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Abstract. — We introduce arrangements of rational sections over curves. They generalize line

arrangements on P2. Each arrangement of d sections defines a single curve in Pd�2 through the
Kapranov’s construction of M0; dþ1. We show a one-to-one correspondence between arrangements

of d sections and irreducible curves in M0; dþ1, giving also correspondences for two distinguished
subclasses: transversal and simple crossing. Then, we associate to each arrangement A (and so to

each irreducible curve in M0; dþ1) several families of nonsingular projective surfaces X of general

type with Chern numbers asymptotically proportional to various log Chern numbers defined by A.
For example, for the main families and over C, any such X is of positive index and p1ðX ÞU p1ðAÞ,
where A is the normalization of A. In this way, any rational curve in M0; dþ1 produces simply con-
nected surfaces with Chern numbers ratio bigger than 2. Inequalities like these come from log Chern

inequalities, which are in general connected to geometric height inequalities (see Appendix). Along
the way, we show examples of étale simply connected surfaces of general type in any characteristic

violating any sort of Miyaoka–Yau inequality.
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1. Introduction

Arrangements of rational sections over curves set up a new class of arrangements
of curves on algebraic surfaces. Given a nonsingular projective curve C and
an invertible sheaf L on C, they are defined as finite collections of sections of
the corresponding A1-bundle. The simplest example is line arrangements on P2,
where C ¼ P1 and L ¼ OP1ð1Þ. In Section 2, we systematically study arrange-
ments of rational sections over curves. Although in somehow they can be man-
aged as line arrangements, the big di¤erence relies on possible tangencies among
their curves, introducing more geometric liberties. We partially organize this
via transversal and simple crossing arrangements (Definition 2.4). Throughout
Sections 3, 4 and 5, we show one-to-one correspondences between arrange-
ments of d sections and irreducible curves in M0;dþ1, the moduli space of
curves of genus zero with d þ 1 marked ordered points. This is done for each
fixed pair ðC;LÞ in the general (Theorem 5.1), transversal (Corollary 5.5), and
simple crossing (Corollary 5.6) cases. Because of Kapranov’s description of
M0;dþ1 [11, 12], this produces bijections between arrangements and curves in
Pd�2 (Corollary 5.2). For instance, arrangements of d lines in P2 correspond



to lines in Pd�2 (as in [21]), arrangements of d conics in x2 þ y2 þ z2 ¼ 0 cor-
respond to conics in Pd�2, etc. To exemplify, we show in Section 6 a way to
produce explicit arrangements of sections from irreducible curves in P2. This is
based on [6, Section 7], where the authors show how to cover M0;dþ1 with
blow-ups of P2 at d þ 1 points. We use their rigid conic as concrete example
(see Examples 6.1 and 7.1).

Given an arrangement of sections A, we define two types of arrangements:
the extended AD and some partially extended ApD. Their definitions and log
properties are exposed in Section 7. Over C, they satisfy certain log Miyaoka–
Yau inequalities which are no longer combinatorial as in the case of line ar-
rangements (Remarks 7.3 and 7.4). For line arrangements we know an optimal
log inequality (Hirzebruch-Sakai’s in Remark 7.3), but for any other class we
only have the coarse bound 3. Arrangements attaining upper bounds should be
special, and would produce interesting algebraic surfaces by means of Theorem
8.1. We remark that questions about sharp upper bounds of log Chern ratios
are related to questions on e¤ective height inequalities [15, pp. 149–153] (see
Appendix, where we slightly extend and give another proof of Liu’s inequality
[16, Theorem 0.1], which naturally implies strict Tan’s height inequality [19,
Theorem A]).

In Section 8, we associate various families of nonsingular projective surfaces
to any given arrangement of sections A. These surfaces share the random nature
of the surfaces X constructed in [22], having Chern invariants asymptotically pro-
portional to the log Chern invariants of AD and ApD’s. In this way, we are able to
show for a more general class of arrangements (and so singularities) that the be-
havior of Dedekind sums and continued fractions used in [22] can also be applied.
In this paper, any such X is of general type and satisfies c21ðXÞ; c2ðX Þ > 0. Put-
ting it all together, and over C, we have the following.

Theorem. Let A be an irreducible curve in Pn not contained inQ
i xi

Q
i< jðxj � xiÞ ¼ 0. Let A be the normalization of A. Then, there exist

nonsingular projective surfaces X of general type such that 2 <
c2
1
ðXÞ

c2ðX Þ < 3, having
c2
1
ðXÞ

c2ðX Þ arbitrarily close to
c21 ðAÞ
c2ðAÞ , a well-defined positive rational number depending

on A and its position in Pn. In addition, there is an induced connected
fibration p 0 : X ! A which gives an isomorphism p1ðXÞUp1ðAÞ. In this way,
AlbðX ÞU JacðAÞ and p 0 is the Albanese fibration of X .

With this in hand, we aim to answer the still open question: are there simply

connected nonsingular projective surfaces of general type with
c2
1

c2
arbitrarily close

to the Miyaoka–Yau bound 3? Hence, at least when A is a rational curve, it is

important for us to know about sharp upper bounds for
c21 ðAÞ
c2ðAÞ (also for ApD,

see Remark 8.3). So far, we only know that this bound is strictly smaller than 3
(Corollaries 7.2 and 7.4). On the other hand, in positive characteristic, we use
our method to produce étale simply connected nonsingular projective surfaces
of general type which violate any sort of Miyaoka–Yau inequality for any given
characteristic (Example 2.4, Remark 7.5, Example 8.2).
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2. Arrangements of rational sections over curves

Fix an algebraically closed field K. Let C be a nonsingular projective curve
defined over K of genus g ¼ h1ðC;OCÞ. Hence, when K ¼ C, the curve C is a
compact Riemann surface of genus g. Let L be an invertible sheaf on C of degree
degðLÞ ¼ e > 0, and let

ACðLÞ :¼ SpecðSðL�1ÞÞ ! C

be the line bundle associated to L (as in [8, II, Ex. 5.18]), where L�1 is the dual of
L. This is the so-called total space of L. A section of ACðLÞ ! C is a morphism
C ! ACðLÞ such that the composition map C ! ACðLÞ ! C is the identity. The
space of sections can be identified with H 0ðC;LÞ. Since it is better to deal with
a projective surface, we naturally compactify all fibers, so that we work with a
P1-bundle. Let

p : PðOC aL�1Þ ! C

be the P1-bundle associated to OC aL�1 over C, as in [8, II, Ex. 7.10]. The non-
singular projective surface PðOC aL�1Þ contains ACðLÞ as an open set, such
that the curve C0 :¼ PðOC aL�1ÞnACðLÞ is a section of p with self-intersection
C2

0 ¼ �e. It is easy to see that C0 is the only irreducible curve with negative self-
intersection in PðOC aL�1Þ. This surface is a particular case of a geometri-
cally ruled surface over C [8, V, Section 2], and it is in its normalized form
[8, V, Proposition 2.8]. We denote by Fc the fiber over a point c a C, or just
F when we consider its numerical class. Any element in PicðPðOC aL�1ÞÞ
can be written as aC0 þ p�ðMÞ with a a Z, and M a PicðCÞ. Any element in
NumðPðOC aL�1ÞÞ can be written as aC0 þ bF with a; b a Z [8, p. 373].

Example 2.1. Let C ¼ P1, and let e > 0. Consider the invertible sheaf OP1ðeÞ
on P1. Then, the surface PðOP1 aOP1ð�eÞÞ is the Hirzebruch surface Fe. When
e ¼ 1, F1 corresponds to the blow-up at a point of P2 [8, V, Exa. 2.11.4], and C0

is the ð�1Þ-curve.

The main objects are the following.

Definition 2.1. Let db 3 be an integer. Let C be a nonsingular projec-
tive curve, and let L be an invertible sheaf on C of degree e > 0. An arrange-
ment of d sections is a labeled set of d distinct sections A ¼ fS1; . . . ;Sdg of
p : PðOC aL�1Þ ! C such that

Si PC0 þ p�ðLÞ
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for all i a f1; 2; . . . ; dg, and
Td

i¼1 Si ¼ j. From now on, we denote PðOC aL�1Þ
by PCðLÞ.

In particular, Si:Sj ¼ e, and Si:C0 ¼ 0 for all i, and so these arrangements are
indeed formed by sections of ACðLÞ ! C. The condition

Td
i¼1 Si ¼ j implies that

L is base-point free. To see this, take a point c a C, and consider the correspond-
ing fiber Fc. Since

Td
i¼1 Si ¼ j, there are two sections Si, Sj such that

FcBSi BSj ¼ j. Let sj : C ! PCðLÞ be the map defining the section Sj . Then,
LU s�j ðp�ðLÞn OSj

ÞU s�j ðOPCðLÞðC0Þn p�ðLÞn OSj
ÞU s�j ðOPCðLÞðSiÞn OSj

Þ,
and s�j ðOPCðLÞðSiÞnOSj

Þ is given by an e¤ective divisor on C not supported at c.
This tell us that LUOCðDÞ with D base-point free e¤ective divisor.

If A ¼ fS1; . . . ;Sdg is an arrangement as in Definition 2.1, but withTd
i¼1 Si A j, then we can apply elementary transformations (see [8, V, Exa. 5.7.1])

at each of the points in
Td

i¼1 Si to obtain a new arrangement of d sections in
PCðL 0Þ for some L 0. After repeating this process a finite number of times, we
arrive to an arrangement A 0 in PCðL 0Þ with

Td
i¼1 S 0i ¼ j. If degðL 0Þ ¼ 0, then

L 0 ¼ OC since, as we showed above, L 0 ¼ OCðDÞ for some e¤ective divisor D.
In this case, PCðOCÞ ¼ C � P1, and the arrangement is trivially formed by a
collection of d ‘‘horizontal’’ fibers (it just corresponds to an arrangement of
d points in P1). If A ¼ fS1; . . . ;Sdg is a collection of arbitrary d sections in
PCðLÞ, we perform elementary transformations on the points in C0BSi for all i,
and we repeat this process until all sections are disjoint from the new curve C 00 in
PCðL 0Þ (proper transform of C0). In this way, arbitrary arrangements of sections
can always be considered, after some elementary transformations, as the ones in
Definition 2.1.

We now define the morphisms between our objects.

Definition 2.2. Fix an integer db 3. Let C, C 0 be nonsingular projective
curves, and let L, L 0 be invertible sheaves of positive degrees on C, C 0 respec-
tively. Let A, A 0 be arrangements of d sections in PCðLÞ, PC 0 ðL 0Þ respectively.
A morphism of arrangements is the existence of a finite map g : C ! C 0, and a
commutative diagram

PCðLÞ ���!G PC 0 ðL 0Þ

p

???y p 0

???y
C ���!g C 0

so that PCðLÞ is isomorphic to the base change by g, and Si ¼ G�ðS 0i Þ for all i. If
g is an isomorphism, then the arrangements are said to be isomorphic.

In particular, a curve C with an automorphism g produces isomorphic ar-
rangements via the pull back of g.

Lemma 2.1. A morphism of arrangements satisfies C0 ¼ G �ðC 00Þ and g�ðL 0ÞUL.
We have C2

0 ¼ degðgÞC 020 and S2
i ¼ degðgÞS 02i for all i.
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Proof. Since 0 ¼ G�ðC 00Þ:G�ðS 0i Þ ¼ G�ðC 00Þ:Si, we have that G�ðC 00Þ ¼ C0. We
know that p�ðC0Þ ¼ OC aL�1 and p 0�ðC 00Þ ¼ OC 0 aL 0�1 (see [8, II, Proposition
7.11]). By flat base change [8, III, Proposition 9.3], we have

g�p 0�ðC 00ÞUp�G
�ðC 00Þ;

and so g�ðL 0ÞUL. Therefore, degðLÞ ¼ degðgÞ degðL 0Þ, and so C2
0 ¼ degðgÞC 020 ,

and S2
i ¼ degðgÞS 02i for all i. r

One wants to consider arrangements of sections which do not come from
others via base change, and so the following definition.

Definition 2.3. Let us fix the data ðC;L; dÞ as above. An arrangement of d
sections A is said to be primitive if whenever we have an arrangement A 0 for
some data ðC 0;L 0; dÞ, and a morphism g as in Definition 2.2, then g is an isomor-
phism. The set of isomorphism classes of primitive arrangements is denoted by
AðC;L; dÞ. This is clearly independent of the isomorphism class of C and L.

For instance, if L has a base-point, then AðC;L; dÞ ¼ j.

Example 2.2. Let db 3 be an integer. An arrangement of d lines in the plane
is a set of d labeled lines A ¼ fL1; . . . ;Ldg in P2 such that

Td
i¼1 Li ¼ j. As in

[21], we introduced ordered pairs ðA;PÞ, where A is an arrangement of d lines,
and P is a point in P2n

Sd
i¼1 Li. If ðA;PÞ and ðA 0;P0Þ are two such pairs, we

say that they are isomorphic if there exists an automorphism T of P2 such that
TðLiÞ ¼ L 0i for every i, and TðPÞ ¼ P 0. Given ðA;PÞ, we blow up the point P to
obtain an arrangement of d sections for the data ðP1;Oð1Þ; dÞ, and given such an
arrangement of sections, we blow down C0 to get a pair ðA;PÞ, where P is the
image of C0 and A is formed by the images of the sections. One sees that the set
of pairs up to isomorphism of pairs is precisely AðP1;Oð1Þ; dÞ. By Lemma 2.1,
any arrangement of PP1ðOð1ÞÞ ! P1 is primitive (degree considerations). This is
the simplest case for arrangements of rational sections over curves. Notice that

AðP1;Oð1Þ; 3Þ ¼ ðfx1 ¼ 0; x2 ¼ 0; x3 ¼ 0g; ½1 : 1 : 1�Þ;

where ½x1 : x2 : x3� are coordinates for P2.

In the next sections, we will classify all primitive arrangements, and some dis-
tinguished subclasses which are defined through intersection properties of their
members. We now look at these intersections. In what follows, until the end of
this section, we fix the data ðC;L; dÞ.

Definition 2.4. Let A ¼ fS1; . . .Sdg be an arrangement of sections in PCðLÞ.
Let P be a point in PCðLÞ, and let f , g be local equations defining Si, Sj at P.
As in [8, V, Section 1], we define the intersection multiplicity ðSi:SjÞP of Si and
Sj at P to be the length of OP;PCðLÞ=ð f ; gÞ. If P is not in Si or Sj, then
ðSi:SjÞP ¼ 0. Notice that, since Si:Sj ¼ e, we have 0a ðSi:SjÞP a e. We distin-
guish two classes of arrangements:
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(t) We say that A is transversal if for any iA j and any point P in Si BSj, there is
kA i; j such that ðSi:SkÞP ¼ ðSi:SjÞP � 1. The set of isomorphism classes of
primitive transversal arrangements is denoted by AtðC;L; dÞ.

(s) We say that A is simple crossing1 if for any iA j and any point P in Si BSj,
we have ðSi:SjÞ ¼ 1. This is, the members of the arrangement are pairwise
transversal. The set of isomorphism classes of primitive simple crossing ar-
rangements is denoted by AsðC;L; dÞ.

Remark 2.1. In (t) above, we have the requirement ðSi:SkÞP ¼ ðSi:SjÞP � 1.
This implies ðSi:SkÞP ¼ ðSj :SkÞP, and so the definition is symmetric on i, j. To
see this, let s : BlPðPCðLÞÞ ! PCðLÞ be the blow-up at P. Let ~SSa be the strict

transforms of Sa, so that ~SSa P s�ðSaÞ � E, for a ¼ i; j; k. Here E is the excep-
tional curve of s. In this way, we have

~SSa: ~SSb ¼ Sa:Sb � 1

since Sa is nonsingular at P. Since s is an isomorphism outside of E, we have that
ð ~SSa: ~SSbÞ ~PP ¼ ðSa:SbÞP � 1, where ~PP ¼ ~SSaBE. If ðSi:SjÞP ¼ 2, then ðSi:SkÞP ¼ 1,
and so ðSj:SkÞP ¼ 1. One proves the general assertion by induction on ðSi:SjÞP.

This gives the stratification

AsðC;L; dÞJAtðC;L; dÞJAðC;L; dÞ:

Notice that for line arrangements AsðP1;Oð1Þ; dÞ ¼AtðP1;Oð1Þ; dÞ ¼
AðP1;Oð1Þ; dÞ, but already for ðP1;Oð2Þ; dÞ we have di¤erent sets, as the next
example shows.

Example 2.3. Consider collections of curves in P2 given by Ai ¼
fC1;C2;C3;C4g, as shown in Figure 1. Here, C1 is a conic, and C2, C3, C4 are
lines. For distinct i’s, we have di¤erent intersections among Cj’s. Each Ai

Figure 1. Configurations of curves in P2 which produce arrangements in F2.

1These are the type of singularities for arrangements in [22].
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has a marked point P in C1. Out of these configurations, we produce three
arrangements of sections in F2. We blow up P, and then we perform an elemen-
tary transformation at ~PP, which is the intersection of the strict transform of
C1 with the exceptional divisor E. Then, we have an arrangement of sections
Ai ¼ fS1;S2;S3;S4g in F2, where Sj corresponds to the strict transform of Cj.

Any possible morphism of arrangements, from Ai to some A 0i , would have
ðP1;Oð1Þ; 4Þ as target, and the degree of g would have to be 2. For A1, we have
8 points in F2 where exactly two sections intersect, and 1 where exactly 3 inter-
sect, so A1 is impossible as pull-back of 4 sections in PP1ðOð1ÞÞ. Similar argu-
ments apply to A2 and A3, and so one easily checks that all of them a primitive.
Notice that A3 is simple crossing, A2 is a transversal, and A1 is neither, so
AsðP1;Oð2Þ; 4ÞM= AtðP1;Oð2Þ; 4ÞM= AðP1;Oð2Þ; 4Þ.

Example 2.4. Assume K has charðKÞ ¼ p > 0. Let A 0 a AsðC 0;L 0; dÞ, and
consider the K-linear Frobenius morphism g : C ! C 0 [8, p. 301], so C and C 0

are isomorphic as abstract curves. Let A a AðC;L; dÞ be the pull-back arrange-
ment by g, as in Definition 2.2. Then, g�ðL 0Þ ¼ L, and for any two members Si, Sj

we have ðSi:SjÞP ¼ p when P a Si BSj. The simple crossing arrangement A 0 is
transformed into an arrangement A where any two members are tangent at e
points, each of order p.

3. Some facts about M0;dþ1

Let db 3 be a integer. We denote by M0;dþ1 the moduli space of ðd þ 1Þ-pointed
stable curves of genus zero [13, 11]. This is a smooth rational projective variety of
dimension d � 2. The open set M0;dþ1 parametrizes configurations of d þ 1 dis-
tinct labeled points in P1. The boundary D :¼M0;dþ1nM0;dþ1 is formed by the
following prime divisors: for each subset I H f1; 2; . . . ; d þ 1g with jI jb 2 and
jI cjb 2, we let dI ,!M0;dþ1 be the divisor whose generic element is a curve
with two components: the points marked by I in one, and the points marked by
I c in the other. Hence dI ¼ dI c , and usually we will assume d þ 1 a I to avoid
repetitions. These divisors are smooth, and D ¼

P
dI is a simple normal crossing.

The variety M0;dþ1 represents a fine moduli space, proper and smooth over
SpecðZÞ. For i a f1; . . . ; d þ 2g, the i-th forgetful map pi : M0;dþ2 !M0;dþ1,
which forgets the i-th marked point and stabilizes, gives a universal family. We
will mainly consider

pdþ2 : M0;dþ2 !M0;dþ1:

Figure 2. Evolution of a triangle under Frobenius maps in Example 2.4.
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It has d þ 1 distinguished sections d1;dþ2; . . . ; ddþ1;dþ2, producing the markings on
the parametrized curves.

Definition 3.1. Let X be a nonsingular projective variety, and let D be a non-
singular divisor in X . Let B be a curve in X . We say that B is transversal to D if
locally at any x a DBB, the curve B can be factored in B1; . . . ;Bn distinct local
irreducible curves (branches of B in ÔOx;X ) so that Bi:D ¼ 1 for every i. If D is
a sum of nonsingular divisors Dj , we say that B is transversal to D if it is to
each Dj.

Below a well-known property for stable families, coming from the construc-
tion of M0;dþ1.

Lemma 3.1. Let x be a K-point in M0;dþ1. Let B be a local curve passing through
x, i.e., B is a irreducible curve defined by functions in ÔOx;M0; dþ1

UK½½t1; . . . ; td�2��.
Assume t1t2 . . . tk ¼ 0 defines D ¼

P
dI , so ka d � 2, and that tjjB is not identi-

cally zero for all 1a ja k. Consider the commutative diagram

R ���! M0;dþ2

r

???y pdþ2

???y
B ���!i M0;dþ1

where i is the composition of the inclusion of B with its normalization, so B is the
normalization of B, and R is defined by base change. Then, the surface R is normal,
and can only have singularities of the form

SpecK½u; v; t�=ðuv� tmÞ

at the nodes of the singular fiber, for some m. Moreover, the surface R is nonsingu-
lar if and only if B is transversal to D.

A brief outline of the proof. Let X ! SpecK be the corresponding stable
curve over t1 ¼ t2 ¼ � � � ¼ td�2 ¼ 0. Consider the deformation of X as described
in [7, pp. 79–85]. At a nonsingular point of X , we have a nonsingular point for R,
so we pay only attention to the nodes of X . Let y be a node of X , corresponding
to the intersection of B with ti for some i a f1; . . . ; kg, i.e., the node y splits
f1; . . . ; d þ 1g in two subsets I and I c, and ti ¼ 0 corresponds to dI . At the corre-
sponding point y in M0;dþ2 (over K), the local rings and the universal map can be
written in the projection form

ÔOx;M0; dþ1
¼ K½½t1; . . . ; td�2�� ! ÔOy;M0; dþ2

¼ K½½ui; vi; t1; t2; . . . ; td�2��=ðuivi � tiÞ;

for suitable variables ui, vi. Now, the composition of the inclusion of B with its
normalization i has the form

iðtÞ ¼ ðu1tm1 ; u2t
m2 ; . . . ; ud�2t

md�2Þ
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for some units ui’s and a local parameter t on B. This is because B is not in tj ¼ 0
for all j. Hence, i�ðdI Þ ¼ uit

mi for dI ¼ fti ¼ 0g. Since R is defined through the
base change by i, we have the isomorphism

ÔOy;RUK½½ui; vi; t��=ðuivi � tmiÞ;

and so, R is nonsingular i¤ mi ¼ 1 for all i a f1; . . . ; kg, i.e., transversal to D.
The moduli spaces M0;dþ1 have a beautiful construction, due to Kapranov

[11, 12], as iterated blow-ups of Pd�2 (see below). It follows that curves in
M0;dþ1 are strict transforms of curves in Pd�2, which are not contained in a cer-
tain fixed hyperplane arrangement Hd . The following description of these spaces
can be found in [11, 12].

Definition 3.2. A Veronese curve is a rational normal curve of degree d � 2 in
Pd�2, i.e., a curve projectively equivalent to P1 in its Veronese embedding.

It is a classical fact that any d þ 1 points in Pd�2 in general position lie on a
unique Veronese curve. The points P1; . . . ;Pnþ2 are said to be in general position
if no nþ 1 of them lie in a hyperplane. The main theorem in [11] says that the
set of Veronese curves in Pd�2 and its closure are isomorphic to M0;d and M0;d

respectively.

Theorem 3.2 (Kapranov [11]). Take d points P1; . . . ;Pd of projective space
Pd�2 which are in general position. Let V0ðP1; . . . ;PdÞ be the space of all Veronese
curves in Pd�2 through these d points Pi. Consider it as a subvariety in the Hilbert
scheme H parametrizing all subschemes on Pd�2. Then,

1. We have V0ðP1; . . . ;PdÞGM0;d .
2. If VðP1; . . . ;PdÞ is the closure of V0ðP1; . . . ;PdÞ in H, then VðP1; . . . ;PdÞG

M0;d . The subschemes representing limit positions of curves from
V0ðP1; . . . ;PdÞ are, considered together with Pi, stable d-pointed curves of genus
0, which represent the corresponding points of M0;d .

3. The analogs of statements (a) and (b) hold also for Chow variety instead of
Hilbert scheme.

Theorem 3.3 (Kapranov [12]). Choose d general points P1; . . . ;Pd in Pd�2. The
variety M0;dþ1 can be obtained from Pd�2 by a series of blow-ups of all the projec-
tive spaces spanned by Pi. The order of these blow ups can be taken as follows:

1. Points P1; . . . ;Pd�1 and all the projective subspaces spanned by them in order of
the increasing dimension;

2. The point Pd, all the lines 3P1;Pd4; . . . ; 3Pd�2;Pd4 and subspaces spanned by
them in order of the increasing dimension;

3. The line 3Pd�1;Pd4, the planes 3Pi;Pd�1;Pd4, iA d � 2 and all subspaces
spanned by them in order of the increasing dimension, etc, etc.

Let us denote the Kapranov’s map in Theorem 3.3 by cdþ1 : M0;dþ1 ! Pd�2:
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Some conventions and notations for the rest of the paper. Let us fix d
points in general position in Pd�2. We take P1 ¼ ½1 : 0 : . . . : 0�, P2 ¼
½0 : 1 : 0 : . . . : 0�; . . . ;Pd�1 ¼ ½0 : . . . : 0 : 1� and Pd ¼ ½1 : 1 : . . . : 1�. The symbol
3Q1; . . . ;Qr4 denotes the projective linear space spanned by the points Qi. Let

Li1;...; ir ¼ 3Pj : j B fi1; . . . ; irg4

where 1a ra d � 1 and i1; . . . ; ir are distinct numbers, and let Hd be the union
of all the hyperplanes Li; j. Hence, Li; j ¼ f½x1 : . . . : xd�1� a Pd�2 : xi ¼ xjg for

i; jA d, Li;d ¼ f½x1 : . . . : xd�1� a Pd�2 : xi ¼ 0g and

Hd ¼ ½x1 : . . . : xd�1� a Pd�2 : x1x2 . . . xd�1
Y
i< j

ðxj � xiÞ ¼ 0

( )
:

Example 3.1. For d ¼ 4, Theorem 3.3 says that the map c5 : M0;5 ! P2 is the
blow-up of P2 at the points P1 ¼ ½1 : 0 : 0�, P2 ¼ ½0 : 1 : 0�, P3 ¼ ½0 : 0 : 1�, and
P4 ¼ ½1 : 1 : 1�. The hyperplane arrangement H4 is given by the complete quadri-
lateral

x1x2x3ðx1 � x2Þðx1 � x3Þðx2 � x3Þ ¼ 0:

The universal map p5 : M0;5 !M0;4 ¼ P1 is induced by the pencil of conics
(Veronese curves in P2) containing P1, P2, P3, and P4.

4. Arrangements of d sections and curves in M0;dþ1

Let B be an irreducible projective curve in M0;dþ1 with BBM0;dþ1A j. By using
Kapranov’s map cdþ1 : M0;dþ1 ! Pd�2, this is the same as giving an irreducible
projective curve A in Pd�2 not contained in Hd . The proper transform of A under
cdþ1 is B. Consider the base change diagram

R ���! M0;dþ2

r

???y pdþ2

???y
B ���!i M0;dþ1

where i is the composition of the inclusion of B with its normalization. Let us
denote B ¼ C. Notice that the distinguished sections d1;dþ1; d2;dþ1; . . . ; ddþ1;dþ1
of pdþ2 induce d þ 1 sections ~SS1;dþ2; . . . ; ~SSdþ1;dþ2 for r. Also, by Lemma 3.1,
the surface R is a normal projective surface with only canonical singularities of
type uv ¼ tm for various integers m, and only at nodes of singular fibers. We
now resolve these singularities minimally to obtain a fibration ~rr : ~RR! C, so
that ~RR is nonsingular. Notice that ~rr has only reduced trees of P1’s as fibers, and
it has d þ 1 distinguished sections.
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Let F be a singular fiber of ~rr. Consider the curves E in F with E:ðF � EÞ ¼ 1,
and which do not intersect the ðd þ 1Þ-th section (the proper transform of
~SSdþ1;dþ2). Then, the E’s are disjoint with self-intersection �1. We now blow
down all of these E’s to obtain a new fibration over C with d þ 1 distin-
guished sections, and reduced trees of P1’s as fibers. If there is a singular
fiber F , we repeat the previous procedure. After finitely many steps, this stops
in a fibration r0 : R0 ! C with nonsingular fibers, and d þ 1 labeled sections
fS1;S2; . . . ;Sdþ1g, where ~SSi;dþ2 is the proper transform of Si.

Proposition 4.1. The fibration r0 : R0 ! C is isomorphic over C to
p : PCðLÞ ! C with LU i�ðc�dþ1ðOPd�2ð1ÞÞÞ, and so degðLÞ ¼ e ¼ degðcdþ1ðBÞÞ.
The labeled set fS1; . . . ;Sdg is a primitive arrangement of d sections.

Proof. By [8, V, Proposition 2.8], the ruled surface r0 : R0 ! C is isomorphic
over C to PCðEÞ ! C, where E is a rank two locally free sheaf on C with
the property that H 0ðEÞA 0 but for all invertible sheaves M on C with
degM < 0, we have H 0ðE nMÞ ¼ 0. So, we assume R0 ¼ PCðEÞ. Since, by
construction, Si:Sdþ1 ¼ 0 for all iA d þ 1, we have that E is decomposable, say
EUOC aL�1, where L is unique up to isomorphism. Moreover, Si PSdþ1þ
p�ðLÞ for all iA d þ 1. In particular, 0 < Si:Sj ¼ e ¼ degL for all i; jA d þ 1
and S2

dþ1 ¼ �e. Notice that
Td

i¼1 Si ¼ j. Hence, A ¼ fS1; . . . ;Sdg is an arrange-
ment of d sections of p : PCðLÞ ! C.

Observe that A is primitive because it comes from the normalization of a
curve in M0;dþ1. Assume there is a morphism of arrangements from A to A 0,
with data ðC 0;L 0; dÞ and map g : C ! C 0 (see Definition 2.2). Then, our map
i : C ! B would factor through g, induced by the natural map i 0 : C 0 !M0;dþ1.
This is possible only if deg g ¼ 1, because C is the normalization of B, and so A
and A 0 are isomorphic arrangements.

Let c be a point in C, and consider the fiber Fc of p. Let Si;Sj ASdþ1 be
distinct sections which intersect at a point P in Fc. Then, through the description
in Lemma 3.1, it is not hard to see that

ðSi:SjÞP ¼ Cloc:
X

all I with i; j A Infdþ1g
dI

where Cloc is the corresponding local branch of B at iðcÞ.
Let fP1; . . . ;Pmg ¼ Si BSj . Let sj : C ! PCðLÞ be the section

corresponding to Sj. Then, LUs�j ðp�ðLÞnOSj
ÞUs�j ðOPCðLÞðSiÞnOSj

ÞU
OCð

Pm
k¼1ðSi:SjÞPk

pðPkÞÞ, and so, because of the previous formula, LU
i�ð

P
all I with i; j A Infdþ1g dI Þ. Now, by Kapranov’s description in Theorem 3.3,

we have

c�dþ1ðOPd�2ð1ÞÞU
X

all I with i; j A Infdþ1g
dI ;
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and so LU i�ðc�dþ1ðOPd�2ð1ÞÞÞ. This comes from the pull-back of the hyperplane
Li; j. By the projection formula, we have

degðLÞ ¼ B:c�dþ1ðOPd�2ð1ÞÞ ¼ cdþ1�ðBÞ:OPd�2ð1Þ ¼ degcdþ1ðBÞ: r

5. The one-to-one correspondences

Fix an integer db 3, and an algebraically closed field K.

Theorem 5.1. We haveG
C;L

AðC;L; dÞC firreducible curves in M0;dþ1g;

where the disjoint union is over all nonsingular projective curves C and line
bundles L on C (both up to isomorphism). This equality gives a bijection be-
tween AðC;L; dÞ and the set of irreducible projective curves B in M0;dþ1 with
M0;dþ1BBA j, whose normalization is C and LU i�ðc�dþ1ðOPd�2ð1ÞÞÞ, where
i : C ! B is the composition of the inclusion of B and its normalization.

Proof. Let B be an irreducible curve in M0;dþ1 with BBM0;dþ1A j. By Prop-
osition 4.1, B produces a unique element in

AðB; i�ðc�dþ1ðOPd�2ð1ÞÞÞ; dÞ;

where i is the composition of the inclusion of B and its normalization. In this
way, we only need to prove that given A a AðC;L; dÞ, there is an irreducible
curve B in M0;dþ1 intersecting M0;dþ1 so that A is induced by B as in Proposition
4.1.

Let A ¼ fS1; . . . ;Sdg be a primitive arrangement of d sections of
p : PCðLÞ ! C. The section C0 is denoted by Sdþ1. We repeatedly perform
blow-ups at the intersections of the sections Si and their proper transforms, until
they are all disjoint. We do this in a minimal way, that is, given a ð�1Þ-curve in a
fiber, its blow-down produces an intersection of the distinguished sections. The
corresponding fibration ~TT ! C has ðd þ 1Þ-pointed semi-stable genus zero curves
as fibers. The d þ 1 markings are produced by intersecting the proper transforms
of the sections Si’s with the fibers. They may fail to be stable exactly because of
the presence of fibers with P1’s having no markings, and intersecting the rest of
the fiber at two points. These components form chains of P1’s, which we blow
down to obtain a ðd þ 1Þ-pointed stable family of genus zero curves T ! C.
Therefore, we have a commutative diagram

T ���! M0;dþ2???y pdþ2

???y
C ���! M0;dþ1
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so that TUC �M0; dþ1
M0;dþ2. Notice that the image of C is a curve B becauseTd

i¼1 Si ¼ j (so not a point), and B intersects M0;dþ1. Let B be the normalization
of B, and let i : B!M0;dþ1 be the corresponding map. Then, the diagram above
factors as

T ���! R ���! M0;dþ2???y
???y pdþ2

???y
C ���!f B ���!i M0;dþ1

where R is given by pull-back, and TUC �B R. Let ~RR be the minimal resolution
of the singularities of R. Let us finally consider the commutative diagram

T0 ���! ~RR???y
???y

C ���!f B

where T0UC �B
~RR (it may be singular). The pull-back of the d þ 1 distinguished

sections are the d þ 1 distinguished sections of T0 ! C. We now inductively
blow-down all ð�1Þ-curves on the fibers of ~RR! B in the following way.

Let Ri ! B be the fibration produced in the i-th step, where ~RR ¼ R0. Then,
Ti UC �B Ri. We obtain the fibration Riþ1 ! B through the commutative dia-
gram below.

~TTi???y
Tiþ1 Ti ¼ C �B Ri Ri

C �B Riþ1 ���! Riþ1???y
???y

C ���!f B

 ����
����

����������������������!

 ���
��

 ���
��

 
����

����
����

�

 
����

����
����

�����������������!U

Let E be a ð�1Þ-curve in a fiber of Ri ! B, and let P be the point of intersection
with the rest of the fiber. Notice that at least two distinguished sections U and V
intersect E (not at P, of course). Let Riþ1 be the blow-down of E, and Riþ1 ! B
be the corresponding fibration. Let Q be the pre-image of P and F the pre-image
of E in Ti. Notice that Ti may be singular at Q, say with a singularity of type
xy ¼ ta. If a > 1 we resolve Q to get ~TTi. Then we define Tiþ1 to be the blow-
down of the total transform of F in ~TTi (this is a chain of ð�1Þ-curves). Let us
consider P in Riþ1, and its pre-image in C �B Riþ1, say Q 0. Now, C �B Riþ1 is

465arrangements of rational sections over curves and the varieties they define



nonsingular at Q 0, and there is a morphism Tiþ1 ! C �B Riþ1, which is clearly an
isomorphism.

For Ri, these procedure is what we have in Section 4. When it stops, say at the
m-th step, we have p 0 : Rm ¼ PBðL

0Þ ! B with d þ 1 distinguished sections, and
Tm nonsingular P1-bundle over C. Moreover, because of the construction of Ti’s,
we have TmUPCðLÞ, and the arrangement A is the pull-back of the one in
p 0 : PBðL

0Þ ! B. So this is a morphism of arrangements as in Definition 2.2.
But A primitive implies deg f ¼ 1, and so C ¼ B. r

For example, one has
F

C;L AðC;L; 3Þ ¼AðP1;Oð1Þ; 3Þ which corresponds
to the unique curve in M0;4 ¼ P1nf½0 : 1�; ½1 : 1�; ½1 : 0�g. An immediate corollary
is the following.

Corollary 5.2. Given a nonsingular projective curve C and a line bundle L on
C, the Kapranov’s map cdþ1 : M0;dþ1 ! Pd�2 gives a one-to-one correspondence
between elements of AðC;L; dÞ and irreducible projective curves A in Pd�2 not
contained in Hd such that A ¼ C and LU i�ðc�dþ1ðOPd�2ð1ÞÞÞ. In particular,
degA ¼ degL.

Corollary 5.3. AðP1;Oð1Þ; dÞC flines in Pd�2 not in Hdg.

Proof. A curve of degree one in Pd�2 is a line. r

Corollary 5.4. AðP1;Oð2Þ; dÞC fconics in Pd�2 not in Hdg.

Proof. An irreducible curve of degree two is a conic. r

The next two corollaries identify precisely the two distinguished classes of
arrangements in Definition 2.4.

Corollary 5.5.G
C;L

AtðC;L; dÞC firreducible curves in M0;dþ1 transversal to Dg;

where the disjoint union is over all nonsingular projective curves C and line bundles
L on C, both up to isomorphism.

Proof. Let A a AtðC;L; dÞ. Let P be a singular point of the reducible curve de-
fined by A in PCðLÞ. Let Fc be the fiber containing P. Hence, since A satisfies (t)
in Definition 2.4, there are two transversal sections Si, Sj containing P, i.e.,
ðSi:SjÞP ¼ 1. Consider the blow-up at P, BlPðPCðLÞÞ ! PCðLÞ, and let E be the
exceptional curve. Then, E has at least three special distinct points: the intersec-
tions with ~FFc, ~SSi, and ~SSj (corresponding proper transforms). Now, it is clear that
the final stable fibration R! C produced from A has the proper transform of E
as a component of the fiber over c. Let ~AA ¼ f ~SS1; . . . ; ~SSdg be the collection
of proper transforms of Si’s in BlPðPCðLÞÞ. Then, ~AA satisfies property (t) in
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Definition 2.4 (extending naturally this definition). So, we repeat the blow-ups
until all sections are disjoint (in a minimal way) to obtain the stable fibration
R! C, where no blow-downs are needed. Since R is a nonsingular surface, the
curve iðCÞ is transversal to D by Lemma 3.1.

Now assume A is not in AtðC;L; dÞ. Then, there are indices i, j and a point
P a Si BSj such that n ¼ maxfðSi:SkÞP : ðSi:SkÞPa ðSi:SjÞP � 1g < ðSi:SjÞP � 1.
Let ðSi:SjÞP ¼ m, so 0a nam� 2. We blow up n times the corresponding point

in ~SSi B ~SSj for the successive proper transforms of Si and Sj. Let X be the result-
ing surface, and ~PP ¼ ~SSi B ~SSj. Let E be the exceptional curve of the blow-up at ~PP.
Then, E has only two special points: the intersection with the rest of the fiber and
with the section ~SSi. Notice that ~SSi B ~SSj A j at E. So, in the process to obtain the
corresponding stable fibration R! C, we need to blow up again at ~SSi B ~SSj, and
so at the end the proper transform of E will have to be blown down (in order to
have a stable fibration). Therefore, R is singular, and by Lemma 3.1, iðCÞ is not
transversal to D. By Theorem 5.1, we have checked all irreducible curves in
M0;dþ1. r

Corollary 5.6.

G
C;L

AsðC;L; dÞC firreducible curves in Pd�2 transversal to Hdg;

where the disjoint union is over all nonsingular projective curves C and line bundles
L on C, both up to isomorphism.

Proof. Let A a AsðC;L; dÞ, and consider its stable fibration r : R! C. We
know that the image of C in M0;dþ1 is transversal to D by the previous corollary.
Let c a C be a point whose fiber is singular. Then there exists an element
in AðP1;Oð1Þ; dÞ that produces the same fiber. By Corollary 5.3, the set
AðP1;Oð1Þ; dÞ is in one-to-one correspondence with lines in Pd�2 not in Hd .
Therefore, there is a line in Pd�2 not in Hd passing through cdþ1ðiðcÞÞ a Pd�2.
This implies that the image of iðCÞ under fdþ1 is transversal to Hd . The converse
is clear using the same correspondence with lines. r

6. Producing explicit primitive arrangements

In the previous section we classified all arrangements of d sections (and two
distinguished subclasses). They are in one-to-one correspondence with curves in
Pd�2 outside of a certain fixed hyperplane arrangement Hd (Theorem 5.1). In
[21], we used this correspondence to explicitly find new special line arrangements
in P2. For this, we computed the corresponding line as in Corollary 5.3. In
general, it is hard to present a curve in Pd�2 in the form we need to construct its
corresponding arrangement. In this brief section, we show a simple way to pro-
duce arrangements via irreducible curves in P2. This is based on [6, Section 7],
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where Castravet and Tevelev describe how to cover M0;dþ1 with blow-ups of P2

at d þ 1 points.

Proposition 6.1 [6, Proposition 7.3]. Suppose p1; . . . ; pdþ1 are distinct points
in P2, and let U HP2 be the complement to the union of lines containing at least
two of them. The morphism

y : U !M0;dþ1

obtained by projecting p1; . . . ; pdþ1 from points of U extends to the morphism

y : Blp1;...;pdþ1P
2 !M0;dþ1:

If there is no (probably reducible) conic through p1; . . . ; pdþ1 then y is a closed em-
bedding. In this case the boundary divisors dI of M0;dþ1 pull-back as follows: for
each line LI :¼ 3pi4i A I HP2, we have y�ðdI Þ ¼ ~LLI (the proper transform of LI )
and (assuming jI jb 3), y�ðdInfkgÞ ¼ Ek, where k a I and Ek is the exceptional
divisor over pk. Other boundary divisors pull-back trivially.

In this way, we have

y�ðc�dþ1ðOð1ÞÞÞ ¼ ðndþ1 � 1ÞH � ðndþ1 � 2ÞEdþ1 �
Xd
i¼1

eiEi

where H is the class of a general line in P2, ndþ1 is the number of lines in P2 pass-
ing through pdþ1 and some other pj, and ei ¼ 0 if there is a pk in 3pdþ1; pi4
kA i; d þ 1 or ei ¼ 1 otherwise. Hence, the image of Blp1;...;pdþ1P

2 under cdþ1 � y
is a surface S in Pd�2 of degree 2ndþ1 � 3�

Pd
i¼1 ei, and so

2a degðSÞa d � 3:

Therefore, S is a surface of minimal degree in some PdegðSÞþ1 HPd�2. Thus S is

either a rational normal scroll in PdegðSÞþ1 or the Veronese of P2 in P5. More-
over, S is smooth. One can check that cdþ1 blows down certain d ð�1Þ-curves
in Blp1;...;pdþ1P

2 (proper transforms of lines 3pdþ1; pi4 with ei ¼ 1, and Ei with
ei ¼ 0) having as result a Hirzebruch surface Fm, where m depends on the config-
uration of points pi such that ei ¼ 1.

Given p1; . . . ; pdþ1 points in P2, with no (probably reducible) conic through
them, we consider an irreducible plane curve G not included in the union of
lines containing p1; . . . ; pdþ1. Then, by Proposition 6.1, we have the inclusion
y : B :¼ ~GG ,!M0;dþ1 and so a primitive arrangement A in AðB;L; dÞ for some
line bundle L, by Theorem 5.1. The line bundle L depends on the specific config-
uration p1; . . . ; pdþ1 and the position of the curve G with respect to these points.
Proposition 6.1 gives a way to precisely see all possible intersections of G with D,
and so this procedure indeed gives an explicit description of A.
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Example 6.1. Let z ¼ e2pi=3. Consider the dual Hesse arrangement of 9 lines in
P2ðCÞ:

ðx3
1 � x3

2Þðx3
1 � x3

3Þðx3
2 � x3

3Þ ¼ 0:

It has 12 triple points and no other singularities. We label these points as
p1 ¼ ½1 : z : z�, p2 ¼ ½z : z2 : 1�, p3 ¼ ½1 : z : 1�, p4 ¼ ½z : 1 : z2�, p5 ¼ ½z : 1 : 1�,
p6 ¼ ½1 : z2 : 1�, p7 ¼ ½1 : 1 : z�, p8 ¼ ½1 : 1 : z2�, p9 ¼ ½1 : 1 : 1�, p10 ¼ ½0 : 1 : 0�,
p11 ¼ ½1 : 0 : 0�, and p12 ¼ ½0 : 0 : 1�. Consider the unique conic G passing
through p12, p11, p10, p9, p4. It is given by the equation z2x1x2 þ zx1x3þ
x2x3 ¼ 0. By Proposition 6.1, we have y : Blp1;...;p12P

2 ,!M0;12, embedding the

proper transform ~GG of G. In [6], it is proved that ~GG is a rigid curve in M0;12.
By Theorem 5.1, this curve defines a primitive arrangement of 11 curves A. To

actually exhibit A, we need to check all intersections between G and all the lines
passing through pairs of points pi (so, more than the ones in the dual Hesse
arrangement). After that, it is easy to draw a picture of the arrangement. In
Figure 3, we show all the singular fibers of the corresponding stable fibration.
Notice that the arrangement belongs to AtðP1;Oð3Þ; 11Þ.

For another model, we perform in F3 two elementary transformations on the
fibers F4 and F5 by blowing up the corresponding singular points in A. Then, we
end up in F1 where the ð�1Þ-curve is the proper transform of S12. After blowing
it down, we obtain a very special arrangement of 7 lines and 4 conics in P2.

Figure 3. The singular fibers of the stable fibration induced by the conic G.
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7. Extended and partially extended arrangements

Fix the data ðC;L; dÞ over K ¼ K as in Section 2. We now study properties
of certain log surfaces associated to arrangements of sections A. First, we as-
sociate to A an extended arrangement AD, and partially extended arrangements
ApD.

Definition 7.1. Consider the arrangement of sections A as a (reducible singu-
lar) curve, we denote its set of singular points by singðAÞ. Let fF1; . . . ;Fdg be the
fibers of p : PCðLÞ ! C which contain points in singðAÞ. Then, the extended
arrangement AD associated to A is

AD :¼ AA fF1; . . . ;FdgA fSdþ1g:

Let 0 < ea d� 2 be an integer. Let fFi1 ; . . . ;Fieg be a subset of fF1; . . . ;Fdg such
that for any 1a ja e and any point P in singðAÞBFij , there are two sections
in A intersecting at P with distinct tangent directions. Then, a partially extended
arrangement ApD associated to A is

ApD :¼ ADnfFi1 ; . . . ;Fieg:

The numeration of the fibers will be irrelevant.

As before, we perform blow-ups at the points in singðAÞ (and infinitely near
points above them) to separate all sections Si’s in a minimal way (as in the proof
of Theorem 5.1). This is described by a chain of blow-ups

~RR ¼ Rs :¼ BlPs
Rs�1 !

ss � � � !s3 R2 :¼ BlP2
R1 !

s2
R1 :¼ BlP1

PCðLÞ !
s1

R0 :¼ PCðLÞ

whose composition is denoted by s : ~RR! PCðLÞ. The map s gives the minimal
log resolution of A, and produces the semi-stable fibration of ðd þ 1Þ-pointed
genus zero curves ~rr : ~RR! C. The s�ðAÞred is a simple normal crossing divisor.
Let tðPiÞ be the number of sections in the proper transform of A passing through
Pi right before blowing up Pi (the center of the blowing up si). We define

tðAÞ :¼
Xs

i¼1
ðtðPiÞ � 1Þ:

The divisor s�ðADÞred is the minimal log resolution of AD, but s
�ðApDÞred may

not be minimal, since we may need to blow down ð�1Þ-curves coming from some
nodes in A. The divisors s�ðADÞred and s�ðApDÞred are denoted by AD and ApD

respectively. The arrangement AD may be seen as defined by the intersection of
the boundary D in M0;dþ2 with the surface R, where r : R! C is the stable fibra-
tion of ðd þ 1Þ-pointed curves of genus zero induced by A.
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We now follow the exposition of log surfaces as in [22, Section 2], which is due
to Iitaka, and the references given there. We are interested in the log surfaces
ð ~RR;ADÞ and ð ~RR;ApDÞ, and their log Chern classes2

ciðADÞ :¼ ciðW1
~RR
ðlogADÞ4Þ; ciðApDÞ :¼ ciðW1

~RR
ðlogApDÞ4Þ

where W1
~RR
ðlogADÞ4, W1

~RR
ðlogApDÞ4 are the dual of the corresponding sheaves of

log di¤erentials (see [22, Def. 2.2]), and i ¼ 1; 2.

Proposition 7.1. Let A be an arrangement of sections with data ðC;L; dÞ,
degL ¼ e and h1ðC;OCÞ ¼ g. Then,

c21ðADÞ ¼ ðd � 1Þð2dþ 4ðg� 1Þ � eÞ þ tðAÞ c2ðADÞ ¼ ðd � 1Þð2ðg� 1Þ þ dÞ

with d as in Definition 7.1.

Proof. In general, if ðY ;D ¼
Pr

i¼1 DiÞ is a log surface (as in [22, Section 2]), the
log Chern numbers are (see [22, Proposition 2.4])

c21ðY ;DÞ ¼ c21ðY Þ �
Xr

i¼1
D2

i þ 2t2 þ 4
Xr

i¼1
ðgðDiÞ � 1Þ;

and c2ðY ;DÞ ¼ c2ðY Þ þ t2 þ 2
Pr

i¼1ðgðDiÞ � 1Þ, where t2 is the number of

nodes of the curve D. In our case, Y ¼ ~RR and D ¼ AD. We will compute these
numbers recursively. Let si;1 : Ri ! PCðLÞ be the composition of the blow-ups
s1 � � � � � si. Define

c21ðiÞ :¼ 8ð1� gÞ � i �
Xsi
j¼1

D2
i; j þ 2ði þ ðd þ 1ÞdÞ þ 4ðd þ 1Þðg� 1Þ � 4d� 4i

for i ¼ 0; 1; . . . ; s, where
Pri

j¼1 Di; j is the prime decomposition of s�i;1ðADÞred.
Then, one can check that

c21ð0Þ ¼ ðd � 1Þð2dþ 4ðg� 1Þ � eÞ c21ðsÞ ¼ c21ðADÞ

and c21ði þ 1Þ ¼ c21ðiÞ þ tðPiþ1Þ � 1. Therefore, c21ðADÞ ¼ ðd � 1Þ �
ð2dþ 4ðg� 1Þ � eÞ þ tðAÞ. On the other hand, by the formula for c2ð ~RR;ADÞ
above, we have

c2ðADÞ ¼ 4ð1� gÞ þ sþ ðsþ ðd þ 1ÞdÞ þ 2ðd þ 1Þðg� 1Þ � 2d� 2s

and so c2ðADÞ ¼ ðd � 1Þð2ðg� 1Þ þ dÞ. r

2The corresponding log Chern numbers for s�ðApDÞred and the minimal log resolution of ApD are

the same (see for example [22, Proposition 2.4]).
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Corollary 7.2. Let A ¼ fS1; . . . ;Sdg as above. Then, c21ðADÞb 2d � 1,

c2ðADÞb d � 1, and 2 <
c21 ðADÞ
c2ðADÞ . The log canonical divisor K ~RR þAD is big and nef,

and so the surface ~RRnAD is of log general type. When K ¼ C, we have the (strict)
log Miyaoka–Yau inequality

c21ðADÞ < 3c2ðADÞ;

and so tðAÞ < ðd � 1Þðdþ 2ðg� 1Þ þ eÞ.

Proof. The second log Chern number c2ðADÞ ¼ ðd � 1Þð2ðg� 1Þ þ dÞ is posi-
tive because db 3. For the other one, take S1 a A. Then, by looking at the
intersections of S1 with S2; . . . ;Sd in PCðLÞ, one sees that tðAÞ > eðd � 1Þ. The
inequality is strict because

Td
i¼1 Si ¼ j. Therefore, by Proposition 7.1, one has

c21ðADÞ > 0. By the same reason,

2 <
c21ðADÞ
c2ðADÞ

¼ 2þ tðAÞ � eðd � 1Þ
ðd � 1Þð2ðg� 1Þ þ dÞ :

Let D :¼ AD and write its prime decomposition D ¼
Pdþ1

i¼1
~SSi þ

P
i Ei where ~SSi

is the proper transform of Si under s : ~RR! PCðLÞ, and Ei UP1’s are the rest.
Since ~SSdþ1 ¼ s�Sdþ1, we denote Sdþ1 ¼ s�Sdþ1 and F ¼ s�F where F is a general
fiber of p : PCðLÞ ! C. Then, K ~RR þDC�2Sdþ1 þ ð2g� 2� eÞF þ

P
i aiEi þD

for some ai > 0. But, for any fixed j ¼ 1; . . . ; d, ~SSj CSdþ1 þ eF �
P

i biEi where
bi a ai, and

P
i Ei C dF . Thus, say for j ¼ 1, we have

K ~RR þDC ð2g� 2þ dÞF þ
X
i

ðai � biÞEi þ
Xd
i¼2

~SSi;

which means that the log canonical class is numerically equivalent to an e¤ec-
tive divisor. Moreover, ~SSi:ðK ~RR þDÞ ¼ 2g� 2þ d > 0 for all i, and Ei:ðK ~RR þDÞ ¼
�2þ Ei:ðD� EiÞb 0, and so K ~RR þD is nef. This plus the fact c21ðADÞ ¼
ðK ~RR þDÞ2 > 0 implies that K ~RR þD is big, and so ~RRnAD is of log general type.
When K ¼ C, we use Sakai’s theorem [18, Theorem 7.6] to conclude c21ðADÞa
3c2ðADÞ. Notice that the curve D is semi-stable and has no exceptional curves
with respect to D, as defined in [18, pp. 90–91]. For strictness, we apply Lemma
9.1. r

Remark 7.1. From the previous proof, it is easy to see that the log canonical
class is ample if and only if A is transversal (Definition 2.4). One just applies the
Nakai-Moishezon criterion [8, p. 365].

Proposition 7.3. Let A be an arrangement of sections with data ðC;L; dÞ,
and let ApD be a partially extended arrangement from A with fFi1 ; . . . ;Fieg for

472 g. urzúa



some 0 < ea d� 2 (see Definition 7.1). Let ko
j :¼ jsingðAÞBFij j and kj :¼

jABFij j þ 1a d. Then,

c2ðApDÞ ¼ c2ðADÞ �
Xe

j¼1
kj þ 2e c21ðApDÞ ¼ c21ðADÞ �

Xe

j¼1
ko
j � 2

Xe

j¼1
kj þ 4e:

Proof. The result follows directly from the formulas in [22, Proposition 2.4].
r

Corollary 7.4. Let A be as above. Then, c21ðApDÞb 2, c2ðApDÞb 1. The corre-
sponding log canonical divisor is big and nef, and so the log surface defined by ApD

is of log general type. When K ¼ C, we again have (strict) log Miyaoka–Yau
inequality c21ðApDÞ < 3c2ðApDÞ.

Proof. Notice that
Pe

j¼1 kj � 2ea de� 2ea ðd � 2Þðd� 2Þ, and so

c2ðApDÞ ¼ c2ðADÞ �
�Xe

j¼1
kj � 2e

�

b ðd � 1Þð2ðg� 1Þ þ dÞ � ðd � 2Þðd� 2Þ ¼ 2gðd � 1Þ þ d� 2b 1:

Clearly, we have ko
i þ 2ki a 2d þ 1, and so

Pe
j¼1 k

o
j þ 2

Pe
j¼1 kj � 4ea

ð2d � 3Þðd� 2Þ. Then, since tðAÞ � eðd � 1Þb 1, we have

c21ðApDÞ ¼ c21ðADÞ �
Xe

j¼1
ko
j � 2

Xe

j¼1
kj þ 4e

b 4ðg� 1Þðd � 1Þ þ 2dðd � 1Þ � eðd � 1Þ þ tðAÞ � ð2d � 3Þðd� 2Þ
b 1þ 4ðg� 1Þðd � 1Þ þ 2ð2d � 3Þ þ db 1� 4ðd � 1Þ þ dþ 2ð2d � 3Þ
¼ d� 1b 2:

We prove nefness and bigness as we did in Corollary 7.2. It is enough to do it
in ~RR. Let D :¼ s�ðApDÞred and write its prime decomposition D ¼

Pdþ1
i¼1

~SSiþP
i Ei where ~SSi is the proper transform of Si under s : ~RR! PCðLÞ, and

Ei UP1’s are the rest. Since ~SSdþ1 ¼ s�Sdþ1, we denote Sdþ1 ¼ s�Sdþ1 and
F ¼ s�F where F is a general fiber of p : PCðLÞ ! C. Then, K ~RR þDC
�2Sdþ1 þ ð2g� 2� eÞF þ

P
i aiEi þD for some ai > 0. But, for any fixed

j ¼ 1; . . . ; d, ~SSj CSdþ1 þ eF �
P

i biEi where bi a ai, and
P

i Ei C dF �
Pe

j¼1
~FFij

(see Definition 7.1). Thus, say for j ¼ 1, we have

K ~RR þDC ð2g� 2þ d� eÞF þ
X
i

ðai � biÞEi þ
Xd
i¼2

~SSi þ
Xe

j¼1
ðF � ~FFijÞ;

which means that the log canonical class is numerically equivalent to an e¤ective
divisor. Moreover, ~SSi:ðK ~RR þDÞb 2g� 2þ d� eb 0 for all i, and Ei:ðK ~RR þDÞ ¼
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�2þ Ei:ðD� EiÞb 0 (this is by definition of partially extended arrangement),
and so K ~RR þD is nef. This plus the fact ðK ~RR þDÞ2 > 0 implies that K ~RR þD is
big, and so ~RRnApD is of log general type. When K ¼ C and by Sakai’s theorem
[18, Theorem 7.6], we have c21ðApDÞa 3c2ðApDÞ. For strictness, we apply again
Lemma 9.1. r

Example 7.1. We use Example 6.1 to show di¤erences in
c21
c2
between extended

and partially extended arrangements. Let A be the arrangement in Example 6.1.
For the partially extended arrangements, let X be the set of fibers we take out
from AD (see Definition 7.1). We label fibers according to Figure 3. Then we
have the following table.

X fF1; . . . ;F8g j fF9; . . . ;F20g fF7; . . . ;F20g fF6; . . . ;F20g
c21 319 399 171 141 134

c2 147 180 72 58 55

c21
c2

2:170 . . . 2:216 2:375 2:4310 . . . 2:436

Remark 7.2. In general, there are no inequalities between
c21 ðApDÞ
c2ðApDÞ

and
c21 ðADÞ
c2ðADÞ

.

Also, in general, we do not have 2 <
c21 ðApDÞ
c2ðApDÞ

. For instance take a general arrange-

ment A a AðP1;Oð1Þ; dÞ (a general line arrangement). We have d ¼ d
2

� �
. Take

e ¼ d� 2. Then, tðAÞ ¼ d
2

� �
and

c21 ðApDÞ
c2ðApDÞ

¼ 2� d�3
d
2ð Þ�2

< 2.

Remark 7.3. Almost any line arrangement is ‘‘log equivalent’’ to a
ApD a AðP1;Oð1Þ; dÞ. More precisely, let L be a line arrangement in P2. As-
sume this line arrangement has at least two singular points so that each of them
belongs to more than two lines (in particular, general line arrangements are not
allowed). Take two distinct lines in L, each of which contains exactly one of
these two points. Now we blow up the intersection of these two lines. The total
(reduced) transform of L is a ApD for some A a AðP1;Oð1Þ; dÞ.

Over C and by [22, Theorem 7.2], we have the Hirzebruch-Sakai inequality

c21ðApDÞa
8

3
c2ðApDÞ;

for any A a AðP1;Oð1Þ; dÞ, with equality if and only if ApD is the proper trans-
form of the dual Hesse arrangement (see Example 6.1). Of course, the same holds
true for AD, but now equality is impossible. This shows that the log Miyaoka–
Yau inequality in the previous corollaries may be far from optimal, and opens
the interesting question:

Question 7.5. Find the number 0 < aðC;LÞ < 3 which makes

c21ðApDÞa aðC;LÞ c2ðApDÞ
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a sharp inequality, valid for any complex arrangement A a AðC;L; dÞ and any
db 3.

Arrangements holding equality should be interesting. Proposition 7.6 will
show that we indeed need to look only at arrangements in AðC;L; dÞ, i.e. primi-
tive ones (Definition 2.3).

Remark 7.4. The log Miyaoka–Yau inequalities in Corollaries 7.2 and 7.4 are
not combinatorial, except in the case of AðP1;Oð1Þ; dÞ. As in the previous
remark, let ApD be defined by an arrangement of lines L ¼ fL1; . . . ;Lsg in P2.
Let fp1; . . . ; prg be the set of singular points of L. The log Miyaoka–Yau
inequality c21ðLÞa 3c2ðLÞ becomes precisely rb s [22]. This inequality was
proved in a purely combinatorial manner by N. G. de Bruijn and P. Erd€oos in
[5]. Moreover, they show that s ¼ r if and only if L has either s� 1 lines through
a common point (in this case c21 ¼ c2 ¼ 0) or it is a finite projective plane. We
proved this inequality in [22, Theorem 7.2] using some surface theory. The fol-
lowing is another combinatorial proof. Consider Li as a vector in Qr having a 1
in the j-th coordinate if pj a Li, 0 otherwise. The assertion follows if L forms a
linearly independent set. If not, say the line L1 ¼

Ps
i¼2 aiLi. Then, consider the

inner product with L1 � Lj, giving aj ¼ L1�L1�1
1�Lj �Lj

< 0 for all j, a contradiction.
In general, one can exhibit ‘‘combinatorial arrangements’’ for which the in-

equality tðAÞa ðd � 1Þðdþ 2ðg� 1Þ þ eÞ does not hold. For example, one may
take A a AðP1;OðeÞ; 4Þ with e > 1 such that any two sections are tangent of
order e and d ¼ 3 (when e ¼ 1, AD is the Fano arrangement (with a point
blown-up)). This combinatorial phenomena is produced by the freedom we have
with respect to tangencies of higher order. See also Example 7.5, where positive
characteristic is used.

Proposition 7.6. Let A, A 0 be two arrangements of d sections so that A is a
pull-back of A 0, as in Definition 2.2. Assume that the pull-back map g is separable.
Then,

c21ðADÞ
c2ðADÞ

a
c21ðA

0
DÞ

c2ðA 0DÞ
;

c21ðApDÞ
c2ðApDÞ

a
c21ðA

0
pDÞ

c2ðA 0pDÞ
;

where ApD is the pull-back of A 0pD.

Proof. By definition, we have the following working diagram

PCðLÞ ���!G PC 0 ðL 0Þ

p

???y p 0

???y
C ���!g C 0

where A and A 0 are arrangements of d sections in PCðLÞ and PC 0 ðL 0Þ respec-
tively. Since g is a finite separable morphism, we have the Hurwitz formula

2g� 2 ¼ degðgÞð2g 0 � 2Þ þ degR

475arrangements of rational sections over curves and the varieties they define



where R ¼
P

c AC lengthðWC=C 0 ÞPP, and so degRb
P

c ACðec � 1Þ (see [8, p.
301]). Here ec is the ramification index of g at c. As usual, c 0 a C 0 is a branch
point of g if there is c a C such that gðcÞ ¼ c 0 and ec > 1. We remak that for
any c 0 a C 0 we have g�ðc 0Þ ¼

P
gðcÞ¼c 0 ecc and degðgÞ ¼

P
gðcÞ¼c 0 ec [8, p. 138].

It is not hard to see that dþ degR ¼ degðgÞd 0 þ a, for some integer ab 0. We
also have e ¼ degðgÞe 0 (Lemma 2.1, where e ¼ degL and e 0 ¼ degL 0). Notice
that, by definition, the map g cannot be branched at any of the images of the
special e fibers (this is an empty statement when we consider the extended ar-
rangement). This is because a pre-image of such a fiber would contain at least
one point in singðAÞ where all sections inA through it have the same tangent direc-
tion. So, e ¼ degðgÞe 0,

Pe
i¼1 ki ¼ degðgÞ

Pe 0

i¼1 k
0
i , and

Pe
i¼1 k

o
i ¼ degðgÞ

Pe 0

i¼1 k
o0
i .

So we only need to compare tðAÞ with tðA 0Þ.
For any P a singðAÞ, define tPðAÞ :¼

P
Q ANðPÞðtðQÞ � 1Þ where NðPÞ is the

set of points blown up by s above P (so NðPÞ contains P). Then, tPðAÞ ¼
epðPÞtGðPÞðA 0Þ, and so tðAÞ ¼ degðgÞtðA 0Þ. Therefore,

c21ðApDÞ
c2ðApDÞ

¼ 2þ tðAÞ � eðd � 1Þ �
Pe

i¼1 k
o
i

ðd � 1Þðdþ 2ðg� 1ÞÞ �
Pe

j¼1 kj þ 2e

¼ 2þ degðgÞðtðA 0Þ � e 0ðd � 1Þ �
Pe

i¼1 k
o0
i Þ

ðd � 1ÞðdegðgÞð2g 0 � 2þ d 0Þ þ aÞ � degðgÞð
Pe 0

j¼1 k
0
j � 2e 0Þ

a 2þ degðgÞðtðA 0Þ � e 0ðd � 1Þ �
Pe

i¼1 k
o0
i Þ

ðd � 1Þ degðgÞð2g 0 � 2þ d 0Þ � degðgÞð
Pe 0

j¼1 k
0
j � 2e 0Þ

¼
c21ðA

0
pDÞ

c2ðA 0pDÞ
:

r

Remark 7.5. The situation is di¤erent when the base change is not separable.
Assume that K has positive characteristic p. Let A, A 0 be two arrangements
of d sections so that A is a pull-back of A 0, as in Proposition 7.6, but now let
g : C ¼ C 0pr ! C 0 be the composition of the K-linear Frobenius morphism r
times [8, p. 302]. Then,

c21ðADÞ
c2ðADÞ

¼ 2þ pr tðA 0Þ � e 0ðd � 1Þ
ðd � 1Þð2ðg 0 � 1Þ þ d 0Þ ¼ 2þ pr

� c21ðA
0
DÞ

c2ðA 0DÞ
� 2

�

and so it becomes arbitrarily large when rg 0 (Corollary 7.2). In the next sec-
tion, these examples will produce nonsingular projective surfaces violating any
Miyaoka–Yau inequality.

8. Random surfaces associated to arrangements

Fix the data ðC;L; dÞ over K ¼ K as always. We now associate to each arrange-
ment of sections A of p : PCðLÞ ! C various collections of nonsingular projec-
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tive surfaces. Each collection is produced by either AD or some ApD. The con-
struction is analogue to the one in [22, Theorem 6.1] but now we have more
singular arrangements of curves. From now on, we consider AD as ApD with
e ¼ 0, to save notation.

Let A ¼ fS1; . . . ;Sdg. By definition,

Si PSdþ1 þ p�ðLÞ

for i ¼ 1; . . . ; d, where Sdþ1 ¼ C0 with C2
0 ¼ �e ¼ �degL. Let fF1; . . . ;Fd�eg

be the fibers which define ApD ¼ AA fF1; . . . ;Fd�e;Sdþ1g. Let f0 < xigdi¼1,
f0 < yigd�ei¼1 be an integer solution of the equation

E :
Xd
i¼1

exi þ
Xd�e
i¼1

yi ¼ p

for some prime number pA charðKÞ, and let xdþ1 :¼ p�
Pd

i¼1 xi. When p is
large enough, the equation E has nonnegative solutions, exactly (see [4])

pdþd�e�1

ðd þ d� e� 1Þ!ed þOðpdþd�e�2Þ:

In this way,

Xdþ1
i¼1

xiSi þ
Xd�e
i¼1

yiFi P pSdþ1 þ p�
��Xd

i¼1
xi

�
L þM

�
;

for some line bundle M on C of degree
Pd�e

i¼1 yi. Then, since

�Xd
i¼1

xi

�
eþ degM ¼ p;

there is an invertible sheaf N on C such that

Xdþ1
i¼1

xiSi þ
Xd�e
i¼1

yiFi P pðSdþ1 þ p�N Þ:

The theorem below associates to each arrangement A various families of ran-
dom smooth projective surfaces. We use the method in [22], with an extra care of
the new singularities; in [22] we only had simple crossings (as in Definition 2.4).
The randomness part relies on a large scale behavior of Dedekind sums and con-
tinued fractions (see [22, Apendix]). The proof will be based on the work done
in [22].
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Theorem 8.1. Let A be an arrangement of sections of p : PCðLÞ ! C. Then,
there exist nonsingular projective surfaces X of general type with

c21ðX Þ
c2ðX Þ

arbitrarily close to
c21ðApDÞ
c2ðApDÞ

;

for any ApD.

Proof. Let Z :¼ PCðLÞ and let Y be the surface which log resolves minimally
the arrangement ApD (for example, Y ¼ ~RR when e ¼ 0). Let s : Y ! Z be the
minimal log resolution of ApD. Choose a solution of E, and define

D :¼ s�
�Xdþ1

i¼1
xiSi þ

Xd�e
i¼1

yiFi

�
P ps�ðSdþ1 þ p�N Þ:

This allows the construction of the p-th root cover f : X ! Y along D, as in
[22, Section 2]. Thus, X is a nonsingular projective surface. Let

D ¼
Xr

i¼1
niDi

be the decomposition of D into the sum of prime divisors. From E and the nature
of ApD, ones sees that 0 < ni < p.

As in [22, Apendix], for 0 < q < p, we denote the corresponding Dedekind
sum by sðq; pÞ and the length of the corresponding negative continued fraction
by lðq; pÞ. In [22, Proposition 3.4, 3.6, and 2.4], we computed the Chern numbers
of X as functions of p, Chern numbers, and ‘‘error terms’’. Let c21 :¼ c21ðApDÞ,
c2 :¼ c2ðApDÞ, c21 :¼ c21ðY Þ, and c2 :¼ c2ðYÞ. Then,

c21ðX Þ ¼ c21 pþ 2ðc2 � c2Þ þ ðc21 � c21 þ 2c2 � 2c2Þ
1

p
�
X
i< j

cðp� n 0inj; pÞDi:Dj

c2ðX Þ ¼ c2pþ ðc2 � c2Þ þ
X
i< j

lðp� n 0inj; pÞDi:Dj

where cðp� n 0inj; pÞ :¼ 12sðp� n 0inj; pÞ þ lðp� n 0inj; pÞ. Let us denote the error
terms by CCF :¼

P
i< j cðp� n 0inj; pÞDi:Dj and LCF :¼

P
i< j lðp� n 0inj; pÞDi:Dj.

We prove the existence of ‘‘good’’ solutions of E for arbitrarily large primes p,
which make CCF

p
and LCF

p
arbitrarily small. In addition, this will show that ran-

dom partitions are ‘‘good’’, with probability approaching 1 as p becomes arbi-
trarily large. The key numbers to take care of are the p� n 0inj, which are defined
for each node of Dred. The idea is to show that there are solutions of E for
which all p� n 0inj are outside of a certain bad set F H f0; . . . ; p� 1g (defined in
[22, Apendix], due to K. Girstmair).
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We write down for each node in Dred the multiplicities na, nb as functions on
the numbers xi, yj. There are di¤erent cases, all described in the following table.

Type I II III IV V

na xi yi yi
Pd

k¼1 nkxk þ yj
with 0a nk a e

n
P

k xk þ z, zA 0
has no xk, 0a n < e

nb xj xj xdþ1 xk with nk A 0
P

k xk þ na

Notice that ‘‘zA 0 has no xk’’ in case V because of our restriction on tangent
directions at the singular points of ApD (Definition 7.1). Below we estimate for
each type the number of solutions bðna; nbÞ of E producing a bad multiplicity
p� n 0anb a F . We do it case by case.

(Type I) This is a node in Si BSj (possible only when e > 0). Since E is a
weighted partition of p, we can use the estimate in [22, proof of The-
orem 6.1 (1)], and so there exists a positive number M (independent
of p) such that

jbðna; nbÞj < p � jF j �Mpdþd�e�3 ¼MjF jpdþd�e�2:

(Type II) This is a node in Fi BSj with jA d þ 1. Then again, we apply what
we did in [22, proof of Theorem 6.1], to obtain the same estimate as
above.

(Type III) This is a node in Fi BSdþ1. Since xdþ1 ¼ p�
Pd

k¼1 xk, then we want
p� y 0i ðp�

Pd
k¼1 xkÞ a F mod p, so y 0i ð

Pd
k¼1 xkÞ a F . But this is

again as in [22, Theorem 6.1], and we have the same previous esti-
mate. Notice that it works because d� eb 2.

(Type IV) This is a node between Sk, kA d þ 1, and a exceptional divisor
over the fiber Fj. Notice that ApD contains at least two fibers, soPd

k¼1 nkxk þ yj < p. Hence we are as in case (2) in the proof of
[22, Theorem 6.1].

(Type V) This is the new case, coming from nodes in the resolution of singular-
ities of A. It does not involve xdþ1. The idea is to analyze three equa-
tions E1, E2, E3 from the equation E, and estimate solutions for each.

Without loss of generality, we rearrange indices so that

na ¼ n
Xa

i¼1
xi þ z;

for some a, and nb ¼
Pa

i¼1 xi þ na, where z ¼
Pb

i¼aþ1 nixi þ vyj , for some b, with
v ¼ 0 or 1, and 0 < ni < e. Notice that zA 0 for any solution of E. We define

E1 :
Xd
i¼bþ1

exi þ
X
iA j

yi ¼ p1;
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equation with m1 variables, E2 :
Pa

i¼1 xi ¼ p2 with m2 variables, and

E3 :
Xb

i¼aþ1
nixi þ vyj ¼ p3

with m3 variables. So, m1 þm2 þm3 ¼ d þ d� e. Notice that pi are numbers
varying in the region 0 < pi < p, since we will look at solutions of Ei from solu-
tions of E.

Say that p� n 0anb a F , which means mod p, ð
P

k xkÞn 0a a �F � 1. Of course
the set �F � 1 has same size as F . We now use repeatedly the fact that the num-
ber of nonnegative integer solutions of a1z1 þ � � � þ amzm ¼ q for coprime ai’s is

qm�1

ðm�1Þ!a1a2���am
þOðqm�2Þ (see [4]). Let p be large enough. Given 0 < p3 < p, the

number of solutions of E3 is < M3p
m3�1.

Now, the key observation is that mod p we have p2ðnp2 þ p3Þ0C
p2ðnp2 þ p3Þ0 and so

p2ðnp2 þ p3ÞC p2ðnp2 þ p3Þ ) p2p3C p2p3 ) p2C p2

because p3 is not zero. In this way, we have to choose p2 in a set of size jF j. Now
we fix p2 and have at most M2p

m2�1 solutions for E2. After we have solutions for
E3 and E2, we have at most M1p

m1�1 solutions for E1. Putting it all together,

bðna; nbÞ < p �M3p
m3�1 � jF j �M2p

m2�1 �M1p
m1�1 ¼M1M2M3jF jpdþd�e�2:

But we know that jF j < ffiffiffi
p
p ðlogðpÞ þ 2 logð2ÞÞ [22, Apendix], and that the

total number of solutions of E is
pdþd�e�1

ðdþd�e�1Þ!ed þOðpdþd�e�2Þ. Then, since the num-

ber of nodes of Dred is of course independent of p, we have proved the existence
of good solutions, and that a random one is good with probability tending to 1
as p becomes arbitrarily large.

Now, given good solutions with p large, we proceed as at the end of the proof
of [22, Theorem 6.1], showing that3

LCF <
�X

i< j

Di:Dj

�
ð3 ffiffiffi

p
p þ 2Þ jCCF j <

�X
i< j

Di:Dj

�
ð6 ffiffiffi

p
p þ 7Þ:

This proves the asymptotic result. Finally, these surfaces are of general type
because of the classification of algebraic surfaces (see [3] for any characteristic),
since we know that c21 > 0 and c2 > 0 (Corollaries 7.2 and 7.4). r

Remark 8.1. With this theorem, one recovers the log Miyaoka–Yau inequal-
ities in Corollaries 7.2 and 7.4, when K ¼ C. We just apply the (projective)
Miyaoka–Yau inequality to the surfaces X for large primes p.

3 In [22] there is a minor error for the estimate of sðq; pÞ. This is due to the usual normalization by
12 of a Dedekind sum. The correct estimate is 12jsðq; pÞja 3

ffiffiffi
p
p þ 5, which of course does not a¤ect

any asymptotic result.
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A good looking corollary, consequence of Theorem 5.1, Section 7, and Theo-
rem 8.1.

Corollary 8.2. Let db 3 be an integer, and let A be an irreducible projective
curve in Pd�2ðKÞ not contained in the hyperplane arrangement Hd (see above Ex-
ample 3.1). Then, there exist nonsingular projective surfaces X associated to A such
that X is of general type and 0 < 2c2ðX Þ < c21ðX Þ.

Proof. Consider the arrangement A defined by A as in Corollary 5.2. Then use
Theorem 8.1 for AD, and Corollary 7.2. r

Remark 8.2. In addition, one can prove that p ét
1 ðX ÞUp ét

1 ðAÞ, where A is the
normalization of the curve A, and p ét

1 denotes the étale fundamental group [23].

Corollary 8.3. Assume K ¼ C. Let A be an arrangement of sections of
p : PCðLÞ ! C. Then, there exist nonsingular projective surfaces X of general
type such that

2 <
c21ðX Þ
c2ðX Þ

< 3;

(and so of positive index) having
c2
1
ðXÞ

c2ðX Þ arbitrarily close to
c21 ðADÞ
c2ðADÞ . In addition, there

is an induced connected fibration p 0 : X ! C which gives an isomorphism:
p1ðX ÞUp1ðCÞ. In this way, AlbðXÞU JacðCÞ and p 0 is the Albanese fibration
of X.

Proof. The first part is implied by Theorem 8.1 for AD and Corollary 7.2. The
map f : X ! Y in the proof of Theorem 8.1 is totally ramified along AD, and
p � s : Y ! C is a connected fibration with at least one simply connected fiber
and one section in AD. Therefore, the construction induces a connected fibration
p 0 : X ! C, and by [22, Proposition 8.3] we have p1ðX ÞUp1ðCÞ. The last part is
a simple consequence of Albanese maps which applies to any such fibration (see
[3] for example). r

Remark 8.3. Corollary 8.3 is also valid for any ApD except for 2 <
c2
1
ðX Þ

c2ðXÞ . If one

thinks that the closest
c2
1
ðX Þ

c2ðXÞ is to 3, the more interesting are the surfaces X , then
one may consider the construction starting with some ApD (this is with e > 0). For
line arrangements, this is indeed the case (see Remark 7.3). By Proposition 7.6,
we only need to consider primitive arrangements in order to find upper bounds
for Chern ratios.

Example 8.1. The conic in Example 6.1 produces an arrangement A a
AðP1;Oð3Þ; 11Þ. In the table of Example 7.1, we computed log Chern ratios for
the extended and some partially extend arrangements induced by A. Then, by
Corollary 8.3, there are simply connected nonsingular projective surfaces of gen-
eral type with Chern ratios arbitrarily close to the ones in that table. Notice that
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the highest is attained by a partially extended arrangement, which avoids ‘‘too
many’’ double points.

Example 8.2. Assume K has positive characteristic p. Take any A 0 a
AðC;L; dÞ for some curve C and line bundle L. Consider the K-linear Frobenius
pull-back of A 0 composed r times, as in Remark 7.5. Denote the resulting
arrangement by A. Then, by Remark 7.5 and Theorem 8.1, there are nonsin-

gular projective surfaces of general type X with
c2
1
ðXÞ

c2ðX Þ arbitrarily close to
c21 ðADÞ
c2ðADÞ ¼ 2þ pr

� c21 ðA
0
DÞ

c2ðA 0DÞ
� 2

�
, and so arbitrarily large. We can prove that p ét

1 ðXÞU
p ét
1 ðCÞ (see [23]). Therefore, for any given positive characteristic and nonsingular

projective curve C, there are nonsingular projective surfaces of general type X
with p ét

1 ðX ÞUp ét
1 ðCÞ and violating any sort of Miyaoka–Yau inequality.

9. Appendix: log inequalities

In this section, the ground field is C. After fixing AðC;L; dÞ, it is clearly of our

interest to find optimal upper bounds for
c21
c2
for extended and partially extended

arrangements (see Remark 7.3). Arrangements attaining upper bounds should be
very special, and they would produce interesting surfaces via Theorem 8.1.

In this appendix, we show through Theorems 9.2 and 9.3 how this question
about sharp upper bounds is connected to old questions by Lang and others
on e¤ective height inequalities [15, pp. 149–153], via an inequality of Liu [16,
Theorem 0.1]. Also, in a more general setting, we show a way to obtain strictness
for the log inequalities in Corollaries 7.2 and 7.4, and Theorems 9.2 and 9.3. The
next lemma follows from Kobayashi [14] and Mok [17].

Lemma 9.1. Let Y be a smooth projective surface, and let D be a simple normal
crossing divisor in Y. Assume KY þD is big and nef, and c21ðY ;DÞ ¼ 3c2ðY ;DÞ.

Then, D is a disjoint union of smooth elliptic curves.

Proof. By [14, p. 46], KY þD big and nef and c21ðY ;DÞ ¼ 3c2ðY ;DÞ imply
that the universal covering of YnD is the complex two dimensional ball B ¼
fðz;wÞ a C2 : jzj2 þ jwj2 < 1g. Hence, there exist a discrete group G in AutðBÞ
such that B=GUYnD. In particular, B=G has finite volume. Notice that G is
torsion-free since it acts freely on B. Therefore, by [17, Main Theorem], there
exists a smooth projective Mumford compactification W of B=G such that
WnðB=GÞ is a disjoint union of smooth elliptic curves Ei. In this way, we
obtain a birational map W dY . We now resolve this map and get a bi-
rational morphism s : ~WW ! Y . Then, the inverse image ~EEi of each Ei under
s dominates Di, after reordering indices. It is easy to see that ~EEi ¼ Di. But ~EEi

is a smooth elliptic curve with some finite trees of P1’s attached. Given one of
these trees, one has a smooth rational curve F intersecting ~EEi � F at one point.
But then 0a ðKY þDÞ:F ¼ �2þ 1 ¼ �1. So, there are no trees, and Ei ¼ Di

for all i. r
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Let f : Y ! C be a fibration of a smooth projective surface over a smooth
projective curve C, denote by g the genus of the generic (connected) fiber of f
and by q the genus of C. Let oY jC :¼ KY � f �ðoCÞ be the relative dualizing
sheaf.

Let S1; . . . ;Sn be n mutually disjoint sections of f . Assume f is a semi-stable
fibration of n-pointed curves of genus g, marked by these sections. Let

D ¼ S1 þ � � � þ Sn þ f �ðc1 þ � � � þ cdÞ

where c1; . . . ; cd are the images of the singular fibers of f .

Theorem 9.2. Let f be not isotrivial, i.e., the moduli of its fibers varies as
n-pointed semi-stable curves. Assume DA j, and nb 1 when g ¼ 1. Then

0 < c21ðY ;DÞ < 3c2ðY ;DÞ:

Proof. The generic fiber has kð f �1ðcÞ; ðS1 þ � � � þ SnÞjf �1ðcÞÞ ¼ 1 (k denotes the
log Kodaira dimension): P1 minus at least four points or elliptic curve minus
at least one point or the rest. Now, since f is not isotrivial, it has at least 3 singu-
lar fibers when C ¼ P1 (see [2]), or at least one when C is an elliptic curve (see
[1, p. 127]). So, in any case, the base is of log general type (on the base we take
the log curve ðC; c1 þ � � � þ cdÞ). By a theorem of Kawamata [10, Theorem 11.15],
we have for a general c a C

kðY ;DÞb kð f �1ðcÞ; ðS1 þ � � � þ SnÞjf �1ðcÞÞ þ kðC; c1 þ � � � þ cdÞ;

and so ðY ;DÞ is of log general type. Notice that D is a semi-stable curve, just
because the fibration is semi-stable, and when C ¼ P1 we have at least 3 singular
fibres. Therefore, Sakai’s theorem [18] applies, and so c21ðY ;DÞa 3c2ðY ;DÞ.
Below we show that KY þD is nef to obtain the strict inequality.

(case g ¼ 0): We can explicitly show that KY þD is nef (Corollary 7.2).
(case gb 2): Let g : Y ! Y 0 be the relative minimal model of f . Let Ei be the

exceptional divisors. We can write

KY þDC g�ðoY 0 jCÞ þ
X
k

nkEk þ f �ðoCÞ þD

where for some positive integers ni’s. Since gb 2, the dualizing sheaf oY 0jC is
nef (due to Arakelov). If q > 0, then f �ðoCÞ is nef as well, and so we check that
KY þD is nef by intersecting it with components of D (notice that D includes
Ek’s). If q ¼ 0, we have at least 3 singular fibers, and so we delete f �ðoCÞ using
D, and again to check nef we intersect KY þD with the components of D.

(case g ¼ 1): As in the previous case, we go to Y 0. Notice that Y 0 has no mul-
tiple fiber. By the canonical bundle formula we have [1, p. 214]

KY þDC ðwðYÞ þ 2ðq� 1ÞÞF þ
X
k

nkEk þD
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where F is a general fiber of f . So, if q > 0, we are done by the previous
argument. If q ¼ 0, we are done by the same argument, since there are at least 3
singular fibers by [2].

Therefore, KY þD is nef, and strict inequality follows from Lemma 9.1. r

Theorem 9.2 is also valid when D ¼ j (i.e., a Kodaira fibration). It follows
from [16, Theorem 0.1]. Our argument does not prove it. Actually, up to the
case D ¼ j, Theorem 9.2 is just a small extension of [16, Theorem 0.1] (since we
also consider the cases g ¼ 0; 1), as we now see. We have c2ðY ;DÞ ¼ eðXÞ � eðDÞ
(eðAÞ is the Euler topological characteristic of A) and the usual formula [3,
Lemma VI.4]

eðYÞ ¼ 4ðg� 1Þðq� 1Þ þ
Xd

i¼1
ðeð f �1ðciÞÞ � eðFÞÞ

where F is a generic fiber of f . One sees that eðDÞ ¼
Pd

i¼1 eð f �1ðciÞÞþ
nð2� 2qÞ � dn. So, c2ðY ;DÞ ¼ ð2g� 2þ nÞð2q� 2þ dÞ. Obviously oY jC þD ¼
KY þD� f �ðoC þ

Pd
i¼1 ciÞ. We then square it and see the inequality in [16,

Theorem 0.1].

Remark 9.1. In [16, Theorem 0.1], where gb 2 is assumed, we have that f is
isotrivial if and only if c21ðY ;DÞ ¼ 3c2ðY ;DÞ. But we now show that this corre-
sponds to uninteresting situations. First notice that KY þD is nef by the same
argument used in (case gb 2) of Theorem 9.2. If c21ðY ;DÞ > 0, then KY þD
becomes big and nef, and we apply Lemma 9.1 to obtain a contradiction, unless
q ¼ 1 and d ¼ 0. But then c2ðY ;DÞ ¼ 0, which is a contradiction to our assump-
tion c21ðY ;DÞ > 0. Therefore, we are in the trivial case c21ðY ;DÞ ¼ c2ðY ;DÞ ¼ 0.

For completeness’ sake, we explicitly show the connection with height in-
equalities of algebraic points on curves over function fields. This is another proof
of Tan’s height inequality [19, Theorem A]. Let f : Y ! C be a connected fibra-
tion as before, denoting by g the genus of the generic fiber of f and by q the
genus of C. Assume that f is semi-stable. Let KðCÞ be the function field of C.
For an algebraic point P a Y ðKðCÞÞ, let CP be the corresponding horizontal
curve (i.e. multisection) in Y . As usual, let

hKðPÞ ¼
oY jC :CP

F :CP

dðPÞ ¼ 2gðCPÞ � 2

F :CP

be the geometric height and the geometric logarithmic discriminant respectively.
The curve CP is the normalization of CP, and F is a general fiber of f .

Theorem 9.3. Assume gb 2, and that f is not isotrivial. Let d be the number of
singular fibers of f . Then, for any algebraic point P, we have

hKðPÞ < ð2g� 1ÞðdðPÞ þ dÞ � o2
Y jC :
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Proof. Let CP be the horizontal curve in Y defined by P, and let g : CP ! C
be the composition of the normalization of CP with f , so d :¼ degðgÞ ¼ F :CP.
Then, we have

YP ���! Y ���!G Y???y f

???y f

CP ���!g C

 ���
��� fP

where f is the unique semi-stable fibration induced by g. Notice that G �ðCPÞ con-
tains a section S of f , by construction. The map fP is the induced semi-stable
fibration with a marked point (marked by S). Let dP be the number of singular
fibers of fP. Notice that dP is at most dd. Consider D ¼ S 0 þ f �P ðc1 þ � � � þ cdPÞ
where c1; . . . ; cdP are the images of the singular fibers of fP in CP, and S 0 is
the strict transform of S. We now apply Theorem 9.2 to have ðKYP

þDÞ2 <
3ð2g� 2þ 1Þð2gðCPÞ � 2þ dPÞ. But, one checks that ðKYP

þDÞ2 ¼ ðKY þ Sþ
f �ðc1 þ � � � þ cdPÞÞ

2 ¼ ðo
Y jCP
þ S þ ðdP þ 2gðCPÞ � 2ÞF Þ2. Also, since f is semi-

stable, we know that G �ðoY jCÞ ¼ o
Y jCP

, and by the projection formula S:o
Y jCP
¼

CP:oY jC . So, the log inequality above becomes

do2
Y jC þ oY jC :CP þ 2ð2g� 1Þð2gðCPÞ � 2þ dPÞ < 3ð2g� 1Þð2gðCPÞ � 2þ dPÞ;

and so we rearrange to obtain the claimed height inequality (also use dPa dd).
r
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[22] G. Urzúa, Arrangements of curves and algebraic surfaces, J. of Algebraic Geom. 19
(2010), 335–365.
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