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ABSTRACT. — We introduce arrangements of rational sections over curves. They generalize line
arrangements on P>, Each arrangement of d sections defines a single curve in P92 through the
Kapranov’s construction of Mg 4.1. We show a one-to-one correspondence between arrangements
of d sections and irreducible curves in My 441, giving also correspondences for two distinguished
subclasses: transversal and simple crossing. Then, we associate to each arrangement A (and so to
each irreducible curve in M 4.1) several families of nonsingular projective surfaces X of general
type with Chern numbers asymptotically proportional to various log Chern numbers defined by A.

For example, for the main families and over C, any such X is of positive index and 7; (X) ~ 7;(4),
where A is the normalization of 4. In this way, any rational curve in My 4.1 produces simply con-
nected surfaces with Chern numbers ratio bigger than 2. Inequalities like these come from log Chern
inequalities, which are in general connected to geometric height inequalities (see Appendix). Along
the way, we show examples of étale simply connected surfaces of general type in any characteristic
violating any sort of Miyaoka—Yau inequality.

Key worDs: Arrangement of curves, moduli space, surface of general type, Miyaoka—Yau
inequality, geometric height inequalities.
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1. INTRODUCTION

Arrangements of rational sections over curves set up a new class of arrangements
of curves on algebraic surfaces. Given a nonsingular projective curve C and
an invertible sheaf £ on C, they are defined as finite collections of sections of
the corresponding A'-bundle. The simplest example is line arrangements on P2,
where C = P! and £ = Opi(1). In Section 2, we systematically study arrange-
ments of rational sections over curves. Although in somehow they can be man-
aged as line arrangements, the big difference relies on possible tangencies among
their curves, introducing more geometric liberties. We partially organize this
via transversal and simple crossing arrangements (Definition 2.4). Throughout
Sections 3, 4 and 5, we show one-to-one correspondences between arrange-
ments of d sections and irreducible curves in M 411, the moduli space of
curves of genus zero with ¢ + 1 marked ordered points. This is done for each
fixed pair (C, L) in the general (Theorem 5.1), transversal (Corollary 5.5), and
simple crossing (Corollary 5.6) cases. Because of Kapranov’s description of
My 441 [11, 12], this produces bijections between arrangements and curves in
pd=2 (Corollary 5.2). For instance, arrangements of d lines in P? correspond
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to lines in P92 (as in [21]), arrangements of d conics in x2 + y2 + z2 = 0 cor-
respond to conics in P72, etc. To exemplify, we show in Section 6 a way to
produce explicit arrangements of sections from irreducible curves in P2. This is
based on [6, Section 7|, where the authors show how to cover M 4. with
blow-ups of P? at d 4+ 1 points. We use their rigid conic as concrete example
(see Examples 6.1 and 7.1).

Given an arrangement of sections A, we define two types of arrangements:
the extended Ap and some partially extended A,a. Their definitions and log
properties are exposed in Section 7. Over C, they satisfy certain log Miyaoka—
Yau inequalities which are no longer combinatorial as in the case of line ar-
rangements (Remarks 7.3 and 7.4). For line arrangements we know an optimal
log inequality (Hirzebruch-Sakai’s in Remark 7.3), but for any other class we
only have the coarse bound 3. Arrangements attaining upper bounds should be
special, and would produce interesting algebraic surfaces by means of Theorem
8.1. We remark that questions about sharp upper bounds of log Chern ratios
are related to questions on effective height inequalities [15, pp. 149-153] (see
Appendix, where we slightly extend and give another proof of Liu’s inequality
[16, Theorem 0.1], which naturally implies strict Tan’s height inequality [19,
Theorem Al).

In Section 8, we associate various families of nonsingular projective surfaces
to any given arrangement of sections A. These surfaces share the random nature
of the surfaces X constructed in [22], having Chern invariants asymptotically pro-
portional to the log Chern invariants of .Ax and A,A’s. In this way, we are able to
show for a more general class of arrangements (and so singularities) that the be-
havior of Dedekind sums and continued fractions used in [22] can also be applied.
In this paper, any such X is of general type and satisfies ¢7(X), c2(X) > 0. Put-
ting it all together, and over C, we have the following.

THEOREM. Let 4 be an irreducible curve in P" not contained in
[Lixi[[;<;(x; —x;) = 0. Let A4 be the normalization of A. Tkzlen there exist

nonsmgular projective surfaces X of general type such that 2 < 4l o™ ) 5 < 3, having

;(( ) arbitrarily close to - E ; a well-defined positive rational number depending

on A and its position in P”. In addition, there is an induced connected
fibration 7’ : X — A4 which gives an isomorphism 7;(X) ~ 71(A4). In this way,
Alb(X) ~ Jac(A) and 7’ is the Albanese fibration of X.

With this in hand, we aim to answer the still open questlon are there simply
connected nonsingular projective surfaces of general type W1th  arbitrarily close

to the Miyaoka—Yau bound 3? Hence, at least when 4 is a ratlonal curve, it is

important for us to know about sharp upper bounds for - Ej (also for A,

see Remark 8.3). So far, we only know that this bound is strlctly smaller than 3
(Corollaries 7.2 and 7.4). On the other hand, in positive characteristic, we use
our method to produce étale simply connected nonsingular projective surfaces
of general type which violate any sort of Miyaoka—Yau inequality for any given
characteristic (Example 2.4, Remark 7.5, Example 8.2).
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2. ARRANGEMENTS OF RATIONAL SECTIONS OVER CURVES

Fix an algebraically closed field K. Let C be a nonsingular projective curve
defined over I of genus g = 1'(C, O¢). Hence, when K = C, the curve C is a
compact Riemann surface of genus ¢g. Let £ be an invertible sheaf on C of degree
deg(L) = e > 0, and let

Ac(L) = Spec(S(£™)) — C

be the line bundle associated to £ (as in [8, II, Ex. 5.18]), where £~ is the dual of
L. This is the so-called total space of L. A section of A¢(L£) — C is a morphism
C — A¢(L) such that the composition map C — A(L) — C is the identity. The
space of sections can be identified with H°(C, £). Since it is better to deal with
a projective surface, we naturally compactify all fibers, so that we work with a
P!-bundle. Let

n:POc@®L - C

be the P!-bundle associated to Oc @ £L~! over C, as in [8, II, Ex. 7.10]. The non-
singular projective surface P(Oc @ £7') contains A¢(£) as an open set, such
that the curve Cy := P(Oc @ L )\ A¢(L) is a section of 7 with self-intersection
C; = —e. It is easy to see that Cj is the only irreducible curve with negative self-
intersection in P(O¢c ® £~'). This surface is a particular case of a geometri-
cally ruled surface over C [8, V, Section 2|, and it is in its normalized form
[8, V, Proposition 2.8]. We denote by F, the fiber over a point ¢ € C, or just
F when we consider its numerical class. Any element in Pic(P(Oc @ £7"))
can be written as aCy + n*(M) with a € Z, and M € Pic(C). Any element in
Num(P(O¢ @ £7')) can be written as aCy + bF with a,b € Z [8, p. 373].

EXAMPLE 2.1. Let C = P!, and let ¢ > 0. Consider the invertible sheaf Oy (e)
on P'. Then, the surface P(Op1 @ Opi(—e)) is the Hirzebruch surface F,. When
e =1, F; corresponds to the blow-up at a point of P? [8, V, Exa. 2.11.4], and C,
is the (—1)-curve.

The main objects are the following.

DEFINITION 2.1. Let d >3 be an integer. Let C be a nonsingular projec-
tive curve, and let £ be an invertible sheaf on C of degree ¢ > 0. An arrange-
ment of d sections is a labeled set of d distinct sections A = {Sj,...,S;} of
n:P(Oc® E*I) — C such that

S,’ ~ C() + ﬂ*(ﬁ)
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forallie{1,2,...,d}, and ﬂ,d:l S; = 0. From now on, we denote P(Oc ® L")

In particular, S;.S; = e, and S;.Cy = 0 for all 7, and so these arrangements are
indeed formed by sectlons of A¢(L) — C. The condltlon ﬂ S; = 0 implies that
L is base-point free. To see this, take a point ¢ € C, and con51der the correspond-
ing fiber F.. Since ﬂl , Si=0, there are two sections S;, S; such that
F.nSinS;=0. Let g, : C — P¢(L) be the map defining the section S;. Then,
ENU,( (£)®(9S) ~ 7 (Op(1)(Co) @ 7°(£) ® Os;) =~ 0/ (Ope(r) (S )®OS)
and o7 (Op,()(Si) ® Os, )i 1s given by an effective divisor on C not supported at c.
This tell us that L~ OC( ) with D base-point free effective divisor.

If A={Si,...,Ss} is an arrangement as in Definition 2.1, but with
ﬂl \ Si # 0, then we can apply elementary transformations (see [8, V, Exa 5.7.1))
at each of the pomts in ﬂ,l S; to obtain a new arrangement of d sections in
Pc(L') for some L£'. After repeatlng this process a finite number of times, we
arrive to an arrangement A" in Pc(L’ ) with ﬂl S/ =0. If deg(L£") =0, then
L' = Oc since, as we showed above, L' = O¢(D) for some effective divisor D.
In this case, Pc(Oc) = C x P!, and the arrangement is trivially formed by a
collection of d “horizontal” fibers (it just corresponds to an arrangement of
d points in P1). If A= {S,...,S;} is a collection of arbitrary d sections in
Pc (L), we perform elementary transformations on the points in Cy N S; for all 7,
and we repeat this process until all sections are disjoint from the new curve Cj in
Pc(L') (proper transform of Cy). In this way, arbitrary arrangements of sections
can always be considered, after some elementary transformations, as the ones in
Definition 2.1.

We now define the morphisms between our objects.

DEerINITION 2.2. Fix an integer d > 3. Let C, C’ be nonsingular projective
curves, and let £, £’ be invertible sheaves of positive degrees on C, C’ respec-
tively. Let A, A" be arrangements of d sections in Pc(L), Pc/(L) respectively.
A morphism of arrangements is the existence of a finite map g : C — C’, and a
commutative diagram

Po(L) —2 Pe(L)
c L.

so that P¢ (L) is isomorphic to the base change by g, and S; = G*(S}) for all i. If
¢ is an isomorphism, then the arrangements are said to be isomorphic.

In particular, a curve C with an automorphism g produces isomorphic ar-
rangements via the pull back of g.

Lemma 2.1. 4 morphzsm of arrangements satisfies Cy = G*(C}) and g*(L") ~ L.
We have C3 = deg(g)Cy? and S? = deg(g)S!* for all i.
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Proor. Since 0 = G*(C).G*(S!) = G*(C}).Si, we have that G*(C)) = Cp. We
know that 7,(Cy) = Oc @ L' and 7/ (C})) = Oc ® L'~ (see [8, 11, Proposition
7.11]). By flat base change [8, III, Proposition 9.3], we have

g'm.(C) = m.G"(Cp),

and so g*(L') ~ L. Therefore, deg(£) = deg(g) deg(L"), and so C7 = deg(g)C{?,
and S? = deg(g)S;? for all i. O

One wants to consider arrangements of sections which do not come from
others via base change, and so the following definition.

DeFINITION 2.3. Let us fix the data (C,L,d) as above. An arrangement of d
sections A is said to be primitive if whenever we have an arrangement A’ for
some data (C’, L', d), and a morphism g as in Definition 2.2, then ¢ is an isomor-
phism. The set of isomorphism classes of primitive arrangements is denoted by
o/ (C, L,d). This is clearly independent of the isomorphism class of C and L.

For instance, if £ has a base-point, then .« (C, L, d) = 0.

EXAMPLE 2.2. Let d > 3 be an integer. An arrangement of d lines in the plane
is a set of d labeled lines A = {L,..., Ly} in P? such that ", L, = 0. As in
[21], we introduced ordered pairs (A, P), where A is an arrangement of d lines,
and P is a point in P?\ Uf:1 L;. If (A, P) and (A', P') are two such pairs, we
say that they are isomorphic if there exists an automorphism 7" of P? such that
T(L;) = L! for every i, and T(P) = P’. Given (A, P), we blow up the point P to
obtain an arrangement of d sections for the data (P', O(1), d), and given such an
arrangement of sections, we blow down Cj to get a pair (A, P), where P is the
image of Cj and A is formed by the images of the sections. One sees that the set
of pairs up to isomorphism of pairs is precisely .«Z(P!, O(1),d). By Lemma 2.1,
any arrangement of Pp1(O(1)) — P! is primitive (degree considerations). This is
the simplest case for arrangements of rational sections over curves. Notice that

(P O1),3) = ({x1 =0,x0=0,x3 =0},[1 : 1:1]),
where [x] : x5 : x3] are coordinates for P2

In the next sections, we will classify all primitive arrangements, and some dis-
tinguished subclasses which are defined through intersection properties of their
members. We now look at these intersections. In what follows, until the end of
this section, we fix the data (C, L, d).

DEFINITION 2.4. Let A= {S,...Ss} be an arrangement of sections in P¢(L).
Let P be a point in P¢(£), and let f, g be local equations defining S;, S; at P.
As in [8, V, Section 1], we define the intersection multiplicity (S;.S;)p, of S; and
S; at P to be the length of Opp.)/(f,g). If P is not in S; or S;, then
(Si.Sj)p = 0. Notice that, since S;.S; = e, we have 0 < (S;.Sj), < e. We distin-
guish two classes of arrangements:
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(t) We say that A is transversal if for any i # j and any point P in S; N S}, there is
k # 1, j such that (S;.Sx)p, = (S;.S;)p — 1. The set of isomorphism classes of
primitive transversal arrangements is denoted by .« (C, L, d).

(s) We say that A is simple crossing" if for any i # j and any point P in S; N S},
we have (S;.S;) = 1. This is, the members of the arrangement are pairwise
transversal. The set of isomorphism classes of primitive simple crossing ar-
rangements is denoted by .«/(C, L, d).

REMARK 2.1. In (t) above, we have the requirement (S;.Sk)p, = (S;.S;)p — L.
This implies (S;.Sk)p = (S;.Sk)p, and so the definition is symmetric on i, j. To
see this, let o : Blp(Pc(L)) — Pc(L) be the blow-up at P. Let S, be the strict
transforms of S,, so that S, ~ ¢*(S,) — E, for a = i, j, k. Here E is the excep-
tional curve of ¢. In this way, we have

S,.S,=S,.8, — 1

since S, is nonsingular at P. Since o is an isomorphism outside of E, we have that

(S4-Sp) p = (Su-Sp)p — 1, where P =S, E. If (S;.S;)p =2, then (S;.8¢), =1,

and so (S;.Sk)p = 1. One proves the general assertion by induction on (S;.S;) p.
This gives the stratification

A(C, L, d) = 4(C,L,d) < /(C, L,d).

Notice that for line arrangements .o (P! O(1),d) = /(P! O(1),d)=
(P!, 0(1),d), but already for (P!, O(2),d) we have different sets, as the next
example shows.

ExaMPLE 2.3. Consider collections of curves in P2 given by A;=
{C1, G5, C3, C4}, as shown in Figure 1. Here, C) is a conic, and C5, C3, Cy4 are
lines. For distinct i’s, we have different intersections among C;’s. Each 4;

Figure 1. Configurations of curves in P> which produce arrangements in [,.

! These are the type of singularities for arrangements in [22].
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Figure 2. Evolution of a triangle under Frobenius maps in Example 2.4.

has a marked point P in C;. Out of these configurations, we produce three
arrangements of sections in F,. We blow up P, and then we perform an elemen-
tary transformation at P, which is the intersection of the strict transform of
C; with the exceptional divisor E. Then, we have an arrangement of sections
Ai = {51,852, 83,84} in F», where S; corresponds to the strict transform of C;.

Any possible morphism of arrangements, from 4; to some A/, would have
(P!, O(1),4) as target, and the degree of g would have to be 2. For A, we have
8 points in F, where exactly two sections intersect, and 1 where exactly 3 inter-
sect, so A; is impossible as pull-back of 4 sections in Pp:(O(1)). Similar argu-
ments apply to A, and A3, and so one easily checks that all of them a primitive.
Notice that A3 is simple crossing, A, is a transversal, and .4, is neither, so
(P! 02),4) = (P!, 02),4) = A (P, 02),4).

EXAMPLE 2.4. Assume KK has char(K) = p > 0. Let A € «(C’, L', d), and
consider the [K-linear Frobenius morphism g : C — C’ [8, p. 301], so C and C’
are isomorphic as abstract curves. Let A € .&/(C, L, d) be the pull-back arrange-
ment by g, as in Definition 2.2. Then, g*(£’) = £, and for any two members S;, S;
we have (S;.S;)p = p when P € S;nS;. The simple crossing arrangement A’ is
transformed into an arrangement .4 where any two members are tangent at e
points, each of order p.

3. SOME FACTS ABOUT M 441

Let d > 3 be a integer. We denote by M 41 the moduli space of (d + 1)-pointed
stable curves of genus zero [13, 11]. This is a smooth rational projective variety of
dimension d — 2. The open set M, 441 parametrizes configurations of d + 1 dis-
tinct labeled points in P!. The boundary A := M 0.d+1\Mo.4+1 1s formed by the
following prime divisors: for each subset 7 = {1,2,...,d + 1} with |I| > 2 and
|7¢| > 2, we let 6; — M 41 be the divisor whose generic element is a curve
with two components: the points marked by 7 in one, and the points marked by
I1¢ in the other. Hence d; = d;c, and usually we will assume d + 1 € I to avoid
repetitions. These divisors are smooth, and A =} d; is a simple normal crossing.
The variety My 441 represents a fine moduli space, proper and smooth over
Spec(Z). For i e {l,...,d+ 2}, the i-th forgetful map 7 : Mo 4i2 — Mo 411,
which forgets the i-th marked point and stabilizes, gives a universal family. We
will mainly consider

42 * MO,d+2 - MO,d+1.
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It has d + 1 distinguished sections 61 42, . .. ,04+1,4+2, producing the markings on
the parametrized curves.

DEerFINITION 3.1. Let X be a nonsingular projective variety, and let D be a non-
singular divisor in X. Let B be a curve in X. We say that B is transversal to D if
locally at any x € D n B, the curve B can be factored in By, ..., B, distinct local
irreducible curves (branches of B in O, x) so that B;.D =1 for every i. If D is
a sum of nonsingular divisors D;, we say that B is transversal to D if it is to
each D;.

Below a well-known property for stable families, coming from the construc-
tion of Mo g41.

LEMMA 3.1. Let x be a K-point in Mg 4.1. Let B be a local curve passing through
X, i.e., B is a irreducible curve defined by functions in O Mo gy ™ K[[t1, -, ta-a]].

Assume tt; ...ty =0 defines A =" 0r, so k <d —2, and that ;| is not identi-
cally zero for all 1 < j < k. Consider the commutative diagram

R — Mo,d+2

/’l Td+2 l

— i —
B —_— M07d+1

where 1 is the composition of the inclusion of B with its normalization, so B is the
normalization of B, and R is defined by base change. Then, the surface R is normal,
and can only have singularities of the form

Spec K[u, v, 1]/ (uv — ™)

at the nodes of the singular fiber, for some m. Moreover, the surface R is nonsingu-
lar if and only if B is transversal to A.

A brief outline of the proof. Let X — Spec K be the corresponding stable
curve over t; = tp = --- = ty_» = 0. Consider the deformation of X as described
in [7, pp. 79-85]. At a nonsingular point of X, we have a nonsingular point for R,
so we pay only attention to the nodes of X. Let y be a node of X, corresponding
to the intersection of B with #; for some i € {l,...,k}, i.e., the node y splits
{1,...,d + 1} in two subsets I and /¢, and #; = 0 corresponds to J,. At the corre-
sponding point y in My 4> (over [K), the local rings and the universal map can be
written in the projection form

= K[[Zl,...,[dfz]] -0

oy = Wl vn, 01,02, ta0])/ (wivi — 1),

X, Mo, a1

for suitable variables u;, v;. Now, the composition of the inclusion of B with its
normalization 7 has the form

1) = ("™ unt™ .. ug ot"?)
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for some units %;’s and a local parameter  on B. This is because B is not in z; = 0
for all j. Hence, 1*(d;) = u;t™ for 6; = {t; = 0}. Since R is defined through the
base change by i, we have the isomorphism

Oy = K[l v, 1] sy = 1),

and so, R is nonsingular iff m; = 1 for all i € {1,...,k}, i.e,, transversal to A.

The moduli spaces Z\7[o,d+1 have a beautiful construction, due to Kapranov
[11, 12], as iterated blow-ups of P?2 (see below). It follows that curves in
My, 441 are strict transforms of curves in P92, which are not contained in a cer-
tain fixed hyperplane arrangement #,. The following description of these spaces
can be found in [11, 12].

DEFINITION 3.2. A Veronese curve is a rational normal curve of degree d — 2 in
P92, i.e., a curve projectively equivalent to P! in its Veronese embedding.

It is a classical fact that any d + 1 points in P92 in general position lie on a
unique Veronese curve. The points Py, ..., P,,, are said to be in general position
if no n+ 1 of them lie in a hyperplane. The main theorem in [11] says that the
set of Veronese curves in P92 and its closure are isomorphic to My 4 and ]\_407 d
respectively.

THEOREM 3.2 (Kapranov [11]). Take d points Py,..., P, of projective space
P4=2 which are in general position. Let Vo(P1,. .., P,) be the space of all Veronese
curves in P72 through these d points P;. Consider it as a subvariety in the Hilbert
scheme A parametrizing all subschemes on P92, Then,

1. We have Vy(Py,...,Py) = My 4.

2. If V(Py,...,Py) is the closure of Vo(Py,...,Py) in A, then V(Py,...,Pg) =
My 4. The subschemes representing limit positions of curves from
Vo(Pi, ..., Pg) are, considered together with P;, stable d-pointed curves of genus
0, which represent the corresponding points of My 4.

3. The analogs of statements (a) and (b) hold also for Chow variety instead of
Hilbert scheme.

THEOREM 3.3 (Kapranov [12]). Choose d general points Py, ..., Py in P92 The
variety My 411 can be obtained from P9=2 by a series of blow-ups of all the projec-
tive spaces spanned by P;. The order of these blow ups can be taken as follows:

1. Points Py, ..., P,y and all the projective subspaces spanned by them in order of
the increasing dimension;

2. The point Py, all the lines {Py,Pz>,...,{Py_o, P;y and subspaces spanned by
them in order of the increasing dimension;

3. The line {Py_1,P;>, the planes {P;,Py_1,Py>, i #d —2 and all subspaces
spanned by them in order of the increasing dimension, etc, etc.

Let us denote the Kapranov’s map in Theorem 3.3 by Y, : Mg 401 — P92,
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Some conventions and notations for the rest of the paper. Let us fix d
points in general position in P2 We take Py =[1:0:...:0], P,=
0:1:0:...:0],...,P41=1[0:...:0:1] and P;=[1:1:...:1]. The symbol
{01, ...,0,> denotes the projective linear space spanned by the points Q;. Let

Niiy = <Py jé i, ... 0}

where 1 <r<d—1and i,...,i are distinct numbers, and let #; be the union
of all the hyperplanes A; ;. Hence, A;; = {[x1:...:x41] € P2 x; = x;} for
i, j#d, Nig={x1:...:x4-1] € P2 x; = 0} and

Hy = {[Xl Lol xd,l] e P2, X1X2 ... Xq-1 H(X_/—Xi) :0}

i<j

ExaAaMPLE 3.1. For d = 4, Theorem 3.3 says that the map zps Mo s — P?is the
blow-up of P2 at the points Py =[1:0:0], P, =1[0:1:0], P [0 0:1], and
Py =11:1:1]. The hyperplane arrangement &’(’4 is given by the complete quadri-
lateral

X1XQX3(X1 — XZ)(Xl — X3)(X2 — X3) =0.

The universal map s : Mo s — M4 = P! is induced by the pencil of conics
(Veronese curves in P?) containing Py, P,, P3, and P;.

4. ARRANGEMENTS OF ¢ SECTIONS AND CURVES IN M 41

Let B be an irreducible projective curve in Mg 441 with B My 41 # 0. By using
Kapranov’s map wd i Mo g — P9=2, this is the same as giving an irreducible
projective curve A4 in P92 not contalned in #;. The proper transform of A4 under
V4.1 18 B. Consider the base change diagram

R —— Moy

/)J( ﬂ(/+2J(

— i —
B —_— M07d+1

where 1 is the composition of the inclusion of B with its normalization. Let us
denote B = C. Notice that the _distinguished sections 81, g41,02,d+41, - - - ,0d+1,d+1
of my4» induce d + 1 sections Sy 442, ...,Su1,4+2 for p. Also, by Lemma 3.1,
the surface R is a normal projective surface with only canonical singularities of
type uv = ¢™ for various integers m, and only at nodes of singular fibers. We
now resolve these singularities minimally to obtain a fibration p: R — C, so
that R is nonsingular. Notice that p has only reduced trees of P!’s as fibers, and
it has d + 1 distinguished sections.
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Let F be a singular fiber of p. Consider the curves E in F with E.(F — E) =1,
and which do not intersect the (d + 1)-th section (the proper transform of
Sa+1.4+2)- Then, the E’s are disjoint with self-intersection —1. We now blow
down all of these E’s to obtain a new fibration over C with d + 1 distin-
guished sections, and reduced trees of P'’s as fibers. If there is a singular
fiber F, we repeat the previous procedure. After finitely many steps, this stops
in a ﬁbratlon po : Ro — C with nonsingular fibers, and d + 1 labeled sections
{S1,S82,...,8411}, where S, d+2 18 the proper transform of S;.

ProrosiTiION 4.1. The fibration py: Ry — C is isomorphic over C to
n:Pce(L) — Cwith L ~1"(Y,,(Opa2(1))), and so deg(L) = e = deg(y4,(B)).

The labeled set {S\,...,S4} is a primitive arrangement of d sections.

PrOOF. By [8, V, Proposition 2.8], the ruled surface p, : Ry — C is isomorphic
over C to Pc(€) — C, where & is a rank two locally free sheaf on C with
the property that H°(£) #0 but for all invertible sheaves M on C with
deg M < 0, we have H'(€ ® M) =0. So, we assume Ry = Pc(£). Since, by
construction, S;.S;.1 = 0 for all i # d + 1, we have that £ is decomposable, say
E~Oc® L™, where L is unique up to isomorphism. Moreover, S; ~ Sy +

n*(L) for all i #d + 1. In partlcular 0<S,.Sj=e=degl for all i,j #d+1
and S7., = —e. Notice that ﬂ S;i=0. Hence A={S1,..., S84} is an arrange-
ment of d sections of 7 : P (L) — C.

Observe that A is primitive because it comes from the normalization of a
curve in M 4.1. Assume there is a morphism of arrangements from A to A’,
with data (C',L',d) and map ¢ : C — C' (see Definition 2.2). Then, our map
1: C — B would factor through g, induced by the natural map i/ : C' — Mg 441.
This is possible only if degg = 1, because C is the normalization of B, and so A
and A’ are isomorphic arrangements.

Let ¢ be a point in C, and consider the fiber F, of n. Let S;,S; # Sa1 be
distinct sections which intersect at a point P in F,. Then, through the description
in Lemma 3.1, it is not hard to see that

(Si-Sj)P - Cloc- Z 51
all 7 with i,jel\{d+1}

where Cj, is the corresponding local branch of B at i(c).

Let {Pi,....Pn}=S8nS;. Let g:C—Pc(L) be the section
corresponding to  S;. Then, L=~/ (n"(£) ® Os) ~ 07 (Op(1)(Si)) ® Os,) ~
Oc (4L (Si-S))p,7 (Pk)) and so, because of the previous formula, £~
(X a1 with 1, jen\{a+1301)- Now, by Kapranov’s description in Theorem 3.3,
we have

Va1 (Opaa(l)) = > or,
all I with i,jel\{d+1}
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and so £ ~1*(Y;,(Opa-2(1))). This comes from the pull-back of the hyperplane
A; ;. By the projection formula, we have

deg(L) = B-‘P;H(OP"*Z(I)) =Y 411,(B).0pa2(1) = degp ;1 (B). u

5. THE ONE-TO-ONE CORRESPONDENCES
Fix an integer d > 3, and an algebraically closed field [K.

THEOREM 5.1. We have

|_| o (C, L,d) = {irreducible curves in My 4.1},
C.L

where the disjoint union is over all nonsingular projective curves C and line
bundles L on C (both up to isomorphism). This equality gives a bijection be-
tween </ (C,L,d) and the set of irreducible projective curves B in My 4.1 with
My, g1 0 B # 0, whose normalization is C and L ~1*(Y; (Opa2(1))), where
1: C — B is the composition of the inclusion of B and its normalization.

PROOF. Let B be an irreducible curve in Mg 41 with BN M 4.1 # 0. By Prop-
osition 4.1, B produces a unique element in

A (B,1" (3,1 (Opa2(1))), d),

where 1 is the composition of the inclusion of B and its normalization. In this
way, we only need to prove that given A € .«/(C, L,d), there is an irreducible
curve Bin M 0,d+1 intersecting My 441 so that A is induced by B as in Proposition
4.1.

Let A={S),...,Ss} be a primitive arrangement of d sections of
n:Pc(L) — C. The section Cj is denoted by S;.;. We repeatedly perform
blow-ups at the intersections of the sections S; and their proper transforms, until
they are all disjoint. We do this in a minimal way, that is, given a (—1)-curve in a
fiber, its blow-down produces an intersection of the distinguished sections. The
corresponding fibration 7 — C has (d + 1)-pointed semi-stable genus zero curves
as fibers. The ¢ + 1 markings are produced by intersecting the proper transforms
of the sections S;’s with the fibers. They may fail to be stable exactly because of
the presence of fibers with PP!’s having no markings, and intersecting the rest of
the fiber at two points. These components form chains of P!’s, which we blow
down to obtain a (d + 1)-pointed stable family of genus zero curves T — C.
Therefore, we have a commutative diagram

Tr — Mo,d+2

|

C —— Mo a1
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so that T~ C x ; oo M 0.d+2. Notice that the image of C is a curve B because
N2, S; =0 (sonot a pomt) and B intersects My 4. Let B be the normalization
of B,and let:: B — Mg 441 be the corresponding map. Then, the diagram above
factors as

T — R —— My
A

S 5 / I
C — B —— My a1

where R is given by pull-back, and 7'~ C x 3 R. Let R be the minimal resolution
of the singularities of R. Let us finally consider the commutative diagram

T0—>R
C#E

where T) ~ C x 3 R (it may be singular). The pull-back of the d + 1 distinguished
sections are the d + 1 distinguished sections of 7Tp — C. We now inductively
blow-down all (—1)-curves on the fibers of R — B in the following way.

Let R; — B be the fibration produced in the i-th step, where R = Ry. Then,
T; ~ C x 3 R;. We obtain the fibration R; | — B through the commutative dia-

gram below.
/ T;

Tin T:=CxzR R;

O 7

C Xz Riy1 —— Rip

I

c . B

1

Let E be a (—1)-curve in a fiber of R; — B, and let P be the point of intersection
with the rest of the fiber. Notice that at least two distinguished sections U and V'
intersect E (not at P, of course). Let R;,; be the blow-down of E, and R;,; — B
be the corresponding fibration. Let Q be the pre-image of P and F the pre-image
of E in T;. Notice that 7; may be singular at Q, say with a singularity of type
xy =1 1f a>1 we resolve Q to get T;. Then we define 7;,; to be the blow-
down of the total transform of F in 7; (this is a chain of (—1)-curves). Let us
consider P in R;;, and its pre-image in C X3 R;yq, say Q'. Now, C x; Ri; is
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nonsingular at Q’, and there is a morphism 7;.; — C x 3 Ry, which is clearly an
isomorphism.

For R;, these procedure is what we have in Section 4. When it stops, say at the
m-th step, we have 'R, =P; (E’) — B with d + 1 distinguished sections, and
T,, nonsingular p! bundle over C Moreover, because of the construction of 7;’s,
we have T,, ~ Pc(L), and the arrangement A is the pull-back of the one in
n': P3(L") — B. So this is a morphism of arrangements as in Definition 2.2.

But A primitive implies deg /' = 1, and so C = B. O

For example, one has Uce (C,L,3) = </ (P!, O(1),3) which corresponds
to the unique curve in My 4 = P'\{[0: 1],[1 : 1],[1 : 0]}. An immediate corollary
is the following.

COROLLARY 5.2. Given a nonsingular projective curve C and a line bundle L on
C, the Kapranov's map .., : Mo 411 — P92 gives a one-to-one correspondence
between elements of </ (C, L, ci) and irreducible projective curves A in P72 not

contained in Ay such that A = C and L ~1*(Y;,,(Opa-2(1))). In particular,
deg A =degL.

COROLLARY 5.3. .Z(P', O(1),d) = {lines in P2 not in #,}.

PROOF. A curve of degree one in P2 is a line. O
COROLLARY 5.4. o/(P',0(2),d) = {conics in P?~2 not in #}.

PROOF. An irreducible curve of degree two is a conic. O

The next two corollaries identify precisely the two distinguished classes of
arrangements in Definition 2.4.

COROLLARY 5.5.

|_| 4, (C, L,d) = {irreducible curves in M 4.1 transversal to A},
C.L

where the disjoint union is over all nonsingular projective curves C and line bundles
L on C, both up to isomorphism.

PRrROOF. Let A€ o/(C,L,d). Let P be a singular point of the reducible curve de-
fined by A in P¢(L). Let F, be the fiber containing P. Hence, since A satisfies (t)
in Definition 2.4, there are two transversal sections S;, S; containing P, i.e.,
(8:.Sj) p = 1. Consider the blow-up at P, Blp(P¢ (L)) — Pc(£), and let E be the
exceptional curve. Then, E has at least three special distinct points: the intersec-
tions with F, S;, and S; (corresponding proper transforms). Now, it is clear that
the final stable ﬁbratlon R — C produced from A has the proper transform of E
as a component of the fiber over ¢. Let A={Sy,...,S;} be the collection

of proper transforms of S;’s in Blp(P¢(£)). Then, A satrsﬁes property (t) in
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Definition 2.4 (extending naturally this definition). So, we repeat the blow-ups
until all sections are disjoint (in a minimal way) to obtain the stable fibration
R — C, where no blow-downs are needed. Since R is a nonsingular surface, the
curve (C) is transversal to A by Lemma 3.1.

Now assume A is not in .«Z,(C, L,d). Then, there are indices 7, j and a point
P € S;n Sj such that n = max{(S;.Sk)p : (Si.Sk)p < (Si.87)p — 1} < (Si.S))p — 1.
Let (S;. S-)P =m, so 0 <n <m— 2. We blow up n times the corresponding point
in S;n S for the successive proper transforms of S; and S;. Let X" be the result-
ing surface and P = S; N S Let E be the exceptional curve of the blow-up at P.
Then, £ has only two specnal points: the intersection with the rest of the fiber and
with the section S;. Notice that S; N S # () at E. So, in the process to_ obtain the
corresponding stable fibration R — C we need to blow up again at S; N S], and
so at the end the proper transform of E will have to be blown down (in order to
have a stable fibration). Therefore, R is singular, and by Lemma 3.1, :(C) is not
transversal to A. By Theorem 5.1, we have checked all irreducible curves in
Mo 441 O

COROLLARY 5.6.

|_| A(C, L,d) = {irreducible curves in P*~* transversal to #,},
C.L

where the disjoint union is over all nonsingular projective curves C and line bundles
L on C, both up to isomorphism.

PrOOF. Let A€ /(C,L,d), and consider its stable fibration p: R — C. We
know that the image of C in My 44 is transversal to A by the previous corollary.
Let ¢ e C be a point whose fiber is singular. Then there exists an element
in .«/(P',0(1),d) that produces the same fiber. By Corollary 5.3, the set
o/ (P!, O(1),d) is in one-to-one correspondence with lines in P?~2 not in .
Therefore, there is a line in P92 not in #, passing through y,.,(i(c)) € P42
This implies that the image of (C) under ¢, , is transversal to #;. The converse
is clear using the same correspondence with lines. O

6. PRODUCING EXPLICIT PRIMITIVE ARRANGEMENTS

In the previous section we classified all arrangements of d sections (and two
distinguished subclasses). They are in one-to-one correspondence with curves in
P42 outside of a certain fixed hyperplane arrangement .#, (Theorem 5.1). In
[21], we used this correspondence to explicitly find new special line arrangements
in P2, For this, we computed the corresponding line as in Corollary 5.3. In
general, it is hard to present a curve in P“~2 in the form we need to construct its
corresponding arrangement. In this brief section, we show a simple way to pro-
duce arrangements via irreducible curves in P2, This is based on [6, Section 7],
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where Castravet and Tevelev describe how to cover M 4,1 with blow-ups of P2
at d + 1 points.

ProOPOSITION 6.1 [6, Proposition 7.3]. Suppose pi,..., par1 are distinct points
in P2, and let U = P? be the complement to the union of lines containing at least
two of them. The morphism

0:U— My a1
obtained by projecting p1,. .., par1 from points of U extends to the morphism
(9 . Blph_”’dePz — M07d+1.

If there is no (probably reducible) conic through py, . .., pa.1 then 0 is a closed em-
bedding. In this case the boundary divisors 51 of Mo 441 pull-back as follows: for
each line Ly := {p;Yi; = P%, we have 0*(6;) = L, (the proper transform of Ly)
and (assuming |I| > 3), 0" (51\{k}) Ey, where k € I and Ej is the exceptional
divisor over py. Other boundary divisors pull-back trivially.

In this way, we have

d

9*('»0;“(0(1))) = (”d+1 - I)H - (nd+1 - 2)Ed+1 - Z&‘Ei

i=1

where H is the class of a general line in P2, ng.1 1s the number of lines in P2 pass-
ing through py;1 and some other p;, and ¢ = 0 if there is a py in {pai1, pi>
k #i,d + 1 or & = 1 otherwise. Hence, the image of Bl,, __,, ,P? under y,,, 00
is a surface S in P92 of degree 2n;,1 — 3 — Zid:l &;, and so

2 < deg(S) <d-3.

Therefore, S is a surface of minimal degree in some P9I+ = pd=2 Thys S is
either a rational normal scroll in P9&()*1 or the Veronese of P? in P°. More-
over, S is smooth One can check that ;. blows down certain d (—1)-curves
in Bl, p‘,H[P’ (proper transforms of lines {py., p;> with & = 1, and E; with

= 0) having as result a Hirzebruch surface [F,,, where m depends on the config-
uration of points p; such that ¢; = 1.

Given py,..., pss1 points in P2, with no (probably reducible) conic through
them, we consider an irreducible plane curve I' not included in the union of
lines containing pi,..., ps+1. Then, by Proposition 6.1, we have the inclusion
0:B:=T — M 41 and so a primitive arrangement .A in .«/(B, L,d) for some
line bundle £, by Theorem 5.1. The line bundle £ depends on the specific config-
uration py, ..., pg.1 and the position of the curve I" with respect to these points.
Proposition 6.1 gives a way to precisely see all possible intersections of I' with A,
and so this procedure indeed gives an explicit description of A.
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Figure 3. The singular fibers of the stable fibration induced by the conic I'.

EXAMPLE 6.1. Let { = ¢*/3, Consider the dual Hesse arrangement of 9 lines in
P2(C):

(07 = 23) (7 = x3)(3%3 = x3) = 0.

It has 12 triple points and no other singularitiecs. We label these points as
pr=0:C:0 pp=[C: 1), ps=[1:0:1], pa=[:1:0, ps=[C:1:1],
po=[1:C 1) pr=[1:1:0 ps=[1:1:8) pp=[1:1:1], po=1[0:1:0]
pi1=1[1:0:0], and p;=[0:0:1]. Consider the unique conic I' passing
through pi2, pi1, pio, po, p4. It is given by the equation Ex1x + Expxs +
proper transform I of T. In [6], it is proved that T is a rigid curve in M .

By Theorem 5.1, this curve defines a primitive arrangement of 11 curves A. To
actually exhibit A, we need to check all intersections between I" and all the lines
passing through pairs of points p; (so, more than the ones in the dual Hesse
arrangement). After that, it is easy to draw a picture of the arrangement. In
Figure 3, we show all the singular fibers of the corresponding stable fibration.
Notice that the arrangement belongs to .«Z(P', 0(3),11).

For another model, we perform in F3 two elementary transformations on the
fibers F4 and Fs by blowing up the corresponding singular points in A. Then, we
end up in F; where the (—1)-curve is the proper transform of Sj,. After blowing
it down, we obtain a very special arrangement of 7 lines and 4 conics in P2.
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7. EXTENDED AND PARTIALLY EXTENDED ARRANGEMENTS

Fix the data (C,L,d) over IK = K as in Section 2. We now study properties
of certain log surfaces associated to arrangements of sections A. First, we as-
sociate to 4 an extended arrangement 44, and partially extended arrangements
Apa.

DEeFINITION 7.1. Consider the arrangement of sections A as a (reducible singu-
lar) curve, we denote its set of singular points by sing(A). Let {F1,..., Fs} be the
fibers of 7 : P¢(L) — C which contain points in sing(A). Then, the extended
arrangement A, associated to A is

AA = AU{F1,... ,Fg} ) {Sd+1}-

Let 0 < & <0 — 2 be an integer. Let {F;,, ..., F; } be a subset of {F}, ..., Fs} such
that for any 1 < j <e and any point P in sing(A) N F;, there are two sections
in A intersecting at P with distinct tangent directions. Then, a partially extended
arrangement 4,5 associated to A is

App = AN{F, .. Fi ).

The numeration of the fibers will be irrelevant.

As before, we perform blow-ups at the points in sing(.A) (and infinitely near
points above them) to separate all sections S;’s in a minimal way (as in the proof
of Theorem 5.1). This is described by a chain of blow-ups

R=R,:=BIlp R, 1 > - 5 Ry:=Bip,R| 5 Ry := Blp,Pc(L) 2 Ry := Pe(L)

whose composition is denoted by ¢ : R — P¢(£). The map o gives the minimal
log resolution of A, and produces the semi-stable fibration of (d + 1)-pointed
genus zero curves p: R — C. The 0" (A),.4 is a simple normal crossing divisor.
Let #(P;) be the number of sections in the proper transform of A passing through
P; right before blowing up P; (the center of the blowing up ;). We define

7(A) = i(z(m —1).
i=1

The divisor 6*(An),.q is the minimal log resolution of A, but *( Ay ),.q may
not be minimal, since we may need to blow down (—1)-curves coming from some
nodes in A. The divisors 6*(Aa),q and 6*(Aya).q are denoted by Ax and Ay
respectively. The arrangement .4y may be seen as defined by the intersection of
the boundary A in M 0,d4+2 With the surface R, where p : R — C is the stable fibra-

tion of (d + 1)-pointed curves of genus zero induced by A.
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We now follow the exposition of log surfaces as in [22, Section 2], which is due
to Iitaka, and the references given there. We are interested in the log surfaces
(R, Ap) and (R, A,p), and their log Chern classes®

i(Ap) = ci(Qp(log Ax)Y),  @i(Apn) == ci(Qp(log Ayn)”)

wherg Q}Q(lo_g Anp)Y, Q}i(log Apa)" are the dual of the corresponding sheaves of
log differentials (see [22, Def. 2.2]), and i = 1,2.

ProOPOSITION 7.1. Let A be an arrangement of sections with data (C,L,d),
deg L = e and h'(C,O¢) = g. Then,

Ci(Ax) = (d = 1)(20 +4(g — 1) —e) +7(A)  &(Ax) = (d = 1)(2(g — 1) +0)
with 0 as in Definition 7.1.

PROOF. In general, if (Y,D =", D;) is a log surface (as in [22, Section 2]), the
log Chern numbers are (see [22, Proposition 2.4])

&(Y,D) =AY ZD2+2t2+4Z

and & (Y,D)=c(Y)+06+2>._,(9(D )—1), where 1, is the number of

nodes of the curve D. In our case, ¥ = R and D = A,. We will compute these
numbers recursively. Let g, : R; — P¢(£) be the composition of the blow-ups
oy 0 ---o00;. Define

(i) == 8(1 — g) —Z—ZD +2(i+ (d+1)0) +4(d+1)(g—1) — 40 — 4i

for i=0,1,...,s, where >°7 | D;; is the prime decomposition of ;' (Aa) -
Then, one can check that

ci(0) = (d—1)(26 +4(g — 1) —e) ¢i(s) = &f(An)

and i+ 1)=e i) +t(Piy) — 1. Therefore, AN =(d—1)-

(20 +4(g— 1) —e) + 7(A). On the other hand, by the formula for (R, Ay)
above, we have

O(Ar) =41 —g)+s+(s+(d+1)0)+2(d+1)(g—1) =26 —2s

and so & (Ax) = (d —1)(2(g — 1) +9). O

2The corresponding log Chern numbers for o*(Aya),.q and the minimal log resolution of A, are
the same (see for example [22, Proposition 2.4]).
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COROLLARY 7.2. Let ,24 {S1,...,84} as above. Then, cl(AA)>2d—1

er(Ap) >d—1,and 2 < 3 EAA The log canonical divisor K + Ay is big and nef,

and so the surface R\ Ay is of log general type. When K = C, we have the (strict)
log Miyaoka—Yau inequality

E%(AA) < 3¢,(An),
and so t(A) < (d—=1)0+2(g—1) +e).

PRrOOF. The second log Chern number ¢»(Ax) = (d — 1)(2(g — 1) +0) is posi-

tive because 0 > 3. For the other one, take S; € A. Then, by looking at the

intersections of S} with S,,...,S; in P¢(L), one sees that 7(A) > e(d — 1). The

1nequa11ty is strict because ﬂl 1 S; = 0. Therefore, by Proposition 7.1, one has
¢(Aa) > 0. By the same reason,

: o(A) — e(d — 1)
2(Aa) d-1)(2(g—1)+0)

Let D := Ay and write its prime decomposition D = Zd“ S; + 3>, E; where S;
is the proper transform of S; under o : R — P¢(£), and E; ~ P"’s are the rest.
Since S‘d+1 =0*S;.1, we denote Sy, = 6*Sy1 and F = ¢*F where F is a general
fiber of 7 : Pc(L) — C. Then, Kz + D= -2S;.1+ (29 —-2—e)F + > ,a;E;+ D
for some a; > 0. But, for any fixed j =1,...,d, S; = Sgs1 +eF — ), b;E; where
b; <a;,and ), E; = 6F. Thus, say for j = 1, we have

d
Kp+D=(29-2+0)F+> (i —b)E+)_Si,
i =2

which means that the log canonical class is numerically equivalent to an effec-
tive divisor. Moreover, S;.(Kz + D) =2g —2+6 > 0 forall i, and E;.(Ky + D) =
-2+ E;. (D E) >0, and so Kz+ D is nef. This plus the fact ¢(Ar) =
(K + D) > 0 implies that Kz + D is big, and so R\ A, is of log general type.
When K = C, we use Sakai’s theorem [18 Theorem 7.6] to conclude ¢7(Ap) <
3¢,(Aa). Notice that the curve D is semi-stable and has no exceptional curves
with respect to D, as defined in [18, pp. 90-91]. For strictness, we apply Lemma
9.1. |

REMARK 7.1. From the previous proof, it is easy to see that the log canonical
class is ample if and only if A is transversal (Definition 2.4). One just applies the
Nakai-Moishezon criterion [8, p. 365].

ProOPOSITION 7.3. Let A be an arrangement of sections with data (C,L,d),
and let A,a be a partially extended arrangement from A with {F; ..., F,} for
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some 0 <e<06—2 (see Definition 7.1). Let k{ :=[sing(A) nF;| and k;:=
|[ANF;| +1<d. Then, '

e2(Apa) = e2(Aa) — Zk + 2¢ C%(.APA —Cl (Aa) — Zka 221( + 4e.

J=

PRrROOF. The result follows directly from the formulas in [22, Proposition 2.4].
O

COROLLARY 7.4. Let A be as above. Then, &3 (Apa) > 2, & (Aypa) > 1. The corre-
sponding log canonical divisor is big and nef, and so the log surface defined by A,
is of log general type. When K = C, we again have (strict) log Miyaoka—Yau
inequality &3 (Apa) < 3¢2(Apn).

PROOF. Notice that 377 | k; — 2¢ < de — 2¢ < (d — 2)(0 — 2), and s0

_2(ApA = Cz AA (Zk —26)

>(d—1)2g-1)46)—(d—2)0—2)=2g9(d—1)+6—-2> 1.

Clearly, we have k{+2k;<2d+1, and so >0k +23 ki —4e<
(2d — 3)(0 — 2). Then, since 7(A) —e(d — 1) > 1, we have

G (Apa) = EH(Ap) Zk” sz +4e

>d(g—1)(d—1)+25(d — 1) — e(d — 1) + 7(A) — (2d — 3)(d — 2)
>14+4(g—1)d—1)+2Q2d—3)+6>1—-4(d—1)+5+22d —3)
=5—1>2.

We prove nefness and bigness as we did in Corollary 7.2. It is enough to do it
in R. Let D:=0"(Ay),q and write its prime decomposition D = "' S, +
S E; where S; is the proper transform of S; under o:R — IPC(E), and
E; ~ Pl’s are the rest. Since Sd+l =0¢"Sy.1, we denote Sy =0*S;11 and
F =0¢"F where F is a general fiber of n:P¢(L) — C. Then, Kz + D =
2841+ (29 —2—e)F + ,a;E;+ D for some a; >0. But, for any fixed
j=1,....d, Sj = Sq1 +eF — ., b,E; where b; <a,,andZE_(5F Ele
(see Deﬁmtlon 7.1). Thus, say for j = 1, we have

d e
Kp+D=(2g-2+6—e)F + > (a;i—b)E+ Y Si+ ) (F-F),
i =2 i=1

which means that the log canonical class is numerically equivalent to an effective
divisor. Moreover, S;.(Kz + D) >2g —2+0 —¢ > 0foralli, and E;.(Kz + D) =
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-2+ E;.(D—E; ) > 0 (this is by definition of partlally extended arrangement)
and so K + D is nef. This plus the fact (K + D)? > 0 implies that Kz + D is
big, and so R\A A 1s of log general type. When K = C and by Sakai’s theorem
[18, Theorem 7.6], we have ¢7(Ay) < 3¢2(Aya). For strictness, we apply again
Lemma 9.1. O

ExaMmPLE 7.1. We use Example 6.1 to show differences i 1n = between extended
and partially extended arrangements. Let A4 be the arrangement in Example 6.1.
For the partially extended arrangements, let Z be the set of fibers we take out
from Ap (see Definition 7.1). We label fibers according to Figure 3. Then we
have the following table.

E {Fl,...,Fg} Q) {F(),...7F2()} {F77...7F20} {F6’...7F2()}
e 319 399 171 141 134

& 147 180 72 58 55

72 — —

= 2170... |2216 2.375 2.4310... 2.436

2 &2
REMARK 7.2. In general, there are no inequalities between ‘_‘ () ynd G
2 &(An) 1O By

A For instance take a general arrange-
ment A e /(P! 0(1),d) (a general hne arrangement) We have ¢ = ( ). Take

Apa
8:5—2.Then,r(A):(‘21) and - ((AA) () <2,
REMARK 7.3. Almost any line arrangement is ‘“log equivalent” to a
Ao € (P!, 0(1),d). More precisely, let # be a line arrangement in P?. As-
sume this line arrangement has at least two singular points so that each of them
belongs to more than two lines (in particular, general line arrangements are not
allowed). Take two distinct lines in %, each of which contains exactly one of
these two points. Now we blow up the intersection of these two lines. The total
(reduced) transform of % is a A, for some A € .« (P!, O(1),d).

Over C and by [22, Theorem 7.2|, we have the Hirzebruch-Sakai inequality

8
G (Apn) < 552(“41)A),

for any A e o/ (P', O(1),d), with equality if and only if Apa 1s the proper trans-
form of the dual Hesse arrangement (see Example 6.1). Of course, the same holds
true for Aa, but now equality is impossible. This shows that the log Miyaoka—
Yau inequality in the previous corollaries may be far from optimal, and opens
the interesting question:

QUESTION 7.5. Find the number 0 < o(C, L) < 3 which makes

_Z(APA) < a(C,L) & (Apa)
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a sharp inequality, valid for any complex arrangement A e of (C,L,d) and any
d=>3.

Arrangements holding equality should be interesting. Proposition 7.6 will
show that we indeed need to look only at arrangements in .«/(C, £, d), i.e. primi-
tive ones (Definition 2.3).

REMARK 7.4. The log Miyaoka—Yau inequalities in Corollaries 7.2 and 7.4 are
not combinatorial, except in the case of .«(P' O(1),d). As in the previous
remark, let A, be defined by an arrangement of lines ¥ = {L;,...,L,} in P2.
Let {p1,...,p,} be the set of singular points of ¥. The log Miyaoka—Yau
inequality ¢7(#) < 3¢ (%) becomes precisely r > s [22]. This inequality was
proved in a purely combinatorial manner by N. G. de Bruijn and P. Erdos in
[5]. Moreover, they show that s = r if and only if . has either s — 1 lines through
a common point (in this case ¢; = & = 0) or it is a finite projective plane. We
proved this inequality in [22, Theorem 7.2] using some surface theory. The fol-
lowing is another combinatorial proof. Consider L; as a vector in Q" having a 1
in the j-th coordinate if p; € L;, 0 otherwise. The assertion follows if .# forms a
linearly independent set. If not, say the line L1 >i,a;L;. Then, consider the
inner product with L; — L;, giving a; = f i T < 0 for all j, a contradiction.

In general, one can exhibit ‘combinatorial arrangements’’ for which the in-
equality 7(A) < (d —1)(0 +2(g — 1) + e) does not hold. For example, one may
take A € .o/(P' O(e),4) with e > 1 such that any two sections are tangent of
order ¢ and 0 =3 (when e =1, A, is the Fano arrangement (with a point
blown-up)). This combinatorial phenomena is produced by the freedom we have
with respect to tangencies of higher order. See also Example 7.5, where positive
characteristic is used.

PROPOSITION 7.6. Let A, A’ be two arrangements of d sections so that A is a
pull-back of A', as in Definition 2.2. Assume that the pull-back map g is separable.
Then,

Gy _ A G4 _ A

H(An) = (AL’ BlAm) © a(AlL)

where Ay is the pull-back of A,

PrOOF. By definition, we have the following working diagram
Pe(L) —% Po(L)
c 4

where A and A’ are arrangements of d sections in P¢(£) and P¢/(L) respec-
tively. Since ¢ is a finite separable morphism, we have the Hurwitz formula

2g — 2 =deg(g)(2¢9’ —2) +deg R
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where R =3} _ . length(Qc/c/)pP, and so degR > > . (e.—1) (see [8, p.
301]). Here e, is the ramification index of ¢ at ¢. As usual, ¢’ € C' is a branch
point of ¢ if there is ¢ € C such that g(¢) = ¢’ and e, > 1. We remak that for
any ¢’ € C' we have g*(¢’) = Zg@:c, e.c and deg(g) = Zg(c):c' e. 8, p. 138].

It is not hard to see that § + deg R = deg(g)d’ + «, for some integer o > 0. We
also have e = deg(g)e’ (Lemma 2.1, where e = deg £ and ¢’ = deg L'). Notice
that, by definition, the map ¢ cannot be branched at any of the images of the
special ¢ fibers (this is an empty statement when we consider the extended ar-
rangement). This is because a pre- image of such a fiber would contain at least
one point in sing(.A) where all sections in A through it have the same tangent direc-
tion. So, & = deg(g)¢', 0, ki = deg(g) S5, kf, and Y5, k¢ = deg(g) 5, kY
So we only need to compare 7(A) with 7(A").

For any P e sing(A), define 1p(A) := > 5. yp)(1(Q) — 1) where N(P) is the
set of points blown up by ¢ above P (so N(P) contains P). Then, 7p(A) =
exp)lGp)(A'), and so 7(A) = deg(g)7(A"). Therefore,

t(A) —eld=1) =3 K
&2(Apa) d=10+2(¢g-1) =2 1 k+2

deg(g)(r(A") —e'(d —1) = 375, k')
(d — 1)(deg(g) (29" =2 +0") + o) — deg(9) (3} kj — 2¢)

deg(g)(x(A") = €'(d = 1) = 51 k") _ A
(d = 1) deg(9)(29" = 240") — deg(g)(Sii kf = 2¢)  e2(Ann)

REMARK 7.5. The situation is different when the base change is not separable.
Assume that K has positive characteristic p. Let A, A" be two arrangements
of d sections so that A is a pull-back of A’, as in Proposition 7.6, but now let
g:C=C/, — C’ be the composition of the K-linear Frobenius morphism r
times [8, p. 302]. Then,

S(A) L, (A)—d-1)
Py v I VTGOS

and so it becomes arbitrarily large when r > 0 (Corollary 7.2). In the next sec-
tion, these examples will produce nonsingular projective surfaces violating any
Miyaoka—Yau inequality.

8. RANDOM SURFACES ASSOCIATED TO ARRANGEMENTS

Fix the data (C, £, d) over [K = [ as always. We now associate to each arrange-
ment of sections A of 7 : Pc(L) — C various collections of nonsingular projec-
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tive surfaces. Each collection is produced by either Ax or some A,x. The con-
struction is analogue to the one in [22, Theorem 6.1] but now we have more
singular arrangements of curves. From now on, we consider A as A,n with
& = 0, to save notation.

Let A ={Si,...,S;}. By definition,

Si ~ Sgat +7*(L)

for i=1,...,d, where S;11 = Cy with C} = —e = —degL. Let {F,...,Fs_.}
be the fibers which define A= AU{F,...,Fs_,Sas1}. Let {0< x,-}idzl,
{0 < y,-}?;f be an integer solution of the equation

d o—e
E:> exi+ Y yi=p
io1 i=1

for some prime number p # char(K), and let x4 := p — Zld:  Xi. When p is
large enough, the equation F has nonnegative solutions, exactly (see [4])
pd+a‘7571

(d+0d—¢e—1)led

+ 0(pd+&_8_2)-

In this way,

d+1 d

izl:xiSi-i-jz;J/iFi ~ pSa+1 +7T*((in)£+/\/l)7

i=1
for some line bundle M on C of degree ¢ y;. Then, since

d

(in)e+deg/\/l =p,

=1
there is an invertible sheaf A" on C such that

d+1 o—

inSi + Zg ViFi ~ p(Sap1 + 7 N).
i—1

i=1

The theorem below associates to each arrangement 4 various families of ran-
dom smooth projective surfaces. We use the method in [22], with an extra care of
the new singularities; in [22] we only had simple crossings (as in Definition 2.4).
The randomness part relies on a large scale behavior of Dedekind sums and con-
tinued fractions (see [22, Apendix]). The proof will be based on the work done
in [22].
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THEOREM 8.1. Let A be an arrangement of sections of n: Pc(L) — C. Then,
there exist nonsingular projective surfaces X of general type with

EZ(A A)
arbitrarily close to 14”,
2 (X) 4 &2 (Apn)

Sor any A,a.

PROOF. Let Z := P¢(L£) and let Y be the surface which log resolves minimally
the arrangement A,x (for example, ¥ = R when ¢ =0). Let 6: ¥ — Z be the
minimal log resolution of .4,5. Choose a solution of [, and define

d+1

(Zx,S +Zy, ,) ~ pa*(Syp1 +TN).

This allows the construction of the p-th root cover f: X — Y along D, as in
[22, Section 2]. Thus, X is a nonsingular projective surface. Let

D= zr: V[D
i=1

be the decomposition of D into the sum of prime divisors. From [E and the nature
of Aya, ones sees that 0 < v; < p.

As in [22, Apendix], for 0 < ¢ < p, we denote the corresponding Dedekind
sum by s(g, p) and the length of the corresponding negative continued fraction
by /(g, p). In [22, Proposition 3.4, 3.6, and 2.4], we computed the Chern numbers
of X as functions of p, Chern numbers, and “error terms”. Let &7 := &7 (Ap),
¢ = 2(Apa), ¢ :=c}(Y), and ¢3 := ¢2(Y). Then,

_ _ _ _ 1
A(X)=¢ep+2cr— &)+ (] — ¢ +26 —2¢)—— Zc(p —v[v;, p)D;.D;

i<j

a(X)=ap+(c—a)+ > I(p—vv,p)Di.D;

i<j

where c(p —vv;, p) :=12s(p — v)v;, p) + 1(p — v/v;, p). Let us denote the error
terms by CCF := 3, c(p —v;jv;, p)Di.Dj and LCF =}, _.I(p — vv;, p)D;.D;.

We prove the existence of “good” solutions of [E for arbitrarily large primes p,
which make €¢F and LEE arbitrarily small. In addition, this will show that ran-
dom partitions are “good”, with probability approaching 1 as p becomes arbi-
trarily large. The key numbers to take care of are the p — v/y;, which are defined
for each node of D,4. The idea is to show that there are solutions of E for
which all p — v]y; are outside of a certain bad set F < {0,..., p — 1} (defined in
[22, Apendix], due to K. Girstmair).
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We write down for each node in D,q the multiplicities v,, v, as functions on
the numbers x;, y;. There are different cases, all described in the following table.

Type | 1| 11| III v %

d
Va Xi | vi| yi DXk +yi | nY yxk+z,z#0
with 0 <ny <e | hasnox;,0<n<e

Voo | X5 | Xj | Xag1 | Xk withmg # 0 Dk Xk + Va

Notice that “z # 0 has no x;”” in case V because of our restriction on tangent
directions at the singular points of A,x (Definition 7.1). Below we estimate for

each type

the number of solutions (v,, v,) of E producing a bad multiplicity

p—vivy € F. We do it case by case.

(Type I)

(Type II)

(Type IIT)

(Type IV)

(Type V)

This is a node in S; N S; (possible only when ¢ > 0). Since [E is a
weighted partition of p, we can use the estimate in [22, proof of The-
orem 6.1 (1)], and so there exists a positive number M (independent
of p) such that

|b(va,vp)| < p - |F| - Mp@+9=73 = M| F|p?+o—o-2.

This is a node in F; nS; with j # d + 1. Then again, we apply what
we did in [22, proof of Theorem 6.1], to obtain the same estimate as
above.

This is a node in F;nS;.1. Since x4.1 = Zk | Xk, then we want
p—yl(p =0 x) e Fmod p, so yl(zl‘f | Xx) € F. But this is
again as in [22, Theorem 6.1], and we have the same previous esti-
mate. Notice that it works because 0 — ¢ > 2.

This is a node between Si, kK #d + 1, and a exceptional divisor
over the fiber F;. Notice that A,y contains at least two fibers, so
S mexi 4+ y; < p. Hence we are as in case (2) in the proof of
[22, Theorem 6.1].

This is the new case, coming from nodes in the resolution of singular-
ities of A. It does not involve x;. ;. The idea is to analyze three equa-
tions [y, [, 3 from the equation [E, and estimate solutions for each.

Without loss of generality, we rearrange indices so that

o
Vg =n E X +z,
i=1

for some o, and v, = > | x; + v, Where z = Ziﬂ:Hl nix; + cy;, for some f, with

¢=0orl,

and 0 < n; < e. Notice that z # 0 for any solution of E. We define

d
Er: Y exi+ Y yi=p,

i=pt1 i)
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equation with m; variables, E, : 7 | x; = p» with m, variables, and

B
Es - Z nix; +¢y; = p3
i=o+1

with mj variables. So, my + my +m3 = d + 0 — e. Notice that p; are numbers
varying in the region 0 < p; < p, since we will look at solutions of [F; from solu-
tions of [E.

Say that p — vy, € F, which means mod p, (3, xx)v, € —F — 1. Of course
the set —F — 1 has same size as F. We now use repeatedly the fact that the num-
ber of lnonnegative integer solutions of a;z; + - - - + a,,z,, = ¢ for coprime a;’s is

+ O(q"2) (see [4]). Let p be large enough. Given 0 < p3 < p, the

q
(m—D)ayaz-ay,
number of solutions of F3 is < M3p™ L.

Now, the key observation is that modp we have py(np; + p3)/ =
P, (np, + p3)" and so

P2(npy + p3) = pa(npa + p3) = paps = Prps = p2 = Dy

because pj is not zero. In this way, we have to choose p; in a set of size |F|. Now
we fix p» and have at most M, p"~! solutions for E,. After we have solutions for
[; and E,, we have at most M| p" ~! solutions for E;. Putting it all together,

b(vayvp) < p- Map™~' | F|- Mop™ ™" - Myp™ ™" = My Mo M| F|p+o—:2,

But we know that [F| < /p(log(p) + 21log(2)) [22, Apendix], and that the

total number of solutions of [ is (df%;;,e, + O(p?+9=%72). Then, since the num-
ber of nodes of D.q is of course independent of p, we have proved the existence
of good solutions, and that a random one is good with probability tending to 1
as p becomes arbitrarily large.

Now, given good solutions with p large, we proceed as at the end of the proof

of [22, Theorem 6.1], showing that®

LCF < (Z Di.Dj) (3yp+2) |CCF| < (Z Di.Dj) (67 + 7).

i<j i<j

This proves the asymptotic result. Finally, these surfaces are of general type
because of the classification of algebraic surfaces (see [3] for any characteristic),
since we know that ¢ > 0 and ¢ > 0 (Corollaries 7.2 and 7.4). O

REMARK 8.1. With this theorem, one recovers the log Miyaoka—Yau inequal-
ities in Corollaries 7.2 and 7.4, when KK = C. We just apply the (projective)
Miyaoka—Yau inequality to the surfaces X for large primes p.

3In [22] there is a minor error for the estimate of s(¢, p). This is due to the usual normalization by
12 of a Dedekind sum. The correct estimate is 12]s(q, p)| < 3,/p + 5, which of course does not affect
any asymptotic result.
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A good looking corollary, consequence of Theorem 5.1, Section 7, and Theo-
rem 8.1.

COROLLARY 8.2. Let d > 3 be an integer, and let A be an irreducible projective
curve in P72(IK) not contained in the hyperplane arrangement #; (see above Ex-
ample 3.1). Then, there exist nonsingular projective surfaces X associated to A such
that X is of general type and 0 < 2¢2(X) < c2(X).

ProOOF. Consider the arrangement .4 defined by 4 as in Corollary 5.2. Then use
Theorem 8.1 for A4, and Corollary 7.2. O

REMARK 8.2. In addition, one can prove that 7$'(X) ~ n{!(4), where 4 is the
normalization of the curve 4, and #{' denotes the etale fundamental group [23].

COROLLARY 8.3. Assume K =C. Let A be an arrangement of sections of
n:Pc(L) — C. Then, there exist nonsingular projective surfaces X of general
type such that

and so of positive index havzng icy arbztrartly close to - (A In addition, there
a(X) &(Aa)”

is an induced connected fibration ©': X — C whlch gives an isomorphism:
m(X) =7 (C). In this way, AlIb(X) ~ Jac(C) and 7' is the Albanese fibration
of X.

Proor. The first part is implied by Theorem 8.1 for Ax and Corollary 7.2. The
map f : X — Y in the proof of Theorem 8.1 is totally ramified along A, and
noco:Y — Cis a connected fibration with at least one simply connected fiber
and one section in Ax. Therefore, the construction induces a connected fibration
7' : X — C, and by [22, Proposition 8.3] we have 7;(X) ~ 71(C). The last part is
a simple consequence of Albanese maps which applies to any such fibration (see
[3] for example). 0

REMARK 8.3. Corollary 8.3 is also valid for any A,A except for 2 < E )1 one

X
thinks that the closest ‘é ; is to 3, the more interesting are the surfaces X, then

one may consider the construction starting with some A, (this is with ¢ > 0). For
line arrangements, this is indeed the case (see Remark 7.3). By Proposition 7.6,
we only need to consider primitive arrangements in order to find upper bounds
for Chern ratios.

ExampPLE 8.1. The conic in Example 6.1 produces an arrangement A €
(P!, 0(3),11). In the table of Example 7.1, we computed log Chern ratios for
the extended and some partially extend arrangements induced by .A. Then, by
Corollary 8.3, there are simply connected nonsingular projective surfaces of gen-
eral type with Chern ratios arbitrarily close to the ones in that table. Notice that
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the highest is attained by a partially extended arrangement, which avoids “too
many”’ double points.

EXAMPLE 8.2. Assume [K has positive characteristic p. Take any A'e
o/ (C, L,d) for some curve C and line bundle £. Consider the K-linear Frobenius
pull-back of A" composed r times, as in Remark 7.5. Denote the resulting
arrangement by A. Then, by Remark 7.5 and Theorem 8.1, there are nonsin-
gular projective surfaces of general type X w1th arbitrarily close to

G(A) W)
Bl = 2+ 0" (e

7§'(C) (see [23]). Therefore, for any given positive characteristic and nonsingular
projective curve C, there are nonsingular projective surfaces of general type X
with z{'(X) ~ #{*(C) and violating any sort of Miyaoka—Yau inequality.

&)
— 2), and so arbitrarily large. We can prove that 75'(X) ~

9. APPENDIX: LOG INEQUALITIES

In this section, the ground field is C. After ﬁxing o/ (C,L,d), it is clearly of our

interest to find optimal upper bounds for & % L for extended and partially extended
arrangements (see Remark 7.3). Arrangements attaining upper bounds should be
very special, and they would produce interesting surfaces via Theorem 8.1.

In this appendix, we show through Theorems 9.2 and 9.3 how this question
about sharp upper bounds is connected to old questions by Lang and others
on effective height inequalities [15, pp. 149-153], via an inequality of Liu [16,
Theorem 0.1]. Also, in a more general setting, we show a way to obtain strictness
for the log inequalities in Corollaries 7.2 and 7.4, and Theorems 9.2 and 9.3. The
next lemma follows from Kobayashi [14] and Mok [17].

LEMMA 9.1. Let Y be a smooth projective surface, and let D be a simple normal
crossing divisor in Y. Assume Ky + D is big and nef, and ¢3(Y, D) = 3¢,(Y, D).
Then, D is a disjoint union of smooth elliptic curves.

PROOF. By [14, p. 46], Ky + D big and nef and ¢}(Y, D) = 3¢ (Y, D) imply
that the unlversal coverlng of Y\D is the complex two dimensional ball B =
{(z,w) € C?: |z]* 4+ |w|]* < 1}. Hence, there exist a discrete group I' in Aut(B)
such that B/I" ~ Y\D. In particular, B/T has finite volume. Notice that T is
torsion-free since it acts freely on B. Therefore, by [17, Main Theorem], there
exists a smooth projective Mumford compactification W of B/I" such that
W\(B/T) is a disjoint union of smooth elliptic curves E;. In this way, we
obtain a birational map W -—» Y. We now resolve this map and get a bi-
rational morphism o : W — Y. Then, the inverse image E; of each E; under
o dominates D;, after reordering indices. It is easy to see that E; = D,. But E;
is a smooth elliptic curve with some finite trees of P!’s attached. Given one of
these trees, one has a smooth rational curve F intersecting E; — F at one point.
But then 0 < (Ky + D).F = -2+ 1 = —1. So, there are no trees, and E; = D;
for all i. a
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Let f/: Y — C be a fibration of a smooth projective surface over a smooth
projective curve C, denote by g the genus of the generic (connected) fiber of f
and by ¢ the genus of C. Let wy|c := Ky — f*(wc) be the relative dualizing
sheaf.

Let Si,...,S, be n mutually disjoint sections of /. Assume f is a semi-stable
fibration of n-pointed curves of genus g, marked by these sections. Let

D=Si+ - +S+f(ca+-+c)
where ¢y, ..., cs; are the images of the singular fibers of f.

THEOREM 9.2. Let f be not isotrivial, i.e., the moduli of its fibers varies as
n-pointed semi-stable curves. Assume D # 0, and n > 1 when g = 1. Then

0 < c(Y,D) < 3e(Y,D).

PROOF. The generic fiber has (/' (c), (S; +--- + Su)ly-1()) = 1 (i denotes the
log Kodaira dimension): P! minus at least four points or elliptic curve minus
at least one point or the rest. Now, since f is not isotrivial, it has at least 3 singu-
lar fibers when C = P! (see [2]), or at least one when C is an elliptic curve (see
[1, p. 127]). So, in any case, the base is of log general type (on the base we take
the log curve (C,¢; + - - - + ¢5)). By a theorem of Kawamata [10, Theorem 11.15],
we have for a general ¢ € C

ROY,D) 2 R(f 7O, (Si 4+ Sy)lya() +R(Coer 0+ o),

and so (Y, D) is of log general type. Notice that D is a semi-stable curve, just
because the fibration is semi-stable, and when C = P! we have at least 3 singular
fibres. Therefore, Sakai’s theorem [18] applies, and so ¢;(Y,D) < 3é(Y, D).
Below we show that Ky + D is nef to obtain the strict inequality.

(case g = 0): We can explicitly show that Ky + D is nef (Corollary 7.2).

(case g > 2): Let g : ¥ — Y’ be the relative minimal model of f. Let E; be the
exceptional divisors. We can write

Ky +D=g"(wyic)+ Y _ mEi+ [*(wc)+ D
k

where for some positive integers n;’s. Since g > 2, the dualizing sheaf wy/c is
nef (due to Arakelov). If ¢ > 0, then f*(w() is nef as well, and so we check that
Ky + D is nef by intersecting it with components of D (notice that D includes
E’s). If ¢ = 0, we have at least 3 singular fibers, and so we delete f*(w¢) using
D, and again to check nef we intersect Ky + D with the components of D.

(case g = 1): As in the previous case, we go to Y’. Notice that Y’ has no mul-
tiple fiber. By the canonical bundle formula we have [1, p. 214]

Ky+D=(x(Y)+2(qg—1)F+> mE+D
k
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where F is a general fiber of f. So, if ¢ >0, we are done by the previous
argument. If ¢ = 0, we are done by the same argument, since there are at least 3
singular fibers by [2].

Therefore, Ky + D is nef, and strict inequality follows from Lemma 9.1. ¢

Theorem 9.2 is also valid when D =0 (i.e., a Kodaira fibration). It follows
from [16, Theorem 0.1]. Our argument does not prove it. Actually, up to the
case D = (), Theorem 9.2 is just a small extension of [16, Theorem 0.1] (since we
also consider the cases g = 0, 1), as we now see. We have ¢;(Y,D) = e(X) — e(D)
(e(A) is the Euler topological characteristic of A) and the usual formula [3,
Lemma VI.4]

0

e(Y)=4(g—1)(g—1)+> (e(f " (cr)) — e(F))

i=1

where F is a generic fiber of f. One sees that e(D) =2 e(f '(c;)+
n(2 —2q) —on. So, &(Y,D) = (29 — 2 +n)(2g — 2+ ). Obviously wyc + D =
Ky +D— f*(wc+ Z?:l ¢;). We then square it and see the inequality in [16,
Theorem 0.1].

REMARK 9.1. In [16, Theorem 0.1], where g > 2 is assumed, we have that f is
isotrivial if and only if ¢2(Y, D) = 3¢,(Y, D). But we now show that this corre-
sponds to uninteresting situations. First notice that Ky + D is nef by the same
argument used in (case g > 2) of Theorem 9.2. If ¢}(Y,D) > 0, then Ky + D
becomes big and nef, and we apply Lemma 9.1 to obtain a contradiction, unless
g =1 and 0 = 0. But then & (Y, D) = 0, which is a contradiction to our assump-
tion ¢(Y, D) > 0. Therefore, we are in the trivial case ¢} (Y, D) = & (Y, D) = 0.

For completeness’ sake, we explicitly show the connection with height in-
equalities of algebraic points on curves over function fields. This is another proof
of Tan’s height inequality [19, Theorem A]. Let ' : ¥ — C be a connected fibra-
tion as before, denoting by g the genus of the generic fiber of f and by ¢ the
genus of C. Assume that f is semi-stable. Let K(C) be the function field of C.
For an algebraic point P € Y(K(C)), let Cp be the corresponding horizontal
curve (i.e. multisection) in Y. As usual, let

- CUY\OCP N 2g(C_P) -2

h(P) = F.Cp d(P) = F.Cp

be the geometric height and the geometric logarithmic discriminant respectively.
The curve Cp is the normalization of Cp, and F' is a general fiber of f.

THEOREM 9.3. Assume g > 2, and that f is not isotrivial. Let o be the number of
singular fibers of f. Then, for any algebraic point P, we have

h(P) < (29 — 1)(d(P) +9) — wyc.
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PROOF. Let Cp be the horizontal curve in Y defined by P, and let g : Cp — C
be the composition of the normalization of Cp with f, so d := deg(g) = F.Cp.
Then, we have

Yp —» ¥ %,y

Nl b

G L. ¢

where f is the unique semi-stable fibration induced by g. Notice that G*(Cp) con-

tains a section S of f, by construction. The map fp is the induced semi-stable

fibration with a marked point (marked by S). Let dp be the number of singular

fibers of fp. Notice that Jp is at most dd. Consider D = S’ + fli‘ (c1 4+ + c,;P)
where ci,...,c5, are the images of the singular fibers of fp in Cp, and S
the strict transform of S. We now apply Theorem 9.2 to have (Ky,, + D) <

3(2g — 2+ 1)(2¢(Cp) — 2+ 6p). But, one checks that (Ky,, + D) = = (Ky +S+

frler+-4e,) = (o v, TS+ (6p 4+ 29(Cp) — 2)F)*. Also, since f is semi-

stable, we know that G*(w Y‘C) = Oy5; and by the projection formula S.w 5

Cp.wy|c. So, the log inequality above becomes

YICr =

dw%qc +wyc.Cp + 2(2g — 1)(2g(C_p) —2+40p) <3(29 — 1)(29(6_'},) —2+46p),

and so we rearrange to obtain the claimed height inequality (also use dp < d9).
O
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