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Abstract. — Given a smooth family F=Y of geometrically irreducible surfaces, we study

sequences of arbitrarily near T -points of F=Y ; they generalize the traditional sequences of infinitely
near points of a single smooth surface. We distinguish a special sort of these new sequences, the strict

sequences. To each strict sequence, we associate an ordered unweighted Enriques diagram. We
prove that the various sequences with a fixed diagram form a functor, and we represent it by a

smooth Y -scheme.
We equip this Y -scheme with a free action of the automorphism group of the diagram. We equip

the diagram with weights, take the subgroup of those automorphisms preserving the weights, and
form the corresponding quotient scheme. Our main theorem constructs a canonical universally injec-

tive map from this quotient scheme to the Hilbert scheme of F=Y ; further, this map is an embedding
in characteristic 0. However, in every positive characteristic, we give an example, in Appendix B,

where the map is purely inseparable.
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1. Introduction

Recently, there has been much renewed interest in an old and timeless problem:
enumerating the r-nodal curves in a linear system on a smooth projective surface.
Notably, Tzeng [30] and Kool, Shende and Thomas [19], in very di¤erent ways,
proved Göttsche’s conjecture [5], which was motivated by the Yau–Zaslow for-
mula [32] and describes the shape of a corresponding generating series in r. How-
ever, Göttsche’s expression involves two power series, which remain unknown in
general.

On the other hand, Vainsencher [31] found enumerating polynomials for
ra 7; they are explicit and general, although he [31, Section 7] was unsure
of the case r ¼ 7. In [16] and [17], the present authors refined and extended
Vainsencher’s work, by settling the case r ¼ 7, handling r ¼ 8, producing more
compact formulas, and establishing validity under more extensive conditions.
Further, this enumeration, unlike Göttsche’s, applies to nonconstant families of
surfaces; notably, see [31, pp. 513–514] and [17, pp. 80–83], it proves 17,601,000
is the number of irreducible 6-nodal quintic plane curves on a general quintic 3-
fold in 4-space, contrary to the predictions of Clemens’ conjecture and of mirror
symmetry.



To establish a range of validity for these enumerative formulas, it is necessary
to analyze various generalized Severi varieties, namely, the loci of curves of given
equisingularity type in the system. Göttsche [5, Proposition 5.2] treated nodes
in an ad hoc fashion; Tzeng relies on his analysis, whereas Kool, Shende and
Thomas [19, Proposition 2.1] improved it, thus extending the range of validity.

On the other hand, Vainsencher’s approach, as pursued by the present
authors, relies on a more extensive and more systematic analysis. It is based on
Enriques diagrams. They are directed graphs, similar to resolution graphs, that
represent the equisingularity types of the curves. Equivalently, see [16, §3] and
the references there, they represent the types of the complete ideals, the ideals
formed by the equations of the curves with singularities of the same type or worse
at given points.

Specifically, in the authors’ paper [16], Proposition (3.6) on p. 225 con-
cerns the locus HðDÞ that sits in the Hilbert scheme of a smooth irreducible
complex surface and parametrizes the complete ideals I with a given mini-
mal Enriques diagram D. The proposition asserts that HðDÞ is smooth and
equidimensional.

The proposition was justified intuitively, then given an ad hoc proof in [16].
The intuitive justification was not developed into a formal proof, which is surpris-
ingly long and complicated. However, the proof yields more: it shows HðDÞ is
irreducible; it works for nonminimal D; and it works for families of surfaces. Fur-
ther, it works to a great extent when the characteristic is positive or mixed, but
then it only shows HðDÞ has a finite and universally injective covering by a
smooth cover; this covering need not be birational, as examples in Appendix B
show.

It is naive to form HðDÞ as a locus with reduced scheme structure. It is more
natural to consider the functor of sequences of arbitrarily near points correspond-
ing to D. This functor is representable by a smooth irreducible scheme, and it
admits a natural map into the Hilbert scheme, whose image is HðDÞ. This map
is finite and universally injective, so an embedding in characteristic zero, but it
may be totally ramified in positive characteristic as the examples show.

Originally, the authors planned to develop this discussion in a paper that also
dealt with other loose ends, notably, the details of the enumeration of curves with
eight nodes. However, there is so much material involved that it makes more
sense to divide it up. Thus the discussion of HðDÞ alone is developed in the
present paper; the result itself is asserted in Corollary 5.8. Here, in more detail,
is a description of this paper’s contents.

Fix a smooth family of geometrically irreducible surfaces F=Y and an integer
nb 0. Given a Y -scheme T , by a sequence of arbitrarily near T-points of F=Y ,
we mean an ðnþ 1Þ-tuple ðt0; . . . ; tnÞ where t0 is a T-point of F

ð0Þ
T :¼ F �Y T

and where ti, for ib 1, is a T-point of the blowup F
ðiÞ
T of F

ði�1Þ
T at ti�1. (If each ti

is, in fact, a T -point of the exceptional divisor E
ðiÞ
T of F

ðiÞ
T , then ðt0; . . . ; tnÞ

is a sequence of infinitely near points in the traditional sense.) The sequences of
arbitrarily near T-points form a functor in T , and it is representable by a smooth
Y -scheme F ðnÞ, according to Proposition 3.4 below; this result is due, in essence, to
Harbourne [12, Proposition I.2, p. 104].
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We say that the sequence ðt0; . . . ; tnÞ is strict if, for each i, j with 1a ja i,
the image T ðiÞ HF

ðiÞ
T of ti is either (a) disjoint from, or (b) contained in, the strict

transform of the exceptional divisor E
ð jÞ
T of F

ð jÞ
T . If (b) obtains, then we say that ti

is proximate to tj and we write ti � tj .
To each strict sequence, we associate, in Section 3, an unweighted Enriques

diagram U and an ordering y : U�!@ f0; . . . ; ng. E¤ectively, U is just a graph
whose vertices are the ti. There is a directed edge from tj to ti provided that
j þ 1a i and that the map from F

ðiÞ
T to F

ð jþ1Þ
T is an isomorphism in a neighbor-

hood of T ðiÞ and embeds T ðiÞ in E
ð jþ1Þ
T . In addition, U inherits the binary relation

of proximity. Finally, y is defined by yðtiÞ :¼ i. This material is discussed in more
detail in Section 2. In particular, to aid in passing from ðt0; . . . ; tnÞ to ðU; yÞ, we
develop a new combinatorial notion, which we call a proximity structure.

Di¤erent strict sequences often give rise to isomorphic pairs ðU; yÞ. If we fix a
pair, then the corresponding sequences form a functor, and it is representable by
a subscheme F ðU; yÞ of F ðnÞ, which is Y -smooth with irreducible geometric fibers
of a certain dimension. This statement is asserted by Theorem 3.10, which was
inspired by Roé’s Proposition 2.6 in [27].

Given another ordering y 0, in Section 4 we construct a natural isomorphism

Fy;y 0 : FðU; yÞ�!@ F ðU; y 0Þ:

It is easy to describe Fy;y 0 on geometric points. A geometric point of F ðU; yÞ cor-
responds to a certain sequence of local rings in the function field of the appropri-
ate geometric fiber of F=Y . Then y 0 � y�1 yields a suitable permutation of these
local rings, and so a geometric point of FðU; y 0Þ. However, it is harder to work
with arbitrary T-points. Most of the work is carried out in the proofs of Lemmas
4.1 and 4.2, and the work is completed in the proof of Proposition 4.3.

We easily derive two corollaries. Corollary 4.4 asserts that AutðUÞ acts freely
on F ðU; yÞ; namely, g a AutðUÞ acts as Fy;y 0 where y 0 :¼ y � g. Corollary 4.5
asserts that C : F ðU; yÞ=AutðUÞ is Y -smooth with irreducible geometric fibers.

A di¤erent treatment of F ðU; yÞ is given by A.-K. Liu in [22]. In Section 3 on
pp. 400–401, he constructs F ðnÞ. In Subsection 4.3.1 on pp. 412–414, he discusses
his version of an Enriques diagram, which he calls an ‘‘admissible graph.’’ In
Subsections 4.3.2, 4.4.1, and 4.4.2 on pp. 414–427, he constructs F ðU; yÞ, and
proves it is smooth. In Subsection 4.5 on pp. 428–433, he constructs the action
of AutðUÞ on F ðU; yÞ. Of course, he uses di¤erent notation; also, he doesn’t
represent functors. But, like the present authors, he was greatly inspired by Vain-
sencher’s approach in [31] to enumerating the singular curves in a linear system
on a smooth surface.

Our main result is Theorem 5.7. It concerns the Enriques diagram D obtained
by equipping the vertices V a U with weights mV satisfying the Proximity In-
equality, mV b

P
W�V mW : We discuss the theory of such D in Section 2. Note

that AutðDÞHAutðUÞ. Set d :¼
P

V
mVþ1

2

� �
. Theorem 5.7 asserts the existence of

a universally injective map from the quotient to the Hilbert scheme

C : F ðU; yÞ=AutðDÞ ! Hilbd
F=Y :
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Proposition 5.4 implies that C factors into a finite map followed by an open
embedding. So C is an embedding in characteristic 0. However, in any positive
characteristic, C can be ramified everywhere; examples are given in Appendix
B, whose content is due to Tyomkin. Nevertheless, according to Proposition 5.9,
in the important case where every vertex of D is a root, C is an embedding in any
characteristic. Further, adding a nonroot does not necessarily mean there is a
characteristic in which C ramifies, as other examples in Appendix B show.

We construct C via a relative version of the standard construction of the com-
plete ideals on a smooth surface over a field, which grew out of Zariski’s work
in 1938; the standard theory is reviewed in Subsection 5.1. Now, a T-point of
F ðU; yÞ represents a sequence of blowing-ups F

ðiÞ
T ! F

ði�1Þ
T for 1a ia nþ 1.

On the final blowup F
ðnþ1Þ
T , for each i, we form the preimage of the ith center T ðiÞ.

This preimage is a divisor; we multiply it by my�1ðiÞ, and we sum over i. We get an
e¤ective divisor. We take its ideal, and push down to FT . The result is an ideal, and
it defines the desired T-flat subscheme of FT . The flatness holds and the formation
of the subscheme commutes with base change owing to the generalized property
of exchange proved in Appendix A. Appendix A is of independent interest.

It is not hard to see that C is injective on geometric points, and that its image
is the subset HðDÞHHilbd

F=Y parameterizing complete ideals with diagram D on
the fibers of F=Y . To prove that C induces a finite map onto HðDÞ, we use a sort
of valuative criterion; the work appears in Lemma 5.2 and Proposition 5.4. An
immediate corollary, Corollary 5.5, asserts that HðDÞ is locally closed. This result
was proved for complex analytic varieties by Lossen [23, Proposition 2.19, p. 35]
and for excellent schemes by Nobile and Villamayor [25, Theorem 2.6, p. 250].
Their proofs are rather di¤erent from each other and from ours.

In [28] and [29], Russell studies sets somewhat similar to the HðDÞ. They pa-
rameterize isomorphism classes of finite subschemes of F supported at one point.

In short, Section 2 treats weighted and unweighted Enriques diagrams and
proximity structures. Section 3 treats sequences of arbitrarily near T-points. To
certain ones, the strict sequences, we associate an unweighted Enriques diagram
U and an ordering y. Fixing U and y, we obtain a functor, which we represent
by a smooth Y -scheme F ðU; yÞ. Section 4 treats the variance in y. We produce
a free action on F ðU; yÞ of AutðUÞ. Section 5 treats the Enriques diagram D
obtained by equipping U with suitable weights. We construct a map C from
F ðU; yÞ=AutðDÞ to HilbF=Y , whose image is the locus HðDÞ of complete ideals.
We prove HðDÞ is locally closed. Our main theorem asserts that C is universally
injective, and in fact, in characteristic 0, an embedding. Appendix A treats the
generalized property of exchange used in constructing C. Finally, Tyomkin’s
Appendix B treats a few examples: in some, C is ramified; in others, there’s a
nonroot, yet C is unramified.

2. Enriques diagrams

In 1915, Enriques [4, IV.I, pp. 350–51] explained a way to represent the equi-
singularity type of a plane curve singularity by means of a directed graph: each
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vertex represents an arbitrarily near point, and each edge connects a vertex repre-
senting a point to a vertex representing a point in its first-order neighborhood;
furthermore, the graph is equipped with a binary relation representing the ‘‘prox-
imity’’ of arbitrarily near points. These graphs have, for a long time, been called
Enriques diagrams, and in 2000, they were given a modern treatment by Casas in
[2, Section 3.9, pp. 98–102].

Based in part on a preliminary edition of Casas’ monograph, a more axiom-
atic treatment was given by the authors in [17, §2], and this treatment is elabo-
rated on here in Subsection 2.1. In this treatment, the vertices are weighted, and
the number of vertices is minimized. When the diagram arises from a curve, the
vertices correspond to the ‘‘essential points’’ as defined by Greuel et al. [6, Section
2.2], and the weights are the multiplicities of the points on the strict transforms.
Casas’ treatment is similar: the Proximity Inequality is always an equality, and
the leaves, or extremal vertices, are of weight 1; so the rest of the weights are
determined.

At times, it is convenient to work with unweighted diagrams. For this rea-
son, Roé [27, §1], inspired by Casas, defined an ‘‘Enriques diagram’’ to be an
unweighted graph, and he imposed five conditions, which are equivalent to our
Laws of Proximity and of Succession. Yet another description of unweighted
Enriques diagrams is developed below in Subsection 2.3 and Proposition 2.4
under the name of ‘‘proximity structure.’’ This description facilitates the formal
assignment, in Subsection 2.7, of an Enriques diagram to a plane curve singular-
ity. Similarly, the description facilitates the assignment in Section 3 of the Enri-
ques diagram associated to a strict sequence of arbitrarily near points.

At times, it is convenient to order the elements of the set underlying an Enri-
ques diagram or underlying a proximity structure. This subject is developed
in Subsections 2.2 and 2.3 and in Corollary 2.5. It plays a key role in the later
sections.

Finally, in Subsection 2.6, we discuss several useful numerical characters.
Three were introduced in [16, Section 2, p. 214], and are recalled here. Proposi-
tion 2.8 describes the change in one of the three when a singularity is blown up;
this result is needed in [18].

2.1 (Enriques diagrams). First, recall some general notions. In a directed
graph, a vertex V is considered to be one of its own predecessors and one of
its own successors. Its other predecessors and successors W are said to be
proper. If there are no loops, then W is said to be remote, or distant, if there
is a distinct third vertex lying between V and W ; otherwise, then W is said to be
immediate.

A tree is a directed graph with no loops; by definition, it has a single initial
vertex, or root, and every other vertex has a unique immediate predecessor. A
final vertex is called a leaf. A disjoint union of trees is called a forest.

Next, from [17, §2], recall the definition of a minimal Enriques diagram. It is
a finite forest D with additional structure. Namely, each vertex V is assigned
a weight mV , which is an integer at least 1. Also, the forest is equipped with a
binary relation; if one vertex V is related to another U , then we say that V is
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proximate to U , and write V � U . If U is a remote predecessor of V , then we call
V a satellite of U ; if not, then we say V is free. Thus a root is free, and a leaf can
be either free or a satellite.

Elaborating on [17], call D an Enriques diagram if D obeys these three laws:

(Law of Proximity) A root is proximate to no vertex. If a vertex is not a root,
then it is proximate to its immediate predecessor and to at most one other vertex;
the latter must be a remote predecessor. If one vertex is proximate to a second,
and if a distinct third lies between the two, then it too is proximate to the second.
(Proximity Inequality) For each vertex V,

mV b
X
W�V

mW :

(Law of Succession) A vertex may have any number of free immediate succes-
sors, but at most two immediate successors may be satellites, and they must be
satellites of di¤erent vertices.

Notice that, by themselves, the Law of Proximity and the Proximity Inequal-
ity imply that a vertex V has at most mV immediate successors; so, although this
property is included in the statement of the Law of Succession in [17, §2], it is
omitted here.

Recovering the notion in [16], call an Enriques diagram D minimal if D obeys
the following fourth law:

(Law of Minimality) There are only finitely many vertices, and every leaf of
weight 1 is a satellite.

In [16], the Law of Minimality did not include the present finiteness restriction;
rather, it was imposed at the outset.

2.2 (Unweighted diagrams). In [27, §1], Roé defines an Enriques diagram to
be an unweighted finite forest that is equipped with a binary relation, called
‘‘proximity,’’ that is required to satisfy five conditions. It is not hard to see that
his conditions are equivalent to our Laws of Proximity and Succession. Let us
call this combinatorial structure an unweighted Enriques diagram.

Let U be any directed graph on nþ 1 vertices. By an ordering of U, let us
mean a bijective mapping

y : U�!@ f0; . . . ; ng

such that, if one vertex V precedes another W , then yðVÞa yðWÞ. Let us call the
pair ðU; yÞ an ordered directed graph.

An ordering y need not be unique. Furthermore, if one exists, then plainly U
has no loops. Conversely, if U has no loops—if it is a forest—then U has at least
one ordering. Indeed, then U has a leaf L. Let T be the complement of L in U.
Then T inherits the structure of a forest. So, by induction on n, we may assume
that T has an ordering. Extend it to U by mapping L to n.
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Associated to any ordered unweighted Enriques diagram ðU; yÞ is its proxim-
ity matrix ðpijÞ, which is the nþ 1 by nþ 1 lower triangular matrix defined by

pij :¼
1; if i ¼ j;

�1; if y�1i is proximate to y�1j;

0; otherwise:

8<
:

The transpose was introduced by Du Val in 1936, and he named it the ‘‘proximity
matrix’’ in 1940; Lipman [21, p. 298] and others have followed suit. The defini-
tion here is the one used by Roé [27] and Casas [2, p. 139].

Note that ðU; yÞ is determined up to unique isomorphism by ðpijÞ.

2.3 (Proximity structure). Let U be a finite set equipped with a binary relation.
Call U a proximity structure, its elements vertices, and the relation proximity if
the following three laws are obeyed:

(P1) No vertex is proximate to itself; no two vertices are each proximate to the
other.

(P2) Every vertex is proximate to at most two others; if to two, then one of the
two is proximate to the other.

(P3) Given two vertices, at most one other is proximate to them both.

A proximity structure supports a natural structure of directed graph. Indeed,
construct an edge proceeding from one vertex V to another W whenever either
W is proximate only to V or W is proximate both to V and U but V is proxi-
mate to U (rather than U to V ). Of course, this graph may have loops; for
example, witness a triangle with each vertex proximate to the one clockwise be-
fore it, and witness a pentagon with each vertex proximate to the two clockwise
before it.

Let us say that a proximity structure is ordered if its vertices are numbered, say
V0; . . . ;Vn, such that, if Vi is proximate to Vj, then i > j.

Proposition 2.4. The unweighted Enriques diagrams sit in natural bijective
correspondence with the proximity structures whose associated graphs have no
loops.

Proof. First, take an unweighted Enriques diagram, and let’s check that its
proximity relation obeys Laws (P1) to (P3).

A vertex is proximate only to a proper successor; so no vertex is proximate
to itself. And, if two vertices were proximate to one another, then each would
succeed the other; so there would be a loop. Thus (P1) holds.

A root is proximate to no vertex. Every other vertex W is proximate to its
immediate predecessor V and to at most one other vertex U , which must be a
remote predecessor. Since an immediate predecessor is unique in a forest, V
must lie between W and U ; whence, V must be proximate to U . Thus (P2) holds.

Suppose two vertices W and X are each proximate to two others U and V .
Say V is the immediate predecessor of W . Then U is a remote predecessor of
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W ; so U precedes V . Hence V is also the immediate predecessor of X , and W is
also a remote predecessor of X . Thus both W and X are immediate successors of
V , and both are satellites of W ; so the Law of Succession is violated. Thus (P3)
holds.

Conversely, take a proximity structure whose associated graph has no loops.
Plainly, a root is proximate to no vertex. Suppose a vertex W is not a root. Then
W has an immediate predecessor V . Plainly, W is proximate to V . Plainly, W is
proximate to at most one other vertex U , and if so, then V is proximate to U .
Since U cannot also be proximate to V by (P1), it follows that V is the only
immediate predecessor to W .

Every vertex is, therefore, preceded by a unique root. Plainly the connected
component of each root is a tree. Thus the graph is a finite forest.

Returning to U , V , and W , we must show that U precedes W . Now, V is
proximate to U . So V is not a root. Hence V has an immediate predecessor V 0.
If V 0 ¼ U , then stop. If not, then V 0 is proximate to U owing to the definition
of the associated graph, since V is proximate to U . Hence, similarly, V 0 has an
immediate predecessor V 00. If V 00 ¼ U , then stop. If not, then repeat the process.
Eventually, you must stop since the number of vertices is finite. Thus U precedes
W . Furthermore, every vertex between U and W is proximate to U . Thus the
Law of Proximity holds.

Continuing with U , V , and W , suppose that W 0 is a second immediate succes-
sor of V and that W 0 is also proximate to a vertex U 0. Then U 0AU since at
most one vertex can be proximate to both V and U by (P3).

Finally, suppose that W 00 is a third immediate successor of V and that W 00 is
also proximate to a vertex U 00. Then U 00AU and U 00AU 0 by what we just
proved. But V is proximate to each of U , U 0, and U 00. So (P2) is violated. Thus
the Law of Succession holds, and the proof is complete. r

Corollary 2.5. The ordered unweighted Enriques diagrams sit in natural bijec-
tive correspondence with the ordered proximity structures.

Proof. Given an unweighted Enriques diagram, its proximity relation obeys
Laws (P1) to (P3) by the proof of Proposition 2.4. And, if one vertex V is proxi-
mate to another W , then W precedes V . So yðWÞ < yðVÞ for any ordering y.
Hence, if V is numbered yðVÞ for every V , then the proximity structure is
ordered.

Conversely, take an ordered proximity structure. The associated directed
graph is, plainly, ordered too, and so has no loops. And, the Laws of Proximity
and Succession hold by the proof of Proposition 2.4. Thus the corollary holds.

r

2.6 (Numerical characters). In [16, Section 2, p. 214], a number of numerical
characters were introduced, and three of them are useful in the present work.

The first character makes sense for any unweighted Enriques diagram U,
although it was not defined in this generality before; namely, the dimension
dimðUÞ is the number of roots plus the number of free vertices in U, including
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roots. Of course, the definition makes sense for a weighted Enriques diagram D;
namely, the dimension dimðDÞ is simply the dimension of the underlying un-
weighted diagram.

The second and third characters make sense only for a weighted Enriques
diagram D; namely, the degree and codimension are defined by the formulas

degðDÞ :¼
X
V AD

mV þ 1

2

� �
;

codðDÞ :¼ degðDÞ � dimðDÞ:

It is useful to introduce a new character, the type of a vertex V of U or of D. It
is defined by the formula

typeðVÞ :¼
0; if V is a satellite;

1; if V is a free vertex; but not a root;

2; if V is a root:

8<
:

The type appears in the following two formulas:

dimðDÞ ¼
X
V AD

typeðVÞ;ð2:6:1Þ

codðDÞ ¼
X
V AD

mV þ 1

2

� �
� typeðVÞ

� �
:ð2:6:2Þ

Formula 2.6.2 is useful because every summand is nonnegative in general and
positive when A is a minimal Enriques diagram.

2.7 (The diagram of a curve). Let C be a reduced curve lying on a smooth sur-
face over an algebraically closed ground field; the surface need not be complete.
In [16, Section 2, p. 213] and again in [17, Section 2, p. 72], we stated that, to C,
we can associate a minimal Enriques diagram D. (It represents the equisingularity
type of C; this aspect of the theory is treated in [2, p. 99] and [6, pp. 543–4].) Here
is more explanation about the construction of D.

First, form the configuration of all arbitrarily near points of the surface lying
on all the branches of the curve through all its singular points. Say that one arbi-
trarily near point is proximate to a second if the first lies above the second and
on the strict transform of the exceptional divisor of the blowup centered at the
second. Then Laws (P1) to (P3) hold because three strict transforms never meet
and, if two meet, then they meet once and transversely. Plainly, there are no
loops. Hence, by Proposition 2.4, this configuration is an unweighted Enriques
diagram.

Second, weight each arbitrarily near point with its multiplicity as a point on
the strict transform of the curve. By the theorem of strong embedded resolution,
all but finitely many arbitrarily near points are of multiplicity 1, and are proxi-
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mate only to their immediate predecessors; prune o¤ all the infinite unbroken suc-
cessions of such points, leaving finitely many points. Then the Law of Minimality
holds.

Finally, the Proximity Inequality holds for this well-known reason: the multi-
plicity of a point P 0 on a strict transform C 0 can be computed as an intersection
number m on the blowup at P 0 of the surface containing C 0; namely, m is the
intersection number of the exceptional divisor and the strict transform of C 0;
the desired inequality results now from Noether’s formula for m in terms of
multiplicities of arbitrarily near points. (In [2, p. 83], the inequality is an equality,
because no pruning is done.) Therefore, this weighted configuration is a minimal
Enriques diagram. It is D.

Notice that, if K is any algebraically closed extension field of the ground field,
then the curve CK also has diagram D.

Proposition 2.8. Let C be a reduced curve lying on a smooth surface over
an algebraically closed field. Let D be the minimal Enriques diagram of C, and
P a C a singular point of multiplicity m. Form the blowup of the surface at P, the
exceptional divisor E, the proper transform C 0 of C, and the union C 00 :¼ C 0AE.
Let D 0 be the diagram of C 0, and D 00 that of C 00. Then

codðDÞ � codðD 0Þb mþ 1

2

� �
� 2 and codðDÞ � codðD 00Þ ¼ m

2

� �
� 2;

equality holds in the first relation if and only if P is an ordinary m-fold point.

Proof. We obtain D 0 from D by deleting the root R corresponding to P and
also all the vertices T that are of weight 1, proximate to R, and such that all suc-
cessors of T are also (of weight 1 and) proximate to R (and so deleted too). Note
that an immediate successor of R is free; if it is deleted, then it has weight 1, and if
it is not deleted, then it becomes a root of D 0. Also, by the Law of Proximity, an
undeleted satellite of R becomes a free vertex of D 0.

Let s be the total number of satellites of R, and r the number of undeleted
immediate successors. Then it follows from the Formula (2.6.2) that

codðDÞ � codðD 0Þ ¼ mþ 1

2

� �
� 2þ sþ r:

Thus the asserted inequality holds, and it is an equality if and only if s ¼ 0 and
r ¼ 0. So it is an equality if P is an ordinary m-fold point.

Conversely, suppose s ¼ 0 and r ¼ 0. Then R has no immediate successor V
of weight 1 for the following reason. Otherwise, any immediate successor W of V
is proximate to V by the Law of Proximity. So W has weight 1 by the Proximity
Inequality. Hence, by recursion, we conclude that V is succeeded by a leaf L of
weight 1. So, by the Law of Minimality, L is a satellite. But s ¼ 0. Hence V does
not exist. But r ¼ 0. Hence R has no successors whatsoever. So P is an ordinary
m-fold point.
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Furthermore, we obtain D 00 from D by deleting R and by adding 1 to the
weight of each T proximate to R. So a satellite of R becomes a free vertex of
D 00, and an immediate successor of R becomes a root of D 00. In addition, for
each smooth branch of C that is transverse at P to all the other branches, we
adjoin an isolated vertex (root) of weight 2.

The number of adjoined vertices is m�
P

T�R mT . So, by Formula (2.6.2),

codðDÞ � codðD 00Þ ¼ mþ 1

2

� �
� 2þ

X
T�R

mT þ 1

2

� �
� typeðTÞ

� �

�
X
T�R

mT þ 2

2

� �
� ðtypeðTÞ þ 1Þ

� �
� m�

X
T�R

mT

" #
:

The right hand side reduces to m
2

� �
� 2. So the asserted equality holds. r

3. Infinitely near points

Fix a smooth family of geometrically irreducible surfaces p : F ! Y . In this sec-
tion, we study sequences of arbitrarily near T-points of F=Y . They are defined
in Definition 3.3. Then Proposition 3.4 asserts that they form a representable
functor. In essence, this result is due to Harbourne [12, Proposition I.2, p. 104],
who identified the functor of points of the iterated blow-up that was introduced in
[15, Section 4.1, p. 36] and is recalled in Definition 3.1.

In the second half of this section, we study a special kind of sequence of arbi-
trarily near T -points, the strict sequence, which is defined in Definition 3.5. To
each strict sequence is associated a natural ordered unweighted Enriques diagram
owing to Propositions 3.8 and 2.4. Finally, Theorem 3.10 asserts that the strict
sequences with given diagram ðU; yÞ form a functor, which is representable by a
Y -smooth scheme with irreducible geometric fibers of dimension dimðUÞ. This
theorem was inspired by Roé’s Proposition 2.6 in [27].

Definition 3.1. By induction on ib 0, let us define more families

pðiÞ : F ðiÞ ! F ði�1Þ;

which are like p : F ! Y . Set pð0Þ :¼ p. Now, suppose pðiÞ has been defined.
Form the fibered product of F ðiÞ with itself over F ði�1Þ, and blow up along the
diagonal DðiÞ. Take the composition of the blowup map and the second projec-
tion to be pðiþ1Þ.

In addition, for ib 1, let jðiÞ : F ðiÞ ! F ði�1Þ be the composition of the blowup
map and the first projection, and let E ðiÞ be the exceptional divisor. Finally, set
jð0Þ :¼ p; so jð0Þ ¼ pð0Þ.

Lemma 3.2. Both pðiÞ and jðiÞ are smooth, and have geometrically irreducible
fibers of dimension 2. Moreover, E ðiÞ is equal, as a polarized scheme, to the bundle
PðW1

pði�1Þ Þ over F ði�1Þ, where W1
pði�1Þ is the sheaf of relative di¤erentials.
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Proof. The first assertion holds for i ¼ 0 by hypothesis. Suppose it holds for i.
Consider the fibered product formed in Definition 3.1. Then both projections
are smooth, and have geometrically irreducible fibers of dimension 2; also, the

diagonal DðiÞ is smooth over both factors. It follows that the first assertion holds
for i þ 1.

The second assertion holds because W1
pði�1Þ is the conormal sheaf of DðiÞ. r

Definition 3.3. Let T be a Y -scheme. Given a sequence of blowups

F
ðnþ1Þ
T ��!j

ðnþ1Þ
T

F
ðnÞ
T ��!� � � ��! F 0

T ��!jð1Þ
T

FT :¼ F �Y T

whose ith center T ðiÞ HF
ðiÞ
T is the image of a section ti of F

ðiÞ
T =T for 0a ia n,

call ðt0; . . . ; tnÞ a sequence of arbitrarily near T-points of F=Y .

For 1a ia nþ 1, denote the exceptional divisor in F
ðiÞ
T by E

ðiÞ
T .

The following result is a version of Harbourne’s Proposition I.2 in [12, p. 104].

Proposition 3.4 (Harbourne). As T varies, the sequences ðt0; . . . ; tnÞ of arbi-

trarily near T-points of F=Y form a functor, which is represented by F ðnÞ=Y.
Given ðt0; . . . ; tnÞ and i, say ðt0; . . . ; tiÞ is represented by ti : T ! F ðiÞ. Then

pðiÞti ¼ ti�1 where t�1 is the structure map. Also, F
ðiþ1Þ
T ¼ F ðiþ1Þ �F ðiÞ T where

F ðiþ1Þ ! F ðiÞ is pðiþ1Þ; correspondingly, ti ¼ ðti; 1Þ and E
ðiþ1Þ
T ¼ E ðiþ1Þ �F ðiÞ T;

moreover, T ðiÞ is the scheme-theoretic image of E
ðiþ1Þ
T under j

ðiþ1Þ
T : F

ðiþ1Þ
T ! F

ðiÞ
T .

Finally, j
ðiþ1Þ
T is induced by jðiþ1Þ, and F

ðiþ1Þ
T ! T is induced by pðiþ1Þ.

Proof. First, observe that, given a section of any smooth map a : A ! B, blow-
ing up A along the section’s image, C say, commutes with changing the base B.
Indeed, let I be the ideal of C, and for each mb 0, consider the exact sequence

0 ! Imþ1 ! Im ! Im=Imþ1 ! 0:

Since a is smooth, Im=Imþ1 is a locally free OC-module, so B-flat. Hence form-
ing the sequence commutes with changing B. However, the blowup of A is just
Projam Im. Hence forming it commutes too.

Second, observe in addition that C is the scheme-theoretic image of the excep-
tional divisor, E say, of this blowup. Indeed, this image is the closed subscheme
of C whose ideal is the kernel of the comorphism of the map E ! C. However,
this comorphism is an isomorphism, because E ¼ PðI=I2Þ since a is smooth.

The first observation implies that the sequences ðt0; . . . ; tnÞ form a functor,
because, given any Y -map T 0 ! T , each induced map

F
ðiþ1Þ
T �T T 0 ! F

ðiÞ
T �T T 0

is therefore the blowing-up along the image of the induced section of
F

ðiÞ
T �T T 0=T 0.
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To prove this functor is representable by F ðnÞ=Y , we must set up a functorial
bijection between the sequences ðt0; . . . ; tnÞ and the Y -maps tn : T ! F ðnÞ. Of
course, n is arbitrary. So ðt0; . . . ; tiÞ then determines a Y -map ti : T ! F ðiÞ, and
correspondingly we want the remaining assertions of the proposition to hold as
well.

So given ðt0; . . . ; tnÞ, let us construct appropriate Y -maps ti : T ! F ðiÞ for
�1a ia n. We proceed by induction on i. Necessarily, t�1 : T ! Y is the struc-
ture map, and correspondingly, F

ð0Þ
T ¼ F ð0Þ �F ð�1Þ T owing to the definitions.

Suppose we’ve constructed ti�1. Then F
ðiÞ
T ¼ F ðiÞ �F ði�1Þ T . Set ti :¼ p1ti

where p1 : F
ðiÞ
T ! F ðiÞ is the projection. Then ti�1 ¼ pðiÞti. Also, ti ¼ ðti; 1Þ; so ti

is the pullback, under the map ð1; tiÞ, of the diagonal map of F ðiÞ=F ði�1Þ. There-

fore, owing to the first observation, we have F
ðiþ1Þ
T ¼ F ðiþ1Þ �ðF ðiÞ�F ðiÞÞ F

ðiÞ
T where

F
ðiÞ
T ! F ðiÞ �F ði�1Þ F ðiÞ is equal to 1� ti. Hence F

ðiþ1Þ
T ¼ F ðiþ1Þ �F ðiÞ T where

F ðiþ1Þ ! F ðiÞ is pðiþ1Þ. It follows formally that E
ðiþ1Þ
T ¼ E ðiþ1Þ �F ðiÞ T , that

F
ðiþ1Þ
T ! F

ðiÞ
T is induced by jðiþ1Þ, and that F

ðiþ1Þ
T ! T is induced by pðiþ1Þ.

By the second observation above, T ðiÞ is the scheme-theoretic image of E
ðiþ1Þ
T .

Conversely, given a map tn : T ! F ðnÞ, set ti�1 :¼ pðiÞ . . . pðnÞtn for 0a ia n;

so ti�1 : T ! F ði�1Þ. Set F
ðiÞ
T :¼ F ðiÞ �F ði�1Þ T where the map F ðiÞ ! F ði�1Þ is pðiÞ

for 0a ia nþ 1. Then ti defines a section ti of F
ðiÞ
T =T . Furthermore, blowing up

its image yields the map F
ðiþ1Þ
T ! F

ðiÞ
T induced by jðiþ1Þ, because, as noted above,

forming the blowup along DðiÞ commutes with changing the base via 1� ti. Thus
ðt0; . . . ; tnÞ is a sequence of arbitrarily near T-points of F=Y .

Plainly, for each T , we have set up the bijection we sought, and it is functorial
in T . Since we have checked all the remaining assertions of the proposition, the
proof is now complete. r

Definition 3.5. Given a sequence ðt0; . . . ; tnÞ of arbitrarily near T-points of
F=Y , let us call it strict if, for 0a ia n, the image T ðiÞ of ti satisfies the following
i conditions, defined by induction on i. There are, of course, no conditions on
T ð0Þ. Fix i, and suppose, for 0a j < i, the conditions on T ð jÞ are defined and
satisfied.

The i conditions on T ðiÞ involve the natural embeddings

e
ð j; iÞ
T : E

ð jÞ
T ,! F

ðiÞ
T for 1a ja i;

which we assume defined by induction; see the next paragraph. (The image

e
ð j; iÞ
T E

ð jÞ
T can be regarded as the ‘‘strict transform’’ of E

ð jÞ
T on F

ðiÞ
T .) The jth

condition requires e
ð j; iÞ
T E

ð jÞ
T either (a) to be disjoint from T ðiÞ or (b) to contain

T ðiÞ as a subscheme.
Define e

ðiþ1; iþ1Þ
T to be the inclusion. Now, for 1a ja i, we have assumed that

e
ð j; iÞ
T is defined, and required that its image satisfy either (a) or (b). If (a) is satis-
fied, then the blowing-up F

ðiþ1Þ
T ! F

ðiÞ
T is an isomorphism on a neighborhood

of e
ð j; iÞ
T E

ð jÞ
T , namely, the complement of T ðiÞ; so then e

ð j; iÞ
T lifts naturally to an

embedding e
ð j; iþ1Þ
T . If (b) is satisfied, then T ðiÞ is a relative e¤ective divisor on the
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T-scheme eð j; iÞE
ð jÞ
T , because E

ð jÞ
T and T ðiÞ are flat over T , and the latter’s fibers

are e¤ective divisors on the former’s fibers, which are P1s; hence, then blowing up
e
ð j; iÞ
T E

ð jÞ
T along T ðiÞ yields an isomorphism. But the blowup of e

ð j; iÞ
T E

ð jÞ
T embeds

naturally in F
ðiÞ
T . Thus, again, e

ð j; iÞ
T lifts naturally.

Definition 3.6. Given a strict sequence ðt0; . . . ; tnÞ of arbitrarily near T-points
of F=Y , say that ti is proximate to tj if j < i and eð jþ1; iÞE

ð jþ1Þ
T contains T ðiÞ.

Lemma 3.7. Let ðt0; . . . ; tnÞ be a strict sequence of arbitrarily near T-points

of F=Y. Fix nþ 1b ib jb kb 1. Then j
ð jþ1Þ
T . . . j

ðiÞ
T e

ðk; iÞ
T ¼ e

ðk; jÞ
T , and T ð j�1Þ is

the scheme-theoretic image of e
ð j; iÞ
T E

ð jÞ
T under j

ð jÞ
T . . . j

ðiÞ
T . Set

Z
ðiÞ
T :¼ e

ðk; iÞ
T E

ðkÞ
T B e

ð j; iÞ
T E

ð jÞ
T :

If j > k and Z
ðiÞ
T A j, then j

ð jÞ
T . . . j

ðiÞ
T induces an isomorphism Z

ðiÞ
T �!@ T ð j�1Þ, and

tj�1 is proximate to tk�1; moreover, then Z
ðiÞ
T meets no e

ðl; iÞ
T E

ðlÞ
T for lA j; k.

Proof. The formula j
ð jþ1Þ
T . . . j

ðiÞ
T e

ðk; iÞ
T ¼ e

ðk; jÞ
T is trivial if i ¼ j. It holds by con-

struction if i ¼ j þ 1. Finally, it follows by induction if i > j þ 1. With k :¼ j,

this formula implies that E
ð jÞ
T is the scheme-theoretic image of e

ð j; iÞ
T E

ð jÞ
T under

j
ð jþ1Þ
T . . . j

ðiÞ
T ; whence, Proposition 3.4 implies that T ð j�1Þ is the scheme-theoretic

image of e
ð j; iÞ
T E

ð jÞ
T under j

ð jÞ
T . . . j

ðiÞ
T .

Suppose j > k and Z
ðiÞ
T A j. Now, for any l such that ib lb j, both e

ðk; lÞ
T E

ðkÞ
T

and e
ð j; lÞ
T E

ð jÞ
T are relative e¤ective divisors on F

ðlÞ
T =T , because they’re flat and

divisors on the fibers. Hence, on either of e
ðk; lÞ
T E

ðkÞ
T and e

ð j; lÞ
T E

ð jÞ
T , their intersec-

tion Z
ðlÞ
T is a relative e¤ective divisor, since each fiber of Z

ðlÞ
T is correspondingly a

divisor. In fact, each nonempty fiber of Z
ðlÞ
T is a reduced point on a P1.

Since j
ð jþ1Þ
T . . . j

ðiÞ
T e

ð j; iÞ
T ¼ e

ð j; jÞ
T and since e

ð j; jÞ
T is the inclusion of E

ð jÞ
T , which is

the exceptional divisor of the blowing-up jð jÞ : F ð jÞ ! F ð j�1Þ along T ð j�1Þ, the

map j
ð jÞ
T . . . j

ðiÞ
T induces a proper map e : Z

ðiÞ
T ! T ð j�1Þ. Since the fibers of e are

isomorphisms, e is a closed embedding. So since Z
ðiÞ
T and T ð j�1Þ are T-flat, e is an

isomorphism onto an open and closed subscheme.

Since j
ð jÞ
T . . . j

ðiÞ
T e

ðk; iÞ
T ¼ e

ðk; j�1Þ
T , it follows that e

ðk; j�1Þ
T E

ðkÞ
T contains a non-

empty subscheme of T ð j�1Þ. So since ðt0; . . . ; tnÞ is strict, eðk; j�1Þ
T E

ðkÞ
T contains all

of T ð j�1Þ as a subscheme. Thus tj�1 is proximate to tk�1.

It follows that j
ð jÞ
T induces a surjection Z

ð jÞ
T !! T ð j�1Þ. If i ¼ j, then this sur-

jection is just e, and so e is an isomorphism, as desired.

Suppose i > j. Then Z
ð jÞ
T BT ð jÞ ¼ j. Indeed, suppose not. Then both e

ðk; jÞ
T E

ðkÞ
T

and E
ð jÞ
T meet T ð jÞ. So since ðt0; . . . ; tnÞ is strict, Z

ð jÞ
T contains T ð jÞ as a closed

subscheme. Both these schemes are T -flat, and their fibers are reduced points;

hence, they coincide. It follows that e
ðk; jþ1Þ
T E

ðkÞ
T and e

ð j; jþ1Þ
T E

ð jÞ
T are disjoint on
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F ð jþ1Þ. But these subschemes intersect in Z
ð jþ1Þ
T . And Z

ð jþ1Þ
T A j since Z

ðiÞ
T A j

and Z
ðiÞ
T maps into Z

ð jþ1Þ
T . We have a contradiction, so Z

ð jÞ
T BT ð jÞ ¼ j.

Therefore, j
ð jþ1Þ
T induces an isomorphism Z

ð jþ1Þ
T �!@ Z

ð jÞ
T . Similarly, j

ðlþ1Þ
T

induces an isomorphism Z
ðlþ1Þ
T �!@ Z

ðlÞ
T for l ¼ j; . . . ; i � 1. Hence j

ð jÞ
T . . . j

ðiÞ
T

induces an isomorphism Z
ðiÞ
T �!@ T ð j�1Þ.

Finally, suppose Z
ðiÞ
T meets e

ðl; iÞ
T E

ðlÞ
T for lA j; k, and let’s find a contradic-

tion. If l < j, then interchange l and j. Then, by the above, T ð j�1Þ lies in both
e
ðk; j�1Þ
T E

ðkÞ
T and e

ðl; j�1Þ
T E

ðlÞ
T . Therefore, T ð j�1Þ is equal to their intersection, be-

cause T ð j�1Þ is flat and its fibers are equal to those of the intersection. It follows
that e

ðk; jÞ
T E

ðkÞ
T and e

ðl; jÞ
T E

ðlÞ
T are disjoint on F ð jÞ. But both these subschemes con-

tain the image of Z
ðiÞ
T , which is nonempty. We have a contradiction, as desired.

The proof is now complete. r

Proposition 3.8. Let ðt0; . . . ; tnÞ be a strict sequence of arbitrarily near T-
points of F=Y. Equip the abstract ordered set of ti with the relation of proximity
of Definition 3.6. Then this set becomes an ordered proximity structure.

Proof. Law (P1) holds trivially.
As to (P2), suppose ti is proximate to tj and to tk with j > k. Then T ðiÞ lies

in e
ðkþ1; iÞ
T E

ðkþ1Þ
T B e

ð jþ1; iÞ
T E

ð jþ1Þ
T . So Lemma 3.7 implies tj is proximate to tk. Fur-

thermore, the lemma implies the intersection meets no e
ðlþ1; iÞ
T E

ðlþ1Þ
T for lA j; k.

So ti is proximate to no third vertex tl . Thus (P2) holds.
As to (P3), suppose ti and tj are each proximate to both tk and tl where

i > j > k > l. Given p > k, set ZðpÞ :¼ e
ðlþ1;pÞ
T E

ðlþ1Þ
T B e

ðkþ1;pÞ
T E

ðkþ1Þ
T . Then

T ðiÞ JZðiÞ. Now, ZðiÞ is T -flat with reduced points as fibers by Lemma 3.7. But
T ðiÞ is a similar T-scheme. Hence T ðiÞ ¼ ZðiÞ. Similarly, T ð jÞ :¼ Zð jÞ.

Lemma 3.7 yields j
ð jþ1Þ
T . . . j

ðiÞ
T e

ðm; iÞ
T ¼ e

ðm; jÞ
T for m ¼ k; l. So j

ð jþ1Þ
T . . . j

ðiÞ
T

carries T ðiÞ into T ð jÞ. Now, this map is proper, and both T ðiÞ and T ð jÞ are T-flat
with reduced points as fibers; hence, T ðiÞ �!@ T ð jÞ. It follows that

j
ð jþ2Þ
T . . . j

ðiÞ
T T ðiÞ JZð jþ1Þ H ðjð jþ1Þ

T Þ�1
T ð jÞ ¼ E

ð jþ1Þ
T :

Hence Zð jþ1Þ meets E
ð jþ1Þ
T , contrary to Lemma 3.7. Thus (P3) holds. r

Definition 3.9. Let’s say that a strict sequence of arbitrarily near T-points
of F=Y has diagram ðU; yÞ if ðU; yÞ is isomorphic to the ordered unweighted
Enriques diagram coming from Propositions 3.8 and 2.4.

The following result was inspired by Roé’s Proposition 2.6 in [27].

Theorem 3.10. Fix an ordered unweighted Enriques diagram ðU; yÞ on nþ 1 ver-
tices. Then the strict sequences of arbitrarily near T-points of F=Y with diagram
ðU; yÞ form a functor; it is representable by a subscheme F ðU; yÞ of F ðnÞ, which is
Y-smooth with irreducible geometric fibers of dimension dimðUÞ.

425enriques diagrams, arbitrarily near points, and hilbert schemes



Proof. If a strict sequence of arbitrarily near T -points has diagram ðU; yÞ, then,
for any map T 0 ! T , the induced sequence of arbitrarily near T 0-points plainly
also has diagram ðU; yÞ. So the sequences with diagram ðU; yÞ form a subfunctor

of the functor of all sequences, which is representable by F ðnÞ=Y by Proposition
3.4.

Suppose n ¼ 0. Then U has just one vertex. So the two functors coincide, and
both are representable by F , which is Y -smooth with irreducible geometric fibers
of dimension 2. However, 2 ¼ dimðUÞ. Thus the theorem holds when n ¼ 0.

Suppose nb 1. Set L :¼ y�1n. Then L is a leaf. Set T :¼ U� L. Then T inher-
its the structure of an unweighted Enriques diagram, and it is ordered by the
restriction y jT. By induction on n, assume the theorem holds for ðT; y jTÞ.

Set G :¼ F ðT; y jTÞHF ðn�1Þ and H :¼ p�1
n GHF ðnÞ. Then H represents

the functor of sequences ðt0; . . . ; tnÞ of arbitrarily near T-points such that
ðt0; . . . ; tn�1Þ has diagram ðT; y jTÞ since pðiÞti ¼ ti�1 by Proposition 3.4. More-
over, H is G-smooth with irreducible geometric fibers of dimension 2 by Lemma
3.2. And G is Y -smooth with irreducible geometric fibers of dimension dimðTÞ as
the theorem holds for ðT; y jTÞ. Thus H is Y -smooth with irreducible geometric
fibers of dimension dimðTÞ þ 2.

Let ðh0; . . . ; hnÞ be the universal sequence of arbitrarily near H-points, and

H ðiÞ HF
ðiÞ
H the image of hi. We must prove that H has a largest subscheme S over

which ðh0; . . . ; hnÞ restricts to a sequence with diagram ðU; yÞ; we must also prove
that S is Y -smooth with irreducible geometric fibers of dimension dimðUÞ.

But, ðh0; . . . ; hn�1Þ has diagram ðT; y jTÞ. So H ðiÞ satisfies the i conditions of
Definition 3.5 for i ¼ 0; . . . ; n� 1. Hence S is defined simply by the n conditions

on H ðnÞ: the jth requires e
ð j;nÞ
H E

ð jÞ
H either (a) to be disjoint from H ðnÞ or (b) to con-

tain it as a subscheme; (b) applies if L is proximate to y�1ð j � 1Þ, and (a) if not,
according to Definition 3.6. Let P be the set of j for which (b) applies. Set

S :¼ h�1
n

� \
j AP

e
ð j;nÞ
H E

ð jÞ
H �

[
j BP

e
ð j;nÞ
H E

ð jÞ
H

	

Plainly, S is the desired largest subscheme of H.
It remains to analyze the geometry of S. First of all, F

ðnÞ
G ¼ F ðnÞ �F ðn�1Þ G by

Proposition 3.4; so F
ðnÞ
G ¼ H since H :¼ p�1

n G. Also, F
ðnÞ
H ¼ F ðnÞ �F ðn�1Þ H and

hn ¼ ðzn; 1Þ where zn : H ,! F , again by Proposition 3.4. Hence

F
ðnÞ
H ¼ F

ðnÞ
G �G H ¼ H �G H and hn ¼ ð1; 1Þ:

Plainly, forming e
ð j;nÞ
T is functorial in T ; whence, e

ð j;nÞ
H E

ð jÞ
H ¼ ðeð j;nÞG E

ð jÞ
G Þ �G H.

Hence, h�1
n e

ð j;nÞ
H E

ð jÞ
H ¼ e

ð j;nÞ
G E

ð jÞ
G . Therefore,

S :¼
\
j AP

e
ð j;nÞ
G E

ð jÞ
G �

[
j BP

e
ð j;nÞ
G E

ð jÞ
G :
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There are three cases to analyze, depending on typeðLÞ. In any case,

dimðTÞ þ typeðLÞ ¼ dimðUÞ

owing to Formula 2.6.1. Furthermore, each e
ð j;nÞ
G is an embedding. So e

ð j;nÞ
G E

ð jÞ
G

has the form PðWÞ for some locally free sheaf W of rank 2 on G by Lemma 3.2

and Proposition 3.4. Hence e
ð j;nÞ
G E

ð jÞ
G is Y -smooth with irreducible geometric

fibers of dimension dimðTÞ þ 1.
Suppose typeðLÞ ¼ 2. Then L is a root. So P is empty, and by convention, the

intersection
T

j AP e
ð j;nÞ
H E

ð jÞ
H is all of H. So S is open in H, and maps onto Y .

Hence S is Y -smooth with irreducible geometric fibers of dimension dimðH=Y Þ,
and

dimðH=YÞ ¼ dimðTÞ þ 2 ¼ dimðUÞ:

Thus the theorem holds in this case.
Suppose typeðLÞ ¼ 1. Then L is a free vertex, but not a root. So L has an

immediate predecessor, M say. Set m :¼ yðMÞ. Then P ¼ fmg. So S is open in

e
ðm;nÞ
G E

ðmÞ
G , and maps onto Y . Hence S is Y -smooth with irreducible geometric

fibers of dimension dimðeðm;nÞ
G E

ðmÞ
G =Y Þ, and

dimðeðm;nÞ
G E

ðmÞ
G =YÞ ¼ dimðTÞ þ 1 ¼ dimðUÞ:

Thus the theorem holds in this case too.
Finally, suppose typeðLÞ ¼ 0. Then L is a satellite. So L is proximate to two

vertices: an immediate predecessor, M say, and a remote predecessor, R say. Set

m :¼ yðMÞ and r :¼ yðRÞ. Then P ¼ fr;mg. Set Z :¼ e
ðr;nÞ
G E

ðrÞ
G B e

ðm;nÞ
G E

ðmÞ
G . Then

Z�!@ G and Z meets no e
ð j;nÞ
G E

ðmÞ
G with j B P owing to Lemma 3.7, because

ðh0; . . . ; hn�1Þ is strict with diagram ðT; y jTÞ. Hence S ¼ Z. Therefore, S is Y -
smooth with irreducible geometric fibers of dimension dimðG=YÞ, and

dimðG=Y Þ ¼ dimðTÞ þ 0 ¼ dimðUÞ:

Thus the theorem holds in this case too, and the proof is complete. r

4. Isomorphism and enlargement

Fix a smooth family of geometrically irreducible surfaces p : F ! Y . In this sec-
tion, we study the scheme F ðU; yÞ introduced in Theorem 3.10. First, we work
out the e¤ect of replacing the ordering y by another one y 0. Then we develop, in
our context, much of Roé’s Subsections 2.1–2.3 in [27]; specifically, we study a
certain closed subset EðU; yÞHF ðnÞ containing F ðU; yÞ set-theoretically. Nota-
bly, we prove that, if the sets FðU 0; y 0Þ and EðU; yÞ meet, then EðU 0; y 0Þ lies in
EðU; yÞ; furthermore, EðU 0; y 0Þ ¼ EðU; yÞ if and only if ðU; yÞG ðU 0; y 0Þ.

Proposition 4.3 below asserts that there is a natural isomorphism Fy;y 0 from
FðU; yÞ to F ðU; y 0Þ. On geometric points, Fy;y 0 is given as follows. A geometric
point with field K represents a sequence of arbitrarily near K-points ðt0; . . . ; tnÞ
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of F=Y . To give ti is the same as giving the local ring Ai of the surface F
ðiÞ
K at the

K-point T ðiÞ, the image of ti. Set a :¼ y 0 � y�1. Then ai > aj if ti is proximate to
tj. So there is a unique sequence ð~tt0; . . . ; ~ttnÞ whose local rings ~AAj satisfy Ai ¼ ~AAai

in the function field of FK . The sequences ðt0; . . . ; tnÞ and ð~tt0; . . . ; ~ttnÞ correspond
under Fy;y 0 .

To construct Fy;y 0 , we must work with a sequence ðt0; . . . ; tnÞ of T-points for

an arbitrary T . To do so, instead of the Ai, we use the transforms e
ðiþ1;nþ1Þ
T E

ðiþ1Þ
T .

The notation becomes more involved, and it is harder to construct ð~tt0; . . . ; ~ttnÞ.
We proceed by induction on n: we omit tn, apply induction, and ‘‘reinsert’’ tn
as ~ttan. Most of the work is done in Lemma 4.2; the reinsertion is justified by
Lemma 4.1.

Lemma 4.1. Let ð~tt0; . . . ; ~ttn�1Þ be a strict sequence of arbitrarily near T-points

of F=Y, say with blowups ~FF
ðiÞ
T and so on. Fix l, and let T ðlÞ H ~FF

ðlÞ
T be the image of

a section tl of ~FF
ðlÞ
T =T. Set ti :¼ ~tti for 0a i < l, and assume the sequence ðt0; . . . ; tlÞ

is strict. Set Tl :¼ ~TT ðlÞ and Ti :¼ ~jj
ðlþ1Þ
T . . . ~jj

ðiÞ
T

~TT ðiÞ for l < i < n, and assume T ðlÞ

and the Ti are disjoint. Then ðt0; . . . ; tlÞ extends uniquely to a strict sequence

ðt0; . . . ; tnÞ, say with blowups F
ðiÞ
T and so on, such that tl is a leaf and

F
ðlþ1Þ
T �F

ðlÞ
T

~FF
ði�1Þ
T ¼ F

ðiÞ
T for l < ia n. Furthermore, the diagram of ðt0; . . . ; tnÞ in-

duces that of ð~tt0; . . . ; ~ttn�1Þ.

Proof. Set F
ðlÞ
T :¼ ~FF

ðlÞ
T ; let F

ðlþ1Þ
T be the blowup of F

ðlÞ
T with center T ðlÞ, and

E
ðlþ1Þ
T be its exceptional divisor. For l < ia n, set F

ðiþ1Þ
T :¼ F

ðlþ1Þ
T �

F
ðlÞ
T

~FF
ðiÞ
T and

T ðiÞ :¼ F
ðlþ1Þ
T �

F
ðlÞ
T

~TT ði�1Þ. Now, T ðlÞ and Ti are disjoint for la i < n. So F
ðiþ1Þ
T is

the blowup of F
ðiÞ
T with center T ðiÞ. Also, T ðiÞ is the image of a section ti

of F
ðiÞ
T =T . Moreover, since ðt0; . . . ; tlÞ and ð~tt0; . . . ; ~ttn�1Þ are strict sequences, it

follows that ðt0; . . . ; tnÞ is a strict sequence too. Furthermore, tl is a leaf, and
the diagram of ðt0; . . . ; tnÞ induces that of ð~tt0; . . . ; ~ttn�1Þ. Plainly, ðt0; . . . ; tnÞ is
unique. r

Lemma 4.2. Let a be a permutation of f0; . . . ; ng. Let ðt0; . . . ; tnÞ be a strict
sequence of arbitrarily near T-points of F=Y. Assume that, if ti is proximate
to tj, then ai > aj. Then there is a unique strict sequence ð~tt0; . . . ; ~ttnÞ, say with

blowups ~FF
ðiÞ
T , exceptional divisors ~EE

ðiÞ
T , and so on, such that F

ðnþ1Þ
T ¼ ~FF

ðnþ1Þ
T and

e
ði;nþ1Þ
T E

ðiÞ
T ¼ ~ee

ða 0i;nþ1Þ
T

~EE
ða 0iÞ
T with a 0i :¼ aði � 1Þ þ 1 for 1a ia nþ 1; furthermore,

ti is proximate to tj if and only if ~ttai is proximate to ~ttaj.

Proof. Assume ð~tt0; . . . ; ~ttnÞ exists. Let’s prove, by induction on j, that both

the sequence ð~tt0; . . . ; ~ttjÞ and the map F
ðnþ1Þ
T ! ~FF

ð jþ1Þ
T are determined by the

equality F
ðnþ1Þ
T ¼ ~FF

ðnþ1Þ
T and the nþ 1 equalities e

ði;nþ1Þ
T E

ðiÞ
T ¼ ~ee

ða 0i;nþ1Þ
T

~EE
ða 0iÞ
T

where 1a ia nþ 1. If j ¼ �1, there’s nothing to prove. So suppose jb 0.

Then ~TT ð jþ1Þ is determined as the scheme-theoretic image of ~ee
ð jþ2;nþ1Þ
T

~EE
ð jþ2Þ
T by

Lemma 3.7. So ~ttjþ1 is determined. But then ~FF
ð jþ2Þ
T is determined as the blowup
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of ~TT ð jþ1Þ. And F
ðnþ1Þ
T ! ~FF

ð jþ2Þ
T is determined, because the preimage of ~TT ð jþ1Þ in

F
ðnþ1Þ
T is a divisor. Thus ð~tt0; . . . ; ~ttnÞ is unique.
To prove ð~tt0; . . . ; ~ttnÞ exists, let’s proceed by induction on n. Assume n ¼ 0.

Then a ¼ 1. So plainly ~tt0 exists; just take ~tt0 :¼ t0.
So assume nb 1. Set l :¼ an. Define a permutation b of f0; . . . ; n� 1g by

bi :¼ ai if ai < l and bi :¼ ai � 1 if ai > l.
Suppose ti is proximate to tj with i < n, and let us check that bi > bj. The

hypothesis yields ai > aj. So if either ai < l or aj > l, then bi > bj. Now, aiA l
since i < n and l :¼ an. Similarly, ajA l since j < i as ti is proximate to tj . But
if ai > l, then bi :¼ ai � 1b l, and if aj < l, then bj :¼ aj < l. Thus bi > bj.

Since ðt0; . . . ; tn�1Þ is strict, induction applies: there exists a strict sequence

ðt̂t0; . . . ; t̂tn�1Þ, say with blowups F̂F
ðiÞ
T and so forth, such that F

ðnÞ
T ¼ F̂F

ðnÞ
T and

e
ði;nÞ
T E

ðiÞ
T ¼ êe

ðb 0i;nÞ
T ÊE

ðb 0iÞ
T with b 0i :¼ bði � 1Þ þ 1 for 1a ia n; furthermore, ti is

proximate to tj if and only if ~ttbi is proximate to ~ttbj. Set ~tti :¼ t̂ti for 0a i < l.

Set ~ttl :¼ ĵj
ðlþ1Þ
T . . . ĵj

ðnÞ
T tn and ~TT ðlÞ :¼ ĵj

ðlþ1Þ
T . . . ĵj

ðnÞ
T T ðnÞ. Then ~ttl is a section of

F̂F
ðlÞ
T =T , and ~TT ðlÞ is its image. Note that, if T ðnÞ meets êe

ð j;nÞ
T ÊE

ð jÞ
T with 1a ja n,

then T ðnÞ is contained in êe
ð j;nÞ
T ÊE

ð jÞ
T , because êe

ð j;nÞ
T ÊE

ð jÞ
T ¼ e

ði;nÞ
T E

ðiÞ
T for i :¼ b 0�1j

and because ðt0; . . . ; tnÞ is strict. Furthermore, if so, then l > j, because tn is
proximate to ti, and so an > ai, or l > bi ¼ j; moreover, then ~TT ðlÞ is contained

in êe
ð j; lÞ
T ÊE

ð jÞ
T , because the latter is equal to ĵj

ðlþ1Þ
T . . . ĵj

ðnÞ
T êe

ð j;nÞ
T ÊE

ð jÞ
T since l > j.

Suppose ~TT ðlÞ meets êe
ðk; lÞ
T ÊE

ðkÞ
T . Then T ðnÞ meets ðĵjðlþ1Þ

T . . . ĵj
ðnÞ
T Þ�1

êe
ðk; lÞ
T ÊE

ðkÞ
T . So

T ðnÞ meets one of the latter’s components, which is a êe
ð j;nÞ
T ÊE

ð jÞ
T for some j. Hence

T ðlÞ H êe
ð j; lÞ
T ÊE

ð jÞ
T , as was noted above. Now, the map êe

ð j;nÞ
T ÊE

ð jÞ
T ! F̂F

ðlÞ
T factors

through ÊE
ðkÞ
T , and its image is êe

ð j; lÞ
T ÊE

ð jÞ
T , as was noted above. So êe

ð j; lÞ
T ÊE

ð jÞ
T is con-

tained in êe
ðk; lÞ
T ÊE

ðkÞ
T ; whence, the two coincide, since they are flat and coincide on

the fibers over T . Thus ~TT ðlÞ is contained in êe
ðk; lÞ
T ÊE

ðkÞ
T . Hence, since ð~tt0; . . . ; ~ttl�1Þ is

strict, so is ð~tt0; . . . ; ~ttlÞ. Furthermore, T ðnÞ is contained in êe
ðk;nÞ
T ÊE

ðkÞ
T . Thus if ~ttl is

proximate to ~ttk, then tn is proximate to ti for i :¼ b 0�1k. Moreover, the converse
follows from what was noted above.

Set Tl :¼ ~TT ðlÞ and Ti :¼ ~jj
ðlþ1Þ
T . . . ~jj

ðiÞ
T

~TT ðiÞ for l < i < n. Then ~TT ðlÞ meets no ~TTi,

because, otherwise, T ðnÞ would meet ðĵjðlþ1Þ
T . . . ĵj

ðnÞ
T Þ�1 ~TTiþ1, and so T ðnÞ would

meet some êe
ð j;nÞ
T ÊE

ð jÞ
T with l < j, contrary to the note above. So Lemma 4.1 im-

plies ð~tt0; . . . ; ~ttlÞ extends to a strict sequence ð~tt0; . . . ; ~ttnÞ such that ~ttl is a leaf and
~FF
ðlþ1Þ
T � ~FF

ðlÞ
T
F̂F

ðiÞ
T ¼ ~FF

ðiþ1Þ
T for l < ia n; furthermore, the diagram of ð~tt0; . . . ; ~ttnÞ

induces that of ðt̂t0; . . . ; t̂tn�1Þ.
Therefore, ti is proximate to tj if and only if ~ttai is proximate to ~ttaj for

0a ia n, because ti is proximate to tj if and only if tbi is proximate to tbj
for 0a i < n and because tn is proximate to tj if and only if ~ttl is proximate to ~ttk
for k :¼ b 0j.

Recall from above that F
ðnÞ
T ¼ F̂F

ðnÞ
T and ~FF

ðlþ1Þ
T � ~FF

ðlÞ
T
F̂F

ðnÞ
T ¼ ~FF

ðnþ1Þ
T . But this

product is equal to the blowup of F̂F
ðnÞ
T along T ðnÞ since ~TT ðlÞ meets no T̂Ti. And the

blowup of F
ðnÞ
T along T ðnÞ is F

ðnþ1Þ
T . Thus F

ðnþ1Þ
T ¼ ~FF

ðnþ1Þ
T .
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Recall e
ði;nÞ
T E

ðiÞ
T ¼ êe

ðb 0i;nÞ
T ÊE

ðb 0iÞ
T for 1a ia n. Hence, e

ði;nþ1Þ
T E

ðiÞ
T is equal to the

image of a natural embedding of êe
ðb 0i;nÞ
T ÊE

ðb 0iÞ
T in ~FF

ðnþ1Þ
T . In turn, this image is

equal to ~ee
ða 0i;nÞ
T

~EE
ða 0iÞ
T since ~TT ðlÞ meets no T̂Ti. Similarly, E

ðnþ1Þ
T ¼ ~ee

ðlþ1;nþ1Þ
T

~EE
ðlþ1Þ
T .

Thus e
ði;nþ1Þ
T E

ðiÞ
T ¼ ~ee

ða 0i;nþ1Þ
T

~EE
ða 0iÞ
T for 1a ia nþ 1. r

Proposition 4.3. Fix an unweighted Enriques diagram U. Then, given two
orderings y and y 0, there exists a natural isomorphism

Fy;y 0 : F ðU; yÞ�!@ FðU; y 0Þ:

Furthermore, Fy;y ¼ 1, and Fy 0;y 00 �Fy;y 0 ¼ Fy;y 00 for any third ordering y 00.

Proof. Say U has nþ 1 vertices. Set a :¼ y 0 � y�1. Then a is a permutation of
f0; . . . ; ng.

Each T-point of F ðU; yÞ corresponds to a strict sequence ðt0; . . . ; tnÞ owing
to Theorem 3.10. For each i, say ti corresponds to the vertex Vi of U. Then
yðViÞ ¼ i, and if ti is proximate to tj, then Vi is proximate to Vj. So y 0ðViÞ >
y 0ðVjÞ since y 0 is an ordering. Hence ai > aj.

Therefore, by Lemma 4.2, there is a unique strict sequence ð~tt0; . . . ; ~ttnÞ such
that ti is proximate to tj if and only if ~ttai is proximate to ~ttaj. Plainly ð~tt0; . . . ; ~ttnÞ
has ðU; y 0Þ as its diagram. Hence ð~tt0; . . . ; ~ttnÞ corresponds to a T -point of FðU; y 0Þ
owing to Theorem 3.10.

Due to uniqueness, sending ðt0; . . . ; tnÞ to ð~tt0; . . . ; ~ttnÞ gives a well-defined map
of functors. It is represented by a map Fy;y 0 : F ðU; yÞ ! FðU; y 0Þ. Again due to
uniqueness, Fy;y ¼ 1 and Fy 0;y 00 �Fy;y 0 ¼ Fy;y 00 for any y 00. So Fy 0;y �Fy;y 0 ¼ 1

and Fy;y 0 �Fy 0;y ¼ 1. Thus Fy;y 0 is an isomorphism, and the proposition is
proved. r

Corollary 4.4. Fix an ordered unweighted Enriques diagram ðU; yÞ. Then
there is a natural free right action of AutðUÞ on FðU; yÞ; namely, g a AutðUÞ acts
as Fy;y 0 where y 0 :¼ y � g.

Proof. Let V a U be a vertex that precedes another W . Then gðVÞ precedes
gðWÞ because g a AutðUÞ. Since y is an ordering, yðgðVÞÞa yðgðW ÞÞ. Hence
y 0ðVÞa y 0ðWÞ. Thus y 0 is an ordering.

So there is a natural isomorphism Fy;y 0 : F ðU; yÞ�!@ FðU; y 0Þ by Proposition
4.3. Now, g induces an isomorphism of ordered unweighted Enriques diagrams
from ðU; y 0Þ to ðU; yÞ; hence, F ðU; y 0Þ and F ðU; yÞ are the same subscheme of
F ðnÞ, and Fy;y 0 is an automorphism of F ðU; yÞ.

Note that, if g ¼ 1, then y 0 ¼ y; moreover, Fy;y ¼ 1.
Given d a AutðUÞ, set y 00 :¼ y 0 � d and y� :¼ y � d. Then g also induces an

isomorphism from ðU; y 00Þ to ðU; y�Þ, and so Fy 0;y 00 and Fy;y� coincide. Now,
Fy 0;y 00 �Fy;y 0 ¼ Fy;y 00 . Thus AutðUÞ acts on FðU; yÞ, but it acts on the right be-
cause y 00 is equal to y � ðgdÞ, not to y � ðdgÞ.
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Suppose g has a fixed T-point. Then the T -point is fixed under Fy;y 0 . Now, we
defined Fy;y 0 by applying Lemma 4.2 with a :¼ y 0 � y�1. And the lemma asserts
that a is determined by its action on the e

ði;nþ1Þ
T E

ðiÞ
T . But this action is trivial be-

cause the T-point is fixed. Hence a ¼ 1. But a ¼ y � g � y�1. Therefore, g ¼ 1.
Thus the action of AutðUÞ is free, and the corollary is proved. r

Corollary 4.5. Fix an ordered unweighted Enriques diagram ðU; yÞ, and let
GHAutðUÞ be a subgroup. Then the quotient FðU; yÞ=G is Y-smooth with irre-
ducible geometric fibers of dimension dimðUÞ.

Proof. The action of G on FðU; yÞ is free by Corollary 4.4. So G defines a finite
flat equivalence relation on FðU; yÞ. Therefore, the quotient exists, and the map
FðU; yÞ ! F ðU; yÞ=G is faithfully flat. Now, FðU; yÞ is Y -smooth with irreduc-
ible geometric fibers of dimension dimðUÞ by Theorem 3.10; so FðU; yÞ=G is
too. r

Definition 4.6. For 1a ia j, set E ði; iÞ :¼ E ðiÞ and

E ði; jÞ :¼ ðjðiþ1Þ . . . jð jÞÞ�1
E ðiÞ if i < j:

Given an ordered unweighted Enriques diagram ðU; yÞ on nþ 1 vertices, say
with proximity matrix ðpijÞ, let EðU; yÞHF ðnÞ be the set of scheme points t such

that, on the fiber F
ðnþ1Þ
t , for 1a ka n, the divisors

Pnþ1
i¼k pikE

ði;nþ1Þ
t are e¤ective.

Proposition 4.7. Let ðU; yÞ be an ordered unweighted Enriques diagram. Then
EðU; yÞ is closed and contains F ðU; yÞ set-theoretically.

Proof. Say U has nþ 1 vertices. Fix t a F ðnÞ and 1a ka n. If t a F ðU; yÞ,
then, as is easy to see by induction on j for ka ja n, the divisorP jþ1

i¼k pikE
ði; jþ1Þ
t is equal to the strict transform on F

ð jþ1Þ
t of E

ðkÞ
t , in other words,

to e
ðk; jþ1Þ
T E

ðkÞ
T where T :¼ Spec kðtÞ. Hence EðU; yÞ contains FðU; yÞ.

Set ~EE ðkÞ :¼
Pnþ1

i¼k pikE
ði;nþ1Þ. Then h0ðF ðnþ1Þ

t ;Oð ~EE ðkÞ
t ÞÞa 1 for any t, and

equality holds if and only if t a FðU; yÞ, as the following essentially standard
argument shows. Plainly, it su‰ces to show that, if ~EE

ðkÞ
t is linearly equivalent to

an e¤ective divisor D, then ~EE
ðkÞ
t ¼ D.

Let H be the preimage on F
ðnþ1Þ
t of an ample divisor on Ft. Then the intersec-

tion number ~EE
ðkÞ
t �H vanishes by the projection formula because each component

of ~EE
ðkÞ
t maps to a point in Ft. So D �H vanishes too. Hence each component of D

must also map to a point in Ft because D is e¤ective and H is ample. Hence D
is some linear combination of the E

ði;nþ1Þ
t because they form a basis of the group

of divisors whose components each map to a point. Furthermore, the combining
coe‰cients must be the pik because these coe‰cients are given by the intersection

numbers with the E
ði;nþ1Þ
t . Thus ~EE

ðkÞ
t ¼ D.

Thus EðU; yÞ is the set of t a F ðnÞ such that h0ðF ðnþ1Þ
t ;Oð ~EE ðkÞ

t ÞÞb 1 for all k.
Hence EðU; yÞ is closed by semi-continuity [8, Theorem (7.7.5), p. 67]. r
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Proposition 4.8. Let ðU; yÞ and ðU 0; y 0Þ be two ordered unweighted Enriques
diagrams on nþ 1 vertices, and let P and P 0 be their proximity matrices. Then the
following conditions are equivalent:

(1) The sets F ðU 0; y 0Þ and EðU; yÞ meet.
(2) The set EðU 0; y 0Þ is contained in the set EðU; yÞ.
(3) The matrix P 0�1P only has nonnegative entries.

Furthermore, EðU 0; y 0Þ ¼ EðU; yÞ if and only if ðU; yÞG ðU 0; y 0Þ.

Proof. Fix t a F ðnÞ, and define two sequences of divisors on F
ðnþ1Þ
t by these

matrix equations:

ð ~EE ð1Þ
t ; . . . ; ~EE

ðnþ1Þ
t Þ ¼ ðE ð1;nþ1Þ

t ; . . . ;E
ðnþ1;nþ1Þ
t ÞP;

ð ~EE ð1Þ0
t ; . . . ; ~EE

ðnþ1Þ0
t Þ ¼ ðE ð1;nþ1Þ

t ; . . . ;E
ðnþ1;nþ1Þ
t ÞP 0:

These two equations imply the following one:

ð ~EE ð1Þ
t ; . . . ; ~EE

ðnþ1Þ
t Þ ¼ ð ~EE ð1Þ0

t ; . . . ; ~EE
ðnþ1Þ0
t ÞP 0�1P;ð4:8:1Þ

in other words, ~EE
ð jÞ
t ¼

Pnþ1
k¼1 qkj

~EE
ðkÞ0
t where say ðqkjÞ :¼ P 0�1P.

Suppose t a F ðU 0; y 0Þ. Then ~EE
ðkÞ0
t is the proper transform on F

ðnþ1Þ
t of E

ðkÞ
t , as

we noted at the beginning of the proof of Proposition 4.7. So the ~EE
ðkÞ0
t form a

basis of the group of divisors whose components each map to a point in Ft.
Hence, by (4.8.1), if ~EE

ð jÞ
t is e¤ective, then qkj b 0 for all k. Thus (1) implies (3).

Suppose t a EðU 0; y 0Þ. Then ~EE
ðkÞ0
t is e¤ective. Suppose too qkj b 0 for all k, j.

Then ~EE
ð jÞ
t is e¤ective for all j by (4.8.1). So t a EðU; yÞ. Thus (3) implies (2).

By Proposition 4.7, EðU; yÞ contains FðU; yÞ. By Theorem 3.10, F ðU; yÞ is
nonempty. Thus (2) implies (1). So (1), (2), and (3) are equivalent.

Furthermore, suppose EðU 0; y 0Þ ¼ EðU; yÞ. Then both P 0�1P and P�1P 0

have nonnegative entries since (2) implies (3). But each matrix is the inverse of
the other, and both are lower triangular. Hence both are the identity. So
P 0 ¼ P; whence, ðU; yÞG ðU 0; y 0Þ. The converse is obvious. Thus the proposition
is proved. r

5. The Hilbert scheme

Fix a smooth family of geometrically irreducible surfaces p : F ! Y . In this sec-
tion, we prove our main result, Theorem 5.7. It asserts that, given an Enriques
diagram D and an ordering y, there exists a natural map C from the quotient
F ðD; yÞ=AutðDÞ into the Hilbert scheme Hilbd

F=Y with d :¼ degD and with
F ðD; yÞ :¼ F ðU; yÞ where U is the unweighted diagram underlying D.

The quotient F ðD; yÞ=AutðDÞ parameterizes the strict sequences of arbitrarily
near points of F=Y with diagram ðU; yÞ, up to automorphism of D. The image of
C parameterizes the (geometrically) complete ideals of F=Y with diagram D. The
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map C is universally injective. In fact, C is an embedding in characteristic 0.
However, in positive characteristic, C can be purely inseparable; Appendix B
discusses examples found by Tyomkin.

We close this section with Proposition 5.9, which addresses the important
special case where every vertex of D is a root; here, C is an embedding in any
characteristic. Further, other examples in Appendix B show that C can remain
an embedding even after a nonroot is added.

5.1 (Geometrically complete ideals). Let K be a field, ðt0; . . . ; tnÞ a sequence of
arbitrarily near K-points of F=Y . Since SpecðKÞ consists of a single reduced
point, the sequence is strict. Let ðU; yÞ be its diagram in the sense of Definition
3.9.

Suppose U underlies an Enriques diagram D, say with weights mV for V a U.

Using the divisors E
ði;nþ1Þ
K on F

ðnþ1Þ
K of Definition 4.6, set

EK :¼
X
V

mVE
ðyðVÞþ1;nþ1Þ
K and LK :¼ O

F
ðnþ1Þ
K

ð�EKÞ:

Given V a U, set j :¼ yðVÞ and DV :¼ e
ð jþ1;nþ1Þ
K E

ð jþ1Þ
K . Inspired by Lipman’s

remark [21, p. 306], let’s compute the intersection number �ðEK �DV Þ, that

is, degðLK jDV Þ. Plainly, ðE ð jþ1;nþ1Þ
K �DV Þ ¼ �1. And, for W AV , plainly

ðE ðyðWÞþ1;nþ1Þ
K �DV Þ is equal to 1 if W � V , and to 0 if not. Hence �ðEK �DV Þ is

equal to mV �
P

W�V mW , which is at least 0 by the Proximity Inequality.

Set jK :¼ j
ð1Þ
K . . . j

ðnþ1Þ
K , and form I :¼ jK�LK on FK . Then I is a complete

ideal, one that is integrally closed; also, IO
F

ðnþ1Þ
K

¼ LK and RqjK�LK ¼ 0 for

qb 1. These three statements hold since ðEK �DV Þa 0 for all V and, as is well
known, RqjK�OF

ðnþ1Þ
K

¼ 0 for qb 1; see Lipman’s discussion [20, §18, p. 238] and

his Part (ii) of [20, Theorem (12.1), p. 220]; also see Deligne’s Théorème 2.13
[3, p. 22]. Furthermore,

dimK H0ðOFK
=IÞ ¼ d where d :¼ degD:

This formula is a modern version of Enriques’ formula [4, Vol. II, p. 426]; it
was proved in di¤erent ways independently by Hoskin [13, 5.2, p. 85], Deligne
[3, 2.13, p. 22], and Casas [1, 6.1, p. 438]; Hoskin and Deligne worked in greater
generality, Casas worked over C.

The mV are determined by I because the divisors E
ði;nþ1Þ
K are numerically

independent; their intersection numbers with divisors are defined because they
are complete. The mV may be found as follows. Let P be the ideal of the image
T ð0Þ of t0, which is a K-point of FK . Let m be the largest integer such that
Pm II. Then m ¼ mV where V :¼ y�1ð0Þ, since PO

F
ðnþ1Þ
K

¼ O
F

ðnþ1Þ
K

ð�E
ð1;nþ1Þ
K Þ.

Note in passing that P is a minimal prime of I since mV b 1.
The remaining mW can be found by recursion. Indeed, on F

ð1Þ
K , form the ideal

I 0 :¼ IOðmVE
ð1ÞÞ. Then I 0 is the direct image from F

ðnþ1Þ
K of Oð�E 0

KÞ where
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E 0
K :¼

P
WAV mWE

ðyðW Þþ1;nþ1Þ
K . Hence I 0 is the complete ideal associated to the

sequence ðt1; . . . ; tnÞ of arbitrarily near K-points of F ð1Þ=Y and to the ordered
Enriques diagram ðD 0; y 0Þ where D 0 :¼ D� V and y 0ðW Þ :¼ yðW Þ � 1.

The ideal I determines the diagram D. Indeed, for 0a ia n, let Ai, mi be the

local ring of the surface F
ðiÞ
K at the K-point that is the image of ti. Then according

to Lipman’s preliminary discussion in [21, p. 294–295], the set fAig consists
precisely of 2-dimensional regular local K-domains whose fraction field is that
of FK and whose maximal ideal contains the stalk of I at some point of FK .
Furthermore, ti is proximate to tj if and only if Ai is contained in the ring of
the valuation vj defined by the formula: vjð f Þ :¼ maxfm j f a mm

j g. Finally, if
W :¼ y�1ð jÞ, then the weight mW is the largest integer m such that mm

j contains
the appropriate stalk of I.

Let J be an arbitrary ideal on FK of finite colength. Let L=K be an arbitrary
field extension. If the extended ideal JL on FL is complete, then J is complete,
and the converse holds if L=K is separable; see Nobile and Villamayor’s proof
of [25, Proposition (3.2), p. 251]. Let us say that J is geometrically complete if
JL on FL is complete for every L, or equivalently, for some algebraically closed
L. In characteristic 0, if J is complete, then it is geometrically complete.

The extended ideal IL on FL is, plainly, the complete ideal associated to the
extension of the sequence ðt0; . . . ; tnÞ and to the same ordered Enriques diagram
ðD; yÞ. Hence I is geometrically complete.

Suppose that K is algebraically closed. Suppose that J is complete and that
dimK H0ðOFK

=JÞ is finite and nonzero. Then J arises from some sequence
ðs0; . . . ; snÞ and some ordered Enriques diagram. Indeed, choose a minimal prime
P of J. Then K �!@ OFK

=P since K is algebraically closed. Hence P defines a
K-point S ð0Þ of FK , so a section s0 of FK=K . Set m0 :¼ maxfm jPm IJg.

Let F 0
K be the blowup of FK at S ð0Þ, and E 0

K the exceptional divisor. Set
J 0 :¼ JOF 0

K
ðm0E

0
KÞ. Then J 0 is complete by Zariski and Samuel’s [33, Proposi-

tion 5, p. 381]. If J 0 ¼ OF 0
K
, then stop. If not, then repeat the process again and

again, obtaining a sequence ðs0; s1; . . .Þ. Only finitely many repetitions are neces-
sary because, as Lipman [21, p. 295] points out, the local ring of F

ðiÞ
K at S ðiÞ is

dominated by a Rees valuation of J, that is, the valuation associated to an ex-
ceptional divisor of the normalized blowup of J. Then J 0 arises from the se-
quence of si weighted by the my�1ðiÞ owing to Lipman’s [20, Proposition (6.2),
p. 208] and discussion before it.

Lemma 5.2. Let A be a discrete valuation ring, set T :¼ SpecA, and denote by
h a T the generic point and by y a T the closed point. Fix a map T ! Y. Let D
be an Enriques diagram, say with nþ 1 vertices, and I a coherent ideal on FT

that generates geometrically complete ideals on Fh and Fy, each with diagram D.

Let y be an ordering of D, and ~tt a kðhÞ-point of FðD; yÞ such that Ih generates

an invertible sheaf on F
ðnþ1Þ
h . Then ~tt extends to a T-point t of FðD; yÞ.

Proof. Let y 0 be a second ordering. By the construction of the isomorphism
Fy;y 0 in the proof of Proposition 4.3, a T -point of FðD; yÞ corresponds to the
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T-point of F ðD; y 0Þ given by Lemma 4.2 with a :¼ y 0 � y�1. Moreover, the lemma

says that F
ðnþ1Þ
T is unchanged. It follows that, to construct t, we may replace y by

y 0. Thus we may assume that EðD; yÞ is a minimal element among the various
closed subsets EðD; y 0Þ of F ðnÞ.

Let R a D be a root, and temporarily set i :¼ yðRÞ. Say ~tt corresponds to the

sequence of blowups F
ð jþ1Þ
h ! F

ð jÞ
h with centers hj. The image of hi in FT is a

kðhÞ-point; denote its closure by TR. Since A is a discrete valuation ring, the
structure map is an isomorphism TR �!@ T .

Let ZHFT be the subscheme with ideal I. Its fibers Zh and Zy are finite, and
both have degree degðDÞ since the two ideals are geometrically complete with
diagram D by hypothesis. Since T is reduced, Z is T-flat.

As R varies, the points ðTRÞh are exactly the components of Zh again because
its ideal Ih is geometrically complete with diagram D. Hence the several TR are
just the components of Z that meet Zh. But every component of Z meets Zh since
Z is T-flat. Thus the TR are the the components of Z.

Since TR �!@ T for each R, the fiber ðTRÞy is a single point, so a component of
the discrete set Zy. The number of TR is the number of roots of D, which is also
the number of points of Zy. Hence the several TR are disjoint.

Given R, let mR be its weight, PR the ideal of TR in FT . Then ðPmR

R Þh IIh.

Let’s see that PmR

R II. Indeed, form the image, M say, of I in OFT
=PmR

R . Then
Mh ¼ 0. Let u a A be a uniformizing parameter. Then M is annihilated by a
power of u. Now, PR is quasi-regular by [10, (17.12.3), p. 83] since TR �!@ T and
FT is T-smooth. Hence P j

R=P
jþ1
R is T-flat for all j by [10, (16.9.4), p. 47]. Hence

OFT
=PmR

R is T-flat. So u is a nonzerodivisor on OFT
=PmR

R . Hence M ¼ 0. Thus
PmR

R II.
Let nR be the largest integer such that ðPnR

R Þy IIy. Then nR bmR. Now, Iy

is geometrically complete with diagram D. Hence nR is the weight of the root cor-
responding to ðPRÞy. Hence

P
R nR ¼

P
R mR. But nR bmR. Therefore, nR ¼ mR

for every root R.
Let D 0 be the diagram obtained from D by omitting the roots. Let y 0 be the

ordering of D 0 induced by y; namely, y 0ðVÞ :¼ yðVÞ � rV where rV denotes the
number of roots R of D such that yðRÞ < yðVÞ. Let F 0

T be obtained from FT by
blowing up

S
TR, and for each R, let E 0

R be the preimage of TR. Set

I 0 :¼ IOF 0
T

�X
R

mRE
0
R

	
:

Finally, let n 0 be the number of vertices of D 0.
Then I 0 generates geometrically complete ideals on F 0

h and F 0
y, each with dia-

gram D 0 owing to the theory of geometrically complete ideals over a field; see
Subsection 5.1. (To ensure that the ideals on F 0

h and F 0
y have the same diagram,

it is necessary to omit all the roots of D. Indeed, D might have two roots with the
same multiplicity, but the diagram obtained by omitting one root might di¤er
from that obtained by eliminating the other. Conceivably, the two roots get inter-
changed under the specialization.)
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Plainly, ~tt induces a kðhÞ-point ~tt 0 of FðD 0; y 0Þ such that I 0
h generates an inver-

tible sheaf on the corresponding F
0ðn 0þ1Þ
h , which is equal to F

ðnþ1Þ
h . Hence, by

induction on n, we may assume that ~tt 0 extends to a T-point t 0 of F ðD 0; y 0Þ such
that, on the corresponding scheme F

0ðn 0þ1Þ
T , the ideal I 0 generates an invertible

ideal. It remains to show that t 0 and the several isomorphisms TR �!@ T yield an
extension t of ~tt.

Proceed by induction on i where 0a ia n. Suppose we have constructed a
sequence ðt0; . . . ; ti�1Þ extending the sequence ð~tt0; . . . ; ~tti�1Þ coming from ~tt; sup-
pose also that, if we blow up F

ðiÞ
T along the preimage of

S
kbi Tk, then we get

F
0ði 0Þ
T where, for 0a ja n, we let j 0 denote j diminished by the number of roots

R of D such that yðRÞ < j. Note that the base case i :¼ 0 obtains: the sequence
ðt0; . . . ; ti�1Þ is empty; furthermore, F

ðiÞ
T ¼ FT and F

0ði 0Þ
T ¼ F 0

T , which is the
blowup of FT along

S
kbi Tk.

Note that F
ðiÞ
T ! FT is an isomorphism o¤

S
k<i Tk. Indeed, given j < i, let

R 0 a D be the root preceding y�1ð jÞ, and set k :¼ yðR 0Þ. Since y is an ordering,
ka j. Since ðt0; . . . ; ti�1Þ extends ð~tt0; . . . ; ~tti�1Þ, the image of T

ð jÞ
h in FT is just

ðTkÞh. So T ð jÞ maps into Tk, and k < i.

Set V :¼ y�1ðiÞ a D. First suppose V is a root of D. Then ði þ 1Þ0 ¼ i 0. Also,
Ti is defined, and the isomorphism Ti �!@ T provides a section ti of F

ðiÞ
T owing to

the preceding note. By the same token, the blowup of F
ðiþ1Þ
T along the preimage

of
S

kbiþ1 Tk is equal to the blowup of F
ðiÞ
T along the preimage of

S
kbi Tk. But

the latter blowup is equal to F
0ði 0Þ
T . It follows that ti does the trick.

Next suppose V is not a root, so V a D 0. Also
S

kbi Tk ¼
S

kbiþ1 Tk. Now, by
the induction assumption, F

0ði 0Þ
T is equal to F

ðiÞ
T o¤ the preimage of

S
kbi Tk. Take

ti :¼ t 0i where ðt 00; . . . ; t 0i Þ comes from t 0. It is not hard to see that ti does the
trick.

It is not immediately obvious that ðt0; . . . ; tnÞ is strict, even though ðt 00; . . . ; t 0n 0 Þ
is strict. However, t is a T-point of F ðnÞðTÞ and th is a kðhÞ-point of FðD; yÞ;
furthermore, ty is a kðyÞ-point of F ðD; fÞ for some ordering f of D. Since T is
irreducible, ty is a point of the closure of F ðD; yÞ in F ðnÞ, so is a point of
EðD; yÞ. Hence EðD; yÞ contains EðD; fÞ by Proposition 4.8. But, by the initial
reduction, EðU; yÞ is minimal, so equal to EðD; fÞ. Hence ðD; yÞG ðD; fÞ again
by Proposition 4.8. So ty is a point of F ðD; yÞ. Since T is reduced, t is therefore
a T-point of F ðD; yÞ, as desired. r

Definition 5.3. Given an Enriques diagram D, say with d :¼ degD, let
HðDÞHHilbd

F=Y denote the subset parameterizing the geometrically complete
ideals with diagram D on the geometric fibers of F=Y ; see Subsection 5.1.

Proposition 5.4. Let D be an Enriques diagram, set d :¼ degD, and choose
an ordering y. Then there exists a natural map 1y : F ðD; yÞ ! Hilbd

F=Y , whose

formation commutes with base extension of Y. Its image is HðDÞ, and it factors

into a finite map F ðD; yÞ ! U and an open embedding U ,! Hilbd
F=Y . Moreover,

1y ¼ 1y 0 �Fy;y 0 for any second ordering y 0.
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Proof. Say D has nþ 1 vertices V with weights mV . On F ðnþ1Þ, set

E :¼
X
V

mVE
ðyðVÞþ1;nþ1Þ and L :¼ Oð�EÞ:

Consider the standard short exact sequence:

0 ! L ! OF ðnþ1Þ ! OE ! 0:

It remains exact on the fibers of pðnþ1Þ : F ðnþ1Þ ! F ðnÞ. And pðnþ1Þ is flat by
Lemma 3.2. Hence L and OE are flat over F ðnÞ owing to the local criterion.

Fix a T-point of FðD; yÞHF ðnÞ. It corresponds to a strict sequence of

arbitrarily near T-points of F=Y by Theorem 3.10. Set j :¼ j
ð1Þ
T . . . j

ðnþ1Þ
T . Let

t a T . Then Rijt�ðLtÞ ¼ 0 and Rijt�ðOF
ðnþ1Þ
t

Þ ¼ 0 for ib 1 by [3, Theorem 2.13,

p. 22]. Therefore, by Lemma A.2, the induced sequence on FT ,

0 ! j�LT ! j�OF
ðnþ1Þ
T

! j�OET
! 0;ð5:4:1Þ

is an exact sequence of T-flat sheaves, and forming it commutes with extending
T .

The middle term in (5.4.1) is equal to OFT
: the comorphism OFT

! j�OF
ðnþ1Þ
T

is an isomorphism, since forming it commutes with passing to the fibers of
FT=T , and on the fibers, it is an isomorphism as it is the comorphism of a bira-
tional map between smooth varieties. The third term in (5.4.1) is a locally free
OT -module of rank d because its fibers are vector spaces of dimension d owing
again to [3, Theorem 2.13, p. 22]. Therefore, (5.4.1) defines a T-point of Hilbd

F=Y .
The construction of this T-point is, plainly, functorial in T , and commutes

with base extension of Y . Hence it yields a map 1y : F ðD; yÞ ! Hilbd
F=Y , whose

formation commutes with extension of Y .
To see that HðDÞ is the image of 1y, just observe that, in view of Subsection

5.1, if T is the spectrum of an algebraically closed field, then j�LT is a geometri-
cally complete ideal on FT with diagram D, and every such ideal on FT is of this
form for some choice of T-point of F ðD; yÞ.

Let y 0 be a second ordering. Then by the construction of Fy;y 0 in the proof
of Proposition 4.3, our T-point of F ðD; yÞ is carried to that of F ðD; y 0Þ given

by Lemma 4.2 with a :¼ y 0 � y�1. Moreover, the lemma says that F
ðnþ1Þ
T is un-

changed and implies that E ðyðVÞþ1;nþ1Þ ¼ E ðy 0ðVÞþ1;nþ1Þ for all V . Therefore, we
have 1y ¼ 1y 0 �Fy;y 0 .

By Zariski’s Main Theorem in the form of [9, Theorem (8.12.6), p. 45], there
exists a factorization

1y : F ðD; yÞ !W H !Y Hilbd
F=Y ;

where W is an open embedding and Y is a finite map. Let W be the image
of W, so YðW Þ ¼ HðDÞ. Replace H by the closure of W , and let us prove that
W ¼ Y�1HðDÞ.
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Let v a Y�1HðDÞ. Then v is the specialization of a point w a W since H is the
closure of W . And w is the image of a point w a FðD; yÞ. Hence, by [7, Theorem
(7.1.9), p. 141], there is a map t : T ! H where T is the spectrum of a discrete
valuation ring, such that the closed point y a T maps to v and the generic point
h a T maps to w; also there is a kðhÞ-point ~tt of FðD; yÞ supported at w.

The map Y � t corresponds to a coherent ideal I on FT . Now, both YðwÞ
and YðvÞ lie in HðDÞ; so I generates geometrically complete ideals on Fh and
Fy, each with diagram D. And 1yð~ttÞ corresponds to Ih on Fh; so Ih generates
an invertible sheaf on F

ðnþ1Þ
h . Hence, by Lemma 5.2, the kðhÞ-point ~tt extends to

T-point t of FðD; yÞ.
Then 1yðtÞ : T ! W carries h to w. But H=Y is separated. Hence 1yðtÞ ¼ t

by the valuative criterion [7, Proposition (7.2.3), p. 142]. But tðyÞ ¼ v. Hence
v a W . Thus W IY�1HðDÞ. But YðWÞ ¼ HðDÞ. Therefore, W ¼ Y�1HðDÞ.

But W is open in H, and Y is finite. So YðHÞ and YðH �WÞ are closed
in Hilbd

F=Y . Hence HðDÞ is open in YðHÞ. So there is an open subscheme U of
Hilbd

F=Y such that U BYðHÞ ¼ HðDÞ. Furthermore, W ! U is finite, as it is
the restriction of Y. So F ðD; yÞ ! U is finite. The proof is now complete. r

Corollary 5.5. Let D be an Enriques diagram, and set d :¼ degD. Then HðDÞ
is a locally closed subset of Hilbd

F=Y .

Proof. By Proposition 5.4, HðDÞ is the image of a finite map into an open sub-

scheme U of Hilbd
F=Y . So HðDÞ is closed in U , so locally closed in Hilbd

F=Y . r

Remark 5.6. Lossen [23, Proposition 2.19, p. 35] proved a complex analytic
version of Corollary 5.5. Independently, Nobile and Villamayor [25, Theorem
2.6, p. 250] proved the corollary assuming Hilbd

F=Y is reduced and excellent; in

fact, they worked with an arbitrary flat family of ideals on a reduced excellent
scheme, but of course, any flat family is induced by a map to the Hilbert scheme.
All three approaches are rather di¤erent.

Theorem 5.7. Let D be an Enriques diagram, and set d :¼ degD. Choose an
ordering y, and form the map 1y of Proposition 5.4. Then 1y induces a map

C : F ðD; yÞ=AutðDÞ ! Hilbd
F=Y :

It is universally injective; in fact, it is an embedding in characteristic 0. Further-
more, C is independent of the choice of y, up to a canonical isomorphism.

Proof. By Corollary 4.4, AutðDÞ acts freely. Hence, the quotient map

P : F ðD; yÞ ! FðD; yÞ=AutðDÞ

is faithfully flat. By Proposition 5.4, the action of AutðDÞ is compatible with 1y,
and is compatible with a second choice of ordering y 0, up to the isomorphism
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Fy;y 0 . Hence, by descent theory, 1y induces the desired map C. Plainly, its forma-
tion commutes with base change.

Plainly, a map is universally injective if it is injective on geometric points. Fur-
thermore, since P is surjective, Proposition 5.4 also implies that C too factors
into a finite map followed by an open embedding. Now, a finite map is a closed
embedding if its comorphism is surjective. Hence, to prove that C is an embed-
ding, it su‰ces to prove that its fibers over Y are embeddings. Now, forming C
commutes with extending Y . Therefore, we may assume Y is the spectrum of an
algebraically closed field K .

To prove C is universally injective, plainly we need only prove C is injective
on K-points. Since P is surjective, every K-point of F ðD; yÞ=AutðDÞ is the image
of a K-point of FðD; yÞ. Hence we need only observe that, if two K-points t 0 and
t 00 of FðD; yÞ have the same image in Hilbd

F=Y ðKÞ under 1y, then the two di¤er by
an automorphism g of D. But that image corresponds to a geometrically complete
ideal I on FK with diagram D. In turn, as explained in Subsection 5.1, I deter-
mines a set A of 2-dimensional regular local K-domains whose fraction field is
that of FK , and A has a proximity structure, under which it is isomorphic to D.
Say t 0 a FðA; y 0Þ and t 00 a FðA; y 00Þ. Then y 0�1 � y 00 induces the desired automor-
phism g a AutðDÞ.

By Corollary 4.5, F ðD; yÞ=AutðDÞ is smooth and irreducible. By Corollary
5.5, HðDÞ is a locally closed subset of Hilbd

F=Y , so carries an induced reduced
structure. And C induces a bijective finite map b : F ðD; yÞ=AutðDÞ ! HðDÞ.

Suppose K is of characteristic 0. Then b is birational. If, perchance, D is min-
imal in the sense of [16, Section 2, p. 213], then HðDÞ is smooth by the direct,
alternative proof of [16, Proposition (3.6), p. 225]; hence, b is an isomorphism.
In any case, it follows from Proposition 3.3.14 on p. 70 of [11] that b is unrami-
fied; hence, b is an isomorphism. The proof is now complete. r

Corollary 5.8. Fix an Enriques diagram D, and set d :¼ degD. Assume the
characteristic is 0. Then HðDÞHHilbd

F=Y supports a natural structure of Y-smooth

subscheme with irreducible geometric fibers of dimension dimðDÞ.

Proof. By Theorem 5.7, 1y induces an embedding of F ðD; yÞ=AutðDÞ into
Hilbd

F=Y . By Proposition 5.4, the image is HðDÞ. And by Corollary 4.5, the source
is Y -smooth, and has irreducible geometric fibers of dimension dimðDÞ. r

Proposition 5.9. Given positive integers r1; . . . ; rk, let GðriÞHHilbri
F=Y be the

open subscheme over which the universal family is smooth, and let

Gðr1; . . . ; rkÞHGðr1Þ �Y � � � �Y GðrkÞ

be the open subscheme over which, for iA j, the fibers of the universal families over
GðriÞ and GðrjÞ have empty intersection. Set r :¼

P
ri.

Given distinct integers m1; . . . ;mk b 2, let D be the weighted Enriques diagram
with r vertices, each a root, and an ordering y such that the first r1 vertices are roots
of weight m1, the next r2 are of weight m2, and so on. Set d :¼

P
miþ1
2

� �
ri.

439enriques diagrams, arbitrarily near points, and hilbert schemes



Then F ðD; yÞ is equal to the complement in the relative direct product F�Y r of
the r

2

� �
large diagonals, and FðD; yÞ=AutðDÞ is equal to Gðr1; . . . ; rkÞ. Further, 1y

always induces an embedding

C : Gðr1; . . . ; rkÞ ,! Hilbd
F=Y ;

on T-points, C acts by taking a k-tuple ðW1; . . . ;WkÞ where Wi is a smooth length-
ri subscheme of FT , say with ideal Ii, to the length-d subscheme W with idealQ

Imi

i .

Proof. Let ðt0; . . . ; tr�1Þ be a strict sequence of arbitrarily near T-points of F=Y
with diagram ðD; yÞ. Plainly, the ti are just sections of FT , and their images are
disjoint. So F ðD; yÞ is equal to the asserted complement.

Plainly, AutðDÞ is the product of k groups, the ith being the full symmetric
group on the ri roots in the ith set. So the quotient FðD; yÞ=AutðDÞ is equal to
the open subscheme of Hilbr1

F=Y �Y � � � �Y Hilbrk
F=Y whose geometric points pa-

rameterize the k-tuples whose ith component is an unordered set of ri geometric
points of F such that all r points are distinct; in other words, the quotient is equal
to the asserted open subscheme.

Since each vertex is a root of some weight mi, plainly C acts on T -points in
the asserted way, owing to the following standard general result, which is easily
proved by descending induction: let A be a locally Noetherian scheme, I a regu-
lar ideal, b : B ! A the blow-up of I, and E the exceptional divisor; let mb 0
and set L :¼ OBð�mEÞ; then Rqb�L ¼ 0 for qb 1 and b�L ¼ Im.

Finally, to prove that C is always an embedding, we may assume that Y is the
spectrum of an algebraically closed field K , owing to the proof of Theorem 5.7.
By the same token, C is universally injective, and factors into a finite map fol-
lowed by an open embedding. Hence, we need only show that C is unramified.

Let v be a K-point of Hilbr
F=Y ; let V HF be the corresponding subscheme,

and I its ideal. Recall the definition of the isomorphism from the tangent space
at v to the normal space HomðI;OV Þ; the definition runs as follows. Let K ½e�
be the ring of dual numbers, and set T :¼ SpecðK ½e�Þ. An element of the tangent
space corresponds to a T-point of Hilbr

F=Y supported at v; so it represents a T-flat
subscheme Ve HFT that deforms V . The natural splitting K ½e� ¼ KaKe induces
a splitting OVe

¼ OV aOV e. Similarly, the ideal Ie of Ve splits: Ie ¼ IaIe.
Then the natural map OFT

! OVe
restricts to a map I ! OV e, which is equal to

the desired map z : I ! OV .
Assume v a Gðr1; . . . ; rkÞ. Then V is the union of k sets of reduced K-points of

F . The ith set has ri points; let Ii be the ideal of its union. Further, C carries V
and Ve to the subschemes W and We defined by Im1

1 . . .Imk

k and Im1

1; e . . .I
mk

k; e . So
C is unramified at v if the induced map on tangent spaces is injective:

c : TGðr1;...; rkÞ; v ,! HomðIm1

1 . . .Imk

k ;OW Þ:

Say v ¼ ðv1; . . . ; vkÞ with vi a GðriÞ, and say vi represents Vi HF . Then

TGðr1;...; rkÞ; v ¼ 0THilb
ri
F=Y

; vi
¼ 0HomðIi;OVi

Þ:
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Given any z a TGðr1;...; rkÞ; v, its image cðzÞ is equal to the restriction of the canon-
ical map OFT

! OWe
. So c splits into a direct sum of local components

cx : HomðIi;x;OV ;xÞ ! HomðImi

i;x ;OW ;xÞ for x a Vi and i ¼ 1; . . . ; k:

It remains to prove that each cx is injective. Fix an x.
Set I :¼ Ii and m :¼ mi. Fix generators m; n a Ix. Set a :¼ zxm and b :¼ zxn

in OVi ;x ¼ K . Then Ie;x is generated by m� ae and n� be; so Im
e;x is generated

by

mm �mmm�1ae; mm�1n� ðm� 1Þmm�2nae� mm�1be; . . . ;

mnm�1 � anm�1e� ðm� 1Þbmnm�2e; nm �mnm�1be:

Hence, modulo Im
e;x, the generators mm�1n and mnm�1 of Im

x are congruent
to ðm� 1Þmm�2naeþ mm�1be and anm�1eþ ðm� 1Þbmnm�2e. (They’re equal if
m ¼ 2.)

Form the latter’s classes in OW ;x. Then, therefore, these classes are the images
of those generators under the map cxzx. Hence, in any characteristic, we can re-
cover a and b from the images of mm�1n and mnm�1. But a and b determine zx.
Thus cx is injective, and the proof is complete. r

Appendix A. Generalized property of exchange

This appendix proves two lemmas of general interest, which we need. The first
lemma generalizes the property of exchange to a triple ðT ; f ;FÞ where T is a
(locally Noetherian) scheme, f : P ! Q is a proper map of T-schemes of finite
type, and F is a T-flat coherent sheaf on P. The original treatment was made
by Grothendieck and Dieudonné in [8, Section 7.7, pp. 65–72], and somewhat
surprisingly, deals only with the case of Q ¼ T . (Although they replace F by a
complex of flat and coherent sheaves bounded below, this extension is minor and
we do not need it.)

The first lemma is proved by generalizing the treatment in Section II, 5 of
[24, pp. 46–55]. Alternatively, as Illusie pointed out in a private conversation,
the lemma can be proved using the methods that he developed in [14].

The first lemma is used to prove the second. The second is used in the proof of
Proposition 5.4, which constructs the map from the scheme of T-points with
given Enriques diagram to the Hilbert scheme.

Lemma A.1 (Generalized property of exchange). Let T be a scheme, f : P ! Q
a proper map of T-schemes of finite type, and F a T-flat coherent sheaf on P. Let
q a Q be a point, t a T its image, and ib 0 an integer. Assume that, on the fiber
Qt, the base-change map of sheaves

r i
t : ðRif�FÞt ! Rift�Ft
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is surjective at q. Then there exists a neighborhood U of q in Q such that, for any
T-scheme T 0, the base-change map of sheaves

r i
T 0 : ðRif�FÞT 0 ! RifT 0�FT 0

is bijective on the open subset UT 0 of QT 0 . Furthermore, the map r i�1
t is also surjec-

tive at q if and only if sheaf Rif�F is T-flat at q.

Proof. The question is local on Q; so we may assume that T ¼ SpecA and
Q ¼ SpecB where A is a Noetherian ring and B is a finitely generated A-algebra.
Also, we may assume that B is A-flat by expressing B as a quotient of a polyno-
mial ring over A and then replacing B with that ring. For convenience, when
given a B-module or a map of B-modules, let us say that it has a certain property
at q to mean that it acquires this property on localizing at the prime correspond-
ing to q.

There is a finite complex K � of A-flat finitely generated B-modules, and on the
category of A-algebras C, there is, for every jb 0, an isomorphism of functors

H jðK � nA CÞ�!@ H jðPnA C;FnA CÞ:

Indeed, this statement results, mutatis mutandis, from the proof of the theorem
on page 46 of [24].

Let k be the residue field of t. Then there is a natural map of exact sequences

K i�1 n k ���! Z iðK �Þn k ���! H iðK �Þn k ���! 0???y1

???yz i
k

???yhi
k

K i�1 n k ���! Z iðK � n kÞ ���! H iðK � n kÞ ���! 0:

ðA:1:1Þ

Since r i
k is surjective at q, so is hi

k. Hence zik is surjective at q.
Consider the following map of exact sequences:

Z iðK �Þn k ���! K i n k ���! B iþ1ðK �Þn k ���! 0???yz i
k

???y1

???ybiþ1
k

Z iðK � n kÞ ���! K i n k ���! B iþ1ðK � n kÞ ���! 0:

Now, zik is surjective at q. Hence biþ1
k is bijective at q.

Hence B iþ1ðK �Þn k ! K iþ1 n k is injective at q. Set L :¼ K iþ1=B iþ1ðK �Þ.
Since K iþ1 is A-flat, the local criterion of flatness implies that L is A-flat at q.
Hence, by the openness of flatness, there is a g a B outside the prime correspond-
ing to q such that the localization Lg is A-flat. We can replace B by Bg, and so
assume L is A-flat.

Let C be any A-algebra. Then the following sequence is exact:

0 ! Z iðK �ÞnC ! K i nC ! K iþ1 nC ! LnC ! 0:ðA:1:2Þ
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It follows that, in the map of exact sequences

K i�1 nC ���! Z iðK �ÞnC ���! H iðK �ÞnC ���! 0???y1

???yz i
C

???yhi
C

K i�1 nC ���! Z iðK � nCÞ ���! H iðK � nCÞ ���! 0;

ziC is bijective. Hence hi
C is bijective. Thus the first assertion holds: r i

C is bijective.
If H iðK �Þ is A-flat at q, then plainly the sequence

0 ! B iðK �Þn k ! Z iðK �Þn k ! H iðK �Þn k ! 0ðA:1:3Þ

is exact. The converse holds too by the local criterion for flatness, because Z iðK �Þ
is A-flat owing to the exactness of (A.1.2) with C :¼ A and to the flatness of L.

Since zik is bijective, (A.1.3) is exact if and only if bi
k is injective. The latter

holds if and only if zi�1
k is surjective, owing to the map of exact sequences

Zi�1ðK �Þn k ���! K i�1 n k ���! B iðK �Þn k ���! 0???yz i�1
k

???y1

???ybi
k

0 ���! Zi�1ðK � n kÞ ���! K i�1 n k ���! B iðK � n kÞ ���! 0:

Finally, zi�1
k is surjective if and only if hi�1

k is so, owing to (A.1.1) with i � 1 in
place of i. Putting it all together, we’ve proved that hi�1

k is surjective if and only if
H iðK �Þ is A-flat at q. In other words, the second assertion holds too. r

Lemma A.2. Let T be a scheme, f : P ! Q a proper map of T-schemes of finite
type, and

0 ! F ! G ! H ! 0ðA:2:1Þ

a short exact sequence of T-flat coherent sheaves on P. For each point t a T, let ft
and Ft and Gt denote the restrictions to the fiber Pt, and assume that

Rift�ðFtÞ ¼ 0 and Rift�ðGtÞ ¼ 0 for ib 1:ðA:2:2Þ

Then the induced sequence on Q,

0 ! f�F ! f�G ! f�H ! 0;ðA:2:3Þ

is a short exact sequence of T-flat coherent sheaves, and forming it commutes with
base extension.

Proof. Since H is T-flat, the sequence (A.2.1) remains exact after restriction to
the fiber Pt for each t a T , and so the restricted sequence induces a long exact
sequence of cohomology. Hence, (A.2.2) yields

Rift�ðHtÞ ¼ 0 for all ib 1:
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By hypothesis, F, G, H are T-flat. Hence, by the generalized property of
exchange, Lemma A.1, the sheaves f�F, f�G, f�H are T -flat, and forming
them commutes with extending T . By the same token, R1f�ðFÞ ¼ 0; whence, Se-
quence (A.2.3) is exact. The assertion follows. r

Appendix B. A few examples by Ilya Tyomkin

Let F be the a‰ne plane over the spectrum Y :¼ SpecðKÞ of an algebraically
closed field K of positive characteristic p. In this appendix, we analyze a few sim-
ple examples of minimal Enriques diagrams D. Some depend on p, and have an
ordering y for which the universally injective map of Theorem 5.7,

C : F ðD; yÞ=AutðDÞ ! Hilbd
F=Y ;

is purely inseparable. Others are independent of p; they have several vertices, but
only one root, yet they have an ordering y for which C is an embedding. In fact,
in every case, y is unique, and AutðDÞ is trivial.

We take F to be the a‰ne plane just to simplify the presentation. With little
modification, everything works for any smooth irreducible surface F .

It is unknown what conditions on an arbitrary Enriques diagram D serve to
guarantee here that C is unramified, so an embedding. Nevertheless, in view of
the analysis in this appendix, it is reasonable to make the following guess.

Guess B.1. If p > 1
2

P
V AD mV, then C is unramified.

This guess is sharp in the sense that, if pa 1
2

P
V AD mV , then C may be

ramified. For example, consider the plane curve C : x p
2 ¼ x

pþ1
1 . In the notation of

Definition B.2, the minimal diagram of C is Mp;p. It has pþ 1 vertices with
mV ¼ p; 1; 1; . . . ; 1. So p ¼ 1

2

P
V AD mV . And C is ramified by Proposition B.4.

Similarly, consider C : yðy� x pÞ ¼ 0. Its minimal diagram has p vertices V
with mV ¼ 2. So p ¼ 1

2

P
V AD mV . And C is ramified by an argument similar to

the proof of Proposition B.4.
On the other hand, if D has a single vertex of weight 2p, then C is unramified

by Proposition 5.9, and of course, p ¼ 1
2

P
V AD mV .

In general, if a branch has tangency of order divisible by p to an exceptional
divisor E, then the multiplicity of the root must be at least p and there must be
at least p other vertices. So pa 1

2

P
V AD mV . Instead, if, at a point P a F , all the

branches have a tangency of order divisible by p to the same smooth curveD, then
there must be at least p vertices V with mV b 2. So again, pa 1

2

P
V AD mV . Thus,

if we guess that C can be ramified in only these two ways, then we arrive at Guess
B.1.

Further, although C does not sense first-order deformations either along E or
along D, nevertheless after we add a transverse branch at P, then C does sense
first-order deformations of the new branch; thus C becomes unramified. This in-
tuition is developed into a rigorous proof for the ordinary tacnode in Proposition
B.7, and a similar procedure works if the tacnode is replaced by an ordinary cusp.
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Definition B.2. Fix mb p. Let Mp;m denote the minimal Enriques diagram
of the plane curve singularity with 1þm� p branches whose tangent lines are
distinct, whose first branch is fx p

2 ¼ x
pþ1
1 g, and whose remaining m� p branches

are smooth.

Example B.3. For motivation, consider the following special case. Take p :¼ 2
and m :¼ 2. Then Mp;m is the minimal Enriques diagram A2 of the cuspidal curve
C : x2

2 ¼ x3
1 . This diagram has three vertices and a unique ordering y.

Take F :¼ A2
K and T :¼ SpecðKÞ. In FðA2; yÞHF ð2Þ, form the locus L of

sequences ðt0; t1; t2Þ of arbitrarily near T-points of F=K such that t0 is the con-
stant map from T to the origin. Plainly, the second projection induces an isomor-
phism L�!@ E 0

K where E 0
K is the exceptional divisor of the blow up F 0

K of F at the
origin.

The strict transform C 0 of C is tangent to E 0
K with order 2, and C 0 is given by

the equation s2 ¼ x1 where s :¼ x2=x1. Notice that this equation is preserved by
any first order deformation along E 0

K of the point of contact; indeed,

ðsþ beÞ2 ¼ s2

as p ¼ 2 and e2 ¼ 0. This observation suggests that the restriction of C,

ðC jLÞ : L ! Hilb5
F=K ;

is purely inseparable; and indeed, C jL is so, as we check next.
Let D 0 be the diagram obtained from A2 by omitting the root, let y 0 be the

unique ordering of D 0, and consider the corresponding map

C 0 : F 0ðD 0; y 0Þ ! Hilb2
F 0
K
=K :

Plainly, the projection ðt0; t1; t2Þ 7! ðt1; t2Þ embeds L into F 0ðD 0; y 0Þ.

Figure 1. The Enriques diagram Mm;p, with mb p ¼ 5, of Definition B.2.
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So C 0 induces a map C 0
L : L ! Hilb2

F 0
K
=K . It carries ðt0; t1; t2Þ to the subscheme

of F 0
T with ideal I 0 defined by the formula

I 0 :¼ ðjð2Þ
T j

ð3Þ
T Þ�OF

ð3Þ
T

ð�E
ð2;3Þ
T � E

ð3;3Þ
T Þ:

But E
ð2;3Þ
T þ E

ð3;3Þ
T aE

ð1;3Þ
T . So

O
F

ð3Þ
T

ð�E
ð2;3Þ
T � E

ð3;3Þ
T ÞKO

F
ð3Þ
T

ð�E
ð1;3Þ
T Þ:

Hence I 0 contains the ideal of E 0
T . Therefore, C

0
L factors through Hilb2

E 0
K
=K ,

which is isomorphic to Sym2ðLÞ. The corresponding map L ! Sym2ðLÞ is the
diagonal map since C 0

Lðt0; t1; t2Þ has the same support as t1. This diagonal map
is purely inseparable as p ¼ 2.

Finally, C 0
L : L ! Hilb2

E 0
K
=K is a factor of C jL because Cðt0; t1; t2Þ is the

subscheme of FT with ideal ðjð1Þ
T Þ�I 0ð2E 0

TÞ. Thus C jL is, indeed, purely insepa-
rable. In fact, C is purely inseparable by Proposition B.4 below.

Proposition B.4. Fix mb p. Set D :¼ Mp;m and d :¼ mþ1
2

� �
þ p. Then D

has a unique ordering y; also AutðDÞ ¼ 1 and degD ¼ d. Take F ¼ A2
K. Then

dimF ðD; yÞ ¼ 3, and 1y : FðD; yÞ ! Hilbd
F=Y is purely inseparable; also, C ¼ 1y.

Proof. Plainly, D has pþ 1 vertices, say V0; . . . ;Vp ordered by succession.
Then proximity is given by Vk � Vk�1 and Vk � V0 for k > 0. Further, the
weights are given by mV0

¼ m and mVk
¼ 1 for k > 0. Set yðVkÞ :¼ k; plainly,

y is an ordering of D, and is the only one. Also, plainly, AutðDÞ ¼ 1 and
degD ¼ d.

Theorem 3.10 says that dimFðD; yÞ ¼ dimD, but plainly dimD ¼ 3. Now,
C ¼ 1y because AutðDÞ ¼ 1. Further, Theorem 5.7 says that C is universally
injective. Hence C is purely inseparable, because it is everywhere ramified owing
to the following lemma. r

Lemma B.5. Under the conditions of Proposition B.4, let t a F ðD; yÞ be a
K-point. Then Kerðdt1yÞ is of dimension 1.

Proof. Say t represents the sequence ðt0; . . . ; tpÞ of arbitrarily near K-points
of F=Y . Choose coordinates x1; x2 on F such that t0 : x1 ¼ x2 ¼ 0 and such
that t1 is the point of intersection of the exceptional divisor E0 with the proper
transform of the x1-axis. Set s0 :¼ x2=x1, set s1 :¼ x1=s0, and set sk :¼ sk�1=s0
for 2a ka p� 1. Then t1 : s0 ¼ x1 ¼ 0, and tk : s0 ¼ sk�1 ¼ 0 for 2a ka p.

Set z :¼ 1yðtÞ a Hilbd
F=Y ðKÞ. Let Z denote the corresponding subscheme,

and I its ideal. Recall from the proof of Proposition 5.4 that I ¼ jK�Oð�EKÞ
where EK ¼

P p
i¼0 mVi

E ðiþ1;pþ1Þ. Recall from the proof of Proposition B.4 that
mV0

¼ m and mVk
¼ 1 for k > 0 and that Vk � V0 for k > 0. It follows that

EK ¼ me
ð1;pþ1Þ
K E ð1Þ þ

Xp

k¼1

kðmþ 1Þeðkþ1;pþ1Þ
K E

ðkþ1Þ
K :
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Set dðrÞ :¼ 0 if 0a r < p and dðrÞ :¼ 1 if pa ram. Set

fr :¼ x
mþ1�r�dðrÞ
1 xr

2 for 0a ram:

Let’s now show that the fr generate I.
First, note that, for each r and for 1a ka p� 1,

fr ¼ x
mþ1�dðrÞ
1 sr0 ¼ s

mþ1�dðrÞ
k s

kðmþ1�dðrÞÞþr
0 :

Hence, the pullback of fr vanishes along e
ð1;pþ1Þ
K E

ð1Þ
K to order at least m, and

along e
ðkþ1;pþ1Þ
K E

ðkþ1Þ
K to order at least kðmþ 1Þ for kb 1, since r� kdðrÞb 0.

Thus fr a I for each r.
Let J be the ideal generated by the fr. Then JHI. Now, K½x1; x2�=J is

spanned as a K-vector space by the monomials x
mþ1�r�dðrÞ
1 xl

2 for 0a l < ram
and by x

mþ1�p
1 xl

2 for 0a l < p. Hence J ¼ I because

dimðK ½x1; x2�=JÞa
Xm
r¼0

rþ p ¼ d ¼ dimK½x1; x2�=I:

Let K ½e� be the ring of dual numbers, and set T :¼ SpecðK ½e�Þ. Let ðt 00; . . . ; t 0pÞ
be a strict sequence of arbitrarily near T -points of F=Y lifting ðt0; . . . ; tpÞ. Then
there are a1; a2; b a K so that, after setting x 0

1 :¼ x1 þ a1e and x 0
2 :¼ x2 þ a2e and

setting s 00 :¼ x 0
2=x

0
1 þ be and s 01 :¼ x 0

1=s
0
0 and s 0k :¼ s 0k�1=s

0
0 for 2a ka p� 1, we

have t 00 : x
0
1 ¼ x 0

2 ¼ 0 and t 01 : s
0
0 ¼ x 0

1 ¼ 0 and t 0k : s 00 ¼ s 0k�1 ¼ 0 for 2a ka p.
Let t 0 a F ðD; yÞðTÞ represent ðt 00; . . . ; t 0pÞ. Set z 0 :¼ 1yðt 0Þ a Hilbd

F=Y ðKÞðTÞ.
Let Z 0 denote the corresponding subscheme, and I 0 its ideal. Let’s show that
I 0 is generated by the following elements:

f 0
r :¼ ðx 0

1Þ
mþ1�r�dðrÞðx 0

2Þ
r for 0a ram:

The f 0
r reduce to the fr, which generate I. Further, I 0 reduces to I as Z 0 is flat

over K ½e�. Hence it su‰ces to prove that I 0 contains the f 0
r .

Note that ðs 00 � beÞ p ¼ ðs 00Þ
p as the characteristic is p. Hence, for each r,

f 0
r ¼ ðx 0

1Þ
mþ1�dðrÞðs 00 � beÞr ¼ ðs 0kÞ

mþ1�dðrÞðs 00Þ
kðmþ1Þþðp�kÞdðrÞðs 00 � beÞr�pdðrÞ

for 1a ka p� 1. Therefore, the pullback of f 0
r vanishes along e

ð1;pþ1Þ
T E

ð1Þ
T to

order at least m, and along e
ðkþ1;pþ1Þ
T E

ðkþ1Þ
T to order at least kðmþ 1Þ for kb 1

since ðp� kÞdðrÞb 0 and r� pdðrÞb 0. Thus I 0 contains the f 0
r .

Recall that Tz Hilbd
F=Y ðKÞ ¼ HomðI;OZÞ. Furthermore, it follows from the

computations above that

dt1yðt 0Þð f 0
r Þ ¼ ðmþ 1� r� dðrÞÞxm�r�dðrÞ

1 xr
2a1 þ rx

mþ1�r�dðrÞ
1 xr�1

2 a2

447enriques diagrams, arbitrarily near points, and hilbert schemes



for 0a ram. Therefore,

kerðdt1yÞ ¼ fða1; a2; bÞ j a1 ¼ a2 ¼ 0g;

and we are done. r

Definition B.6. Fix mb 3. Let Nm denote the minimal Enriques diagram of
the following plane curve singularity: an ordinary tacnode fx2ðx2 � x2

1Þ ¼ 0g
union with m� 2 smooth branches whose tangent lines are distinct and di¤erent
from the common tangent line of the two branches of the tacnode.

Proposition B.7. Fix mb 3. Set D :¼ Nm and d :¼ mþ1
2

� �
þ 3. Then D has

a unique ordering y; also AutðDÞ ¼ 1 and degD ¼ d. Then dimF ðD; yÞ ¼ 3, and
1y : F ðD; yÞ ! Hilbd

F=K is an embedding; also, C ¼ 1y.

Proof. Plainly, D has 2 vertices, say V0 and V1 ordered by succession. Then
proximity is given by V1 � V0. Further, the weights are given by mV0

¼ m and
mV1

¼ 2. Set yðVkÞ :¼ k; plainly, y is an ordering of D, and is the only one. Also,
plainly, AutðDÞ ¼ 1 and degD ¼ d. Theorem 3.10 says that dimF ðD; yÞ ¼ dimD,
but plainly dimD ¼ 3. Now, C ¼ 1y because AutðDÞ ¼ 1. Further, Theorem 5.7
says that C is universally injective. Hence C is an embedding because it is
nowhere ramified owing to the following lemma. r

Lemma B.8. Under the conditions of Proposition B.7, let t a F ðD; yÞ be a
K-point. Then Kerðdt1yÞ ¼ 0.

Proof. Say t represents the sequence ðt0; t1Þ of arbitrarily near K-points of
F=Y . Choose coordinates x1, x2 on F such that t0 : x1 ¼ x2 ¼ 0 and such that t1
is the point of intersection of the exceptional divisor E0 with the proper transform
of the x1-axis. Set s :¼ x2=x1. Then t1 : s ¼ x1 ¼ 0.

Set z :¼ 1yðtÞ a Hilbd
F=Y ðKÞ. Let Z denote the corresponding subscheme,

and I its ideal. Recall from the proof of Proposition 5.4 that I ¼ jK�Oð�EKÞ
where EK ¼

P1
i¼0 mVi

E ðiþ1;2Þ. Recall from the proof of Proposition B.7 that
mV0

¼ m and mV1
¼ 2 and that V1 � V0. It follows that

EK ¼ me
ð1;2Þ
K E ð1Þ þ ðmþ 2ÞE ð2Þ

K :

Set dð0Þ :¼ 2, set dð1Þ :¼ 1, and set dðrÞ :¼ 0 if rb 2. Set

fr :¼ x
m�rþdðrÞ
1 xr

2 for 0a ram:

Let’s now show that the fr generate I.
First, note that, for each r,

fr ¼ x
mþdðrÞ
1 sr:

Hence, the pullback of fr vanishes along e
ð1;2Þ
K E

ð1Þ
K to order at least m, and along

E
ð2Þ
K to order at least mþ 2, since mþ rþ dðrÞbmþ 2. Thus fr a I for each r.
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Let J be the ideal generated by the fr. Then JHI. Now, K½x1; x2�=J is
spanned as a K-vector space by the monomials x

m�rþdðrÞ
1 xl

2 for 0a l < ram and
by xm�1

1 , xm�1
1 x2, and xmþ1

1 . Hence J ¼ I because

dimðK ½x1; x2�=JÞa
Xm
r¼0

rþ 3 ¼ d ¼ dimK ½x1; x2�=I:

Furthermore, the monomials xm�1
1 and xm�1

1 x2 and xmþ1
1 , and x

m�rþdðrÞ
1 xl

2 for
0a l < ram form a basis of the K-vector space K ½x1; x2�=I.

Let K ½e� be the ring of dual numbers, and set T :¼ SpecðK ½e�Þ. Let ðt 00; t 01Þ be
a strict sequence of arbitrarily near T-points of F=Y lifting ðt0; t1Þ. Then there
are a1; a2; b a K so that, after setting x 0

1 :¼ x1 þ a1e and x 0
2 :¼ x2 þ a2e and

s 0 :¼ x 0
2=x

0
1 þ be, we have t 00 : x

0
1 ¼ x 0

2 ¼ 0 and t 01 : s
0 ¼ x 0

1 ¼ 0.
Let t 0 a FðD; yÞðTÞ represent ðt 00; t 01Þ. Set z 0 :¼ 1yðt 0Þ a Hilbd

F=Y ðTÞ. Let Z 0

denote the corresponding subscheme, and I 0 its ideal. Let’s show that I 0 is gen-
erated by the following elements:

f 0
r :¼ ðx 0

1Þ
m�rþdðrÞðx 0

2Þ
r þ rbeðx 0

1Þ
m�rþ1þdðrÞðx 0

2Þ
r�1 for 0a ram:

The f 0
r reduce to the fr, which generate I. Further, I 0 reduces to I as Z 0 is flat

over K ½e�. Hence it su‰ces to prove that I 0 contains the f 0
r .

The equation x 0
2=x

0
1 ¼ s 0 � be yields

f 0
r ¼ ðx 0

1Þ
mþdðrÞðs 0Þr for 0a ram:

Hence, the pullback of f 0
r vanishes along e

ð1;2Þ
T E

ð1Þ
T to order at least m, and along

E
ð2Þ
T to order at least mþ 2 since mþ rþ dðrÞbmþ 2. Thus I 0 contains the f 0

r .
Recall that Tz Hilbd

F=Y ðKÞ ¼ HomðI;OZÞ. Furthermore, it follows from the
computations above that

dt1yðt 0Þð f 0
r Þ ¼ x

m�rþdðrÞ�1
1 xr�1

2 ððm� rþ dðrÞÞx2a1 þ rx1a2 þ rx2
1bÞ

for 0a ram. In particular, rxm�2
1 x2

2b a I yields

dt1yðt 0Þð f 0
1 Þ ¼ mxm�1

1 x2a1 þ xm
1 a2 þ xmþ1

1 b

dt1yðt 0Þð f 0
0 Þ ¼ ðmþ 2Þxmþ1

1 a1; and

dt1yðt 0Þð f 0
3 Þ ¼ ðm� 3Þxm�4

1 x3
2a1 þ 3xm�3

1 x2
2a2:

Recall that, in K ½x1; x2�=I, the monomials

xm�1
1 ; xm�1

1 x2; x
mþ1
1 ; and x

m�rþdðrÞ
1 xl

2 for 0a l < ram

are linearly independent. But mb 3, so at least one of the coe‰cients m, mþ 2,
and m� 3 is prime to the characteristic. Thus, kerðdt1yÞ ¼ 0, and we are done.

r
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