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Abstract. — We present a model for the dynamics of a population where the age distribution and

the social structure are taken into account. This results in an integro-di¤erential equation in which
the kernel of the integral term may depend on a functional of the solution itself. We prove the well

posedness of the problem with some regularity properties of the solution. Then, we consider some
special cases and provide some simulations.

Key words: Social dynamics, integro-di¤erential equations, structured populations.

Mathematics Subject Classification: 45G10, 92D25, 91D10.

1. Introduction

Mathematical models to describe social phenomena have been proposed and
studied in many contexts. Quite recently, some special attention has been fo-
cussed on the evolution of criminality in the society (see e.g. the workshops [1]
and the special volume [2] where a great deal of references can be found [10]).

Confining ourselves to models based on the methods of population dynamics,
the society is described as composed by sub-populations (in the simplest case, the
classical ‘‘triangle’’ model: criminals, guards, potential targets) mutually interact-
ing and connected by fluxes of individuals (see e.g. [14], [19], [20], [17]). It is
evident that more accurate models should take into account the quantities that
influence e.g. the recruitment of criminals, or the e¤ect and attractivity of crime1.
In [16] and [15] one of such quantities was identified as the ‘‘social class’’. More
specifically the population of law-abiding people is considered to be composed
of n classes (of increasing wealth) and the rate of transition from each of these
classes to the adjacent one is assumed to be linear and governed by suitable
non-negative coe‰cients of ‘‘social promotion’’ ak and of ‘‘social relegation’’ bk,
while the transition to a social class not adjacent is forbidden.

1Here we have to point out that, when attempting to model the ‘‘crime’’ evolution, one has to
identify the kind of illegal behavior that is considered, since the dynamics is of course very di¤erent

when di¤erent crimes are taken into account.



In this perspective if we consider for simplicity the case of a closed population
in which there are no criminals, and denoting by ukðtÞ, k ¼ 1; . . . ; n the number
of individuals belonging to the k-th class, one has to study the following system
of linear ordinary di¤erential equations:

_uukðtÞ ¼ ak�1ukðtÞ � ðak þ bkÞukðtÞ þ bkþ1ukþ1ðtÞ; k ¼ 1; 2; . . . ; n;ð1Þ

where we set conventionally u0ðtÞ ¼ unþ1ðtÞ ¼ 0 and b1 ¼ an ¼ 0. In this case,
if ak and bk are constant for any k, the stationary solution has to satisfy

ûuk ¼ a1

b2

a2

b3
. . .

ak�1

bk
ûu1;ð2Þ

and hence is uniquely determined once we impose the condition

Xn

k¼1

ûuk ¼ N;ð3Þ

where N is known once the initial conditions for the system (1) are prescribed.
The system (1) has been studied (with or without the presence of other popu-

lations, criminals, guards, prisoners, etc) under di¤erent assumptions on the a’s
and the b’s. These coe‰cients, that represent the ‘‘social mobility’’ of the society
one is considering, are known to depend on several factors. For example in
[11] it is stipulated that the mobility is increasing with the total dimension of
the population—i.e. with N—whereas in [16] and [15] the coe‰cients of social
promotion and relegation are assumed to depend on the total wealth of the
population, and in turn this quantity is supposed to be a linear combination of
ukðtÞ

WðtÞ ¼
Xn

k¼1

pkukðtÞ;ð4Þ

or, more generally it is assumed that it is the solution of an ordinary di¤erential
equation of the form

_WW ðtÞ ¼
Xn

k¼1

pkukðtÞ �CðWðtÞ; tÞ;ð5Þ

where the first term on the r.h.s. represents the rate of wealth production and C
takes into account the expenses that the society has to face, according to a chosen
budgetary policy.
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2. A continuous model

Here we want to introduce a continuous model based on the following features:

(i) the influence of the age structure of the population is taken into account;
(ii) the social structure of the society is in the form of a distribution function

nðx; a; tÞ satisfying suitable integrability conditions such that, at any time t

and for any 0a a1 < a2, 0a x1 < x2

Z x2

x1

Z a2

a1

nðx; a; tÞ dx da represents the

number of the individuals having age between a1 and a2 and ‘‘wealth’’2
between x1 and x2.

Concerning (i), in [8] it has been pointed out that this is a crucial factor for the
dynamics of crime. Indeed, for each crime there is a sort of ‘‘age window’’, and
the influence of age in the dynamics of ‘‘recruitment’’ of criminals seems to be as
important as the influence of social environment.

To take age dependence into account an alternative approach would be to
consider also the age dependence in terms of compartmental models. It is well
known that, as far as demography is concerned, this approach (Lefkovitich ma-
trix) is extensively used (see e.g. [7], [12]). For its applications to social dynamics
see [3] and [21].

Assume that the wealth index x in the population can take values in ½0;X � and
let

gðx; y; a; tÞ : ½0;X �2 � Rþ � Rþ ! Rþð6Þ

be a piecewise continuous function denoting the rate of transition from x to y.
Moreover, let mðx; a; tÞ be the exit rate from the population (by death or emigra-
tion) at time t for individuals of age a and wealth x.

Then the dynamics of the society in terms of the state variables is found to be
expressed by

q

qt
nðx; a; tÞ þ q

qa
nðx; a; tÞ ¼ �nðx; a; tÞ

Z X

0

gðx; y; a; tÞ dyð7Þ

þ
Z X

0

nðy; a; tÞgðy; x; a; tÞ dy

� mðx; a; tÞnðx; a; tÞ:

Equation (7) has to be complemented with initial condition

nðx; a; 0Þ ¼ n0ðx; aÞ; x a ½0;X �; ab 0;ð8Þ

2Whatever this might mean (yearly income, property, taxes paid, etc.), according to the specific

phenomenon that is relevant to our model.
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and by a condition on the birth rate that could be simply

nðx; 0; tÞ ¼ n1ðx; tÞ; x a ½0;X �; tb 0;ð9Þ

or, more naturally, given in terms of the fertility of the population fðx; a; tÞ

nðx; 0; tÞ ¼
Z l

0

fðx; a; tÞnðx; a; tÞ da; x a ½0;X �; tb 0;ð10Þ

where (no sex distinction is made) it is assumed that the newborns have the same
wealth index as the parents.

It is clear that the dependence of the social mobility on the total dimension
of the population and/or the total wealth can be expressed postulating that g
depends in a given way on NðtÞ and/or WðtÞ where

NðtÞ ¼
Z l

0

Z X

0

nðx; a; tÞ dx da; tb 0;ð11Þ

and where, in analogy with (4), (5) either

WðtÞ ¼
Z l

0

Z X

0

Pðx; a; tÞnðx; a; tÞ dx da; tb 0;ð12Þ

where Pðx; a; tÞ is a suitable weight function, or it is the solution of the O.D.E.

_WW ðtÞ ¼
Z l

0

Z X

0

Pðx; a; tÞnðx; a; tÞ dx da�CðW ðtÞ; tÞ; tb 0;ð13Þ

with Cb 0 representing the global expense rate.
From now on, we set X ¼ 1 with no loss of generality.

Remark 1. Before proceeding further, for the sake of simplicity, we neglect the
dependence an age and mortality. Then, compartmental model (1) clearly corre-
sponds to the integro-di¤erential equation (7) when the social mobility g is defined
according to the following scheme

y

c

cn
0 0 0 0 0 an�1 0

cn�1
0 0 0 0 an�2 0 bncn�2
0 0 0 0 bn�1 0

..

.
0 0 0 0

c2
0 a2 0 0 0 0

c1
a1 0 b3 0 0 0 0

c0
0 b2 0 0 0 0 0

c
c0 c1 c2 � � � cn�2 cn�1 cn x
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and where the k-th ‘‘compartment’’ on model (1) is formed by individuals of wealth
between ck�1 and ck.

3. Well-posedness of the problem

As we pointed out in the previous sections, the aim of this paper is to present the
model and to analyze its basic mathematical features rather than to study in de-
tail the most general cases. Consequently, in this section we will confine ourselves
to considering the case in which the dependence on age is neglected and the fol-
lowing simplified problem is studied.

Problem (P)

Let L1ð0; 1Þ the Banach space of the classes of equivalence of the Lebesgue inte-
grable functions on the interval ð0; 1Þ with the usual norm k � k1. Find a continu-
ously di¤erentiable function of t a ½0;lÞ with values in L1ð0; 1Þ satisfying the
di¤erential equation

dn

dt
¼ Fðt; nÞ;ð14Þ

and the initial condition nðx; t ¼ 0Þ ¼ n0ðxÞ, where Fðt; nÞ which is the time
dependent nonlinear operator with values in L1ð0; 1Þ acting on n in the following
way

Fðt; nÞðxÞ ¼ �nðx; tÞ
Z 1

0

gðx; y; t;W Þ dyþ
Z 1

0

gðy; x; t;W Þnðy; tÞ dy:ð15Þ

Here W is the linear operator depending on t a ½0;l� defined as

WðtÞ ¼
Z 1

0

yðx; tÞnðx; tÞ dx:ð16Þ

The assumptions on g and y will be listed later.

Remark 2. Age dependence introduces in general the additional complication of
the boundary condition for nðx; a; tÞ for a ¼ 0. If the latter is simply given as a
known function n1ðx; tÞ, the essential di¤erence w.r.t. Problem (P) is the substitu-
tion on the l.h.s. of (14) of the operator q

qt
by the directional derivative in the plane

ða; tÞ: q
qt
þ q

qa
. If the boundary equation is given in terms of the fertility of the

population, the model becomes much more complicated and its analysis is beyond
the scope of this paper.

We list the assumptions we will use

(H1)

n0 a L1ð0; 1Þ;ð17Þ
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(H2) g : W ¼ ð0; 1Þ � ð0; 1Þ � ½0;l� � R ! R is such that

ess sup
W

jgðx; y; t;W Þj ¼ ĝg < l;ð18Þ

qg

qW
exists for W a R a:e: ðx; y; tÞ a ð0; 1Þ � ð0; 1Þ � ½0;lÞ;ð19Þ

and it is such that ess sup
W

qg

qW
ðx; y; t;W Þ

����
����¼ g1 < l;

qg

qW
ðx; y; t;W Þ � qg

qW
ðx; y; t;W1Þ

����
����a l1jW �W1j; l1 < l;ð20Þ

EW ;W1 a R; a:e: ðx; y; tÞ a ð0; 1Þ � ð0; 1Þ � ½0;lÞ;
qg

qW
ðx; y; t;W Þ � qg

qW
ðx; y; t1;WÞ

����
����a l2jt� t1j; l2 < l;ð21Þ

Et; t1 a R; a:e: ðx; y;W Þ a ð0; 1Þ � ð0; 1Þ � R;

(H3) y : ð0; 1Þ � ½0;l� ! R is such that

ess sup
½0;1��½0;lÞ

jyðx; tÞj ¼ ŷy < l;ð22Þ

jyðx; tÞ � yðx; t1Þj < e; jt� t1j < dðeÞ and a:e: x a ð0; 1Þ:ð23Þ

Remark 3. In the present model n0, g, y are non-negative elements of the respec-
tive spaces, but the proofs we give do not require positivity assumptions. We will see
that n0, g, y non-negative imply nðx; tÞ non-negative too.

We state the theorem

Theorem 1. Under assumptions (17)–(23), problem (P) has one and only one
solution.

Proof. This proof follows the lines of the theory based on e-approximated
solutions (see [6]).

We consider W as a map from L1ð0; 1Þ in a suitable set of time dependent
bounded real functions. Note that

W : L1ð0; 1Þ C f ! Wð f Þ ¼
Z 1

0

yðx; tÞf ðxÞ dx; Ef a L1ð0; 1Þ;ð24Þ

is such that kW ð f Þkla ŷyk f k1:

The assumptions on W and g assure continuity and boundedness of the map
F , defined in (15) on ½0;lÞ � L1ð0; 1Þ, for any f a L1ð0; 1Þ such that it belongs
to the closed bounded subset f f : k f k1 aLg ¼ Bð0;LÞ. Therefore one can state

370 g. busoni et al.



that it exists a function of t with values in L1ð0; 1Þ, let it be f, such that it is
continuous and has a piecewise continuous derivative in a suitable neighborhood
of t ¼ 0, and that it is ðt; fðtÞÞ a ½0; t0� � Bð0;LÞ with kf 0ðtÞ � Fðt; fðtÞÞk1 a e for
any t a ½0; t0� (see Th. 3.1 in [6]).

Moreover the assumptions imply

kF ðt; f ð�; tÞÞ � F ðt; f1ð�; tÞÞk1 a 2ðĝgþ lŷyk f1k1Þk f � f1k1; Etb 0;ð25Þ

and consequently if f ; f1 a Bð f0; rÞ ¼ f f a L1ð0; 1Þ : k f � f0k1 a rgHBð0;LÞ,
the truth of the estimate

kFðt; f ð�; tÞÞ � Fðt; f1ð�; tÞÞk1 a 2ðĝgþ lŷyðk f1k1 þ rÞÞk f � f1k1; Etb 0:ð26Þ

This inequality imply that two e1 and e2-approximated solutions to equation (14),
corresponding to the initial values f ð�; 0Þ and f1ð�; 0Þ are such that

k f ð�; tÞ � f1ð�; tÞk1 a k f ð�; 0Þ � f1ð�; 0Þk1 expfktg þ ðe1 þ e2Þ
expfktg � 1

k
:ð27Þ

Here k is the Lipschitz constant of F in the ball Bð0;LÞ.
Consequently (see Th. 1.6.1 and 1.7.1 of [6]) existence and uniqueness of the

solution of problem (P) can be proved in a suitable bounded closed interval ½0; t0�.
The fact that the integral of the r.h.s. in (15)

�
Z 1

0

nðx; tÞ
Z 1

0

gðx; y; t;W Þ dy dxþ
Z 1

0

Z 1

0

gðy; x; t;W Þnðy; tÞ dy dx ¼ 0;ð28Þ

for any tb 0 in the time interval of existence of the solution, for any n0 a
L1ð0; 1Þ, assure that the solution can be extended to the interval ½0;lÞ.

Remark 4. The solution is such thatZ 1

0

nðx; tÞ dx ¼
Z 1

0

n0ðxÞ dx; Etb 0; En0 a L1ð0; 1Þ:ð29Þ

Remark 5. If g, y, n0 are non-negative elements in the respective domains, then
the approximated solutions are non-negative; hence the unique solution is non-
negative.

Remark 6. An alternative strategy of proving the existence theorem is based on
the theory of semi-groups of operators. The proofs are essentially generalizations of
the methods of successive approximations which are suitable for nonlinear evolution
problems (see e.g. [4], [5]).

Even if proofs are given there for autonomous equations, a careful reader can
modify and fit them to many non autonomous problems. For instance, the case g
and y independent of t is well described by the theory exposed in section 3.4
and/or 5.4 of [4], and in chapter 3 of [5].
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4. Some remarks on the regularity of the solution

We begin by considering the simplest evolution model

ntðx; tÞ ¼ �nðx; tÞ
Z 1

0

gðx; yÞ dyþ
Z 1

0

gðy; xÞnðy; tÞ dy:ð30Þ

Theorem 2. If the functions n0ðxÞ, gðx; yÞ are k-times continuously di¤erentiable
in ½0; 1� and ½0; 1�2, respectively, then the unique solution nðx; tÞ of (30) with the ini-
tial condition nðx; 0Þ ¼ n0ðxÞ has k continuous derivatives with respect to x, and all
of them are continuously di¤erentiable w.r.t. t.

Proof. By formal di¤erentiation of (30) w.r.t. x we obtain the Cauchy problem

xt ¼ �xðx; tÞ
Z 1

0

gðx; yÞ dy� nðx; tÞ
Z 1

0

gxðx; yÞ dyþ
Z 1

0

gyðy; xÞnðy; tÞ dy;ð31Þ

xðx; 0Þ ¼ n 0
0ðxÞ;ð32Þ

where nðx; tÞ is the known solution of (30). Such a problem has a unique solution,
which is continuous, with a continuous t-derivative and that coincides necessarily
with nx. Its explicit expression is

nxðx; tÞ ¼ n 0
0ðxÞe�gðxÞt þ

Z t

0

Sðx; tÞe�gðxÞðt�tÞ dt;ð33Þ

where

gðxÞ ¼
Z 1

0

gðx; yÞ dy;ð34Þ

and Sðx; yÞ denotes the free term in (31).
Under the di¤erentiability assumptions on n0ðxÞ, gðx; yÞ the procedure can be

iterated to calculate qk
x n.

Theorem 3. Under the assumptions of Theorem 1 the function nðx; tÞ is Cl w.r.t.
t, for almost all x a ð0; 1Þ.

Proof. From Theorem 1 we already know that nt exists and is continuous in t
for x a.e. in ð0; 1Þ. Moreover we can write

ntðx; 0Þ ¼ n1ðxÞ ¼ �n0ðxÞgðxÞ þ
Z 1

0

gðy; xÞn0ðyÞ dy:ð35Þ

The function hðx; tÞ satisfying the Cauchy problem

htðx; tÞ ¼ �hðx; tÞgðxÞ þ
Z 1

0

gðy; xÞhðy; tÞ dy;ð36Þ

hðx; 0Þ ¼ n1ðxÞ;ð37Þ

372 g. busoni et al.



which coincides with the original problem for n with the only change of the initial
data, necessarily coincides with nt. Not only it exists, but has the derivative q2t n
continuous in t. Next we can calculate the initial value of

q2t nðx; 0Þ ¼ n2ðxÞ ¼ �n1ðxÞgðxÞ þ
Z 1

0

gðy; xÞn1ðyÞ dy;ð38Þ

and iterate the procedure infinitely many times.
In the particular case in which the initial distribution n0ðxÞ is bounded we can

say more.

Theorem 4. If ess supW n0ðxÞaA0 the function nðx; tÞ is analytic with respect to
t, a.e. in x.

Proof. Besides the function gðxÞ we define hðxÞ ¼
Z 1

0

gðy; xÞ dy, and we denote

by ĝg and ĥh the Ll norm of g, h. From (34) we deduce that jn1jaA0ðĝgþ ĥhÞ, and
from (38) that jn2jaA0ðĝgþ ĥhÞ2, and so on. Thus we have the estimates

jqk
t jt¼0jaA0ðĝgþ ĥhÞk;ð39Þ

showing that nðx; tÞ has a uniformly convergent Taylor expansion for tb 0, a.e.
in x. Moreover, we have the estimates

jqm
t jaA0ðĝgþ ĥhÞmeðĝgþĥhÞt; m ¼ 0; 1; 2; . . . :ð40Þ

Theorems 2, 3 and 4 were proved in the case (30) i.e. when social mobility
does not depend on the total wealth WðtÞ.

For the more complicated model

ntðx; tÞ ¼ �nðx; tÞ
Z 1

0

gðx; y;WðtÞÞ dyþ
Z 1

0

gðy; x;WðtÞÞnðy; tÞ dyð41Þ

W ðtÞ ¼
Z 1

0

yðxÞnðx; tÞ dxð42Þ

the argument for the di¤erentiability of n w.r.t. x goes exactly as in the prof of
Theorem 2.

Proving higher-order di¤erentiability w.r.t. t is still possible but estimates of
the kind (39) cannot be obtained.

5. Some particular cases

This section will be devoted to the analysis of some qualitative properties of
the solution of problem (P). To be specific we will consider first the case
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W -independent that is not so far from the concrete situation3. Then we will
discuss a case of uniform promotion/relegation depending on W .

The scheme of the session is the following.

5.1 We consider the case in which g has constant values in the regions
A ¼ fðx; yÞ : 0 < x < y < 1g and B ¼ fðx; yÞ : 0 < y < x < 1g above and
below the diagonal of the square ð0; 1Þ2,

5.2 We allow dependence on just one variable in A and B,

5.3 We consider the symmetric case gðx; yÞ ¼ gðy; xÞ,
5.4 We study the case gðx; yÞ ¼ pðxÞqðyÞ,
5.5 We consider the case where g is a given function of W in each of the regions

A and B.

5.1. Constant social promotion and relegation

If

gðx; yÞ ¼ a; ðx; yÞ a A;

b; ðx; yÞ a B;

�
ð43Þ

then equation (14) gives

ntðx; tÞ ¼ �nðx; tÞðaþ cxÞ þ bN � c

Z x

0

nðy; tÞ dy;ð44Þ

where

N ¼
Z 1

0

n0ðxÞ dx; c ¼ b� a:ð45Þ

Since (44) can be rewritten

ntðx; tÞ ¼ �c
q

qx

�
x

Z x

0

nðy; tÞ dy
�
� anþ bN;ð46Þ

integrating with respect to x and setting

Mðx; tÞ ¼
Z x

0

nðy; tÞ dy;ð47Þ

3 Indeed one can study the problem in a given time interval (say 1-year) and assume that the

social mobility does not depend on time and corresponds to the total wealth of the society at the
beginning of the period considered. The change of the total wealth can be thought to be relevant to

the social dynamics of the following year.
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we have

Mt ¼ �cxM � aM þ bNx:ð48Þ

Therefore we find the explicit solution

nðx; tÞ ¼ n0ðxÞ �
bNa

ðcxþ aÞ2
� ct M0ðxÞ �

bN

ðcxþ aÞ

� �( )
e�ðcxþaÞtð49Þ

þ bNa

ðcxþ aÞ2
:

In particular if abA 0 the equilibrium solution is

nl ¼ bNa

ðcxþ aÞ2
:ð50Þ

If a or b vanishes, the solution tends asymptotically to concentrate in x ¼ 0 or
x ¼ 1 respectively.

We note that, with some additional work, the analogous of (50) can be found
also in cases on which g has constant values in subsets of A and B.

5.2. Dependence on just one variable in A and B

We have four cases

gðx; yÞ ¼ aðyÞ; ðx; yÞ a A;

bðyÞ; ðx; yÞ a B;

�
ð51Þ

gðx; yÞ ¼ aðxÞ; ðx; yÞ a A;

bðyÞ; ðx; yÞ a B;

�
ð52Þ

gðx; yÞ ¼ aðyÞ; ðx; yÞ a A;

bðxÞ; ðx; yÞ a B;

�
ð53Þ

gðx; yÞ ¼ aðxÞ; ðx; yÞ a A;

bðxÞ; ðx; yÞ a B:

�
ð54Þ

We can find the explicit equilibrium solution in each of the four cases. In case
(51) we find

MlðxÞ ¼
N

R x

0 bðyÞ dyR x

0 bðyÞ dyþ
R 1

x
aðyÞ dy

;ð55Þ

whence nlðxÞ is found by di¤erentiation.
In case (54) we set

cðxÞ ¼ bðxÞ � aðxÞ;ð56Þ
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and we find

log
nlðxÞ
nlð0Þ ¼ log

að0Þ
cðxÞxþ aðxÞ �

Z x

0

cðyÞ
cðyÞyþ aðyÞ dy;ð57Þ

where nlð0Þ has to be found by imposingZ 1

0

nlðxÞ ¼ N:ð58Þ

Finally, we find

nlðxÞ ¼ N

Z 1

0

exp �
Z x

0

cðyÞ
cðyÞyþ aðyÞ

dy

� �
cðxÞxþ aðxÞ dx

2
664

3
775

�1

ð59Þ

�
exp �

Z x

0

cðyÞ
cðyÞyþ aðyÞ

dy

� �
cðxÞxþ aðxÞ :

In cases (52) and (53) the calculations are more lengthy and we give just the
final result.

For case (52) we have

nlðxÞ ¼
� mðxÞ
bðxÞ

�0
�NbðxÞ;ð60Þ

where

mðxÞ ¼ ð1� xÞ
Z x

0

a 0ðyÞMlðyÞ dy;ð61Þ

bðxÞ ¼
Z x

0

bðyÞ dyþ aðxÞð1� xÞ:ð62Þ

For case (53) we define

lðxÞ ¼
Z 1

x

aðyÞ dyþ xbðxÞ;ð63Þ

nðxÞ ¼ lðxÞMlðxÞ �N

Z x

0

bðyÞ dy;ð64Þ

and we find

nðxÞ ¼ N

Z x

0

x

y
exp

Z x

y

zb 0ðzÞ
gðzÞ dz

1

y

Z y

0

bðzÞ dz� bðyÞ
� �

dy:ð65Þ

376 g. busoni et al.



5.3. The symmetric case gðx; yÞ ¼ gðy; xÞ

It is immediately verified that in this case we have the constant equilibrium solu-
tion

nl ¼ N:ð66Þ

5.4. The case of factorized kernel gðx; yÞ ¼ pðxÞqðyÞ

In the particular case p ¼ 1 equation (14) can be written

q

qt
nðx; tÞ ¼ �nðx; tÞ~qqþ qðxÞN;ð67Þ

where

~qq ¼
Z 1

0

qðyÞ dy:ð68Þ

Hence

nðx; tÞ ¼ n0ðxÞe�~qqt þ qðxÞN
~qq

ð1� e�~qqtÞ;ð69Þ

having the asymptotic profile

nlðxÞ ¼ qðxÞN=~qq:ð70Þ

In the general factorized case, defining

nðxÞ ¼ pðxÞnlðxÞ;ð71Þ

we find that the equilibrium solution nl has to satisfy

~qqnðxÞ ¼ qðxÞ~nn;ð72Þ

where

~nn ¼
Z 1

0

pðxÞnlðxÞ dx:ð73Þ

Hence nl is given by

nlðxÞ ¼ K
qðxÞ
pðxÞ ;ð74Þ
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where K is found by imposing that

Z 1

0

nlðxÞ dx ¼ N

K ¼ N

Z 1

0

qðxÞ
pðxÞ dx

� ��1

:ð75Þ

Of course, we excluded the possibility that pðx̂xÞ ¼ 0 for some x̂x. But this
fact would mean that there is no possibility of leaving the state x̂x, whereas (if
qðx̂xÞA 0) there is a finite rate of ‘‘arrival’’ in x̂x from other states. Of course, if x̂x
is the unique zero of pðxÞ the final situation would be nlðxÞ ¼ Ndðx� x̂xÞ where
d is the Dirac’s delta.

We also note that this result still holds if g is allowed to depend on W in a
factorized form

g ¼ pðxÞqðyÞFðWÞ:ð76Þ

Indeed, looking for a stationary solution of (14) FðWÞ cancels and we are
back to the previous case.

5.5. Uniform promotion/relegation rates, depending on W

Let us go back to the case examined in Section 5.1, but letting a, b depend on W .
Thus we assume

gðx; y;W Þ ¼ aðW Þ; ðx; yÞ a A;

bðW Þ; ðx; yÞ a B;

�
ð77Þ

with a, b continuous and positive for W a ½0;Nkyk�, and we look for a steady
state solution4 From Section 5.1 we know that if nlðxÞ is such a solution, then

nlðxÞ ¼ N
aðWlÞbðWlÞ

½aðWlÞ þ cðWlÞx�2
;ð78Þ

where Wl is the wealth index corresponding to nlðxÞ, namely

Wl ¼
Z 1

0

yðxÞnlðxÞ dx:ð79Þ

In the following it will be convenient to define

o ¼ Wl; HðoÞ ¼ bðoÞ
aðoÞ ;

so that
cðoÞ
aðoÞ ¼ HðoÞ � 1.

4We have seen that the fact that a or b vanish can be associated to singular solutions.
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Thus equation (78) can be written as

nlðxÞ ¼ N
HðoÞ

f1þ ½HðoÞ � 1�xg2
:ð80Þ

Imposing (79) we conclude that steady state solutions correspond to the roots
of the algebraic equation

o ¼ NHðoÞ
Z 1

0

yðxÞ
f1þ ½HðoÞ � 1�xg2

dx:ð81Þ

Of course (81) has one unique solution for any yðxÞ in the particular case in
which a and b are proportional, while (81) is identically satisfied for o ¼ NK0

when y ¼ K0.
We will consider with some more detail the case

yðxÞ ¼ lx;ð82Þ

which is, in some sense, the most natural way of associating the wealth index to
the produced wealth W .

We define the function

F ðHÞ ¼ H

Z 1

0

x dx

ð1þ ðH � 1ÞxÞ2
¼ H lnH

ðH � 1Þ2
� 1

H � 1
:ð83Þ

The function FðHÞ is plotted in Fig. (1) and can be made C1 by defining

Fð1Þ ¼ 1

2
, F 0ð1Þ ¼ � 1

6
.

Figure 1. FðHÞ.
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Thus, the solutions of (71) are the values of o corresponding to the intersec-
tion of the curves

y ¼ NlF ðHðoÞÞ;ð84Þ
y ¼ o;ð85Þ

in the strip o a ½0;Nl� of the ðo; yÞ plane.
Since the range of F in ½0; 1� (including also the limit case aðW Þ ¼ 0 for some

W a ½0;Nl�) we can conclude that

Proposition 1. In the assumptions (77) there exists at least one solution of the
problem.

Moreover

Remark 7. If
dH

dW
> 1 there exists one and only one stationary solution.

To be specific we consider the following example

a ¼ KWðlN �WÞ; b ¼ 1;ð86Þ

so that

HðWÞ ¼ 1

KWðlN �WÞ ;ð87Þ

and we rewrite (81) as

1

lN
W�1ðHÞ ¼ F ðHÞ;ð88Þ

where W�1ðHÞ is the inverse of the function HðW Þ and when H is not invertible
we mean one branch of its inverse graph.

In the example we are considering we have two branches

W1ðHÞ ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

KHl2N 2

s( )
;ð89Þ

W2ðHÞ ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

KHl2N 2

s( )
;ð90Þ

both defined for H > Hmin ¼
4

Kl2N 2
and such that

W1ðHminÞ ¼ W2ðHminÞ ¼
1

2
:ð91Þ
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Note that W1 takes values in
1

2
; 1

� �
and W2 in 0;

1

2

� �
.

We distinguish two cases:

• Hmin a 1,

• Hmin > 1,

In the first case the branch W1 gives a finite solution, while the branch W2 may
have no finite intersection with the graph of FðHÞ. However it does provide the
solution W ¼ 0 (intersection at infinity). This is related (as we have remarked in
Section 5.1) with the fact that að0Þ ¼ 0.

In the second case we lose the intersection of the first branch, but a finite
intersection will exist with the second branch, since F ðHÞ decays at infinity as
lnH

H
, while W2 decays like

1

KHl2N 2
. The intersection at infinity still exists.

6. Some simulations

In this section we will display some numerical simulations that have the sole aim
of showing how the model—once calibrated on data taken from some concrete
situation—can give some ideas on the social dynamics.

It is commonly accepted that the policy of a society should tend to increase the
total wealth, preserving at the same time some equity.

To measure the latter quantity, several indexes have been proposed. One
of them is based on the so-called Lorenz curve [13]. In our model it is the

curve that expresses the quantity RðxÞ ¼
Z x

0

xnðxÞ dx=W with respect to

MðxÞ ¼
Z x

0

nðxÞ dx=N.

The Gini index (see [9]) is defined as the double of the area between the diag-
onal of the two positive axes in the plane ðM;RÞ and the Lorenz curve for the
given society.

It is a number ranging from 0 (total ‘‘equity’’: a limit case in which all the
individuals have the same individual wealth) to 1 (a limit case in which one has
two subpopulations of wealth 0 and of wealth 1).

Another possibility of measuring the equity is the fraction of the total wealth
that is in the hands—say—the richest 25% of the population: in our notation

r ¼ 1� Rð0:75Þ:ð92Þ

Just to have an idea of the dynamics, we have considered the social mobility of
our societies defined as follows

gðx; yÞ ¼ exp ��ðx� yÞ2

s

" #
Gðx; yÞ;ð93Þ
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where

Gðx; yÞ ¼
exp� ðx� xaÞ2

ra
; x < y;

exp� ðx� xbÞ2

rb
; x > y:

8>>><
>>>:

ð94Þ

Fig. (2) displays the evolution for di¤erent time values where the initial situa-
tion is

nðx; 0Þ ¼ Mxð1� xÞ;ð95Þ

and the parameters are the following:

s ¼ 0:1 ra ¼ 0:1;

xa ¼ 0:55 rb ¼ 0:1;

xb ¼ 0:65 M ¼ 4 � 1:03:

Figure 2. g as in (93). a: nðx; tÞ for t ¼ 0 (dotted line), t ¼ 2:0e2 (filled curve); b: WðtÞ;
c: rðtÞ; d: nðx; tÞ.
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It can be observed that the total wealth W decreases and that the index r, after
a rapid increase, keeps decreasing. It means that there is more equity but the
society is less productive.

In fig. (3) we assumed that the terms expressing social promotion (x < y) and
social relegation (x > y) are a¤ected by the total wealth and by the policy chosen
as a consequence of it. More specifically we assumed

Gðx; yÞ ¼

10:0W exp� ðx� xaÞ2

ra

�
�
1� exp� ðx� xaÞ2

0:02

�
exp� ðx� yÞ2

s
; x < y;

10:0W exp� ðx� xaÞ2

rb

�
�
1� exp� ðx� xbÞ2

0:02

�
exp� ðx� yÞ2

s
; x > y:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð96Þ

Figure 3. g as in (96). a: nðx; tÞ for t ¼ 0 (dotted line), t ¼ 2:0e2 (filled curve); b: WðtÞ;
c: rðtÞ; d: nðx; tÞ.
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Here the evolution of the society is favorable: W increases, while the index r
actually stabilizes to a rather large value. This is the e¤ect of creating welfare
of the middle class (see the peak in panel a).

Acknowledgements. The Authors want to express their gratitude to the Referees for many

valuable suggestions that improved the formal quality of the paper. Most of the suggested changes
were incorporated, with the exception of the remark on equation (5) that was due to a clear mis-

understanding. We preferred not to eliminate the final section to give the reader the possibility of
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