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Abstract. — Zanaboni in 1937 published three notes in the Rendiconti in which he proposed

a modified version and new proof of Saint-Venant’s principle applicable to bodies not necessarily
cylindrical in shape. Examples are presented to illustrate that Zanaboni’s version is not universally

applicable.
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1. Introduction

Saint-Venant’s principle, first proposed in 1855, has been accepted by most
engineers as an heuristic argument for disposing of edge e¤ects in the ele-
mentary theory of beams and similar mechanical structures. Nevertheless, its
validity was challenged from the outset, and its history (briefly recounted in
[11], [7]) has been characterised by attempts to provide a precise mathe-
matical statement accompanied by rigorous proof. Early contributors include
Boussinesq, Dougall, Southwell and Goodier, the last two using the potential
energy to measure the spatial decay of edge e¤ects to justify the principle.
Counter-examples are provided by Toupin [17] (twisted thin walled I-beam),
and, of direct relevance to the present study, by Ho¤ [6] for a body of nar-
rowing central cross-sections loaded by equilibrated surface forces distributed
over opposite almost contiguous surfaces. Zanaboni [18, 19, 20], although
aware of these contributions, separately developed an alternative approach
that concerns a bounded elastic body Wð1Þ in equilibrium subject to zero
body force and a given system of self-equilibrated loads Pi, i ¼ 1; 2; 3, dis-
tributed over a part G of the otherwise free smooth surface qWð1Þ. His version
of Saint-Venant’s principle states that the strain energy contained in the sub-
region remote from the load surface diminishes to zero with increasing distance
of the sub-region from the load surface. (See Fig. 1.)



Note that a self-equilibrated system of forces Pi on the surface G satisfies the
conditions Z

G

Pi dS ¼
Z
G

ðxiPj � xjPiÞ dS ¼ 0;ð1:1Þ

where xi, i ¼ 1; 2; 3 are orthogonal Cartesian coordinates. Let u
ð1Þ
i ðxÞ, to within a

rigid body displacement, be the Cartesian components of the small displacement
produced in Wð1Þ by the loads Pi, and define components of the corresponding
linear strain to be

e
ð1Þ
ij ¼ 1

2
ðuð1Þi; j þ u

ð1Þ
j; i Þ;ð1:2Þ

where here, and throughout, the standard comma notation for partial di¤erentia-
tion is employed, along with the usual convention of summation over repeated
subscripts.

Later sections consider examples in which the distributed load system is
specialised to various point forces. Meanwhile, we extend the formulation of
Zanaboni’s analysis to include linear anisotropic nonhomogeneous elasticity for
which the cartesian components of stress s

ð1Þ
ij satisfy the constitutive relations

s
ð1Þ
ij ¼ cijkle

ð1Þ
ij :ð1:3Þ

The nonhomogeneous elastic moduli cijklðxÞ possess the symmetries

cijkl ¼ cklij ¼ cjikl ;ð1:4Þ

and are positive-definite in the sense that

c0cijcij a cijklcijckl a c1cijcij; Ecij ¼ cji;ð1:5Þ

where c0, c1 are positive constants.

Figure 1. (a) Isolated body Wð1Þ (b) Bonded bodies Wð1Þ and Wð2Þ.
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Under these assumptions, the boundary value problem to be treated is speci-
fied by

s
ð1Þ
ij; j ¼ 0; x a Wð1Þ;ð1:6Þ

s
ð1Þ
ij nj ¼ Pi; x a G;ð1:7Þ

s
ð1Þ
ij nj ¼ 0; x a qWð1ÞnG;ð1:8Þ

where ni are the Cartesian components of the unit outward normal on qWð1Þ.
Zanaboni considers a second bounded elastic body Wð2Þ of the same composi-

tion that is bonded to Wð1Þ along a part S1 of the surface qWð1ÞnG so that there is
continuity of displacement and traction across S1 ¼ qWð1ÞB qWð2Þ. The enlarged

body Wð2Þ ¼ Wð1Þ AWð2Þ is in equilibrium subject to the same self-equilibrated
system distributed over G now regarded as belonging to qWð2Þ. Accordingly, the

stress s
ð2Þ
ij in Wð2Þ is related to the strain e

ð2Þ
ij by

s
ð2Þ
ij ¼ cijkle

ð2Þ
ij ; x a Wð2Þ;ð1:9Þ

while the appropriate boundary value problem becomes

s
ð2Þ
ij; j ¼ 0; x a Wð2Þ ¼ Wð2Þ AWð1Þ;ð1:10Þ

s
ð2Þ
ij nj ¼ Pi; x a G;ð1:11Þ

s
ð2Þ
ij nj ¼ 0; x a qWð2ÞnG:ð1:12Þ

The solutions, unique to within a rigid body displacement, to the respective
problems (1.6)–(1.8), and (1.10)–(1.12) enable various strain energies to be deter-
mined. Thus, the strain energy stored in Wð1Þ, considered as isolated, is given by

VWð1Þ ðuð1ÞÞ ¼
1

2

Z
Wð1Þ

s
ð1Þ
ij e

ð1Þ
ij dx;ð1:13Þ

while the strain energy stored in the enlarged body Wð2Þ is:

VWð2Þ ðuð2ÞÞ ¼ 1

2

Z
Wð2Þ

s
ð2Þ
ij e

ð2Þ
ij dx;ð1:14Þ

and the strain energy stored in the added volume Wð2Þ is:

VWð2Þ ðuð2ÞÞ ¼
1

2

Z
Wð2Þ

s
ð2Þ
ij e

ð2Þ
ij dx:ð1:15Þ

Mainly heuristic arguments are employed by Zanaboni to relate these quanti-
ties by the inequality

VWð2Þ ðuð2ÞÞaVWð1Þ ðuð1ÞÞ � VWð2Þ ðuð2ÞÞ:ð1:16Þ

349illustrations of zanaboni’s formulation of saint-venant’s principle



Inequality (1.16) can be extended by considering successive accretions that
create a sequence of enlarged bodies, Wð1Þð¼ Wð1ÞÞ, WðnÞ, n ¼ 2; 3; . . . p, each
loaded by the same self-equilibrated system of forces Pi distributed over the com-
mon boundary G. In an obvious notation, repeated application of (1.16) yields
the general bound

VWðnþ1Þ ðuðnþ1ÞÞaVWðnÞ ðuðnÞÞ � VWðnþ1Þ ðuðnþ1ÞÞ; n ¼ 1; . . . ;ð1:17Þ

where Wðnþ1Þ ¼ Wðnþ1ÞnWðnÞ. A new simplified mathematical proof of (1.17),
based solely on the positive-definiteness assumption (1.5), has been constructed
by the authors [9].

Observe that inequality (1.17) implies that VWðnÞ ðuðnÞÞ, n ¼ 1; 2; . . . ; form a
decreasing sequence which by (1.5) is bounded below and therefore convergent
by Cauchy’s theorem. Consequently, VWð pÞ ðuðpÞÞ decreases to zero with increas-

ing p and Saint-Venant’s principle is confirmed.
It must be emphasised that the full inequality (1.17) is crucial for Saint-

Venant’s principle. The property that the respective energies form a decreasing
bounded sequence, equivalent to the well-known result that increasing the size
of a loaded elastic body decreasess the strain energy. (cp., [15, p. 103]), is a
necessary but not su‰cient condition for the proof since no information is
provided per se regarding the distribution of strain energy between component
sub-regions.

Inequality (1.17) may be extended to bounded regions whose surfaces have
a single point in common that is subjected to the same force singularity, and, in
particular, to a force dipole of interest here. A further generalisation includes
unbounded regions provided that the displacement, rotation, and stress vanish
in the neigbourhood of infinity.

A version of Saint-Venant’s principle dual to Zanaboni’s formulation was pro-
posed by Aymerich [1]. The system of loads Pi is replaced by a given distribution
of displacements and similar conclusions are established. Books that include ac-
counts of Zanaboni’s approach are [2], [4], and [16], while his work is referenced
in the surveys [11], [5], and [7]. The classic paper [17] also discusses Zanaboni’s
contributions, but subsequent to these often brief descriptions, there is scant
mention in the literature of Zanaboni’s method which appears to have become
overshadowed by techniques based upon di¤erential inequalities pioneered by
Toupin, Payne, and others. The advantage of such methods is the ability to esti-
mate decay rates of the energy not immediately accessible by Zanaboni’s argu-
ments even for cylindrical bodies.

This paper seeks to partially remedy this deficiency by examining solutions to
selected plane elastic problems. The strain energy is compared between bodies of
increasing size but loaded by the same traction on the same part of the common
boundary. Some problems involve a series of bodies touching at a common point
which is subjected to a force dipole. The main conclusion indicates that the decay
rate of the energy in regions remote from the load region strongly depends upon
the particular geometries of the regions under study. We construct, however, two
examples that contravene Saint-Venant’s principle.
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2. Plane isotropic elasticity

Known exact explicit solutions to boundary value problems in two- and three-
dimensional linear elasticity are not numerous, and furthermore, few are suitable
to illustrate the various formulations of Saint-Venant’s principle mentioned in the
literature. Other di‰culties are created when the load is concentrated in the form
of point forces or couples for which the exact solution possesses a displacement,
rotation, and stress that become singular. This feature must be taken into account
when deriving the external work and strain energy whose spatial behaviour de-
termines decay rates appropriate to Zanaboni’s formulation of Saint-Venant’s
principle.

We analyse several examples from plane isotropic elasticity and for definiteness
restrict consideration to problems in plane stress. Several methods of solution are
available, but we select the complex variable approach for its conciseness.

Let x, y be rectangular Cartesian coordinates, and introduce the complex vari-
able z ¼ xþ iy and its conjugate z ¼ x� iy. In terms of the notation adopted in
[12, §1.22], the scalar functions Y and F represent the fundamental stress combi-
nations expressed as

Y ¼ sxx þ syy; F ¼ syy � sxx þ 2isxy;ð2:1Þ

where sxx, syy, sxy are the symmetric plane stress components.
When the elastic material is homogoneous and isotropic, the functions Y, F

can be expressed in terms of two sectionally holomorphic functions W ðzÞ, wðzÞ
such that ([12, §20]:

Y ¼ W ðzÞ þWðzÞ; F ¼ zW 0ðzÞ þ wðzÞ;ð2:2Þ

where a superposed prime indicates di¤erentiation with respect to the indicated
argument, and a superposed bar denotes the complex conjugate. It may be shown
that the Cartesian components u, v of the displacement are determined from the
relation

4mðuþ ivÞ ¼ kW �ðzÞ � zWðzÞ � w�ðzÞ;ð2:3Þ

where a superposed asterisk denotes indefinite integration with respect to the
argument of the function, m is the shear modulus, k ¼ ð3� 4nÞ is the Kosolov
constant, and n is Poisson’s ratio. Indefinite integration introduces an arbitrary
rigid body displacement neglected for the purposes of our analysis.

3. Explicit solutions

3.1. First example

The first example concerns an elastic circular disc of radius a loaded by a force
dipole at a point on its circumference. (See Figure 2.) The dipole, alternatively
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termed a ‘‘nucleus of strain’’ (cf., [10, §151], is defined as the limit when e ! 0 of
two equal and opposite forces, say eiY , applied at the circumferential points
z ¼ aeie and z ¼ a. In the limit, Y tends to infinity in such a way that the product
Yae remains finite at the constant value D. For this problem, the function W ðzÞ is
known to be (see, [12, §5.27])

W ðzÞ ¼ D

pðz� aÞ2
þ A;ð3:1Þ

where A is a complex constant. The second stress function wðzÞ, derived from the
expression (see [12, §5.21])

wðzÞ ¼ a2

z2

�
WðzÞ þW

� a2

z2

�
� zW 0ðzÞ

�
;ð3:2Þ

consequently becomes

wðzÞ ¼ a2

z2
D

pðz� aÞ2
þ Aþ Dz2

pa2ðz� aÞ2
þ Aþ 2Dz

pðz� aÞ3

" #
:ð3:3Þ

Because this function is supposed holomorphic inside the disc, we may elimi-
nate singular terms by setting

A ¼ � D

2pa2
:ð3:4Þ

After substitution of (3.4) in (3.3), we obtain the simple expression

wðzÞ ¼ 2Da

pðz� aÞ3
:ð3:5Þ

Figure 2. Disc loaded by a dipole.
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Furthermore, on insertion of the expressions (3.5) and (3.1) into (2.3), we
conclude after appropriate integration that the displacement is given by

4mðuþ ivÞ ¼ �k
� D

pðz� aÞ þ
Dz

zpa2

�
� z

� D

pðz� aÞ2
� D

2pa2

�
ð3:6Þ

þ Da

pðz� aÞ2
þ 4mðaþ ib þ igzÞ;

where the last terms on the right represent an arbitrary rigid body displacement
and are subsequently ignored. As z approaches a, the non-singular lower order
terms in (3.6) likewise may be discarded to yield

4mðuþ ivÞG�k
D

pðz� aÞ � z
D

pðz� aÞ2
þ Da

pðz� aÞ2
:ð3:7Þ

We conclude that the displacement at a point on the circumference close to the
dipole, say z ¼ aeie G að1þ ieÞ, is given by

4mðuþ ivÞG � kD

paðeie � 1Þ �
eieD

paðe�ie � 1Þ þ
D

paðe�ie � 1Þ2
ð3:8Þ

¼ ikD

pae
þ Dð1� eieÞ
pað1� e�ieÞ2

¼ ið1þ kÞD
pae

;

to first order in e�1. The work done by the dipole is the limit

LðaÞ ¼ lim
e!0

Dvð3:9Þ

¼ D2ð1þ kÞ
4mpa

lim
e!0

1

e
;

which demonstrates the otherwise predictable result that the work done (and
hence the strain energy) becomes infinite. Nevertheless, some useful information
may be extracted from the expression (3.9). Consider a second circular disc of
radius a1 > a, which contains the first disc and touches it at the point z ¼ a where
it is subject to the same dipole D. The corresponding work done Lða1Þ is again
given by the limit (3.9) but with a replaced by a1. We immediately establish that
the ratio

Lða1Þ
LðaÞ ¼ a

a1
< 1;ð3:10Þ
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is finite, and that Lða1Þ < LðaÞ. The last result is predicted by the right side of
Zanaboni’s inequality (1.17) showing that the strain energy decreases due to
additional material. As already remarked, however, this conclusion of itself is
insu‰cient to establish Saint-Venant’s principle, the chief element of which as-
serts that the strain energy or similar measure decays to zero in regions
increasingly remote from the load surface.

To obtain the decay envisaged in Saint-Venant’s principle, we successively
use (1.17). Suppose a series of circular discs of radii an > an�1 > � � � > a1 > a
enclose each other and touch at the point z ¼ a where a common dipole D is
applied. Upon representing the respective strain energies of each disc by LðapÞ,
p ¼ 1; 2; . . . n, Zanaboni’s inequality (1.17), in an obvious notation, may be
written as

VWðnþ1Þ ðuðnþ1ÞÞaLðanÞ � Lðanþ1Þð3:11Þ

¼ LðanÞ
�
1� Lðanþ1Þ

LðanÞ

�

¼ LðanÞ
�
1� an

anþ1

�

a
a

an
LðaÞ

�
1� an

anþ1

�
ð3:12Þ

¼ D2ð1þ kÞ
4mpe

� 1

an
� 1

anþ1

�
;ð3:13Þ

from which VWðnþ1Þ ðuðnþ1ÞÞ ! 0 as an ! l, in confirmation of Saint-Venant’s
principle. To be explicit, we set, for example,

anþ1 � an ¼ ne ¼ k;ð3:14Þ

for positive constant k, and when an ¼ OðnÞ obtain from (3.13) the estimate

VWðnþ1Þ ðuðnþ1ÞÞa D2ð1þ kÞ
4mp

1

ðan þ kÞ ;ð3:15Þ

demonstrating a decay rate that is at most linear.
An alternative bound for the decay rate, obtained from (3.12), is given by

VWðnþ1Þ ðuðnþ1ÞÞa aLðaÞ
an

;ð3:16Þ

which also is at most linear. Note that in the limit an ! l, the circular disc tends
to the half-plane subjected to a dipole at a point on the otherwise traction free
straight boundary. We conclude that the strain energy vanishes in the neighbour-
hood of infinity to the order at most oðanÞ.

Inequality (1.17) provides further information. Suppose Wðnþ1Þ denotes a
sequence of plane regions with smooth boundary such that Wðnþ1Þ is contained
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between the discs C ðnÞ, C ðnþ1Þ respectively of radii an and anþ1 and touches
these discs at the common contact point z ¼ a. As before, we suppose a dipole
D is separately applied at z ¼ a to Wðnþ1Þ and the discs. On recalling Wðnþ2Þ ¼
Wðnþ2ÞnWðnþ1Þ and other previous notation, we obtain from (1.17) the bound

VWðnþ2Þ ðuðnþ2ÞÞaVWðnþ1Þ ðuðnþ1ÞÞ � VWðnþ2Þ ðuðnþ2ÞÞð3:17Þ
aLðanÞ � Lðanþ2Þ;

which is of the same form as (3.11) and similar conclusions may be deduced.

3.2. Second example

As a second example, we examine a similar problem but for a nested sequence of
regions exterior to a family of parabolas with common vertex z ¼ x0 to which is
applied a dipole of magnitude D. (See Figure 3). With respect to the origin O of
coordinates, let us introduce the conformal mapping (cp., [14, §4.2.5])

z ¼ mðzÞ ¼ z2 ¼ ðxþ ihÞ2;ð3:18Þ

that transforms the point ðx; hÞ of the z-plane into the point ðx; yÞ of the z-plane
according to the transformation

x ¼ x2 � h2; y ¼ 2xh:ð3:19Þ

Lines x ¼ x0, a constant, in the z-plane are transformed into the parabola

x ¼ x20 � h2; y ¼ 2x0h;ð3:20Þ

where h is a parameter. We take x ¼ x0 to be the internal parabolic boundary of
the exterior region. The focus of the parabola is at the origin, and the vertex in
the z-plane has coordinates ðx20 ; 0Þ.

Figure 3. Exteriors of parabola with common vertex and focii at 0 and 0 0.
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We assume the rotation and stress vanish in the neighbourhood of infinity.
The appropriate forms ([14, §4.25]) for the complex potentials with respect to
the variables in the z-plane are given firstly by

m 0ðzÞW ðzÞ ¼ 2zW ðzÞð3:21Þ

¼ D

p

1

ðz� x0Þ
:

Note that the parabola is given by zþ z ¼ 2x0, and so by the principle of
reflexion, the second complex potential is related to the first by

m 0ðzÞwðzÞ ¼ 2zwðzÞ
¼ m 0ð2x0 � zÞ WðzÞ þWð2x0 � zÞ

� �
�mð2x0 � zÞW 0ðzÞ

¼ D

p

2x0

zðz� x0Þ2
þ ð2x0 � zÞ2 fðz� x0Þ2 þ 2zðz� x0Þg

2z2ðz� x0Þ2

" #
;

after we have substituted from (3.21).
The representation (2.3) of the displacement is modified to the expresssion

4mðuþ ivÞ ¼ kW �ðzÞ �mðzÞW ðzÞ � w�ðzÞ;ð3:22Þ

where

W �ðzÞ ¼
Z z

0

WðzÞ dzð3:23Þ

¼
Z z

0

WðzÞm 0ðzÞ dz

¼ �D

p

1

ðz� x0Þ
;

w�ðzÞ ¼
Z z

0

wðzÞ dzð3:24Þ

¼
Z z

0

wðzÞm 0ðzÞ dz

¼ �D

p

� 11

2
� 2x0

3

� 1

ðz� x0Þ
þ
� 9

2
x0 � 4z

� 1

ðz� x0Þ2

" #
:

To determine the work done by the dipole, we first obtain the component v of
the displacement from (3.22), (3.23), and (3.24). On setting z ¼ x0ð1þ ieÞ, where
ef 1, and on neglecting first and higher order powers of e, we obtain

4mvG
D

epx0
ðkþ 7=2Þ:ð3:25Þ
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Consequently, the work done by the dipole is

Lðx0Þ ¼ lim
e!0

D

4mpex0
ðkþ 7=2Þ:ð3:26Þ

Now consider the parabolas generated by x ¼ xn, n ¼ 1; 2 . . . and successively dis-
place the origin to the focii of the respective parabolas whose vertices are trans-
lated to coincide with that for the parabola x ¼ x0. The parabola xn bounds an
exterior region containing regions exterior to the parabolas xm, m ¼ 0; . . . n� 1.
The same dipole D is applied at the common vertex to all exterior regions, and we
assume that the strain energy is finite in all regions thus constructed. Accordingly,
the work done by the dipole on the region bounded by the curve x ¼ xnða x0Þ is
the expression (3.26) but with x0 replaced by xn, where x

2
n is the distance between

the common vertex and the displaced origin On. Note that as xn ! 0 for n ! l,
the boundary becomes a straight line and the region is the whole plane with the
negative x-axis deleted. Upon taking the ratios of the work done by the dipole on
the respective regions, we have

Lðx0Þ
LðxnÞ

¼ xn
x0

< 1:ð3:27Þ

But decreasing xn increases the area of the exterior region and we conclude from
(3.27) that additional material increases the strain energy in the ratio xn=x0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
xn=x0

p
, where x0, xn are the distances of the foci from the common vertex. The

conclusion is perhaps counter-intuitive until it is realised that the operation of
increasing xn enlarges the part of the exterior region in the vicinity of the dipole
singularity. As a consequence, the magnitude of the stress and strain components
and therefore the strain energy density in such parts is large, which contributes to
the increasing total strain energy in the region as xn ! 0. The example contra-
dicts inequality (1.17) and therefore contravenes Zanaboni’s version of Saint-
Venant’s principle.

4. Internal boundary

Zanaboni also considered enlargements that possess a commom internal closed
load boundary G, such that each body in the sequence contains its predeccessors;
for example, a sequence of rings with increasing diameters that are loaded on the
common internal boundary. The problem is discussed by Aymerich [1]. Here, we
present another, less elementary, example to help further elucidate Zanaboni’s
version of Saint-Venant’s principle.

We consider the whole x; y-plane pierced by a circular hole of radius a, cen-
tered at the origin, and loaded at the point z ¼ a by a dipole of magnitude D par-
allel to the y-axis. (See Figure 4.) The displacement, rotation, and stress are as-
sumed to vanish in the neighbourhood of infinity.
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Similar arguments leading to (3.1) yield the representations

W ðzÞ ¼ D

p

1

ða� zÞ2
;ð4:1Þ

wðzÞ ¼ a2D

pz2
ða2 þ z2Þ
a2ða� zÞ2

� 2z

ða� zÞ3

" #
;ð4:2Þ

which on integration give

W �ðzÞ ¼ D

p

1

ða� zÞ ;ð4:3Þ

w�ðzÞ ¼ D

p
� a2

zða� zÞ2
þ 1

ða� zÞ

" #
:ð4:4Þ

We ignore arbitrary rigid body displacements, and apply (2.3) to obtain

4mðuþ ivÞ ¼ D

p

k

ða� zÞ �
1

ða� zÞ þ
ða2 � zzÞ
zða� zÞ2

" #
:ð4:5Þ

On setting z ¼ a exp ie, or zG að1þ ieÞ when ef 1, the last expression reduces
to

4mðuþ ivÞG iD

p

ðkþ 1Þ
ae

;ð4:6Þ

and the work done by the dipole becomes

LðaÞ ¼ lim
e!0

Dv ¼ D2ðkþ 1Þ
4mpa

lim
e!0

1

e
:ð4:7Þ

Figure 4. Exteriors to holes of radii a and a1.
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Now consider a hole of smaller radius a1 < a which touches the first at the
point z ¼ a, and which is loaded by the same dipole D at z ¼ a. To determine
the work done, Lða1Þ, we replace a by a1 in the expression (4.7) to give the ratio

LðaÞ
Lða1Þ

¼ a1

a
< 1:ð4:8Þ

Recall that the region exterior to the hole of radius a1 is larger than that exte-
rior to the hole of radius a, so that an f 1 enlarges the parts of the exterior region
in the neighbourhood of the dipole. Thus, we have circumstances similar to those
encountered in Section 3.2 and accordingly, (4.8) provides a second example
for which additional material increases the work done. Condition (1.17) is con-
tradicted and Saint-Venant’s principle according to Zananboni again is contra-
vened.

5. Multiply-connected load boundary

The formulation of Saint-Venant’s principle due to Zanaboni admits several
interesting refinements, prominent among which is the important case of a
multi-connected load surface or boundary. The loads on the component surfaces
may not be self-equilibrated, although, of course, the total load taken over all
these components is in overall equilibrium. This broad category of problems,
to which belongs the Ho¤ counter-example [6], includes the cylinder loaded at
each end. These problems have been studied by Fichera [3], who extended the
di¤erential inequality technique introduced by Toupin [17]. In [8], the authors
discussed how Zanaboni’s treatment may be adapted to general problems in this
category.

We describe two examples of this type for the half-plane, both of which con-
form to the principle.

Consider the half-plane yb 0 loaded by dipoles of magnitude D concentrated
at points z ¼ea (Figure 5), and with rotation and stress vanishing in the neigh-
bourhood of infinity.

Figure 5. Two equal symmetrically placed dipoles.
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The load boundary G consists of separate points z ¼ea, to each of which is
applied a self-equilibrated force dipole. The corresponding stress functions are
([13, p. 386]

W ðzÞ ¼ �D

p

1

ðz� aÞ2
þ 1

ðzþ aÞ2

" #
;ð5:1Þ

wðzÞ ¼ � 2aD

p

1

ðz� aÞ3
� 1

ðzþ aÞ3

" #
;ð5:2Þ

and on substitution in (2.3) we obtain for the displacement

4mðuþ ivÞ ¼ D

p

2kz

ðz2 � a2Þ þ
2ðzðzz� a2Þ þ a2ðz� zÞÞ

ðz2 � a2Þ2

" #
:ð5:3Þ

Along the x-axis, for which z ¼ z ¼ t, this expresssion simplifies to

4mðuþ ivÞ ¼ D

p

2ðkþ 1Þt
ðt2 � a2Þ ;ð5:4Þ

so that at t ¼ að1þ eÞ and t ¼ �að1� eÞ we have respectively

uðað1þ eÞ; 0Þ ¼ Dðkþ 1Þ
2ampe

ð1þ eÞ
ð2þ eÞ

� �
;ð5:5Þ

uð�að1� eÞ; 0Þ ¼ Dðkþ 1Þ
2ampe

ð1� eÞ
ð2� eÞ

� �
;ð5:6Þ

and consequently the total work done to first order by the symmetrically disposed
dipoles when ef 1 is

LðaÞ ¼ ðkþ 1ÞD2

mpae
:ð5:7Þ

The half-plane is now enlarged by insertion of a semi-infinite strip of the same
material between the dipoles and paralled to the y-axis. This is equivalent to
increasing the distance separating the dipoles to 2a1 > 2a, with the strip’s width
being 2ða1 � aÞ. The work done is now Lða1Þ, where the function L is given by
(5.7). Accordingly, we have

LðaÞ
Lða1Þ

¼ a1

a
> 1;ð5:8Þ

and we conclude that for this example, additional material decreases the strain
energy consistent with (1.17) and Saint-Venant’s principle. The discussion may
be completed as for the example considered in Section 3.1.
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The second problem again concerns the half-plane just described, but now
loaded by two equal and opposite point forces F at the points z ¼ea and
directed along the positive x-axis. The loading is not self-equilibrated on each
disjoint load boundary point, but is in aggregate. Appropriate stress functions
are (cp., [12, §2.21, §4.22])

W ðzÞ ¼ �F

p

1

ðz� aÞ �
1

ðzþ aÞ

� �
;ð5:9Þ

wðzÞ ¼ F

p

1

ðz� aÞ �
1

ðzþ aÞ �
a

ðz� aÞ2
þ a

ðzþ aÞ2

" #
;ð5:10Þ

and by (2.3), after appropriate integration, the displacement becomes

4mðuþ ivÞ ¼ �F

p
k ln

� z� a

zþ a

�
þ ln

� z� a

zþ a

�
� 2a

ðz� aÞ
ðz2 � a2Þ

� �
:ð5:11Þ

On the plane boundary, we have z ¼ z ¼ t, say, and (5.11) reduces to the
expression

4mðuþ ivÞjz¼z¼t ¼ �F

p
ð1þ kÞ ln

� t� a

tþ a

�
� 2a

1

ðtþ aÞ

� �
;ð5:12Þ

which yields the following displacements at the points z ¼eað1þ eÞ:

4mðuþ ivÞjz¼að1þeÞ ¼ �ð1þ kÞF
p
ln
� e

ð2þ eÞ

�
þ 2F

pð2þ eÞ ;ð5:13Þ

4mðuþ ivÞjz¼�að1þeÞ ¼ ð1þ kÞF
p
ln
� e

ð2þ eÞ

�
� 2F

pe
:ð5:14Þ

The total work done by the forceseF at z ¼eað1þ eÞ, respectively, when
ef 1 is therefore to first order

LðaÞ ¼ F 2

mp

1

e
� ð1þ kÞ

2
ln e

� �
;ð5:15Þ

and by inspection is independent of the distance a. As a consequence, addition of
material, or equivalently, the replacement of a by a1 > a in (5.15) does not a¤ect
the ratio LðaÞ=Lða1Þ.

Nevertheless, this observation does not invalidate Saint-Venant’s principle
according to Zanaboni’s formulation. We recall that this asserts that the strain
energy in regions increasingly remote from the load region tends to zero. The
fact that the strain energy is independent of the distance a provides no informa-
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tion on the distribution of the strain energy in various sub-regions of the half-
plane under consideration.

We can verify Zanaboni’s conclusion on selecting the constituent regions to
be strips parallel to the plane boundary of the half-space. Let WðnÞ be the strip
specified by

WðnÞ ¼ ðx; yÞ a W : hn�1 a ya hnf g; n ¼ 0; 1; . . .ð5:16Þ

We let h0 ¼ 0, h1 ¼ 1, and suppose the first strip Wð1Þ to be subject to the loads
eF at z ¼ea on the plane boundary y ¼ 0, the boundary y ¼ 1, to be traction
free, and let the stress asymptotically vanish as x !el. The corresponding
displacement is denoted by uð1Þ in conformity with previous notation, The strain
energy in Wð1Þ may be written in the form

VWð1Þ ðuð1ÞÞ ¼ 1=2

"Z
Wð1Þ

fðlþ 2mÞðuð1Þ1;1Þ
2 þ 4mðuð1Þ2;1Þ

2g dxð5:17Þ

þ
Z
Wð1Þ

f8muð1Þ1;2u
ð1Þ
2;1 þ 2lu

ð1Þ
1;1u

ð1Þ
2;2g dx

þ
Z
Wð1Þ

fðlþ 2mÞðuð1Þ2;2Þ
2 þ 4mðuð1Þ1;2Þ

2g dx
#

CV11 þ V12 þ V13:

We also let WðnÞ ¼ Wðn�1Þ AWðnÞ, which is of width hn, be subject to the loads
eF at z ¼ea on y ¼ 0, have the boundary y ¼ hn traction-free, and the stress
asymptotically vanishing as x !el. We rescale the coordinates such that
x ! x and y ! hn y, upon which it follows that the strain energy in WðnÞ is

VWðnÞ ðuðnÞÞ ¼ hnV11 þ V12 þ h�1
n V13:ð5:18Þ

The solution for the half-plane is obtained in the limit hn ! l. But we have
just shown that the strain energy in the half-plane is bounded, and so we must
have not only that both V12, V13 are bounded, but also that V11 ¼ 0. By virtue
of (1.17), we then have in the previous notation

VWðnÞ ðuðnÞÞaVWðn�1Þ ðuðn�1ÞÞ � VWðnÞ ðunÞð5:19Þ
¼ V13ðh�1

n�1 � h�1
n Þð5:20Þ

¼ V13
h

hn�1ðhn�1 þ hÞð5:21Þ

upon supposing that hn ¼ hn�1 þ h, where h is a finite positive, possibly small,
constant. We conclude that the strain energy in the strip WðnÞ vanishes as h�2

n�1
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in accordance with Saint-Venant’s principle. A sharper decay rate of h�1
n�1 is pro-

vided by (5.20).
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