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ABSTRACT. — Given a smooth family F/Y of geometrically irreducible surfaces, we study
sequences of arbitrarily near T-points of F/Y; they generalize the traditional sequences of infinitely
near points of a single smooth surface. We distinguish a special sort of these new sequences, the strict
sequences. To each strict sequence, we associate an ordered unweighted Enriques diagram. We
prove that the various sequences with a fixed diagram form a functor, and we represent it by a
smooth Y-scheme.

We equip this Y-scheme with a free action of the automorphism group of the diagram. We equip
the diagram with weights, take the subgroup of those automorphisms preserving the weights, and
form the corresponding quotient scheme. Our main theorem constructs a canonical universally injec-
tive map from this quotient scheme to the Hilbert scheme of F/Y; further, this map is an embedding
in characteristic 0. However, in every positive characteristic, we give an example, in Appendix B,
where the map is purely inseparable.
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1. INTRODUCTION

Recently, there has been much renewed interest in an old and timeless problem:
enumerating the r-nodal curves in a linear system on a smooth projective surface.
Notably, Tzeng [30] and Kool, Shende and Thomas [19], in very different ways,
proved Goéttsche’s conjecture [5], which was motivated by the Yau—Zaslow for-
mula [32] and describes the shape of a corresponding generating series in r. How-
ever, Gottsche’s expression involves two power series, which remain unknown in
general.

On the other hand, Vainsencher [31] found enumerating polynomials for
r < 7; they are explicit and general, although he [31, Section 7] was unsure
of the case r=7. In [16] and [17], the present authors refined and extended
Vainsencher’s work, by settling the case » = 7, handling r = 8, producing more
compact formulas, and establishing validity under more extensive conditions.
Further, this enumeration, unlike Gottsche’s, applies to nonconstant families of
surfaces; notably, see [31, pp. 513-514] and [17, pp. 80-83], it proves 17,601,000
is the number of irreducible 6-nodal quintic plane curves on a general quintic 3-
fold in 4-space, contrary to the predictions of Clemens’ conjecture and of mirror
symmetry.
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To establish a range of validity for these enumerative formulas, it is necessary
to analyze various generalized Severi varieties, namely, the loci of curves of given
equisingularity type in the system. Gottsche [S, Proposition 5.2] treated nodes
in an ad hoc fashion; Tzeng relies on his analysis, whereas Kool, Shende and
Thomas [19, Proposition 2.1] improved it, thus extending the range of validity.

On the other hand, Vainsencher’s approach, as pursued by the present
authors, relies on a more extensive and more systematic analysis. It is based on
Enriques diagrams. They are directed graphs, similar to resolution graphs, that
represent the equisingularity types of the curves. Equivalently, see [16, §3] and
the references there, they represent the types of the complete ideals, the ideals
formed by the equations of the curves with singularities of the same type or worse
at given points.

Specifically, in the authors’ paper [16], Proposition (3.6) on p. 225 con-
cerns the locus H(D) that sits in the Hilbert scheme of a smooth irreducible
complex surface and parametrizes the complete ideals .# with a given mini-
mal Enriques diagram D. The proposition asserts that H(D) is smooth and
equidimensional.

The proposition was justified intuitively, then given an ad hoc proof in [16].
The intuitive justification was not developed into a formal proof, which is surpris-
ingly long and complicated. However, the proof yields more: it shows H (D) is
irreducible; it works for nonminimal D; and it works for families of surfaces. Fur-
ther, it works to a great extent when the characteristic is positive or mixed, but
then it only shows H(D) has a finite and universally injective covering by a
smooth cover; this covering need not be birational, as examples in Appendix B
show.

It is naive to form H(D) as a locus with reduced scheme structure. It is more
natural to consider the functor of sequences of arbitrarily near points correspond-
ing to D. This functor is representable by a smooth irreducible scheme, and it
admits a natural map into the Hilbert scheme, whose image is H (D). This map
is finite and universally injective, so an embedding in characteristic zero, but it
may be totally ramified in positive characteristic as the examples show.

Originally, the authors planned to develop this discussion in a paper that also
dealt with other loose ends, notably, the details of the enumeration of curves with
eight nodes. However, there is so much material involved that it makes more
sense to divide it up. Thus the discussion of H(D) alone is developed in the
present paper; the result itself is asserted in Corollary 5.8. Here, in more detail,
is a description of this paper’s contents.

Fix a smooth family of geometrically irreducible surfaces /Y and an integer
n > 0. Given a Y-scheme T, by a sequence of arbitrarily near T-points of F/Y,
we mean an (n+ 1)-tuple (#,...,t,) where #, is a T-point of F} =FxyT
and where ¢;, for i > 1, is a T-point of the blowup F;’X of F}’_Q at t;_1. (If each ¢;
is, in fact, a T-point of the exceptional divisor E(T’) of FT’ , then (fo,...,1,)
is a sequence of infinitely near points in the traditional sense.) The sequences of
arbitrarily near 7-points form a functor in 7', and it is representable by a smooth
Y-scheme F "), according to Proposition 3.4 below; this result is due, in essence, to
Harbourne [12, Proposition 1.2, p. 104].
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We say that the sequence (to,...,1,) is strict if, for each i, j with 1 < j < i,
the image 71 = F; () of ¢, is either ( ) dlS]OlIlt from or (b) contained in, the strict
transform of the exceptlonal divisor ET of F )f (b) obtains, then we say that ¢;
is proximate to t; and we write t; > t;.

To each strict sequence, we associate, in Section 3, an unweighted Enriques
diagram U and an ordering 6 : U—=-{0,...,n}. Effectively, U is just a graph
whose vertices are the ;. There is a dlrected edge from ¢ to t; provided that
j+1<i and that the map from F " to Fr U s an isomorphism in a neighbor-

hood of 7 and embeds 7 in E* (s Y In addition, U inherits the binary relation
of proximity. Finally, 6 is defined by 0(¢;) := i. This material is discussed in more
detail in Section 2. In particular, to aid in passing from (z,...,7,) to (U, ), we
develop a new combinatorial notion, which we call a proximity structure.

Different strict sequences often give rise to isomorphic pairs (U, ). If we fix a
pair, then the corresponding sequences form a functor, and it is representable by
a subscheme F(U, ) of F, which is ¥-smooth with irreducible geometric fibers
of a certain dimension. This statement is asserted by Theorem 3.10, which was
inspired by Roé’s Proposition 2.6 in [27].

Given another ordering 6', in Section 4 we construct a natural isomorphism

@079/ . };'(U7 0) - I:‘(U7 0/)

It is easy to describe @ ;> on geometric points A geometric point of F(U, ) cor-
responds to a certain sequence of local rlngs in the function field of the appropri-
ate geometrlc fiber of F/Y. Then 0’ o 0! ylelds a suitable permutatlon of these
local rings, and so a geometric point of F(U, §'). However, it is harder to work
with arbitrary T-points. Most of the work is carried out in the proofs of Lemmas
4.1 and 4.2, and the work is completed in the proof of Proposition 4.3.

We easily derive two corollaries. Corollary 4.4 asserts that Aut(U) acts freely
on F(U,6); namely, y € Aut(U) acts as @, o where 0 := @ oy. Corollary 4.5
asserts that W : F(U, 0)/Aut(U) is Y-smooth with irreducible geometric fibers.

A different treatment of F(U, 0) is given by A.-K. Liu in [22]. In Section 3 on
pp. 400-401, he constructs F). In Subsection 4.3.1 on pp. 412-414, he discusses
his version of an Enriques diagram, which he calls an “admissible graph.” In
Subsections 4.3.2, 4.4.1, and 4.4.2 on pp. 414-427, he constructs F(U,#), and
proves it is smooth. In Subsection 4.5 on pp. 428-433, he constructs the action
of Aut(U) on F(U,0). Of course, he uses different notation; also, he doesn’t
represent functors. But, like the present authors, he was greatly inspired by Vain-
sencher’s approach in [31] to enumerating the singular curves in a linear system
on a smooth surface.

Our main result is Theorem 5.7. It concerns the Enriques diagram D obtained
by equipping the vertices V' € U with weights m satisfying the Proximity In-
equality, my > %", , my. We discuss the theory of such D in Section 2. Note
that Aut(D) < Aut(U) Setd =5, ("’V+1) Theorem 5.7 asserts the existence of
a universally injective map from the quotient to the Hilbert scheme

¥ : F(U,0)/Aut(D) — Hilb .
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Proposition 5.4 implies that W factors into a finite map followed by an open
embedding. So V¥ is an embedding in characteristic 0. However, in any positive
characteristic, ¥ can be ramified everywhere; examples are given in Appendix
B, whose content is due to Tyomkin. Nevertheless, according to Proposition 5.9,
in the important case where every vertex of D is a root, ¥ is an embedding in any
characteristic. Further, adding a nonroot does not necessarily mean there is a
characteristic in which ¥ ramifies, as other examples in Appendix B show.

We construct W via a relative version of the standard construction of the com-
plete ideals on a smooth surface over a field, which grew out of Zariski’s work
in 1938; the standard theory is reviewed in Subsection 5.1. Now, a T-point of
F(U,0) represents a sequence of blowing-ups F}’) — }”1) for 1 <i<n+1.
On the final blowup F}"H), for each i, we form the preimage of the ith center 7.
This preimage is a divisor; we multiply it by 12,1 (i) and we sum over i. We get an
effective divisor. We take its ideal, and push down to F7. The result is an ideal, and
it defines the desired 7-flat subscheme of F7. The flatness holds and the formation
of the subscheme commutes with base change owing to the generalized property
of exchange proved in Appendix A. Appendix A is of independent interest.

It is not hard to see that W is injective on geometric points, and that its image
is the subset H(D) < Hilb{. /y parameterizing complete ideals with diagram D on
the fibers of /Y. To prove that ¥ induces a finite map onto H(D), we use a sort
of valuative criterion; the work appears in Lemma 5.2 and Proposition 5.4. An
immediate corollary, Corollary 5.5, asserts that H (D) is locally closed. This result
was proved for complex analytic varieties by Lossen [23, Proposition 2.19, p. 35]
and for excellent schemes by Nobile and Villamayor [25, Theorem 2.6, p. 250].
Their proofs are rather different from each other and from ours.

In [28] and [29], Russell studies sets somewhat similar to the H(D). They pa-
rameterize isomorphism classes of finite subschemes of F' supported at one point.

In short, Section 2 treats weighted and unweighted Enriques diagrams and
proximity structures. Section 3 treats sequences of arbitrarily near 7-points. To
certain ones, the strict sequences, we associate an unweighted Enriques diagram
U and an ordering . Fixing U and 6, we obtain a functor, which we represent
by a smooth Y-scheme F (U, #). Section 4 treats the variance in . We produce
a free action on F(U,#) of Aut(U). Section 5 treats the Enriques diagram D
obtained by equipping U with suitable weights. We construct a map ¥ from
F(U,0)/Aut(D) to Hilbg,y, whose image is the locus H(D) of complete ideals.
We prove H(D) is locally closed. Our main theorem asserts that W is universally
injective, and in fact, in characteristic 0, an embedding. Appendix A treats the
generalized property of exchange used in constructing . Finally, Tyomkin’s
Appendix B treats a few examples: in some, W is ramified; in others, there’s a
nonroot, yet ¥ is unramified.

2. ENRIQUES DIAGRAMS

In 1915, Enriques [4, IV.I, pp. 350-51] explained a way to represent the equi-
singularity type of a plane curve singularity by means of a directed graph: each
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vertex represents an arbitrarily near point, and each edge connects a vertex repre-
senting a point to a vertex representing a point in its first-order neighborhood;
furthermore, the graph is equipped with a binary relation representing the ‘““prox-
imity” of arbitrarily near points. These graphs have, for a long time, been called
Enriques diagrams, and in 2000, they were given a modern treatment by Casas in
[2, Section 3.9, pp. 98-102].

Based in part on a preliminary edition of Casas’ monograph, a more axiom-
atic treatment was given by the authors in [17, §2], and this treatment is elabo-
rated on here in Subsection 2.1. In this treatment, the vertices are weighted, and
the number of vertices is minimized. When the diagram arises from a curve, the
vertices correspond to the “essential points’ as defined by Greuel et al. [6, Section
2.2], and the weights are the multiplicities of the points on the strict transforms.
Casas’ treatment is similar: the Proximity Inequality is always an equality, and
the leaves, or extremal vertices, are of weight 1; so the rest of the weights are
determined.

At times, it is convenient to work with unweighted diagrams. For this rea-
son, Roé [27, §1], inspired by Casas, defined an “Enriques diagram™ to be an
unweighted graph, and he imposed five conditions, which are equivalent to our
Laws of Proximity and of Succession. Yet another description of unweighted
Enriques diagrams is developed below in Subsection 2.3 and Proposition 2.4
under the name of “proximity structure.” This description facilitates the formal
assignment, in Subsection 2.7, of an Enriques diagram to a plane curve singular-
ity. Similarly, the description facilitates the assignment in Section 3 of the Enri-
ques diagram associated to a strict sequence of arbitrarily near points.

At times, it is convenient to order the elements of the set underlying an Enri-
ques diagram or underlying a proximity structure. This subject is developed
in Subsections 2.2 and 2.3 and in Corollary 2.5. It plays a key role in the later
sections.

Finally, in Subsection 2.6, we discuss several useful numerical characters.
Three were introduced in [16, Section 2, p. 214], and are recalled here. Proposi-
tion 2.8 describes the change in one of the three when a singularity is blown up;
this result is needed in [18].

2.1 (Enriques diagrams). First, recall some general notions. In a directed
graph, a vertex V' is considered to be one of its own predecessors and one of
its own successors. Its other predecessors and successors W are said to be
proper. If there are no loops, then W is said to be remote, or distant, if there
is a distinct third vertex lying between V' and W; otherwise, then W is said to be
immediate.

A tree is a directed graph with no loops; by definition, it has a single initial
vertex, or root, and every other vertex has a unique immediate predecessor. A
final vertex is called a leaf. A disjoint union of trees is called a forest.

Next, from [17, §2], recall the definition of a minimal Enriques diagram. It is
a finite forest D with additional structure. Namely, each vertex V' is assigned
a weight my, which is an integer at least 1. Also, the forest is equipped with a
binary relation; if one vertex V is related to another U, then we say that V' is
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proximate to U, and write V' = U. If U is a remote predecessor of V, then we call
V a satellite of U; if not, then we say V is free. Thus a root is free, and a leaf can
be either free or a satellite.

Elaborating on [17], call D an Enriques diagram if D obeys these three laws:

(Law of Proximity) A root is proximate to no vertex. If a vertex is not a root,
then it is proximate to its immediate predecessor and to at most one other vertex;
the latter must be a remote predecessor. If one vertex is proximate to a second,
and if a distinct third lies between the two, then it too is proximate to the second.
(Proximity Inequality) For each vertex V,

my > Z my.

W=V

(Law of Succession) A4 vertex may have any number of free immediate succes-
sors, but at most two immediate successors may be satellites, and they must be
satellites of different vertices.

Notice that, by themselves, the Law of Proximity and the Proximity Inequal-
ity imply that a vertex J has at most m, immediate successors; so, although this
property is included in the statement of the Law of Succession in [17, §2], it is
omitted here.

Recovering the notion in [16], call an Enriques diagram D minimal if D obeys
the following fourth law:

(Law of Minimality) There are only finitely many vertices, and every leaf of
weight 1 is a satellite.

In [16], the Law of Minimality did not include the present finiteness restriction;
rather, it was imposed at the outset.

2.2 (Unweighted diagrams). In [27, §1], Ro¢ defines an Enriques diagram to
be an unweighted finite forest that is equipped with a binary relation, called
“proximity,” that is required to satisfy five conditions. It is not hard to see that
his conditions are equivalent to our Laws of Proximity and Succession. Let us
call this combinatorial structure an unweighted Enriques diagram.

Let U be any directed graph on n+ 1 vertices. By an ordering of U, let us
mean a bijective mapping

0:U—={0,...,n}

such that, if one vertex V" precedes another W, then 6(7) < §(W). Let us call the
pair (U, 0) an ordered directed graph.

An ordering 0 need not be unique. Furthermore, if one exists, then plainly U
has no loops. Conversely, if U has no loops—if it is a forest—then U has at least
one ordering. Indeed, then U has a leaf L. Let T be the complement of L in U.
Then T inherits the structure of a forest. So, by induction on n, we may assume
that T has an ordering. Extend it to U by mapping L to n.
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Associated to any ordered unweighted Enriques diagram (U, 0) is its proxim-
ity matrix (p;;), which is the n 4+ 1 by n+ 1 lower triangular matrix defined by

1, ifi=j;
pij =4 —1, if 07'iis proximate to 0~;
0, otherwise.

The transpose was introduced by Du Val in 1936, and he named it the “proximity
matrix” in 1940; Lipman [21, p. 298] and others have followed suit. The defini-
tion here is the one used by Roé [27] and Casas [2, p. 139].

Note that (U, 0) is determined up to unique isomorphism by (p;).

2.3 (Proximity structure). Let U be a finite set equipped with a binary relation.
Call U a proximity structure, its elements vertices, and the relation proximity if
the following three laws are obeyed:

(P1) No vertex is proximate to itself; no two vertices are each proximate to the
other.

(P2) Every vertex is proximate to at most two others; if to two, then one of the
two is proximate to the other.

(P3) Given two vertices, at most one other is proximate to them both.

A proximity structure supports a natural structure of directed graph. Indeed,
construct an edge proceeding from one vertex V' to another W whenever either
W is proximate only to V' or W is proximate both to V' and U but V' is proxi-
mate to U (rather than U to V). Of course, this graph may have loops; for
example, witness a triangle with each vertex proximate to the one clockwise be-
fore it, and witness a pentagon with each vertex proximate to the two clockwise
before it.

Let us say that a proximity structure is ordered if its vertices are numbered, say
Vo, ..., Vau, such that, if V; is proximate to V;, then i > ;.

PROPOSITION 2.4. The unweighted Enriques diagrams sit in natural bijective
correspondence with the proximity structures whose associated graphs have no
loops.

Proor. First, take an unweighted Enriques diagram, and let’s check that its
proximity relation obeys Laws (P1) to (P3).

A vertex is proximate only to a proper successor; so no vertex is proximate
to itself. And, if two vertices were proximate to one another, then each would
succeed the other; so there would be a loop. Thus (P1) holds.

A root is proximate to no vertex. Every other vertex J# is proximate to its
immediate predecessor V' and to at most one other vertex U, which must be a
remote predecessor. Since an immediate predecessor is unique in a forest, V'
must lie between W and U; whence, V" must be proximate to U. Thus (P2) holds.

Suppose two vertices W and X are each proximate to two others U and V.
Say V is the immediate predecessor of W. Then U is a remote predecessor of
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W; so U precedes V. Hence V' is also the immediate predecessor of X, and W is
also a remote predecessor of X. Thus both W and X are immediate successors of
V’, and both are satellites of W; so the Law of Succession is violated. Thus (P3)
holds.

Conversely, take a proximity structure whose associated graph has no loops.
Plainly, a root is proximate to no vertex. Suppose a vertex W is not a root. Then
W has an immediate predecessor V. Plainly, W is proximate to V. Plainly, W is
proximate to at most one other vertex U, and if so, then V' is proximate to U.
Since U cannot also be proximate to V by (P1), it follows that 7 is the only
immediate predecessor to W.

Every vertex is, therefore, preceded by a unique root. Plainly the connected
component of each root is a tree. Thus the graph is a finite forest.

Returning to U, V, and W, we must show that U precedes W. Now, V is
proximate to U. So V is not a root. Hence V" has an immediate predecessor V.
If V' = U, then stop. If not, then V' is proximate to U owing to the definition
of the associated graph, since V is proximate to U. Hence, similarly, ¥’ has an
immediate predecessor V. If V" = U, then stop. If not, then repeat the process.
Eventually, you must stop since the number of vertices is finite. Thus U precedes
W. Furthermore, every vertex between U and W is proximate to U. Thus the
Law of Proximity holds.

Continuing with U, V', and W, suppose that W’ is a second immediate succes-
sor of ¥ and that W’ is also proximate to a vertex U’. Then U’ # U since at
most one vertex can be proximate to both ¥ and U by (P3).

Finally, suppose that 7" is a third immediate successor of ¥ and that W is
also proximate to a vertex U”. Then U” # U and U” # U’ by what we just
proved. But V' is proximate to each of U, U’, and U”. So (P2) is violated. Thus
the Law of Succession holds, and the proof is complete. |

COROLLARY 2.5. The ordered unweighted Enriques diagrams sit in natural bijec-
tive correspondence with the ordered proximity structures.

ProoOF. Given an unweighted Enriques diagram, its proximity relation obeys
Laws (P1) to (P3) by the proof of Proposition 2.4. And, if one vertex V' is proxi-
mate to another W, then W precedes V. So O(W) < (V) for any ordering 0.
Hence, if V' is numbered 6(V) for every V, then the proximity structure is
ordered.

Conversely, take an ordered proximity structure. The associated directed
graph is, plainly, ordered too, and so has no loops. And, the Laws of Proximity
and Succession hold by the proof of Proposition 2.4. Thus the corollary holds.

O

2.6 (Numerical characters). In [16, Section 2, p. 214], a number of numerical
characters were introduced, and three of them are useful in the present work.

The first character makes sense for any unweighted Enriques diagram U,
although it was not defined in this generality before; namely, the dimension
dim(U) is the number of roots plus the number of free vertices in U, including
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roots. Of course, the definition makes sense for a weighted Enriques diagram D;
namely, the dimension dim(D) is simply the dimension of the underlying un-
weighted diagram.

The second and third characters make sense only for a weighted Enriques
diagram D; namely, the degree and codimension are defined by the formulas

aeg0) = - (")

VeD
cod(D) := deg(D) — dim(D).

It is useful to introduce a new character, the fype of a vertex V" of U or of D. It
is defined by the formula

0, 1if V is a satellite;
type(V) :=< 1, if Visa free vertex, but not a root;
2, if Visa root.

The type appears in the following two formulas:

(2.6.1) dim(D) = )~ type(¥);
(2.6.2) codD) = 3 KmV; 1) - type(V)}.

Formula 2.6.2 is useful because every summand is nonnegative in general and
positive when A is a minimal Enriques diagram.

2.7 (The diagram of a curve). Let C be a reduced curve lying on a smooth sur-
face over an algebraically closed ground field; the surface need not be complete.
In [16, Section 2, p. 213] and again in [17, Section 2, p. 72], we stated that, to C,
we can associate a minimal Enriques diagram D. (It represents the equisingularity
type of C; this aspect of the theory is treated in [2, p. 99] and |6, pp. 543-4].) Here
is more explanation about the construction of D.

First, form the configuration of all arbitrarily near points of the surface lying
on all the branches of the curve through all its singular points. Say that one arbi-
trarily near point is proximate to a second if the first lies above the second and
on the strict transform of the exceptional divisor of the blowup centered at the
second. Then Laws (P1) to (P3) hold because three strict transforms never meet
and, if two meet, then they meet once and transversely. Plainly, there are no
loops. Hence, by Proposition 2.4, this configuration is an unweighted Enriques
diagram.

Second, weight each arbitrarily near point with its multiplicity as a point on
the strict transform of the curve. By the theorem of strong embedded resolution,
all but finitely many arbitrarily near points are of multiplicity 1, and are proxi-
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mate only to their immediate predecessors; prune off all the infinite unbroken suc-
cessions of such points, leaving finitely many points. Then the Law of Minimality
holds.

Finally, the Proximity Inequality holds for this well-known reason: the multi-
plicity of a point P’ on a strict transform C’ can be computed as an intersection
number m on the blowup at P’ of the surface containing C’; namely, m is the
intersection number of the exceptional divisor and the strict transform of C’;
the desired inequality results now from Noether’s formula for m in terms of
multiplicities of arbitrarily near points. (In [2, p. 83], the inequality is an equality,
because no pruning is done.) Therefore, this weighted configuration is a minimal
Enriques diagram. It is D.

Notice that, if K is any algebraically closed extension field of the ground field,
then the curve Ck also has diagram D.

ProrosITION 2.8. Let C be a reduced curve lying on a smooth surface over
an algebraically closed field. Let D be the minimal Enriques diagram of C, and
P e C a singular point of multiplicity m. Form the blowup of the surface at P, the
exceptional divisor E, the proper transform C' of C, and the union C" := C' U E.
Let D' be the diagram of C', and D" that of C". Then

m+1

2

cod(D) — cod(D’) > < 5

) —2 and cod(D)— cod(D") = (m) -2;

equality holds in the first relation if and only if P is an ordinary m-fold point.

PrOOF. We obtain D’ from D by deleting the root R corresponding to P and
also all the vertices T that are of weight 1, proximate to R, and such that all suc-
cessors of 7" are also (of weight 1 and) proximate to R (and so deleted too). Note
that an immediate successor of R is free; if it is deleted, then it has weight 1, and if
it is not deleted, then it becomes a root of D’. Also, by the Law of Proximity, an
undeleted satellite of R becomes a free vertex of D'.

Let o be the total number of satellites of R, and p the number of undeleted
immediate successors. Then it follows from the Formula (2.6.2) that

m+1

cod(D) — cod(D’) = ( 5

>—2+a+p

Thus the asserted inequality holds, and it is an equality if and only if ¢ = 0 and
p = 0. So it is an equality if P is an ordinary m-fold point.

Conversely, suppose ¢ = 0 and p = 0. Then R has no immediate successor V'
of weight 1 for the following reason. Otherwise, any immediate successor W of '
is proximate to ' by the Law of Proximity. So W has weight 1 by the Proximity
Inequality. Hence, by recursion, we conclude that }' is succeeded by a leaf L of
weight 1. So, by the Law of Minimality, L is a satellite. But ¢ = 0. Hence V' does
not exist. But p = 0. Hence R has no successors whatsoever. So P is an ordinary
m-fold point.
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Furthermore, we obtain D” from D by deleting R and by adding 1 to the
weight of each T proximate to R. So a satellite of R becomes a free vertex of
D”, and an immediate successor of R becomes a root of D”. In addition, for
each smooth branch of C that is transverse at P to all the other branches, we
adjoin an isolated vertex (root) of weight 2.

The number of adjoined vertices is m — ) ;. pmr. So, by Formula (2.6.2),

cod(D) — cod(D") = (m+l) 2+ Z [(mT+ : ) —type(T)]

T-R

_ Z[(Mr+2> _(type(T)+l):| - [m— ZmT]

T~R T~R

The right hand side reduces to ('5’) — 2. So the asserted equality holds. O

3. INFINITELY NEAR POINTS

Fix a smooth family of geometrically irreducible surfaces = : ¥ — Y. In this sec-
tion, we study sequences of arbitrarily near 7-points of F/Y. They are defined
in Definition 3.3. Then Proposition 3.4 asserts that they form a representable
functor. In essence, this result is due to Harbourne [12, Proposition 1.2, p. 104],
who identified the functor of points of the iterated blow-up that was introduced in
[15, Section 4.1, p. 36] and is recalled in Definition 3.1.

In the second half of this section, we study a special kind of sequence of arbi-
trarily near 7-points, the strict sequence, which is defined in Definition 3.5. To
each strict sequence is associated a natural ordered unweighted Enriques diagram
owing to Propositions 3.8 and 2.4. Finally, Theorem 3.10 asserts that the strict
sequences with given diagram (U, §) form a functor, which is representable by a
Y-smooth scheme with irreducible geometric fibers of dimension dim(U). This
theorem was inspired by Roé’s Proposition 2.6 in [27].

DEeFINITION 3.1. By induction on i > 0, let us define more families
0. F)  pl=1),

which are like 7: F — Y. Set 7% := 7. Now, suppose 7 has been defined.
Form the ﬁbered product of F() w1th itself over F(~1) and blow up along the
diagonal A, Take the composition of the blowup map and the second projec-
tion to be 7+

In addition, for i > 1, let () : F() — F (1) be the composition of the blowup
map and the first prOJectlon and let E() be the exceptional divisor. Finally, set
90 =7 50 9 = 70,

LeMMA 3.2. Both n') and ¢! are smooth, and have geometrically irreducible
fibers of dzmenszon 2. Moreover EY is equal, as a polarized scheme, to the bundle
IF"(Q)[( ) over FU=Y) where Q _yy is the sheaf of relative differentials.
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PrROOF. The first assertion holds for i = 0 by hypothesis. Suppose it holds for i.
Consider the fibered product formed in Definition 3.1. Then both projections
are smooth, and have geometrically irreducible fibers of dimension 2; also, the
diagonal A is smooth over both factors. It follows that the first assertion holds
fori+1.

The second assertion holds because Q7lz(i‘1) is the conormal sheaf of A", O

DEFINITION 3.3. Let T be a Y-scheme. Given a sequence of blowups

1 ) oM
F,I(,n+)T—>F7(~”)—>—>F'I/"—T>FT:FXYT

whose ith center T = F\" is the image of a section #; of F\/T for 0 <i < n,
call (¢, ...,1,) a sequence of arbitrarily near T-points of F/Y.
For 1 <i <n+ 1, denote the exceptional divisor in F}l) by E(Tl).

The following result is a version of Harbourne’s Proposition 1.2 in [12, p. 104].

ProPOSITION 3.4 (Harbourne). As T wvaries, the sequences (to,...,t,) of arbi-
trarily near T-points of F|Y form a functor, which is represented by F" /Y.

Given (ty,...,t,) and i, say (to,...,t;) is represented by t;: T — F\. Then
7z, = 1, where t_y is the structure map. Also, F}m) = FU+D Xpo T where
FUt) — FO s g0 correspondingly, t; = (1;,1) and E(TM) = EWD x oo T
moreover, TV is the scheme-theoretic image of E(TM) under (pgf“) : F}Hl) — F}”.
Finally, gogﬂ) is induced by ¢V and F}Hl) — T is induced by n(+V,

PRrOOE. First, observe that, given a section of any smooth map a : 4 — B, blow-
ing up A along the section’s image, C say, commutes with changing the base B.
Indeed, let .# be the ideal of C, and for each m > 0, consider the exact sequence

0_>J;n+l _)fm_)jm/fnﬂrl - 0.

Since @ is smooth, .#” /.7 is a locally free (/c-module, so B-flat. Hence form-
ing the sequence commutes with changing B. However, the blowup of 4 is just
Proj ®,, .#". Hence forming it commutes too.

Second, observe in addition that C is the scheme-theoretic image of the excep-
tional divisor, E say, of this blowup. Indeed, this image is the closed subscheme
of C whose ideal is the kernel of the comorphism of the map £ — C. However,
this comorphism is an isomorphism, because E = P(.# /.#?) since a is smooth.

The first observation implies that the sequences (f,...,#,) form a functor,
because, given any Y-map 7’ — T, each induced map

F1(j+l) X7 T 7("’.) X7 T

is therefore the blowing-up along the image of the induced section of
FY xp 1T
T °T :
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To prove this functor is representable by F) /Y, we must set up a functorlal
bijection between the sequences (f,...,?,) and the Y-maps 7,: T — F . Of
course, n is arbitrary. So (#,...,?;) then determines a Y-map t;: T — F () and
correspondingly we want the remaining assertions of the proposition to hold as
well.

So given (fo,...,t,), let us construct appropriate Y-maps z;: T — F for
-1 <i<n We proceed by induction on i. Necessarily, 7_; : T — Y is the struc-
ture map, and correspondingly, F. ( ) = FO) x ry T owing to the definitions.

Suppose we’ve constructed r, 1. Then F W) — F () y T. Set t;:= pit;
where p; : F() — FU is the projection. Then 7;_; = n)7;. Also Zl = (15, 1); 80 ¢

is the pullback, under the map (1, 7;), of the diagonal map of F)/F(~1)_ There-
fore, owing to the first observation, we have F, (1) _ pl+1) X (PO xF ) F}[) where
F(i> —>F<) rien FU is equal to 1 x 7;. Hence F(’H) FUH) x g T where
F<"+1 — F(' is 2+ 1t follows formally that EV™) = E(+D) x . T, that
FIY — F is induced by (), and that F(Hl) — T is induced by 7 ’+1>

By the second observation above 70 is the scheme- theoretlc image of E (1),
Conversely, given a map 7,: T — F" sett_y :=7n" .. . 2", for 0 <i < n;
so 71 : T — FU-D, SetF =F" x TwherethemapF()—>F(’ D is 7@

forO0<i<mn-+1.Thent, deﬁnes a sectlon t; of F / T. Furthermore, blowing up
its image yields the map F <'+l> — FT induced by ¢!), because, as noted above,
forming the blowup along A commutes with changing the base via 1 x 7;. Thus
(to,...,1,) is a sequence of arbitrarily near T-points of F/Y.

Plainly, for each T', we have set up the bijection we sought, and it is functorial
in 7. Since we have checked all the remaining assertions of the proposition, the
proof is now complete. O

DEeFINITION 3.5. Given a sequence (fo,...,1?,) of arbitrarily near T-points of
F/Y,let us call it strict if, for 0 < i < n, the i 1mage T of ¢; satisfies the following
i condltlons defined by induction on i. There are, of course, no conditions on
TO. Fix i, and suppose, for 0 < j < i, the conditions on T (0 are defined and
satisfied.

The i conditions on 7' involve the natural embeddings

e,(rj’i) E;j) — FY("Z) for 1 S] < i7

which we assume defined by induction; see the next paragraph. (The image

e(T‘/ ’i)E}i) can be regarded as the “strict transform™ of E;") on F}i).) The jth
condition requires ¢}/ EY/) cither (a) to be disjoint from T or (b) to contain

T as a subscheme.
Define g“ 1) to be the inclusion. Now, for 1 < j < i, we have assumed that
(T s defined, and required that its image satlsfy either ( ) or (b). If (a) is satis-
ﬁed then the blowing-up Fj' (1) F}” is an 1somorph1sm on a neighborhood
of e E(T), namely, the complement of T1) ; so then e ) lifts naturally to an
embeddlng eT”H If (b) is satisfied, then 71 is a relatlve effective divisor on the
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T-scheme ¢V E T , because ET and T are flat over T, and the latter’s fibers
are effectlve d1V1sors on the former’s fibers, which are P's; hence then blow1ng up
‘(Tj ' ] along TV yields an 1somorphlsm But the blowup of e )E(T embeds

naturally in Fp, @ . Thus, again, eT’ ) ifts naturally.

DEFINITION 3.6. Given a strict sequence (f, . .., #,) of arbitrarily near T-points
of F/Y, say that 1; is proximate to ; if j < i and U0 EY* contains T,

Lemma 3.7. Let (ty,...,t,) be a strict sequence of arbitrarily near T-points
of F] Y. len+1>z>]>k>1 Then(pJH) (p()e( ):egc’]),andT(jfl) is
the scheme-theoretic image of eT E(T under gogr) . . Set

20 = D EW (ol f>E<Tf>.

If j > k and Z # 0, then goT . .(p¥) induces an isomorphism Z(i) = TU-D and

)

ti_y is proximate to ti_,; moreover, then Z;’ meets no eT for [ # ], k.

PROOF. The formula /™ .. p{els) = oU7) is trivial if i = j. It holds by con-
struction if i = j+ 1. Flnally, it follows by induction if i > j+ 1 Wlth k:=7j,

thls formula implies that E;/ () is the scheme- theoretlc image of e >E(Tj under
gyT (pgr), whence, Proposmon 3.4 implies that 70U~ is the scheme theoretic
image ofe E(T under go W q)g).

Suppose j > kand Z # (Z) Now, for any / such thati >/ > j, both eT (T>
and eT E(Tj) are relative effective divisors on FT / T, because they’re flat and
divisors on the fibers. Hence, on either of eTk % E<Tk nd eT/ (1) ET' , their intersec-

tion Z (T is a relative effective divisor, since each fiber of zW 7 1s correspondingly a
divisor. In fact, each nonempty ﬁber of ZT) isa reduced point on a Pl

Since gp(’H) . go(T)e(T’ ) = <T and since e(T is the inclusion of ET , which is

the exceptlonal divisor of the blowing-up ¢ : FU) — FU=1 along TU-Y, the

map go(T) . goT induces a proper map e : Z W _, 7U-D. Since the fibers of e are

isomorphisms, e is a closed embedding. So since Z(T and TU=Y are T-flat, e is an
isomorphism onto an open and closed subscheme.

Since go;j) : ..q)g)egc’i) = egf"j Vit follows that e (k.= 1)E(Tk) contains a non-
empty subscheme of T/~ So since (1, ..., 1,) is strict, e(k = 1>E(Tk) contains all

of TU-D asa subscheme Thus #;_; is pr0x1mate to f4_1.

It follows that (pT induces a surjection Z;/ ) TU-D_1f i = j, then this sur-
jection is just e, and so e is an isomorphism, as desired.

Suppose i > j. Then Z\ ~ TU) = . Indeed, suppose not. Then both e\*/ E
and E(T meet 7). So since (to,...,1,) is strict, Z(Tj) contains T/ as a closed
subscheme. Both these schemes are 7-flat, and their ﬁbers are reduced points;

hence, they coincide. It follows that el ’+1)E(T and e¥"/"VEY) are disjoint on

(k)
T
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FU+D, But these subschemes intersect in Z;’ 1 And Z;/ 1 £ ¢ since Z<Ti) #0

and Z maps into Zy (j+1) . We have a contradiction, so Z (/) m TU) = 0.
Therefore, (p”1 induces an 1somorphrsm Z“H) = Z . Similarly, ¢ UH)
induces an isomorphism Z( D ZT for /=j,...,i— 1. Hence gp(T)...(p(T'>

induces an isomorphism Z; 0’ =, TU- 1>
Finally, suppose Z; " meets e( ) for 1 # J,k, and let’s find a contradic-
tion. If / < j, then 1nterchange / and j Then, by the above, TV~ lies in both
ST VER and el 7V EW . Therefore, TU-Y is equal to their intersection, be-
cause T<f D) 1s flat and 1ts ﬁbers are equal to those of the intersection. It follows

that e/ EX) and ¢!l /' E\" are disjoint on F(). But both these subschemes con-

tain the image of Z <T>, which is nonempty. We have a contradiction, as desired.

The proof is now complete. O

ProrosiTION 3.8. Let (to,...,t,) be a strict sequence of arbitrarily near T-
points of F/Y. Equip the abstract ordered set of t; with the relation of proximity
of Definition 3.6. Then this set becomes an ordered proximity structure.

PrOOF. Law (PI1) holds trivially

As to (P2), suppose ¢#; is proximate to # and to # with j > k. Then T lies
(k+1, 1)E(k+1) (T/H l)E(T/H

in ey r o ne So Lemma 3.7 implies #; is prox1mate to t. Fur-
thermore, the lemma implies the intersection meets no e#ﬂ IH ) for 1 # j.k

So ¢; is proximate to no third vertex ;. Thus (P2) holds.

As to (P3), suppose #; and #; are each proximate to both #; and ¢ where
i>j>k>1 Given p>k, set Z7) =TI EIY K2 EIED - Then
T < 720, Now, ZW is T-flat with reduced points as fibers by Lemma 3.7. But

T is a similar T-scheme. Hence 7() = Z() Similarly TU) =70,

Lemma 3.7 ylelds (0]+1).. (p?cgrm i) = "” for m = k l So gp”l) ..(p?
carries 71 into 7'/). Now, this map is proper and both 7 and T) are T-flat
with reduced points as fibers; hence, 7 = . It follows that

o T < ZUM @ (V)T = B,

Hence ZU*!) meets E(Tj H), contrary to Lemma 3.7. Thus (P3) holds. O

DEFINITION 3.9. Let’s say that a strict sequence of arbitrarily near T-points
of F/Y has diagram (U,0) if (U,0) is isomorphic to the ordered unweighted
Enriques diagram coming from Propositions 3.8 and 2.4.

The following result was inspired by Roé’s Proposition 2.6 in [27].

THEOREM 3.10. Fix an ordered unweighted Enriques diagram (U, 0) on n + 1 ver-
tices. Then the strict sequences of arbitrarily near T-points of F/Y with diagram
(U, 0) form a functor; it is representable by a subscheme F(U,0) of F"), which is
Y-smooth with irreducible geometric fibers of dimension dim(U).
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PRrOOE. If a strict sequence of arbitrarily near 7-points has diagram (U, 6), then,
for any map T' — T, the induced sequence of arbitrarily near T'-points plainly
also has diagram (U, #). So the sequences with diagram (U, 9) form a subfunctor
of the functor of all sequences, which is representable by F*) /Y by Proposition
3.4.

Suppose n = 0. Then U has just one vertex. So the two functors coincide, and
both are representable by F, which is Y-smooth with irreducible geometric fibers
of dimension 2. However, 2 = dim(U). Thus the theorem holds when n = 0.

Suppose n > 1. Set L := 0~ 'n. Then L is a leaf. Set T := U — L. Then T inher-
its the structure of an unweighted Enriques diagram, and it is ordered by the
restriction 0| T. By induction on n, assume the theorem holds for (T, 0| T).

Set G:=F(T,0|T)c F"V and H:=n,'G< F™. Then H represents
the functor of sequences (f,...,#,) of arbitrarily near T-points such that
(to,...,1t,—1) has diagram (T,0|T) since n)t; = 7,_; by Proposition 3.4. More-
over, H is G-smooth with irreducible geometric fibers of dimension 2 by Lemma
3.2. And G is Y-smooth with irreducible geometric fibers of dimension dim(T) as
the theorem holds for (T,0|T). Thus H is Y-smooth with irreducible geometric
fibers of dimension dim(T) + 2.

Let (ho,...,h,) be the universal sequence of arbitrarily near H-points, and

HY) cF Ig) the image of /#;. We must prove that H has a largest subscheme S over
which (hy, ..., h,) restricts to a sequence with diagram (U, ); we must also prove
that S is Y-smooth with irreducible geometric fibers of dimension dim(U).

But, (hg, ...,h, 1) has diagram (T, 8| T). So H") satisfies the i conditions of
Deﬁnition 35fori=0,...,n— 1 Hence S is defined simply by the n conditions

on H™: the jth requires e(H "EY 4 either (a) to be disjoint from H™ or (b) to con-

tain it as a subscheme; (b) applies if L is proximate to 0~ '(j — 1), and (a) if not,
according to Definition 3.6. Let P be the set of j for which (b) applies. Set

S::hgl(me” Ue )

jeP j¢P

Plainly, S is the desired largest subscheme of H.
It remains to analyze the geometry of S. First of all, F " = i) x ru-y G by

Proposition 3.4; so F) = H since H := m,'G. Also, FH) =F" X H and
hy, = (,, 1) where {,, : H — F, again by Proposition 3.4. Hence

FY) =Fx¢H=HxgH and h,=(11).

Plainly, forming e(Tj’") is functorial in T'; whence, eg’")Eij) = (eg"’)Eg)) xg H.

Hence, h;lel/EY) = ¢ EY). Therefore,

S = m e<G./7”)Eéi) _ U eéf”)E(/)

jep Jj¢P
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There are three cases to analyze, depending on type(L). In any case,

dim(T) + type(L) = dim(U)
owing to Formula 2.6.1. Furthermore, each e(G’ " is an embedding. So e(G] ’")Eé! )
has the form P(Q) for some locally free sheaf Q of rank 2 on G by Lemma 3.2
and Proposition 3.4. Hence e(G]'mEg) is Y-smooth with irreducible geometric
fibers of dimension dim(T) + 1.

Suppose type(L) = 2. Then L is a root. So P is empty, and by convention, the
intersection (\;.pe e\s ”>E,(,) is all of H. So S is open in H, and maps onto Y.
Hence S is Y- smooth with irreducible geometric fibers of dlmenswn dim(H/Y),
and

dim(H/Y) = dim(T) + 2 = dim(U).

Thus the theorem holds in this case.

Suppose type(L) = 1. Then L is a free vertex, but not a root. So L has an
immedlate predecessor, M say. Set m := O(M). Then P = {m}. So S is open in
eg” ")Eé , and maps onto Y Hence S is Y-smooth with irreducible geometric
fibers of dimension dim(el""” EY"/ Y), and

d1m(eé” ") Gm /Y) =dim(T) + 1 = dim(U).

Thus the theorem holds in this case too.
Finally, suppose type(L) = 0. Then L is a satellite. So L is proximate to two
vertices: an immediate predecessor, M say, and a remote predecessor, R say. Set

m:=0(M) and r := O(R). Then P = {r,m}. Set Z := (r’")E(Gr) meg"’") ") Then
Z>=G and Z meets no e(G ")E(Gm) with j ¢ P owing to Lemma 3.7, because
(hoy ..., hy—1) is strict with diagram (T,0|T). Hence S = Z. Therefore Sis Y-

smooth with irreducible geometric fibers of dimension dim(G/Y), and
dim(G/Y) = dim(T) + 0 = dim(U).

Thus the theorem holds in this case too, and the proof is complete. O

4. ISOMORPHISM AND ENLARGEMENT

Fix a smooth family of geometrically irreducible surfaces 7 : F — Y. In this sec-
tion, we study the scheme F(U, #) introduced in Theorem 3.10. First, we work
out the effect of replacing the ordering 0 by another one 0’. Then we develop, in
our context, much of Roé’s Subsections 2.1-2.3 in [27]; specifically, we study a
certain closed subset E(U,0) = F™ containing F(U,0) set-theoretically. Nota-
bly, we prove that, if the sets F(U’,0") and E(U, 0) meet, then E (U', 0') lies in
E(U, 0); furthermore, E(U’,0') = E(U, 0) if and only if (U, 0) = (U, 0").
Proposition 4.3 below asserts that there is a natural 1somorphlsm ®, o from
F(U,0) to F(U,0"). On geometric points, @y , is given as follows. A geometric
point with field K represents a sequence of arbitrarily near K-points (¢, ...,1,)
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of F/Y. To g1ve t; is the same as giving the local ring A; of the surface F at the
K-point T, the i image of t;. Set o := 0’ 0 0~'. Then oi > oj if 1 ds prox1mate to
t;. So there i 1s a unique sequence (f, . . ., Z,) whose local rings A satisfy 4; = A,
in the function field of Fg. The sequences (to,...,t,) and (Z, ..., 1) correspond
under @ 4.

To construct @ ,, we must work with a sequence (f, .. .,,) of T-points for
an arbitrary 7". To do so, instead of the 4;, we use the transforms egﬂ’"H)E;H).
The notation becomes more involved, and it is harder to construct (7, ...,Z,).
We proceed by induction on n: we omit #,, apply induction, and ‘“‘reinsert” ¢,
as f,,. Most of the work is done in Lemma 4.2; the reinsertion is justified by
Lemma 4.1.

LeEmMMmA 4.1. Let (ty,...,t,-1) be a strict sequence of arbltrarlly near T-points
of F/ Y, say with blowups F} and so on. Fix I, and let T ( be the image of
a section t; ofFU)/T Set t;:=t; for 0 < i < I, and assume the sequence (to,.-., 1))

is strict. Set Ty =T and T; : /H) ..gﬁgf)T“) for | < i < n, and assume TU)

and the T; are disjoint. Then (to’t' , 1)) extends uniquely to a strict sequence
(to,...,tn), say with blowups Fp and so on, such that t; is a leaf and
F}Hl) X FW F;lil) = F}Z) Sor | <i < n. Furthermore, the diagram of (to, ..., t,) in-

duces that of (o, . . ., th_l).

PrOOF. Set F; 0. T ; let F "*1) be the blowup of F ) with center T, and
E 0 pe its exceptlonal divisor. For [ <i <n, set Fy ’“) = Fr (D FO F} and
T = F<l+1) x o TUD. Now, T" and T; are dlS]Olnt forl/ <i<n. So Fy (1) 4

Ff

the blowup of F with center 7). Also, T is the image of a section ¢
of F / T. Moreover since (tg,...,! ) and (to,...,fn,l) are strict sequences, it
follows that (7o, .. l,,) is a strict sequence too. Furthermore, #; is a leaf, and
the diagram of (to,...,tn) induces that of (f,...,%,1). Plainly, (f,...,2,) is
unique. O

LemMA 4.2. Let o be a permutation of {0,...,n}. Let (to,...,t,) be a strict
sequence of arbitrarily near T-points of F/Y. Assume that, if t; is proximate

to t;, then ai > oj. Then there is a unique strict sequence (ly,...,1,), say with
blowups F}), exceptional divisors E(T , and so on, such that Fy () _ F}nﬂ) and

SV g = ) gD pith ol = a(i — 1) + 1 for 1 <i <n+ 1; furthermore,
t; is proximate to t; if and only if t,; is proximate to t,;.

PROOF. Assume (f,...,1,) exists. Let’s prove, by induction on j, that both

the sequence (fy,...,7%) and the map Fj (n+1) F}Hl) are determined by the
equality F}"H) :F}"H) and the n+1 equalities ey""H)E(T') :é(T“ ""H)E(Ta i)
where 1 <i<n+1. If j=—1, there’s nothing to prove. So suppose j > 0.

Then TU*Y is determined as the scheme- theoretlc image of ey (42, "H)E(Tj +2) by

Lemma 3.7. So 7, is determined. But then F Vs determlned as the blowup
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of TUD . And F{"™ — F™) is determined, because the preimage of 701 in

F}"H) is a divisor. Thus (7, ..., #,) is unique.

To prove (f,...,1,) exists, let’s proceed by induction on n. Assume n = 0.
Then o = 1. So plainly #, exists; just take 7y := f.

So assume n > 1. Set /:= an. Define a permutation S of {0,...,n— 1} by

pi:=oiifoi </and fi:=oi —1if i > /.

Suppose #; is proximate to #; with i < n, and let us check that i > fj. The
hypothesis yields ai > oj. So if either ai </ or of > [, then fi > fj. Now, ai # [
since i < n and [ := an. Similarly, oj # / since j < i as t; is proximate to ¢;. But
if i > 1, then[)’i::oci— 1>/ andif of < [, then f§j := o < [. Thus fi > fj.

Since (1y,...,t,_1) is strict, induction applies: there exists a strict sequence
(o, ty_1), say with blowups FT and so forth, such that F " — F}") and
A EW = g EFD with pli = B(i — 1)+ 1 for 1 < i < n; furthermore, # is
proximate to # if and only if 7 is proximate to Z. Set 7; ;= #; for 0 <i < /.

Set 7 := ¢¥+1) . ..(ﬁ(T")tn and T .= ¢¥+1> . .qi);'?)T("). Then # is a section of
F;l)/T, and T is its image. Note that, if 7" meets é(T”")E(TJ) with 1 < j <n,
then T is contained in e EY, because e/ EY) = e\ EW for i:= g~
and because (f,...,1,) is strict. Furthermore, if so, then /> j, because ¢, is
proximate to #;, and so an > ai, or [ > fi = j; moreover, then T is contained

in é(T/ DEY because the latter is equal to (o(lH) . (ﬁ(T)é(T/ ")E}j ) since / > J.

Suppose T meets e( NE ( . Then T meets (go(/+1> . ..(ﬁ(T"))_lA(Tk I)E(Tk). So

AR (

T meets one of the latter’s components which is a ey for some ] Hence

T < ¢9VEY  as was noted above. Now, the map & el )E( ) B\ factors
through ETk), and its image is é(T’l)E(T ), as was noted above So e(] I)E(T) is con-
tained in egfc 1>E(Tk); whence, the two coincide, since they are flat and coincide on

the fibers over 7. Thus T is contained in egc 1)E<T) Hence, since (fo,...,01—1) is

strict, so is (to, ..., f;). Furthermore, T is contained in egfC 8 ( ) Thus if 7 is
proximate to 7, then t, is proximate to ¢; for i := '~ 'k. Moreover the converse
follows from what was noted above.

Set 7y := T and T; := gp(lH) ..(/3T ) for I < i < n. Then T") meets no T},
because, otherwise, 7 would meet (¢¥+1>...¢(T'1))_17”,+1, and so 7" would

meet some é(Tj ’")E}/ ) with / < j, contrary to the note above. So Lemma 4.1 im-

plies (7o, ..., ;) extends to a strict sequence (%, ...,%,) such that 7 is a leaf and
F;Hl) X F}’) —FT’+l for [ <i<m; furthermore the diagram of (f,...,1,)
induces that of (zg, ..., % 1).

Therefore, ¢; is proximate to ¢ if and only if 7, is proximate to £, for
0<i<mn, because t; is proximate to £ if and only if 75 is proximate to
for 0 < i < n and because #, is proximate to 7 if and only if # is proximate to #
for k := p'j.

Recall from above that F\" = F;" and F\™V X F0 F\" = F/"™V_ But this

product is equal to the blowup of FT along 7™ since T) meets no 7. And the
blowup of F\" along 7™ is F{"™) . Thus F") = F"D.
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Recall ¢i" EY) = W B for | < i < n. Hence, e VEW is equal to the

image of a natural embedding of é; (f's ")E(Tﬂ " in F; (D In turn, this image is
equal to & EY" since 7" meets no 7;. Similarly, E{"T!) = gl gD,
Thus e{""™VEW = e VEED for 1 <i<n+1. O

PrOPOSITION 4.3. Fix an unweighted Enriques diagram U. Then, given two
orderings 0 and 0', there exists a natural isomorphism

q)ag/ . F(U’ 9) ;)F(U, 0/)
Furthermore, ®p g = 1, and ®y g 0 ®y o = ®y on for any third ordering 0"

PROOF. Say U has n + 1 vertices. Set o := 0’ 0 0~'. Then « is a permutation of
{0,...,n}.

Each T-point of F(U,#) corresponds to a strict sequence (fo,...,#,) owing
to Theorem 3.10. For each i, say #; corresponds to the vertex V; of U. Then
0(V;) =i, and if ; is proximate to #;, then V; is proximate to V;. So 0'(V;) >
0'(V;) since ' is an ordering. Hence oi > oj.

Therefore, by Lemma 4.2, there is a unique strict sequence (4, ...,#,) such
that #; is proximate to #; if and only if 7,; is proximate to tﬂ Plainly (f, ..., )
has (U, ') as its diagram. Hence (f, . . ., Z,) corresponds to a T-point of F(U, ')
owing to Theorem 3.10.

Due to uniqueness sending (g, ..., 1,) to (fy,...,,) gives a well-defined map
of functors. It is represented by a map @y F(U,0) — F (U 0"). Again due to
uniqueness, @y g =1 and @y g o Oy o = (1)9 g for any 0”. So @y 4o @)y =1
and @,y o®y y=1. Thus @y is an 1somorph1sm and the proposition is
proved. ' 0

COROLLARY 4.4. Fix an ordered unweighted Enriques diagram (U,0). Then
there is a natural free right action of Aut(U) on F(U, ), namely, y € Aut(U) acts
as ®©y o where 0 :=00y.

PrOOF. Let V€ U be a vertex that precedes another . Then y(V) precedes
(W) because y € Aut(U). Since 0 is an ordering, O(y(V)) < 0(y(W)). Hence
0'(V) < 0'(W). Thus 0’ is an ordering.

So there is a natural isomorphism @, , : F(U,0) = F(U,0') by Proposition
4.3. Now, y induces an isomorphism of ordered unweighted Enriques diagrams
from (U, 0") to (U,0); hence, F(U,0") and F(U,0) are the same subscheme of
F", and @, , is an automorphism of F(U, 0).

Note that, if y = 1, then 6’ = 0; moreover, @y 9 = 1.

Given 6 € Aut(U), set 0" :=0" 06 and 0" := 0 od. Then y also induces an
isomorphism from (U,0") to (U,0"), and so ®; ,» and @y 4+ coincide. Now,
Dy g0 CI)0 o = @y gr. Thus Aut(U) acts on F(U,0), but it acts on the right be-
cause 0" is equal to 0 o (yd), not to 0 o (6y).
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Suppose y has a fixed T-point. Then the T-point is fixed under @, ,». Now, we
defined @, , by applying Lemma 4.2 Wlth %:=0"060"". And the lemma asserts
that o is determined by its action on the er G, ”H) () . But this action is trivial be-
cause the 7T-point is fixed. Hence o« = 1. But o= Ho yo 0. Therefore, y = 1.
Thus the action of Aut(U) is free, and the corollary is proved. O

COROLLARY 4.5. Fix an ordered unweighted Enrigues diagram (U, 0), and let
G < Aut(U) be a subgroup. Then the quotient F(U,0)/G is Y-smooth with irre-
ducible geometric fibers of dimension dim(U).

PROOF. The action of G on F(U, 0) is free by Corollary 4.4. So G defines a finite
flat equivalence relation on F (U, 0). Therefore, the quotient exists, and the map
F(U,0) — F(U,0)/G is faithfully flat. Now, F(U,0) is Y-smooth with irreduc-
ible geometric fibers of dimension dim(U) by Theorem 3.10; so F(U,0)/G is
too. O

DEFINITION 4.6. For 1 <i < j, set E) := E) and
ECD) = (pD) o) ED if i < .

Given an ordered unweighted Enriques diagram (U,0) on n+ 1 vertices, say
with proximity matrix ( i), let E(U,0) = F™ be the set of scheme points t such

that, on the fiber F"™", for 1 < k < n, the divisors 37! pu EX""Y are effective.

ProrosiTION 4.7. Let (U, 0) be an ordered unweighted Enriques diagram. Then
E(U, 0) is closed and contains F(U, 0) set-theoretically.

PROOF. Say U has n+ 1 vertices. Fix te F® and 1 <k <n. If te F(U,0),
then, as 1s easy to see by induction on j for k< j<n, the divisor

> +k] PiE (1) 4 equal to the strict transform on Ft('i U of Et(k), in other words,
toe )<k ’H)ET) where T := Speck(t). Hence E(U, ) contains F(U, 0).

Set EW .= Zl"jkl pic EG"1 . Then hO(Ft<"+1), (O(Et(k))) <1 for any t, and
equality holds if and only if t e F(U,0), as the following essentially standard
argument shows. Plainly, it suffices to show that, if E; £ K i linearly equivalent to
an effective divisor D, then E, g — D.

Let H be the preimage on F," ) of an ample divisor on F;. Then the intersec-
tion number E ). H vanishes by the projection formula because each component
of E maps to a point in F;. So D - H vanishes too. Hence each component of D
must also map to a point in F; because D is effective and H is ample. Hence D
is some linear combination of the Et(l’"ﬂ) because they form a basis of the group
of divisors whose components each map to a point. Furthermore, the combining
coefficients must be the py because these coefficients are given by the intersection
numbers with the £"""". Thus £ = D.

Thus E(U, 9) is the set of t € F ) such that h°(F, "H), O(E( ))) > 1 for all k.
Hence E(U, 6) is closed by semi-continuity [8, Theorem (7.7.5), p. 67]. O
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PROPOSITION 4.8. Let (U, 0) and (U',0") be two ordered unweighted Enriques
diagrams on n + 1 vertices, and let P and P’ be their proximity matrices. Then the
following conditions are equivalent:

(1) The sets F(U',0") and E(U, 0) meet.
(2) The set E(U’,0") is contained in the set E(U, 0).
(3) The matrix P'~'P only has nonnegative entries.
Furthermore, E(U’,0') = E(U, 0) if and only if (U, 0) = (U’,0").
(n+1)

PRrROOF. Fix t e F, and define two sequences of divisors on F
matrix equations:

by these

gee ey 3

=(1 =(n+1 1,n+1
(Et() Et(+)):<Et( +)7-~~7
(Et(l)/ E~,t(n+1)/) _ (Et(l,n+1) Et(nH’nH))P/.

Et(n+1,n+l))P'

These two equations imply the following one:
(4.8.1) (Ef”, . ,Eﬁ"*“) = (EY, .. E"TPP;

in other words, (/) = S g EY where say (qi;) := P'~'P.

Suppose t € F (U’ 0'). Then E, (e is the proper transform on F""" f EX
we noted at the beginning of the proof of Proposition 4.7. So the E form a
basis of the group of d1v1sors whose components each map to a point in F;.
Hence, by (4.8.1), if E, ) is effec‘uve then gi; > 0 for all k. Thus (1) implies (3).

Suppose te E(U’,0"). Then E o is effective. Suppose too g;; > 0 for all &, j.
Then E 7 is effective for all j by (4.8.1). So t € E(U, #). Thus (3) implies (2).

By Proposition 4.7, E(U,0) contains F(U,6). By Theorem 3.10, F(U,0) is
nonempty. Thus (2) implies (1). So (1), (2), and (3) are equivalent.

Furthermore, suppose E(U’,0') = E(U,0). Then both P'"'P and P~ 'P’
have nonnegative entries since (2) implies (3). But each matrix is the inverse of
the other, and both are lower triangular. Hence both are the identity. So
P’ = P; whence, (U, 0) = (U’,0"). The converse is obvious. Thus the proposition
is proved. a

5. THE HILBERT SCHEME

Fix a smooth family of geometrically irreducible surfaces 7 : F — Y. In this sec-
tion, we prove our main result, Theorem 5.7. It asserts that, given an Enriques
diagram D and an ordering 6, there exists a natural map ¥ from the quotient
F(D,0)/Aut(D) into the Hilbert scheme Hilbs jy Wwith d :=degD and with
F(D,0) := F(U,0) where U is the unweighted diagram underlying D.
The quotient F(D, #)/Aut(D) parameterizes the strict sequences of arbitrarily
near points of F/Y with diagram (U, 0), up to automorphism of D. The image of
W parameterizes the (geometrically) complete ideals of F/Y with diagram D. The



ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 433

map W is universally injective. In fact, ¥ is an embedding in characteristic 0.
However, in positive characteristic, ¥ can be purely inseparable; Appendix B
discusses examples found by Tyomkin.

We close this section with Proposition 5.9, which addresses the important
special case where every vertex of D is a root; here, ¥ is an embedding in any
characteristic. Further, other examples in Appendix B show that ¥ can remain
an embedding even after a nonroot is added.

5.1 (Geometrically complete ideals). Let K be a field, (7, ..., ?,) a sequence of
arbitrarily near K-points of F/Y. Since Spec(K) consists of a single reduced
point, the sequence is strict. Let (U, #) be its diagram in the sense of Definition
3.9.

Suppose U underlies an Enriques diagram D, say with weights m for ' e U.

Using the divisors Ey Gt on F U+ of Definition 4.6, set

Ex = E:}/}/lVEI(g(VHl’n+1> and Y = (QFI(;’HI)(_EK).
V

Given V e U, set j:=0(V) and Dy E(’H’"H)E(Hl) Inspired by Lipman’s
remark [21, p. 306], let’s compute the intersection number —(Eg - Dy), that
is, deg(%x |Dy). Plainly, (EI((]+1’"H)~DV):—1. And, for W # V, plainly

(EVFLD L p Ly s equal to 1if W ¥, and to 0 if not. Hence —(Ex - Dy) is
equal to my — )., my, which is at least 0 by the Proximity Inequality.

Set px = gog) . goﬁ?” and form .# := ¢y, %k on Fg. Then .# is a complete

ideal, one that is integrally closed; also, (), () = %k and Ripy, %k =0 for

g > 1. These three statements hold since (Ek - DV) < 0 for all V' and, as is well
known, R7pg, 0.0y = 0 for g > 1; see Lipman’s discussion [20, §18, p. 238] and

his Part (ii) of [50, Theorem (12.1), p. 220]; also see Deligne’s Théoreme 2.13
[3, p. 22]. Furthermore,

dimg H(CF, /.9) =d where d := degD.

This formula is a modern version of Enriques’ formula [4, Vol. 11, p. 426]; it
was proved in different ways independently by Hoskin [13, 5.2, p. 85], Deligne
(3, 2.13, p. 22], and Casas [1, 6.1, p. 438]; Hoskin and Deligne worked in greater
generahty, Casas worked over C.

The my are determined by .# because the divisors Ey Gt are numerically
independent; their intersection numbers with divisors are deﬁned because they
are complete. The m; may be found as follows. Let £ be the ideal of the image

) of tp, which is a K-point of Fg. Let m be the largest integer such that
P" > 4. Then m = my where V := 07'(0), since 20,1 = (9F<n+1>(—E,({1"1+1)).

K K
Note in passmg that 2 is a minimal prime of .# since my > 1.
The remammg my, can be found by recursion. Indeed, on F ,(( , form the ideal

' = 70(myED). Then .#' is the direct image from F\'""") of 0(—E}) where
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Ep:=> wiymwE I((o (WL Hence .77 is the complete ideal associated to the
sequence (11,...,1,) of arbitrarily near K-points of F()'/Y and to the ordered
Enriques diagram (D', 0") where D' := D — V and 0'(W) := O(W) — 1.

The ideal .# determines the diagram D. Indeed, for 0 <i < n, let 4;, m; be the
local ring of the surface F ,<<’ ) at the K -point that is the image of ¢;. Then according
to Lipman’s preliminary discussion in [21, p. 294-295], the set {4;} consists
precisely of 2-dimensional regular local K-domains whose fraction field is that
of Fx and whose maximal ideal contains the stalk of .# at some point of Fg.
Furthermore, #; is proximate to ¢ if and only if A4; is contained in the ring of
the valuation v; defined by the formula: v;(f) := max{m|f e m?"}. Finally, if
W := 07'(j), then the weight my is the largest integer m such that m" contains
the appropriate stalk of .7. '

Let # be an arbitrary ideal on Fx of finite colength. Let L/K be an arbitrary
field extension. If the extended ideal #; on F is complete, then ¢ is complete,
and the converse holds if L/K is separable; see Nobile and Villamayor’s proof
of [25, Proposition (3.2), p. 251]. Let us say that ¢ is geometrically complete if
J; on Fy is complete for every L, or equivalently, for some algebraically closed
L. In characteristic 0, if ¢ is complete, then it is geometrically complete.

The extended ideal .#; on F; is, plainly, the complete ideal associated to the
extension of the sequence (#, ...,?,) and to the same ordered Enriques diagram
(D, 0). Hence .# is geometrically complete.

Suppose that K is algebraically closed. Suppose that # is complete and that
dimg H%(CF, / #) is finite and nonzero. Then ¢ arises from some sequence
(S0, - - -, 5,) and some ordered Enriques diagram. Indeed, choose a minimal prime
2 of #. Then K = O, /2 since K is algebraically closed. Hence 2 defines a
K-point S of Fg, so a section sy of Fx/K. Set mg := max{m| 2™ > ¢#}.

Let F} be the blowup of Fx at S and Ej the exceptional divisor. Set
J' = J0p (moEy). Then #' is complete by Zariski and Samuel’s [33, Proposi-
tion 5, p. 381]. If ¢’ = Oy, then stop. If not, then repeat the process again and
again, obtaining a sequence (so, 51, ...). Only finitely many repetitions are neces-
sary because, as Lipman [21, p. 295] points out, the local ring of F ,&') at SV is
dominated by a Rees valuation of #, that is, the valuation associated to an ex-
ceptional divisor of the normalized blowup of #. Then ¢’ arises from the se-
quence of s; weighted by the m;-1, owing to Lipman’s [20, Proposition (6.2),
p- 208] and discussion before it.

LEMMA 5.2. Let A be a discrete valuation ring, set T := Spec A, and denote by
n € T the generic point and by y € T the closed point. Fix amap T — Y. Let D
be an Enriques diagram, say with n+ 1 vertices, and 9 a coherent ideal on Fr
that generates geometrically complete ideals on F, and F,, each with diagram D.
Let 0 be an ordering of D, and t a k(n)-point of F(D,0) such that .9, generates
an invertible sheaf on F,,("H). Then t extends to a T-point t of F(D, 0).

PrOOF. Let 0" be a second ordering. By the construction of the isomorphism
®, o in the proof of Proposition 4.3, a T-point of F(D, ) corresponds to the
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T-point of F(D, ') given by Lemma 4.2 with & := 0’ o 0. Moreover, the lemma

says that F}"H) is unchanged. It follows that, to construct t, we may replace 6 by
0'. Thus we may assume that E£(D,0) is a minimal element among the various
closed subsets E(D, 0') of F).

Let R € D be a root, and temporarily set i := O(R). Say t corresponds to the

sequence of blowups F,;“l) — F,;’) with centers #;. The image of #; in Fr is a
k(n)-point; denote its closure by Tx. Since A is a discrete valuation ring, the
structure map is an isomorphism 7T = 7.

Let Z = Fr be the subscheme with ideal .#. Its fibers Z, and Z, are finite, and
both have degree deg(D) since the two ideals are geometrically complete with
diagram D by hypothesis. Since 7 is reduced, Z is T-flat.

As R varies, the points (7), are exactly the components of Z, again because
its ideal .#, is geometrically complete with diagram D. Hence the several T are
Jjust the components of Z that meet Z,. But every component of Z meets Z, since
Z is T-flat. Thus the Ty are the the components of Z.

Since Tr — T for each R, the fiber (T¢), is a single point, so a component of
the discrete set Z,. The number of T is the number of roots of D, which is also
the number of points of Z,. Hence the several Ty are disjoint.

Given R, let my be its weight, 2 the ideal of Tk in Fr. Then (9’1’:“)” =
Let’s see that 23'* > .#. Indeed, form the image, .# say, of .# in Of, /3. Then
My =0. Let u e A be a uniformizing parameter. Then ./ is annihilated by a
power of u. Now, Z% is quasi-regular by [10, (17.12.3), p. 83] since Tr = T and
Fy is T-smooth. Hence 2 /24 " is T-flat for all j by [10, (16.9.4), p. 47). Hence
Op,/?x* is T-flat. So u is a nonzerodivisor on (p,/Zx*. Hence .# = 0. Thus
=

Let ng be the largest integer such that (.@,’;R)y > J,. Then ng > mg. Now, .4,
is geometrically complete with diagram D. Hence ny is the weight of the root cor-
responding to (Q’R)y. Hence > png = > pmg. But ng > mpg. Therefore, ng = mpg
for every root R.

Let D’ be the diagram obtained from D by omitting the roots. Let 6’ be the
ordering of D’ induced by 0; namely, 0'(V) := 0(V) — ryy where ry denotes the
number of roots R of D such that O(R) < 0(V). Let F;. be obtained from Fr by
blowing up |J T, and for each R, let E} be the preimage of Tk. Set

5" = 50, (S map).
R

Finally, let n’ be the number of vertices of D’.

Then .#’ generates geometrically complete ideals on F/ and F!, each with dia-
gram D’ owing to the theory of geometrically complete ideals over a field; see
Subsection 5.1. (To ensure that the ideals on F, and F] have the same diagram,
it is necessary to omit all the roots of D. Indeed, D might have two roots with the
same multiplicity, but the diagram obtained by omitting one root might differ
from that obtained by eliminating the other. Conceivably, the two roots get inter-
changed under the specialization.)
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Plainly, t induces a k(#)-point t’ of F(D’,0’) such that .# ,’7 generates an inver-

tible sheaf on the corresponding Fj ”,H), which is equal to F) (n1) Hence, by

induction on n, we may assume that t’ extends to a T-point t’ of F (D’ 0") such
that, on the corresponding scheme F (n “) the ideal .#’ generates an invertible
ideal. It remains to show that t’ and the several isomorphisms 7k — T yield an
extension t of t.

Proceed by induction on i where 0 < i < n. Suppose we have constructed a
sequence (fo, ..., ;1) extending the sequence (fo, ...,ti_1) coming from t; sup-
pose also that, 1f we blow up Fp along the prelmage of Ugs; Tk, then we get
F} where, for 0 < j < n, we let j' denote j diminished by the number of roots
Rof D such that O(R) < j. Note that the base case i := 0 obtains: the sequence
(to,...,t;—1) is empty; furthermore, F;) = Fr and F( ) = F7, which is the
blowup of Fr along | J;.-; Tk.

Note that Fj () _, Fr is an 1somorph1sm off Uy.; Tk. Indeed, given j < i, let
R’ € D be the root preceding ' (j), and set k := O(R’). Since 0 is an ordering,

k < j. Since (t,...,%;-1) extends (fo,...,ti-1), the image of T, ) in Fr is just
(Tk),- So T maps into Ty, and k < i.
Set V := 0~'(i) e D. First suppose ¥ is a root of D. Then (i + 1)’ = i’. Also,

T; is defined, and the isomorphism 7; =~ T provides a sectlon t; of F. }) owmg to
the preceding note. By the same token, the blowup of F along the preimage
of Ui 1 Tk is equal to the blowup of FT along the preimage of | J,.,; Tk. But
the latter blowup is equal to F . It follows that ¢; does the trick.

Next suppose V' is not a root so VeD'. Also Uys; Tk = Ugs i1 Tk Now, by
the induction assumption, F. ) s equal to F, ) off the preimage of | J.; T%. Take

=t/ where (),...,t!) comes from t’. It is not hard to see that #; does the
trick.

It is not immediately obvious that (7, ..., ,) is strict, even though (#), ..., )
is strict. However, t is a T-point of F"(T) and t, is a k(5)-point of F(D,0);
furthermore, t, is a k(y)-point of F(D, ¢) for some ordering ¢ of D. Since T is
irreducible, t, is a point of the closure of F(D,0) in F™, so is a point of
E(D,0). Hence E(D, 0) contains E(D, ¢) by Proposition 4.8. But, by the initial
reduction, E(U, ) is minimal, so equal to E(D, ¢). Hence (D, 0) =~ (D, ¢) again
by Proposition 4.8. So t, is a point of F(D, ). Since T is reduced, t is therefore
a T-point of F(D, ), as desired. O

DEFINITION 5 3. Given an Enriques diagram D, say with d :=degD, let
H(D) < Hilb¢ w/y denote the subset parameterizing the geometrically complete
ideals with diagram D on the geometric fibers of F/Y; see Subsection 5.1.

PROPOSITION 5.4. Let D be an Enriques diagram, set d := degD, and choose
an ordering 0. Then there exists a natural map Y, : F(D, ) — Hilb{. Jy» whose
formation commutes with base extension of Y. Its image is H (D) and it factors
into a finite map F(D,0) — U and an open embedding U — Hilb? Fy- Moreover,
Yo=Yy o®y 4 for any second ordering ¢'.
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PrROOF. Say D has n + 1 vertices V' with weights my. On F"*+1) set

E:=Y myE"* ) and £ = O(-E).
V

Consider the standard short exact sequence:
0— % — (OF(!H»I) — (QE — 0.

It remains exact on the fibers of 7"+ : Fint) — F  And 7D is flat by
Lemma 3.2. Hence . and () are flat over F") owing to the local criterion.
Fix a T-point of F(D,0) c F™. It corresponds to a strict sequence of

arbitrarily near T-points of F/Y by Theorem 3.10. Set ¢ := go(Tl ). goT"H Let
teT. Then R, (%) =0 and R, (Cpu) =0 for i > 1 by [3, Theorem 2.13,

p- 22]. Therefore, by Lemma A.2, the induced sequence on Fr,
(541> 0— (p*gT - (p*(/ ”*1 - go*(gE - 07

is an exact sequence of 7-flat sheaves, and forming it commutes with extending
T.

The middle term in (5.4.1) is equal to Op,: the comorphism (f, — (/)*(JF (1)
is an isomorphism, since formmg it commutes with passing to the fibers of
Fr/T, and on the fibers, it is an isomorphism as it is the comorphism of a bira-
tional map between smooth varieties. The third term in (5.4.1) is a locally free
(Op-module of rank d because its fibers are vector spaces of dimension d owmg
again to [3, Theorem 2.13, p. 22]. Therefore, (5.4.1) defines a T-point of Hlle v

The construction of thls T-point is, plainly, functorial in 7', and commutes
with base extension of Y. Hence it ylelds amap Yy : F(D,0) — Hilb Jy> Whose
formation commutes with extension of Y.

To see that H(D) is the image of Yy, just observe that, in view of Subsection
5.1, if T is the spectrum of an algebraically closed field, then ¢, % is a geometri-
cally complete ideal on Fr with diagram D, and every such ideal on F7 is of this
form for some choice of T-point of F(D, #).

Let 0’ be a second ordering. Then by the construction of @, , in the proof
of Proposition 4.3, our T-point of F(D,0) is carried to that of F (D 9') given

by Lemma 4.2 with o := 0’0 0 !, Moreover, the lemma says that F D is un-
changed and implies that E(’ (Vplnsl) — =F (@ (V) +1m+1) ) for all V. Therefore we
have Y() Y@' o CD@,B’

By Zariski’s Main Theorem in the form of [9, Theorem (8.12.6), p. 45], there
exists a factorization

Yy: F(D,0) % H 2 Hilby,,,

where Q is an open embedding and ©® is a finite map. Let W be the image
of Q, so O(W) = H(D). Replace H by the closure of W, and let us prove that
W =0"H(D).
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Let v € ® 'H(D). Then v is the specialization of a point w € W since H is the
closure of W. And w is the image of a point w € F(D, 6). Hence, by [7, Theorem
(7.1.9), p. 141], there is a map 7: T — H where T is the spectrum of a discrete
valuation ring, such that the closed point y € T maps to v and the generic point
n € T maps to w; also there is a k(y7)-point t of F(D, ) supported at w.

The map ® ot corresponds to a coherent ideal .# on Fr. Now, both ®(w)
and O(v) lie in H(D); so .# generates geometrically complete ideals on F, and
F,, each with diagram D. And Yy(t) corresponds to .7, on F,; so .7, generates
an invertible sheaf on F,7(”+1>. Hence, by Lemma 5.2, the k(#)-point t extends to
T-point t of F(D,0).

Then Yy(t) : T — W carries 7 to w. But H/Y is separated. Hence Yy(t) =t
by the valuative criterion [7, Proposition (7.2.3), p. 142]. But z(y) = v. Hence
ve W.Thus W > @ 'H(D). But ©(W) = H(D). Therefore, W = © ' H(D).

But W is open in H, and ® is finite. So ®(H) and ®(H — W) are closed
in Hilb{. /y- Hence H (D) is open in ®(H). So there is an open subscheme U of
Hilb{ sy such that Un©(H) = H(D). Furthermore, W — U is finite, as it is
the restriction of ®. So F(D, ) — U is finite. The proof is now complete. |

COROLLARY 5.5. Let D be an Enriques diagram, and set d := degD. Then H(D)
is a locally closed subset of Hilb¢. ne

PRrROOF. By Proposition 5.4, H(D) is the image of a finite map into an open sub-
scheme U of Hilb? Jy- So H(D) is closed in U, so locally closed in Hilb{ jye O

REMARK 5.6. Lossen [23, Proposition 2.19, p. 35] proved a complex analytic
version of Corollary 5.5. Independently, Nobile and Villamayor [25, Theorem
2.6, p. 250] proved the corollary assuming Hilbj‘i Y is reduced and excellent; in
fact, they worked with an arbitrary flat family of ideals on a reduced excellent
scheme, but of course, any flat family is induced by a map to the Hilbert scheme.
All three approaches are rather different.

THEOREM 5.7. Let D be an Enriques diagram, and set d := degD. Choose an
ordering 6, and form the map Yy of Proposition 5.4. Then Yy induces a map

¥ : F(D,0)/Aut(D) — Hilb .

It is universally injective; in fact, it is an embedding in characteristic 0. Further-
more, Y is independent of the choice of 0, up to a canonical isomorphism.

ProOF. By Corollary 4.4, Aut(D) acts freely. Hence, the quotient map
IT: F(D,0) — F(D,0)/Aut(D)

is faithfully flat. By Proposition 5.4, the action of Aut(D) is compatible with Yy,
and is compatible with a second choice of ordering ', up to the isomorphism
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®, . Hence, by descent theory, Yy induces the desired map ‘P'. Plainly, its forma-
tion commutes with base change

thermore, since IT is surjective, Proposition 5.4 also implies that ¥ too factors
into a ﬁnite map followed by an open embedding. Now, a finite map is a closed
embedding if its comorphism is surjective. Hence, to prove that ¥ is an embed-
ding, it suffices to prove that its fibers over Y are embeddings. Now, forming ‘¥
commutes with extending Y. Therefore, we may assume Y is the spectrum of an
algebraically closed field K.

To prove W is universally injective, plainly we need only prove YW is injective
on K-points. Since IT is surjective, every K-point of F(D,#)/Aut(D) is the image
of a K-point of F(D, 6). Hence we need only observe that, if two K-points t’ and
t” of F(D, 0) have the same image in Hilb? #/y(K) under Yy, then the two differ by
an automorphism y of D. But that image corresponds to a geometrically complete
ideal .# on Fx with diagram D. In turn, as explained in Subsection 5.1, .# deter-
mines a set A of 2-dimensional regular local K-domains whose fraction field is
that of Fg, and A has a proximity structure, under which it is isomorphic to D.
Say t' € F(A,0') and t” € F(A,0"). Then 0'~' 0 0" induces the desired automor-
phism y € Aut(D).

By Corollary 4.5, F(D,6)/Aut(D) is smooth and irreducible. By Corollary
5.5, HD) is a locally closed subset of Hilb?,,, so carries an induced reduced
structure. And ¥ induces a bijective finite map f : F(D, 0)/Aut(D) — H(D).

Suppose K is of characteristic 0. Then f is birational. If, perchance, D is min-
imal in the sense of [16, Section 2, p. 213], then H (D) is smooth by the direct,
alternative proof of [16, Proposition (3.6), p. 225]; hence, f is an isomorphism.
In any case, it follows from Proposition 3.3.14 on p. 70 of [11] that f is unrami-
fied; hence, f is an isomorphism. The proof is now complete. O

COROLLARY 5.8. Fix an Enriques dzagram D, and set d := degD. Assume the
characteristic is 0. Then H(D) < Hilb{ Jy supports a natural structure of Y -smooth
subscheme with irreducible geometric fibers of dimension dim(D).

PROOF By Theorem 5.7, Y, induces an embedding of F(D,0)/Aut(D) into
Hilb¢ /v By Proposition 5. 4 the image is H(D). And by Corollary 4.5, the source

is Y- smooth and has 1rredu01ble geometric fibers of dimension dim(D). O
PROPOSITION 5.9. Given positive integers ry, ..., ri, let G(r;) = Hllb;’/y be the

open subscheme over which the universal family is smooth, and let
G(riy...,rx) = G(r)) Xy -+ Xy G(rg)

be the open subscheme over which, for i # j, the fibers of the universal families over
G(r;) and G(r;) have empty intersection. Set r := ) r;.

Given distinct integers my, ... ,my > 2, let D be the weighted Enriques diagram
with r vertices, each a root, and an ordering 0 such that the first ry vertices are roots

of weight my, the next ry are of weight m,, and so on. Set d := ("”2+ l)r,-.
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Then F(D, 0) is equal to the complement in the relative direct product F**" of
the (3) large diagonals, and F(D,0)/Aut(D) is equal to G(ry, ..., rk). Further, Xy
always induces an embedding

¥ G(ri,...,r) < Hilbgy:

on T-points, ¥ acts by taking a k-tuple (W1, ..., W) where W; is a smooth length-
r; subscheme of Fr, say with ideal .%;, to the length-d subscheme W with ideal

H tﬂil’n,"

PRrROOF. Let (f,..., 1) be a strict sequence of arbitrarily near T-points of F/Y
with diagram (D, 6). Plainly, the ¢; are just sections of Fr, and their images are
disjoint. So F (D, ) is equal to the asserted complement.

Plainly, Aut(D) is the product of k& groups, the ith being the full symmetric
group on the r; roots in the ith set. So the quotient F(D,0)/Aut(D) is equal to
the open subscheme of H11b - Xy H11b y Whose geometric points pa-
rameterize the k-tuples Whose zth component is an unordered set of r; geometrlc
points of F such that all r points are distinct; in other words, the quotient is equal
to the asserted open subscheme.

Since each vertex is a root of some weight m;, plainly W acts on T-points in
the asserted way, owing to the following standard general result, which is easily
proved by descending induction: let A4 be a locally Noetherian scheme, .# a regu-
lar ideal, b : B — A the blow-up of .#, and E the exceptional divisor; let m > 0
and set ¥ := Op(—mkE); then R, ¥ =0forg > 1and b, ¥ = 5".

Finally, to prove that ¥ is always an embedding, we may assume that Y is the
spectrum of an algebraically closed field K, owing to the proof of Theorem 5.7.
By the same token, W is universally injective, and factors into a finite map fol-
lowed by an open embedding. Hence, we need only show that W is unramified.

Let v be a K-point of Hilby Jys let V= F be the corresponding subscheme,
and .7 its ideal. Recall the definition of the isomorphism from the tangent space
at v to the normal space Hom(.#, (0} ); the definition runs as follows. Let K[¢]
be the ring of dual numbers, and set 7" := Spec(K|[¢]). An element of the tangent
space corresponds to a 7-point of Hilby. Y supported at v; so it represents a 7T-flat
subscheme V, < Fr that deforms V. The natural splitting K[¢] = K @ K¢ induces
a splitting Oy, = Oy @ Oype¢. Similarly, the ideal .%, of V, splits: .4, = .4 @ Je.
Then the natural map O, — Oy, restricts to a map .# — (Ope, which is equal to
the desired map { : .4 — Oy.

Assume v € G(ry,...,r¢). Then V is the union of k sets of reduced K-points of
F. The ith set has r; points; let .#; be the ideal of its union. Further, W carries V
and V to the subschemes W and W, defined by .#;"" . fkmk and .#] ’"‘ I So
Y is unramified at v if the induced map on tangent spaces is 1nJectlve

% Ti,..r) 0 < Hom(fl'"‘ ...f/;"", Ow).
Say v = (vy,...,vx) with v; € G(r;), and say v; represents V; < F. Then

T6(r1.n)v = @D Trin o, = DHom(F, Oy,).

F/ylbl
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Given any { € Tq(,....r,),0» its image ¥({) is equal to the restriction of the canon-
ical map Op, — Oyw,. So y splits into a direct sum of local components

Y, : Hom(4; ., Oy ) — Hom (S}, Oy ) forxe Viandi=1,... k.

It remains to prove that each i, is injective. Fix an x.

Set .4 := .4; and m := m;. Fix generators u,v € 4. Set a :={ uand b := (v
in Oy, , = K. Then .4, , is generated by u — ae and v — be; so I " is generated
by

W — mp™ ag, )" — (m — D™ vae — " be, .

w" Tt —av™ e — (m — Dby e, v™ — mv™ be.

Hence, modulo 4", the generators u"" 'y and ™! of #" are congruent
to (m— D™ 2vae + " 'be and av™ e+ (m — 1)buv™ 2e. (They re equal if
m=2.)

Form the latter’s classes in Oy .. Then, therefore, these classes are the images
of those generators under the map (.. Hence, in any characteristic, we can re-
cover a and b from the images of ¢ 'v and wv"~!. But ¢ and b determine (,.
Thus . is injective, and the proof is complete. |

APPENDIX A. GENERALIZED PROPERTY OF EXCHANGE

This appendix proves two lemmas of general interest, which we need. The first
lemma generalizes the property of exchange to a triple (7, f, %) where T is a
(locally Noetherian) scheme, f : P — Q is a proper map of 7T-schemes of finite
type, and & is a T-flat coherent sheaf on P. The original treatment was made
by Grothendieck and Dieudonné in [8, Section 7.7, pp. 65-72], and somewhat
surprisingly, deals only with the case of Q = T. (Although they replace & by a
complex of flat and coherent sheaves bounded below, this extension is minor and
we do not need it.)

The first lemma is proved by generalizing the treatment in Section II, 5 of
[24, pp. 46-55]. Alternatively, as Illusie pointed out in a private conversation,
the lemma can be proved using the methods that he developed in [14].

The first lemma is used to prove the second. The second is used in the proof of
Proposition 5.4, which constructs the map from the scheme of 7-points with
given Enriques diagram to the Hilbert scheme.

LEmMMA A.1 (Generalized property of exchange). Let T be a scheme, f : P — Q
a proper map of T-schemes of finite type, and F a T-flat coherent sheaf on P. Let
q € Q be a point, t € T its image, and i > 0 an integer. Assume that, on the fiber
Q,, the base-change map of sheaves

ol (RIF), — R,
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is surjective at q. Then there exists a neighborhood U of q in Q such that, for any
T-scheme T', the base-change map of sheaves

pé/ : (Rﬁf)T/ — Rifo*g‘:T/

is bijective on the open subset Ut of Qr. Furthermore, the map pi=Vis also surjec-
tive at q if and only if sheaf R'f.F is T-flat at q.

PrROOF. The question is local on Q; so we may assume that 7" = Spec A and
QO = Spec B where A is a Noetherian ring and B is a finitely generated A-algebra.
Also, we may assume that B is A-flat by expressing B as a quotient of a polyno-
mial ring over 4 and then replacing B with that ring. For convenience, when
given a B-module or a map of B-modules, let us say that it has a certain property
at ¢ to mean that it acquires this property on localizing at the prime correspond-
ing to q.

There is a finite complex K* of A-flat finitely generated B-modules, and on the
category of A-algebras C, there is, for every j > 0, an isomorphism of functors

H/(K*®,C)~—H/(P®,C,7 ®,C).

Indeed, this statement results, mutatis mutandis, from the proof of the theorem
on page 46 of [24].
Let k be the residue field of . Then there is a natural map of exact sequences

K'®k — Z'(K)®k —— H (K )®k —— 0

(A.1.1) Jl J:,‘; Jh,i

K1 Rk —— Z’(K'@k) _ H%K'@k) — 0.

Since pj is surjective at g, so is /. Hence z] is surjective at g.
Consider the following map of exact sequences:

Zi(K)Y®k — K'®k — B™(K)®@k — 0

Z(K*®k) — K'®k — BHT(K*®k) —— 0.

Now, z; is surjective at ¢. Hence b,i“ is bijective at q.

Hence B™(K*) ® k — K'' @ k is injective at ¢. Set L := K**'/B*!(K*).
Since K™*! is A-flat, the local criterion of flatness implies that L is A-flat at ¢.
Hence, by the openness of flatness, there is a g € B outside the prime correspond-
ing to ¢ such that the localization L, is A-flat. We can replace B by B,, and so
assume L is A-flat.

Let C be any A-algebra. Then the following sequence is exact:

(Al12) 0-Z(K)®C—-K'®C—-K"®C—-L®C—D0.
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It follows that, in the map of exact sequences
K'®C — Z(K*)® C —— H(K)® C —— 0
| |+ J«
K''®C — Z(K*®C) — H(K*®C) — 0,

z¢. is bijective. Hence h(. is bijective. Thus the first assertion holds: p{. is bijective.
If H'(K*) is A-flat at ¢, then plainly the sequence

(A.1.3) 0-B(K)®k —-Z'(K)®k - H(K)®k — 0

is exact. The converse holds too by the local criterion for flatness, because Z'(K*)
is A-flat owing to the exactness of (A.1.2) with C := A and to the flatness of L.

Since zj is bijective, (A.1.3) is exact if and only if b; is injective. The latter
holds if and only if z/~! is surjective, owing to the map of exact sequences

Z (K Y®k — K7'®k — BY(K*)®@k —— 0
J+ | J»
0 —— Zi_l(K'®k) _ Ki_1®k —_ Bi(K'®k) — 0.

Finally, z;~" is surjective if and only if 2;~! is so, owing to (A.1.1) with i — 1 in
place of i. Putting it all together, we’ve proved that hi~!is surjective if and only if
H'(K*) is A-flat at g. In other words, the second assertion holds too. O

LEMMA A.2. Let T be a scheme, f : P — Q a proper map of T-schemes of finite
type, and

(A.2.1) 0-F >9—>H#—0

a short exact sequence of T-flat coherent sheaves on P. For each pointt € T, let f,
and F; and 9, denote the restrictions to the fiber P,, and assume that

(A2.2) Rf,(#)=0 and R'f,.(%)=0 fori=>1.
Then the induced sequence on Q,
(A.2.3) 0— fiF — .9 — fuH — 0,

is a short exact sequence of T-flat coherent sheaves, and forming it commutes with
base extension.

ProOF. Since 2 is T-flat, the sequence (A.2.1) remains exact after restriction to
the fiber P, for each t € T, and so the restricted sequence induces a long exact
sequence of cohomology. Hence, (A.2.2) yields

R'f.(#) =0 forallix>1.
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By hypothesis, &, ¥, # are T-flat. Hence, by the generalized property of
exchange, Lemma A.l, the sheaves f.7, f.9, f.# are T-flat, and forming
them commutes with extending 7'. By the same token, R'f,(#) = 0; whence, Se-
quence (A.2.3) is exact. The assertion follows. O

APPENDIX B. A FEW EXAMPLES BY ILYA TYOMKIN

Let F be the affine plane over the spectrum Y := Spec(K) of an algebraically
closed field K of positive characteristic p. In this appendix, we analyze a few sim-
ple examples of minimal Enriques diagrams D. Some depend on p, and have an
ordering 6 for which the universally injective map of Theorem 5.7,

¥ : F(D,0)/Aut(D) — Hilb

is purely inseparable. Others are independent of p; they have several vertices, but
only one root, yet they have an ordering 6 for which ¥ is an embedding. In fact,
in every case,  is unique, and Aut(D) is trivial.

We take F to be the affine plane just to simplify the presentation. With little
modification, everything works for any smooth irreducible surface F.

It is unknown what conditions on an arbitrary Enriques diagram D serve to
guarantee here that W is unramified, so an embedding. Nevertheless, in view of
the analysis in this appendix, it is reasonable to make the following guess.

Guess B.1. If p> 13", .ymy, then ¥ is unramified.

This guess is sharp in the sense that, if p < %ZVE]) my, then ¥ may be
ramified. For example, consider the plane curve C : xJ' = x¥ ™ In the notation of
Definition B.2, the minimal diagram of C is M, ,. It has p + 1 vertices with
my =p,1,1,...,1.S0 p =13, ., my. And ¥ is ramified by Proposition B.4.

Similarly, consider C : y(y — x”) = 0. Its minimal diagram has p vertices
with my =2.So p =13, pmy. And ¥ is ramified by an argument similar to
the proof of Proposition B.4.

On the other hand, if D has a single vertex of weight 2p, then ¥ is unramified
by Proposition 5.9, and of course, p =13, my.

In general, if a branch has tangency of order divisible by p to an exceptional
divisor E, then the multiplicity of the root must be at least p and there must be
at least p other vertices. So p < %ZV <pMv. Instead, if, at a point P € F, all the
branches have a tangency of order divisible by p to the same smooth curve D, then
there must be at least p vertices V with my > 2. So again, p < 13, |, my. Thus,
if we guess that W can be ramified in only these two ways, then we arrive at Guess
B.1.

Further, although ¥ does not sense first-order deformations either along E or
along D, nevertheless after we add a transverse branch at P, then ¥ does sense
first-order deformations of the new branch; thus ¥ becomes unramified. This in-
tuition is developed into a rigorous proof for the ordinary tacnode in Proposition
B.7, and a similar procedure works if the tacnode is replaced by an ordinary cusp.
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DEeriNITION B.2. Fix m > p. Let M, ,, denote the minimal Enriques diagram
of the plane curve singularity with 14 m — p branches whose tangent lines are
distinct, whose first branch is {x) = x/ i }, and whose remaining m — p branches

are smooth.

ExamMmPLE B.3. For motivation, consider the following special case. Take p := 2
and m := 2. Then M,, ,,, is the minimal Enriques diagram A, of the cuspidal curve
C : x5 = x3. This diagram has three vertices and a unique ordering 0.

Take F:= A% and T := Spec(K). In F(A,,0) = F?, form the locus L of
sequences (f, 1, %) of arbitrarily near T-points of F/K such that 7, is the con-
stant map from 7 to the origin. Plainly, the second projection induces an isomor-
phism L = E} where E} is the exceptional divisor of the blow up Fy. of F at the
origin.

1

-

m./ 1

1

|
§
|
|

1

Figure 1. The Enriques diagram M,, ,, with m > p = 5, of Definition B.2.

The strict transform C’ of C is tangent to Ej with order 2, and C’ is given by
the equation s> = x; where s := x»/x;. Notice that this equation is preserved by
any first order deformation along Ej of the point of contact; indeed,

(s+be)? = 5°
as p =2 and &> = 0. This observation suggests that the restriction of P,
(¥|L): L — Hilb}
is purely inseparable; and indeed, W | L is so, as we check next.

Let D’ be the diagram obtained from A, by omitting the root, let 6" be the

unique ordering of D', and consider the corresponding map
¥': F'(D',0') — Hilbg, .

Plainly, the projection (fy, 71, %) + (¢, %) embeds L into F'(D’,0").
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So ¥’ induces a map ¥; : L — Hilb%]/( sk~ It carries (%, 71, £2) to the subscheme
of F}. with ideal .#" defined by the formula

2,3 3.3
= (cv(Tcor)C”o( 72 —ER).
But EZY 4+ EPY < EMY S0

Opor (—EfY = ERY) 2 Gpn (~Ep ).
Hence .#' contains the ideal of E.. Therefore, ¥ factors through Hilb2, 11K
which is 1somorphlc to Sym?(L). The correspondmg map L — Sym?(L) is “the
diagonal map since W (1, 71, 72) has the same support as 7. This diagonal map
is purely 1nseparable as p=2.

Finally, ¥ : L — H11bE, K is a factor of W|L because ¥(ty,1,1) is the

subscheme of Fr with ideal ((,/)T ).-#'(2E}). Thus W | L is, indeed, purely insepa-
rable. In fact, W is purely inseparable by Proposition B.4 below.

PROPOSITION B.4. Fix m> p. Set D:=M,,, and d = ("}') + p. Then D
has a unique ordering 0; also Aut(D) = 1 and degD = d. Take F = A}. Then
dim F(D,0) =3, and Yy : F(D,0) — Hlle Jy is purely inseparable; also, ‘P Y.

Proor. Plainly, D has p+ 1 vertices, say Vo,..., V), ordered by succession.
Then proximity is given by Vy = Vi_; and Vy = Vy for k> 0. Further, the
weights are given by my, =m and my, =1 for k > 0. Set 0(V}) := k; plainly,
0 is an ordering of D, and is the only one. Also, plainly, Aut(D) =1 and
degD =d.

Theorem 3.10 says that dim F(D,0) = dim D, but plainly dimD = 3. Now,
¥ = Y, because Aut(D) = 1. Further, Theorem 5.7 says that ¥ is universally
injective. Hence W is purely inseparable, because it is everywhere ramified owing
to the following lemma. |

LemMmA B.5. Under the conditions of Proposition B4, let t € F(D,0) be a
K-point. Then Ker(d,Yy) is of dimension 1.

PrROOF. Say ¢ represents the sequence (f9,...,#,) of arbitrarily near K-points
of F/Y. Choose coordinates xj, x, on F such that #y: x; = x, = 0 and such
that #; is the point of intersection of the exceptional divisor £, with the proper
transform of the xj-axis. Set sp := x2/x1, set s; := x1/s0, and set s; := sx_1/50
for2<k<p—1.Thent;:so=x;=0,and t; : 5o =1 =0for2 <k < p.

Set z:=Yy(1) € Hilb;{/y(K). Let Z denote the corresponding subscheme,
and .7 its ideal. Recall from the proof of Proposition 5.4 that .# = ¢, O(—Ek)
where Ex = >_7 my,E 17+ Recall from the proof of Proposition B.4 that
my, =m and my, =1 for k > 0 and that V} > V for k > 0. It follows that

p
Ex = meg " VEW 43 k(m + Deig T VEET.
k=1
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Seto(r) :=0if0<r<pandd(r):=11if p <r <m. Set
1=r—o(r
fr= x0T for 0 < r < m.

Let’s now show that the f, generate .7.
First, note that, foreach rand for 1 <k < p—1,

f; _ m+1—6(r)s(;)~ _ Slr(n—}—l—é(r)s(l)c(m-&-l—é(r))-&-r

Hence, the pullback of f. vanishes along e(l r H)E,({l ) to order at least m, and
along e(k+1 PERD (o order at least k(m + 1) for k > 1, since r — kd(r) > 0.
Thus fr € 4 for each r.

Let # be the ideal generated by the f,. Then ¢ < .7. Now Kx1,x3]/ 7 is
spanned as a K-vector space by the monomials x""' ™"~ olr tfor0</<r<m
and by x/""'’x! for 0 </ < p. Hence ¢ = .# because

dim(K[x1,x]/ %) < Zr—l—p d = dim K[xy, x3]/.7.

r=0
Let K[¢] be the ring of dual numbers, and set 7" := Spec(K|e]). Let (to, s ly)
be a strict sequence of arbitrarily near 7-points of F/Y lifting (ty,...,t,). Then

there are a),a2,b € K so that, after setting x| := x; + aj¢ and x} := x» + are and
setting s, := x3/x] + be and sl = xl/s0 and s; := sk 1/s0 for2<k<p-1, we
have 7 : x{ = x} =0and 7] : 5) = x} —Oandtk so—sk 1—Ofor2<k<p

Let 1" € F(D,0)(T) represent (fy,...,1,). Set z’ _Yg(l) € H11b v (K)(T).
Let Z’ denote the corresponding subscheme and .#' its ideal. Let’s show that
J' is generated by the following elements:

fl= ()™ for 0 < r < m.

The f! reduce to the f;, which generate .#. Further, .#' reduces to .# as Z’ is flat
over K|[¢]. Hence it suffices to prove that .#’ contains the f.
Note that (s) — be)” = (s;)” as the characteristic is p. Hence, for each r,
f _ ( )m+l A(r )(S(/) N bé‘)r _ (Sl/()erlf(S(r) (S6>k(m+l)+(p7k)(5(r) (S(/) - bg)rfpé(r)

for 1 <k < p — 1. Therefore, the pullback of f’ vanishes along e (L H)E(Tl) to

order at least m, and along e(k+1 P ERTD 16 order at least k(m+ 1) for k > 1
since (p — k)o(r ) >0 and r— pé( ) > 0. Thus .’ contains the f'.

Recall that T. Hlle/Y( ) = Hom(.#, O4). Furthermore, it follows from the
computations above that

dYe()fHY=m+1—-r—9 (r)x; m—r=o(r xzal +Vx;77+1 r—o(r )xﬁflaz
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for 0 < r < m. Therefore,
ker(d,Yg) = {(al,az,b) |a1 =day) = 0},
and we are done. O

DEerINITION B.6. Fix m > 3. Let N,,, denote the minimal Enriques diagram of
the following plane curve singularity: an ordinary tacnode {x,(x, —x7) = 0}
union with m — 2 smooth branches whose tangent lines are distinct and different
from the common tangent line of the two branches of the tacnode.

ProPpoOSITION B.7. Fix m>3. Set D:=N,, and d := (mzﬂ) +3. Then D has
a unique ordering 0; also Aut(D) =1 and degD = d. Then dim F(D, ) = 3, and
Y, : F(D,0) — Hilby /k Is an embedding; also, ¥ = Y.

ProOOEF. Plainly, D has 2 vertices, say ¥y and V; ordered by succession. Then
proximity is given by V' > Vy. Further, the weights are given by my, = m and
my, = 2. Set O(Vy) := k; plainly, € is an ordering of D, and is the only one. Also,
plainly, Aut(D) = 1 and deg D = d. Theorem 3.10 says that dim F(D, ) = dim D,
but plainly dim D = 3. Now, ¥ = Y because Aut(D) = 1. Further, Theorem 5.7
says that W is universally injective. Hence ¥ is an embedding because it is
nowhere ramified owing to the following lemma. |

LemMma B.8. Under the conditions of Proposition B.7, let t € F(D,0) be a
K-point. Then Ker(d,Yy) = 0.

PRrROOF. Say ¢ represents the sequence (#y,¢;) of arbitrarily near K-points of
F/Y. Choose coordinates xj, x, on F such that 7y : x; = x, = 0 and such that 7,
is the point of intersection of the exceptional divisor Ej with the proper transform
of the x;-axis. Set s := xp/x;. Then #; : s = x; = 0.

Set z:=Yy(1) € Hilb;{ y(K). Let Z denote the corresponding subscheme,
and .7 its ideal. Recall from the proof of Proposition 5.4 that . = ¢, O(—E )
where Ex = 1 my,E+1:2) Recall from the proof of Proposition B.7 that
my, =m and my, = 2 and that Vi = Vy. It follows that

Ex = me\ VEW 4 (m+ 2)E,(<2).
Set 6(0) := 2, set 6(1) := 1, and set o(r) := 0 if r > 2. Set
fo= X0 for 0 <r<m.
Let’s now show that the f, generate .#.
First, note that, for each r,
f = x;n+(5(r)sr.

Hence, the pullback of f, vanishes along e§< 2)E 1 to order at least m, and along

E1(<) to order at least m + 2, since m + r +6(r) = m + 2. Thus f, € .# for each r.
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Let ¢ be the ideal generated by the f,. Then ¢ < j Now, K[xi,x2]/.7 is
spanned as a K-vector space by the monomials x|~ o)y 1 for0 </ <r<mand

by xm 1 in 1x2, and xm+ Hence ¢ = .4 because

dim(K[x1,x]/.¢) < Zr+3_d dim K [x|, x3]/.7.
r=0

+o(r
Furthermore, the monomials x"~! and x"~'x, and x"*', and x}"""")x! for

0 </ < r <mform a basis of the K-vector space K|xj, xz]/f

Let K|¢] be the ring of dual numbers, and set 7 := Spec(K[e]). Let (¢}, t]) be
a strict sequence of arbitrarily near T—points of F/Y lifting (to, t1). Then there
are ai,a,b € K so that, after setting x| := x; +a18 and x} := x> + axe and
s —x’/x + be, we have 1 : x| —xz—Oandt1 s’ =x; =0.

Let ' € F(D,0)(T) represent (t,t). Set z/:= Yy(¢') € Hlle/Y( ). Let Z’
denote the corresponding subscheme, and S its 1dea1. Let’s show that .#’ is gen-
erated by the following elements:

frl — (xi)m—r-ké(r)(xé)r + Vbﬁ(xi)m_r+l+6(r)()€£)r_l for 0 < r < m.

The f! reduce to the f;, which generate .#. Further, .#' reduces to .# as Z’ is flat
over K|[e]. Hence it suffices to prove that .#’ contains the f,.
The equation x) /x| = 5" — be yields
£l = (X)) for 0 < r < m.
Hence, the pullback of f vanishes along e(T 2) E(T1 ) to order at least m, and along
E(T> to order at least m + 2 since m + r +d(r) > m+ 2. Thus 4’ contains the /.

Recall that 7. Hilb y(K) = Hom(, Oz). Furthermore, it follows from the
computations above that

dXo(r)(f)) = x0TI (m =k 8(r))xaar + rxiay + rx2b)
for 0 < r < m. In particular, rx/"2x3b € .# yields

diYo(t")(f)) = mx{" ' xaay + x{'ar + x7" b
dXo(t)(fy) = (m+2)x""a;, and
dXo(t)(f) = (m—3)x"*x3a1 + 3x]"*X3ay.

Recall that, in K[xj, x»]/.#, the monomials

—r4o(r
XL L and XU for 0 <1< r<m

are linearly independent. But m > 3, so at least one of the coefficients m, m + 2,
and m — 3 is prime to the characteristic. Thus, ker(d,Yy) = 0, and we are done.
O
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