k+1)
4.6 4 > —
(46) ulutiv) = 2T

and the work done by the dipole becomes

. D*(k+1) . 1
4. L(a) =1lm Do = ——= lim—.
( 7) (Ll) EI—I% v 4/[7[61 sl—IB &
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Now consider a hole of smaller radius a¢; < a which touches the first at the
point z = @, and which is loaded by the same dipole D at z = a. To determine
the work done, L(a;), we replace a by @ in the expression (4.7) to give the ratio

L) _ar

(4.8) ]~ 2

Recall that the region exterior to the hole of radius «; is larger than that exte-
rior to the hole of radius a, so that a, « 1 enlarges the parts of the exterior region
in the neighbourhood of the dipole. Thus, we have circumstances similar to those
encountered in Section 3.2 and accordingly, (4.8) provides a second example
for which additional material increases the work done. Condition (1.17) is con-
tradicted and Saint-Venant’s principle according to Zananboni again is contra-
vened.

5. MULTIPLY-CONNECTED LOAD BOUNDARY

The formulation of Saint-Venant’s principle due to Zanaboni admits several
interesting refinements, prominent among which is the important case of a
multi-connected load surface or boundary. The loads on the component surfaces
may not be self-equilibrated, although, of course, the total load taken over all
these components is in overall equilibrium. This broad category of problems,
to which belongs the Hoff counter-example [6], includes the cylinder loaded at
each end. These problems have been studied by Fichera [3], who extended the
differential inequality technique introduced by Toupin [17]. In [8], the authors
discussed how Zanaboni’s treatment may be adapted to general problems in this
category.

We describe two examples of this type for the half-plane, both of which con-
form to the principle.

Consider the half-plane y > 0 loaded by dipoles of magnitude D concentrated
at points z = +a (Figure 5), and with rotation and stress vanishing in the neigh-
bourhood of infinity.

Figure 5. Two equal symmetrically placed dipoles.
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The load boundary I" consists of separate points z = +a, to each of which is
applied a self-equilibrated force dipole. The corresponding stress functions are
([13, p. 386]

D 1 1
(5.1) W(z)——; (z—a)2+(z—|—a)2 ;
2aD 1 1
52 Z)= — — ,
(52) W) = = Lz_a)g i

and on substitution in (2.3) we obtain for the displacement

KZ Z(zz — a? at(z—z
(5.3) Au(u + iv) :g l(zzz_ - 2(2( = )1;2)2( ))]'

Along the x-axis, for which z = Z = ¢, this expresssion simplifies to

(5.4) Au(u + iv) = g H

so that at 7 = a(1 + ¢) and 7 = —a(1 — &) we have respectively

(5.5) u(a(l +¢),0) = DEZ,;;) {8 j: iﬂ ’
(5.6) u(—a(l —¢),0) = Dz(z;wl) {8 - 3} ’

and consequently the total work done to first order by the symmetrically disposed
dipoles when ¢ « 1 is

(5.7) Lia) = &+ DD

unae

The half-plane is now enlarged by insertion of a semi-infinite strip of the same
material between the dipoles and paralled to the y-axis. This is equivalent to
increasing the distance separating the dipoles to 2a; > 2a, with the strip’s width
being 2(a; — a). The work done is now L(a;), where the function L is given by
(5.7). Accordingly, we have

(5.8) Te) :%> 1,

and we conclude that for this example, additional material decreases the strain
energy consistent with (1.17) and Saint-Venant’s principle. The discussion may
be completed as for the example considered in Section 3.1.
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The second problem again concerns the half-plane just described, but now
loaded by two equal and opposite point forces F at the points z = +a and
directed along the positive x-axis. The loading is not self-equilibrated on each
disjoint load boundary point, but is in aggregate. Appropriate stress functions
are (cp., [12, §2.21, §4.22])

F[ 1 1
(5.9) W(z) = 2 [(z —a) (z+ a)] ’
Fl 1 1 a a
(5.10) wiz) =— (Z,a)*(zm)*<Z_a)2+(z+a)2 ’

and by (2.3), after appropriate integration, the displacement becomes

(5.11)  du(u+ iv) = —g [Kln<2_a) HH(Z:J_F_D —Za%].

z4+a z

On the plane boundary, we have z = Z = ¢, say, and (5.11) reduces to the
expression

(5.12) 4u(u +iv)| -, = —§ [(1 +x) ln(il—z>_2‘lﬁ]’

which yields the following displacements at the points z = +a(l + ¢):

. F 2F

(5.13) Aulu + 10)]—y140) = (1 +70) — ln( 2 i ¢) ) + n(2+e)’
. F 2F

(S14) dp(u+ o).y = (1K) — ln( 2 i e) ) Come

The total work done by the forces +F at z = +a(l + ¢), respectively, when
& < 1 1is therefore to first order

2 K
(5.15) L(a):f;TE(l—; )lne],

and by inspection is independent of the distance a. As a consequence, addition of
material, or equivalently, the replacement of a by a; > a in (5.15) does not affect
the ratio L(a)/L(a;).

Nevertheless, this observation does not invalidate Saint-Venant’s principle
according to Zanaboni’s formulation. We recall that this asserts that the strain
energy in regions increasingly remote from the load region tends to zero. The
fact that the strain energy is independent of the distance a provides no informa-
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tion on the distribution of the strain energy in various sub-regions of the half-
plane under consideration.

We can verify Zanaboni’s conclusion on selecting the constituent regions to
be strips parallel to the plane boundary of the half-space. Let €, be the strip
specified by

(5.16) Quy={(x,»)eQ:h 1 <y<h}, n=0,1,...

We let g = 0, hy = 1, and suppose the first strip €2}y to be subject to the loads
+F at z = +a on the plane boundary y = 0, the boundary y = 1, to be traction
free, and let the stress asymptotically vanish as x — +oco. The corresponding
displacement is denoted by u(! in conformity with previous notation, The strain
energy in ;) may be written in the form

(5.17) ng(u(l))zl/zl/g {0+ 20 () + dp(s))} dx
(1)
/Q {S,uul uél +2lu§}iu§}%}dx
(1)

/{qu "2+ ap(ul'))?) d

=Vn+Vi+ Vs

We also let Q") = Q"Y' 4 Q,), which is of width 7,, be subject to the loads
+F at z =+a on y = 0, have the boundary y = A, traction-free, and the stress
asymptotically vanishing as x — +oo. We rescale the coordinates such that
x — x and y — h,, upon which it follows that the strain energy in Q" is

(5.18) VQm) (u(”>) =h Vi +Via+ h;l Vis.

The solution for the half-plane is obtained in the limit /4, — co. But we have
just shown that the strain energy in the half-plane is bounded, and so we must
have not only that both V5, Vi3 are bounded, but also that V;; = 0. By virtue
of (1.17), we then have in the previous notation

(5.19) Vo, @) < Vaun ") = Vo (u")
(5.20) = Vis(h, !y =1,
n
5.21 = V3 ——
( ) B hnfl(hnfl + 77)

upon supposing that &, = h,_| +#, where 7 is a finite positive, possibly small,
constant. We conclude that the strain energy in the strip Q, vanishes as /,?
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in accordance with Saint-Venant’s principle. A sharper decay rate of /2, !, is pro-
vided by (5.20).
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