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1. Introduction

In his beautiful paper [Mc07], McMullen constructed rational surface automor-
phisms of positive entropy with Siegel disks. They are the first examples among
automorphisms of projective manifolds. (See also [BK06], [BK09].) From one
side, positive entropy indicates that general orbits spread out vastly even though
the initial points are very close, from which one might expect that the general
orbit could be densely distributed. But on the other side, the existence of Siegel
disks shows that there is no dense orbit and the orbit of any point in the disk
never goes out of the disk. This contrast makes the study of automorphisms of
manifolds of positive entropy with Siegel disks very attractive. In McMullen’s
construction, the automorphism has exactly one Siegel disk and it is arithmetic
(see also Section 2 for definitions and more details). It is then natural to ask:

(i) How about in higher dimension?
(ii) How many Siegel disks can an automorphism of positive entropy have?

The aim of this paper is to address these questions. More precisely we prove:

Theorem 1.1.

1. There is a pair ðX ; gÞ of a non-singular complex projective rational 3-fold X and
an automorphism g a AutðXÞ such that:
(1-i) the entropy hðgÞ of g is positive; and
(1-ii) g admits exactly 2 Siegel disks and they are arithmetic.

2. Let n be any integer such that nb 4 and let N be an arbitrary positive integer.
Then, for each such n and N, there is a pair ðX ; gÞ of a non-singular complex
projective rational variety X of dimension n and an automorphism g a AutðX Þ
such that:



(2-i) the entropy hðgÞ of g is positive; and
(2-ii) g admits at least N Siegel disks and they are arithmetic.

3. Let n be any even integer such that nb 4. Then, for each such n, there is a pair
ðX ; gÞ of a non-singular complex projective rational variety X of dimension n
and an automorphism g a AutðXÞ such that:
(3-i) the entropy hðgÞ of g is positive; and
(3-ii) g admits exactly one Siegel disk and it is arithmetic.

We believe that this theorem gives the first examples of automorphisms of pro-
jective manifolds of positive entropy with Siegel disks in dimensionb 3. Here, it is
essential to make the entropy positive. Indeed, there are a lot of automorphisms
of Pn, of which the entropy is necessarily 0, having (arithmetic) Siegel disks. Our
construction is the product construction made of McMullen’s rational surfaces,
projective toric manifolds and their automorphisms. In this sense, our construc-
tion of manifolds are rather easy modulo McMullen’s deep construction. Never-
theless we should also note that for a manifold S and for an automorphism g with
a fixed point P, the product automorphism g� g of S � S does not have a Siegel
disk at ðP;PÞ, even if g itself has a Siegel disk at P. So, the essential point in
the product construction is to choose manifolds and automorphisms so that the
eigenvalues of the product morphism at the fixed point are multiplicatively inde-
pendent within the algebraic integers of absolute value 1. This turns out to be a
kind of arithmetic problem which has its own interest. The precise formulation is
given in Definition 4.1, and its solution is contained in Theorem 4.2.

A very interesting question is whether there are rational threefolds having
autmorphisms of positive entropy with Siegel disks that are not induced from
autmorphisms of lower dimensional pieces, such as for example the base or the
fibers of a fibration. We could not yet give an answer to this important problem.
One possible approach would be to consider blow-ups of P3, generalizing the
construction of McMullen. In this approach [DO] Chapter V might be useful
(see also [BK11]).

The structure of the paper is the following. In Section 2 we review McMullen’s
construction of automorphisms of rational surfaces of positive entropy with
Siegel disks [Mc07]. We also recall some basic facts about the topological entropy
and about Siegel disks. In Section 3 we present our construction of automor-
phisms of higher dimensional projective rational manifolds of positive entropy
with Siegel disks and we prove that they satisfy all the properties stated in
Theorem 1.1 except the fact that the Siegel disks are arithmetic. This fact is a
consequence of Theorem 4.2 which is stated and proved in Section 4.

Throughout this note, we work over the field of complex numbers C.

2. McMullen’s construction of automorphisms of rational surfaces

of positive entropy with Siegel disks

In this section we review McMullen’s construction of rational surface automor-
phisms together with some relevant notions.
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(i) Entropy. Let X be a compact metric space with distance function d. Let
g : X ! X be a continuous surjective map. Roughly speaking, the entropy of g
is a measure of ‘‘how fast two orbits fgkðxÞgkb0, fgkðyÞgkb0 spread out when
k ! l’’. We recall here its definition and a characterization in cohomological
terms that will be used later. For more details we refer to [KH95]. For any
n a Z>0, consider the metric

dg;nðx; yÞ :¼ maxfdðgkðxÞ; gkðyÞÞ j 0a ka n� 1g:

The entropy of g is then defined as ([KH95], Page 108, formula (3.1.10)):

hðgÞ :¼ lim
e!0

limsup
n!l

logSðg; e; nÞ
n

:

Here Sðg; e; nÞ is the minimal number of e-balls, with respect to dg;n, that cover X .
It is shown that hðgÞ does not depend on the choice of the distance d giving
the same topology on X (see e.g. [KH95], Page 109, Proposition 3.1.2). From
this definition it is easy to grasp the meaning of the entropy. However, for our
computations, the following fundamental theorem, due to Gromov-Yomdin-
Friedland ([Fr95], Theorem 2.1), will be more convenient:

Theorem 2.1. Let X be a compact Kähler manifold of dimension n and let
g : X ! X be a holomorphic surjective map. Then

hðgÞ ¼ log r
�
g�
����0

n

k¼0

H 2kðX ;ZÞ
�
:

Here rðg� j0n

k¼0
H 2kðX ;ZÞÞ is the spectral radius of the action of g� on the total

cohomology ring of even degree. In particular, hðgÞ is the logarithm of an algebraic
integer.

We refer to [Zh09] for some results about the role of the topological entropy in
the classification of higher dimensional varieties.

(ii) Salem polynomials and Salem numbers.

Definition 2.2. A Salem polynomial is a monic irreducible reciprocal polyno-
mial jðxÞ in Z½x� such that

fx a C j jðxÞ ¼ 0g ¼ h;
1

h
; d1; d1; . . . ; dn�1; dn�1

� �
;

where jdij ¼ 1 and h > 1 is real. Notice that jðxÞ is necessarily of even degree.
A Salem number is the unique real root h > 1. In other words, a Salem number

of degree 2n is a real algebraic integer h > 1 whose Galois conjugates consist of 1=h
and 2n� 2 imaginary numbers on S1 ¼ fz a C j jzj ¼ 1g.
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Let j2nðxÞ be a Salem polynomial of degree 2n. As j2nðxÞ is monic irreducible
and reciprocal, there is a unique monic irreducible polynomial rnðxÞ a Z½x� of
degree n such that

j2nðxÞ ¼ xn � rn
�
xþ 1

x

�
:

We call this polynomial rnðxÞ the Salem trace polynomial of j2nðxÞ. If

h;
1

h
; di; di ¼

1

di
ð1a ia n� 1Þ

are the roots of j2nðxÞ ¼ 0, then the roots of rnðxÞ ¼ 0 are:

hþ 1

h
; di þ

1

di
¼ di þ di ð1a ia n� 1Þ:

(iii) Coxeter element. By Enð�1Þ we denote the lattice represented by the Dynkin
diagram with n vertices sk (0a ka n� 1) of self-intersection �2 such that n� 1
vertices s1; s2; . . . ; sn�1 form a Dynkin diagram of type An�1ð�1Þ in this order and
the remaining vertex s0 joins only to the vertex s3 by a simple line, as shown in
Figure 1.

The lattice Enð�1Þ is of signature ð1; n� 1Þ, when nb 10.
Let W ðEnð�1ÞÞ be the Weyl group of Enð�1Þ, i.e., the subgroup of OðEnð�1ÞÞ

generated by the reflections

rkðxÞ ¼ xþ ðx; skÞsk:

The Weyl group WðEnð�1ÞÞ has a special conjugacy class called the Coxeter
class. It is the conjugacy class of the product (in any order in our case) of the
reflections

wn :¼
Yn�1

k¼0

rk:

The following theorem follows from either [BK09], Theorem 3.3 or [GMH09],
Theorem 1.1, Corollary 1.2. We follow the notation of [GMH09]:

Theorem 2.3. Let EnðxÞ be the characteristic polynomial of the Coxeter element
wn. Then, for nb 10,

EnðxÞ ¼ CnðxÞjðxÞ

Figure 1. The Enð�1Þ diagram.
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where CnðxÞ is the product of cyclotomic polynomials and jðxÞ is a Salem polyno-
mial. Moreover, CnðxÞ ¼ CmðxÞ if nCm mod360.

By [GMH09], Corollary 4.3, we have

EnðxÞðx� 1Þ ¼ xn�2ðx3 � x� 1Þ þ ðx3 þ x2 � 1Þ;ð2:0:1Þ

hence the formula in Theorem 2.3 can be used to determine both CnðxÞ and jðxÞ.
The following example, for n ¼ 19, will be used only in Section 4:

Example 2.4.

E19ðxÞ ¼ ðxþ 1Þðx4 þ x3 þ x2 þ xþ 1Þj14ðxÞ:

Here j14ðxÞ is a Salem polynomial of degree 14:

j14ðxÞ ¼ x14 � x13 � x11 þ x10 � x7 þ x4 � x3 � xþ 1:

(iv) Siegel disks and arithmetic Siegel disks.

Definition 2.5. (1) Let Dn be an n-dimensional unit disk with linear coordinates

ðz1; z2; . . . ; znÞ:

A linear automorphism (written under the coordinate action)

f �ðz1; z2; . . . ; znÞ ¼ ðr1z1; r2z2; . . . ; rnznÞ

is called an irrational rotation if

jr1j ¼ jr2j ¼ � � � ¼ jrnj ¼ 1;

and r1; r2; . . . ; rn are multiplicatively independent, i.e.

ðm1;m2; . . . ;mnÞ ¼ ð0; 0; . . . ; 0Þ

is the only integer solution to

rm1

1 rm2

2 . . . rmn
n ¼ 1:

(2) Let X be a complex manifold of dimension n and let g be an automorphism
of X. A domain U HX is called a Siegel disk of ðX ; gÞ if gðUÞ ¼ U and ðU ; g jUÞ
is isomorphic to some irrational rotation ðDn; f Þ. In other words, g has a Siegel disk
if and only if there is a fixed point P at which g is locally analytically linearized as
in the form of an irrational rotation. We call the Siegel disk arithmetic if in addition
all ri are algebraic integers.

The first examples of surface automorphisms with Siegel disks were discovered
by McMullen ([Mc02], Theorem 1.1) within K3 surfaces. See also [Og10], Theo-
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rem 1.1 for a similar example. The resultant K3 surfaces X are necessarily of
algebraic dimension 0 ([Mc02], Theorem 3.5, see also [Og08], Theorem 2.4).
Later, McMullen ([Mc07], Theorem 10.1) found rational surface automorphisms
with arithmetic Siegel disks.

(v) McMullen’s pair. Let S be the blowup of P2 at n distinct points. Then,
H 2ðS;ZÞ is isomorphic to the odd unimodular lattice of signature ð1; nÞ. The
orthogonal complement ð�KSÞ? is then isomorphic to Enð�1Þ and AutðSÞ natu-
rally acts on Enð�1Þ (under a fixed marking). As a part of more general results,
McMullen proves the following theorem (See [Mc07], Theorem 10.1, see also
Theorem 10.3, proof of Theorem 10.4 and the formula 9.1):

Theorem 2.6. Let n be a su‰ciently large integer such that nC 1 mod 6. Then,
for each such n, there are a rational surface S ¼ SðnÞ which is the blow up of P2 at
n distinct points and an automorphism F ¼ F ðnÞ such that:

1. The characteristic polynomial of F � jH 2ðS;ZÞ is

EnðxÞðx� 1Þ ¼ ðx� 1ÞCnðxÞjðxÞ

where EnðxÞ is the characteristic polynomial of the Coxeter element of Enð�1Þ,
CnðxÞ is the product of cyclotomic polynomials and jðxÞ is a Salem polynomial.

2. The fixed point set SF consists of exactly 2 points, say, P and Q. Moreover, F
has a Siegel disk at Q but F has no Siegel disk at P (in fact the eigenvalues of
F � jT �

S;P are not multiplicatively independent).
3. Let

F �ðz1; z2Þ ¼ ðaðnÞz1; bðnÞz2Þ

be the locally analytic linearization of F at Q. So, aðnÞ and bðnÞ are multiplica-
tively independent and of absolute value 1. Then, there is a root dðnÞ of jðxÞ ¼ 0
of absolute value 1 such that aðnÞ and bðnÞ satisfy

aðnÞbðnÞ ¼ dðnÞ; 2þ aðnÞ
bðnÞ þ

bðnÞ
aðnÞ ¼

dðnÞð1þ dðnÞÞ2

ð1þ dðnÞ þ dðnÞ2Þ2
:

In particular, aðnÞ2 and bðnÞ2 are the roots of the quadratic equation of the form

x2 þ aðdðnÞÞxþ dðnÞ2 ¼ 0

where aðxÞ a QðxÞ.
4. There are another root d 0ðnÞ of jðxÞ ¼ 0 of absolute value 1 and complex num-

bers a 0ðnÞ, b 0ðnÞ such that

ja 0ðnÞ=b 0ðnÞjA 1;

a 0ðnÞb 0ðnÞ ¼ d 0ðnÞ; 2þ a 0ðnÞ
b 0ðnÞ þ

b 0ðnÞ
a 0ðnÞ ¼

d 0ðnÞð1þ d 0ðnÞÞ2

ð1þ d 0ðnÞ þ d 0ðnÞ2Þ2
:
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In particular, a 0ðnÞ2 and b 0ðnÞ2 are the roots of the quadratic equation

x2 þ aðd 0ðnÞÞxþ d 0ðnÞ2 ¼ 0:

We call any pair ðS;F Þ as in Theorem 2.6 a McMullen’s pair. Notice that, by
Theorem 2.6 (1), any McMullen’s pair is of positive entropy.

In the next proposition we slightly improve the previous result by showing
that the Siegel disk of F at Q is arithmetic. This is only needed in Section 4.

Proposition 2.7. Let aðnÞ and bðnÞ be as in Theorem 2.6. Then aðnÞ, bðnÞ,
aðnÞ�1

and bðnÞ�1
are algebraic integers.

Proof. Set a :¼ aðnÞ; b :¼ bðnÞ and d :¼ dðnÞ. We first prove the Proposition for
a and b.

From the previous Theorem 2.6 (3), we know that d ¼ ab is an algebraic inte-
ger, therefore it is enough to show that aþ b is so. From the equation:

ðaþ bÞ2

ab
¼ dð1þ dÞ2

ð1þ dþ d2Þ2
;

we have that

aþ b ¼e
dð1þ dÞ
1þ dþ d2

;

hence we only need to prove that 1

1þdþd2
is an algebraic integer. We use now

formula (2.0.1) for the characteristic polynomial EnðxÞ of the Coxeter element wn.
Since n ¼ 6k þ 1, it readily follows from (2.0.1) that there exists AðxÞ a Z½x� such
that

EnðxÞðx� 1Þ ¼ ðx2 þ xþ 1ÞAðxÞ � ðxþ 2Þ:ð2:0:2Þ

Since EnðdÞ ¼ 0, we have:

AðdÞ
dþ 2

¼ 1

d2 þ dþ 1
:ð2:0:3Þ

On the other hand, we can write

AðdÞ
dþ 2

¼ BðdÞ þ Að�2Þ
dþ 2

; for some BðxÞ a Z½x�:

Hence, it is enough to prove that
Að�2Þ
dþ2 is an algebraic integer. From (2.0.2) it

follows that Enð�2Þ ¼ �Að�2Þ, therefore, there exists CðxÞ a Z½x� such that

EnðxÞ ¼ ðxþ 2ÞCðxÞ � Að�2Þ:
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We conclude that

Að�2Þ
dþ 2

¼ CðdÞ;

which is an algebraic integer, thus aþ b is an algebraic integer.
The statement for a�1 and b�1 follows as before by replacing F with F �1 in

Theorem 2.6 and from the fact that 1

1þdþd2
is an algebraic number. r

3. Automorphisms of higher dimensional manifolds of positive

entropy with Siegel disks

In this section we construct automorphisms of higher dimensional projective
rational manifolds of positive entropy with Siegel disks. Thus proving Theorem
1.1 (1-i), (2-i) and (3-i). To complete the proof of Theorem 1.1 we need to show
that our construction yields arithmetic Siegel disks. This follows from Theorem
4.2 which is stated and proved in Section 4.

3.1. Proof of Theorem 1.1.1. Let ðS;FÞ be a McMullen’s pair as defined in Sec-
tion 2. Let a a S1 ¼ fz a C j jzj ¼ 1g and let fa : P

1 ! P1, faðyÞ ¼ ay. Consider
X :¼ S � P1 and g :¼ ðF ; faÞ a AutðX Þ.

The topological entropy of g coincides with that of F , as it is possible to de-
form continuously g to ðF ; idP1Þ and hðgÞ is determined by its representation on
H �ðX ;ZÞ by Theorem 2.1 (see also Proposition 3.2 below). Therefore Theorem
2.6 implies that (1-i) of Theorem 1.1 holds for the pair ðX ; gÞ.

The fixed point set of g is fP;Qg � f0;lg. Since the eigenvalues of the lin-
earization of F at P are not multiplicatively independent, g has neither a Siegel
disk at ðP; 0Þ nor at ðP;lÞ, for any a a S1. On the other hand, for a generic
choice of a a S1, g will have two Siegel disks, one at ðQ; 0Þ and another at
ðQ;lÞ. Indeed the set of a a S1 such that the sequence ða; b; aÞ is not multiplica-
tively independent is countable, where a and b are as in Theorem 2.6.

To complete the proof of (1-ii) it remains to show that it is possible to choose
a a S1 such that these two Siegel disks are arithmetic. This fact relies on Theorem
4.2 which roughly speaking states that, it is always possible to extend any
sequence of multiplicatively independent algebraic integers of absolute value 1
to a strictly bigger sequence satisfying the same properties. The statement and
the proof of this result is postponed in Section 4. This concludes the proof of
Theorem 1.1.1.

3.2. Proof of Theorem 1.1.2. The previous construction can be extended to
any dimension by replacing P1 with Pd and by taking automorphisms fa a
AutðPdÞ of the form faðy1; y2; . . . ; ydþ1Þ :¼ ða1y1; a2y2; . . . ; adþ1ydþ1Þ, where

a :¼ ða1; . . . ; adþ1Þ a ðS1Þdþ1. Let g :¼ ðF ; faÞ a AutðS � PdÞ. The topological
entropy of g satisfies hðgÞ ¼ hðF Þ for the same reasons of the case d ¼ 1 (see also
Proposition 3.2 below), moreover, for a generic choice of a a ðS1Þdþ1, g will have
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d þ 1 Siegel disks. The fact that it is possible to choose such an a a ðS1Þdþ1 so
that these Siegel disks are arithmetic is a direct consequence of Theorem 4.2 of
Section 4.

Let now nb 4, and let Nb 3. In order to construct examples of automor-
phisms of smooth rational varieties of a given dimension n with at least N Siegel
disks, we replace in the previous construction Pd with a smooth projective toric
variety of dimension d ¼ n� 2 and we use the automorphisms that are induced
by the action of the torus. In the remaining part of this subsection we prove that
this method works in this more general situation.

We recall that to any complete fan D in a lattice L of rank d we can associate
a d-dimensional complete toric variety YD. The group ðC�Þd acts on YD and the
morphism ðC�Þd ! AutðYDÞ induced by this action is injective. We will denote
by fa the automorphism of YD associated in this way to an element

a :¼ ða1; a2; . . . ; adÞ a ðC�Þd :

The results about toric varieties that will be used here can be found in [Oda88]
or [CK99]. We will also denote YD simply by Y when there is no danger of
confusion.

Toric manifolds are always rational and they provide several interesting exam-
ples of rational manifolds. However, the following proposition (which is also
used in the proof of Theorem 1.1) shows that they never admit automorphisms
of positive entropy.

Proposition 3.1. Let Y be a non-singular projective toric variety. Then, for any
f a AutðYÞ we have: hð f Þ ¼ 0.

Proof. Recall that the cone NEðY Þ of numerically e¤ective curves of Y is
finite, rational and polyhedral (see e.g. [Oda88], Page 107, Proposition 2.26).
Thus, the nef cone AðY ÞHH 2ðY ;RÞ is also finite, rational and polyhedral, as it

is the dual cone of NEðY Þ. Moreover the ample cone AðY Þ is open in AðYÞ by
Kleiman’s criterion.

Let f a AutðYÞ and let f � : H 2ðY ;ZÞ ! H 2ðY ;ZÞ be the induced map. Let
Li (1a ia l) be the 1-dimensional edges of AðYÞ and vi be the primitive vector
of Li. Since ð f �Þl! is the identity on fL1; . . . ;Llg it follows that ð f �Þl!ðviÞ ¼ vi
(1a ia l). As AðY Þ is open in H 2ðY ;RÞ (because h2;0ðYÞ ¼ h0;2ðY Þ ¼ 0),

ð f �Þl! must be the identity on H 2ðY ;RÞ, therefore rð f � jH 2ðY ;ZÞÞ ¼ 1. It fol-
lows from [DS04] Corollaire (2.2) that hð f Þ ¼ 0. r

Proposition 3.2. Let Y be a non-singular projective toric variety, f a AutðY Þ
and F a AutðSÞ be an automorphism of a compact Kähler manifold S. Let

g :¼ ðF ; f Þ a AutðS � Y Þ:

Then hðgÞ ¼ hðF Þ. In particular, g is of positive entropy if and only if so is F.
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Proof. Recall that HiðY ;ZÞ ¼ 0 for i odd by Jurkiewicz-Danilov’s Theorem
(see e.g. [Oda88], Page 134). Then, by Künneth formula:

H 2kðS � Y ;QÞ ¼ 0
k

l¼0

H 2lðS;QÞnH 2k�2lðY ;QÞ:

Here g� ¼ F � n f � on each direct summand. By Proposition 3.1, we have that
hð f Þ ¼ 0. Thus, the eigenvalues of f � on H 2k�2lðY ;QÞ are of absolute value 1.
In fact, letting ei be the eigenvalues of f � jH 2k�2lðY ;QÞ counted with multi-
plicities, then jeija 1, Ei. But det f � ¼e1 as f � is an automorphism of
H 2k�2lðY ;ZÞ, so

Y
i

ei

�����
�����¼ 1

hence jeij ¼ 1, Ei. Thus

rðg� jH 2lðS;QÞnH 2k�2lðY ;QÞÞ ¼ rðF � jH 2lðS;QÞÞ:

From this follows the result. r

Let now Y be a smooth projective toric variety associated to the fan D with
d-dimensional cones s1; . . . ; sn, nbN. Notice that such a variety always exists
for db 2. Then Y ¼

Sn
p¼1 Up, where Up :¼ SpecC½s4p BM�. As we assume Y to

be non-singular, each C½s4p BM� can be written as

C½s4p BM� ¼ C½xK1ðpÞ; xK2ðpÞ; . . . ; xKd ðpÞ�HC½M� ¼ C½xe1
1 ; xe1

2 ; . . . ; xe1
d �

and Up GAd with the coordinates ðxKiðpÞÞ. Here we use multi-index notation,
namely

KiðpÞ ¼ ðki1ðpÞ; ki2ðpÞ; . . . ; kidðpÞÞ a Zd

and

xKiðpÞ ¼ x
ki1ðpÞ
1 x

ki2ðpÞ
2 . . . x

kid ðpÞ
d :

For a :¼ ða1; a2; . . . ; adÞ a ðS1Þd consider the corresponding automorphism fa a
AutðYÞ. Each Up is invariant under fa and the action of fa on Up is given as fol-
lows (we use again multi-index notation)

f �
a ðxK1ðpÞ; xK2ðpÞ; . . . ; xKd ðpÞÞð3:0:4Þ

¼ ðaK1ðpÞxK1ðpÞ; aK2ðpÞxK2ðpÞ; . . . ; aKdðpÞxKd ðpÞÞ:

We have the following
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Lemma 3.3. If a ¼ ða1; a2; . . . ; adÞ a ðS1Þd is multiplicatively independent, then
fa a AutðYÞ has exactly n fixed points on Y.

Proof. The set of d-dimensional cones fsign
i¼1 bijectively corresponds to the set

of 0-dimensional orbits of ðC�Þd (each of which is clearly one point), say

Q1; . . . ;Qn

(see e.g. [Oda88] Page 10, Proposition 1.6). As fa a AutðY Þ is associated to

a a ðS1Þd , it follows that faðQpÞ ¼ Qp, therefore fa has at least n fixed points.
On the other hand, as a is multiplicatively independent, fa has exactly one

fixed point on each Up (1a pa n), namely the point with coordinates xKiðpÞ ¼ 0,
Ei (see formula (3.0.4)). Hence fa has exactly n fixed points Q1; . . . ;Qn. r

Let now ðS;F Þ be a McMullen’s pair. Recall that SF , the set of fixed points
of F , consists of two points P, Q and that F admits a Siegel disk only at Q. This
means that there are analytic coordinates ðz1; z2Þ at Q such that

F �ðz1; z2Þ ¼ ðaz1; bz2Þ;

where ða; bÞ a ðS1Þ2 is a multiplicatively independent sequence. Now we extend
this sequence to a multiplicatively independent sequence

ða; b; a1; a2; . . . ; adÞ a ðS1Þdþ2

(see the proof of Theorem 1.1.1). Set

g :¼ ðF ; faÞ a AutðS � YÞ:

It follows from Lemma 3.3 that g has exactly 2n fixed points

ðP;Q1Þ; . . . ; ðP;QnÞ; ðQ;Q1Þ; . . . ; ðQ;QnÞ:

However, the first n of these have no Siegel disk. Let us show that g has a Siegel
disk at each of the last n points, namely

ðQ;Q1Þ; . . . ; ðQ;QnÞ:

Using the same notation as in Formula (3.0.4), we have local coordinates

ðyiÞdi¼1 :¼ ðxKiðpÞÞdi¼1 at Qp a Y such that

f �
a ðy1; y2; . . . ; ydÞ ¼ ðaK1ðpÞy1; a

K2ðpÞy2; . . . ; a
Kd ðpÞydÞ:

So, with local coordinates ðz1; z2; y1; y2; . . . ; ydÞ on S � Y , the action of ðF ; faÞ at
ðQ;QpÞ is linearized as

g�ðz1; z2; y1; y2; . . . ; ydÞ ¼ ðaz1; bz2; aK1ðpÞy1; a
K2ðpÞy2; . . . ; a

Kd ðpÞydÞ:
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It remains to prove that

a; b; aK1ðpÞ; aK2ðpÞ; . . . ; aKd ðpÞ

form a multiplicatively independent sequence. For this we take

ðl1; l2; r1; r2; . . . ; rdÞ a Zdþ2

such that

al1bl2ðaK1ðpÞÞr1ðaK2ðpÞÞr2 . . . ðaKd ðpÞÞrd ¼ 1:ð3:0:5Þ

If ðr1; r2; . . . ; rdÞ ¼ ð0; 0; . . . ; 0Þ, then l1 ¼ l2 ¼ 0 since ða; bÞ is multiplicatively
independent. Therefore we can assume ðr1; r2; . . . ; rdÞA ð0; 0; . . . ; 0Þ. Then

al1bl2as1
1 a

s2
2 . . . asd

d ¼ 1;

where

ðs1; s2; . . . ; sdÞ ¼ ðr1; r2; . . . ; rdÞ �

k11ðpÞ k12ðpÞ � � � k1dðpÞ
k21ðpÞ k22ðpÞ � � � k2dðpÞ
� � � � � � � � � � � �

kd1ðpÞ kd2ðpÞ � � � kddðpÞ

0
BBB@

1
CCCA:

Since Y is complete and non-singular, the primitive vectors of the 1-dimensional
rays of sp form a Z-basis of the lattice LGZd (see e.g. [Oda88] Page 15, Theo-
rem 1.10). Thus the row vectors of the previous matrix, which generate the dual
cone s4p HMR, form a Z-basis of M as well. We conclude that ðs1; s2; . . . ; sdÞA
ð0; 0; . . . ; 0Þ and hence we get a contradiction since the sequence

a; b; a1; a2; . . . ; ad

is multiplicative independent by construction.
We have proved that for X :¼ S � Y and g :¼ ðF ; faÞ, with a a ðS1Þd generic,

the topological entropy of g is positive (Proposition 3.2) and that g has exactly
nbN Siegel disks. To complete the proof of Theorem 1.1.2 we need to show
that a a ðS1Þd can be chosen such that its components ai are algebraic integers
of absolute value 1 and the sequence ða; b; a1; . . . ; adÞ is multiplicatively indepen-
dent. This follows from Theorem 4.2 and hence Theorem 1.1.2 is proved.

3.3. Proof of Theorem 1.1.3. Let d ¼ n=2 and let

ðS1;F1Þ; . . . ; ðSd ;FdÞð3:0:6Þ

be a sequence of McMullen’s pairs. Set

g :¼ ðF1; . . . ;FdÞ a AutðS1 � � � � � SdÞ:

498 k. oguiso and f. perroni



As in the proof of Proposition 3.2, by Künneth decomposition, we obtain that

hðgÞ ¼ hðF1Þ þ hðF2Þ þ � � � þ hðFdÞ > 0:

Hence (3-i) of Theorem 1.1 is verified for the pair ðX ; gÞ.
The fixed point set of g is

ðS1 � � � � � SdÞg ¼ fR ¼ ðR1; . . . ;RdÞ jRi a fPi;Qig; 1a ia dg:

By construction, we have a Siegel disk at

ðQ1;Q2; . . . ;QdÞ

but, if Ri ¼ Pi for some i, then we have no Siegel disk at R by Theorem 2.6(3).
Therefore g has only one Siegel disk. Moreover, from Proposition 2.7 and from
the proof of Theorem 4.2 (of Section 4), it follows that we can choose the
pairs ðSi;FiÞ in (3.0.6) such that the eigenvalues of the linearization of g at
ðQ1;Q2; . . . ;QdÞ are multiplicatively independent algebraic integers of absolute
value 1. This completes the proof of Theorem 1.1.3.

4. Salem polynomials and multiplicatively independent sequences

In this section we introduce the notion of ‘‘multiplicatively independent sequence
of algebraic integers on the unit circle (MAU) of length 2m’’ and show its exis-
tence for any mb 0. The existence of a MAU is crucial in our product construc-
tion.

Definition 4.1. Let

a1; b1; . . . ; am; bm

be a sequence of complex numbers of length 2m. We call this sequence a ‘‘multipli-
catively independent sequence of algebraic integers on the unit circle of length 2m’’
(MAU of length 2m for short) if the following (i), (ii) and (iii) are satisfied:

(i) ai, bi ð1a iamÞ are algebraic integers;
(ii) ai, bi ð1a iamÞ are of absolute value 1, i.e., they are on the unit circle; and
(iii) ða1; b1; . . . ; am; bmÞ is multiplicatively independent.

By abuse of language, we call the following subsequence of a MAU of length 2m,

a1; b1; . . . ; am�1; bm�1; am

a MAU of length 2m� 1.

Theorem 4.2. Any MAU of length 2m can be extended to a MAU of length
2ðmþ 1Þ. In particular, there is an infinite sequence

a1; b1; . . . ; am; bm; amþ1; bmþ1; . . .ð4:0:7Þ

such that for any given integer n > 0, the first n terms of this sequence form a MAU
of length n.
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Remark 4.3. In the proof, we shall give an explicit construction of the sequence
(4.0.7). This explicit construction is essential in our proof of Theorem 1.1. In fact
in our construction of the sequence (4.0.7) there is a McMullen’s pair ðSm;FmÞ for
each m such that ðSmÞFm ¼ fPm;Qmg and Fm has an arithmetic Siegel disk at Qm

with

F �
mðz1; z2Þ ¼ ðamz1; bmz2Þ;

for appropriate local coordinates ðz1; z2Þ at Qm (but no Siegel disk at Pm).

Proof. We construct am, bm inductively.
For each positive integer k, we set

nðkÞ :¼ 360k þ 19; dðkÞ :¼ 180k þ 7:

Then nðkÞC 1 mod 6. Note that 180 and 7 are coprime, hence by Dirichlet’s
Theorem (see e.g. [Se73], Page 25, Lemma 3) there are infinitely many prime
numbers in the sequence

dð1Þ; dð2Þ; . . . ; dðkÞ; . . . :

First we construct a MAU a1, b1 of length 2. Choose a su‰ciently large prime
number p1 ¼ dðk1Þ and set n1 :¼ nðk1Þ. As n1C 1 mod 6 and n1 is also su‰ciently
large, we can apply Theorem 2.6 for this n1. Hence we obtain a McMullen’s pair

ðS1;F1Þ :¼ ðSðn1Þ;F ðn1ÞÞ

with a Siegel disk at Q1 such that

ðF1Þ�ðz1; z2Þ ¼ ðaðn1Þz1; bðn1Þz2Þ

at Q1. This Siegel disk is arithmetic by Proposition 2.7. Here and hereafter, to
describe McMullen’s pairs, we adopt the same notation as in Theorem 2.6. Set

a1 :¼ aðn1Þ; b1 :¼ bðn1Þ:

Then, a1 and b1 form a MAU of length 2.
Next, assuming that we have constructed a MAU of length 2m

a1; b1; . . . ; am; bm;

we shall extend this sequence to a MAU of length 2ðmþ 1Þ.
Let us consider the field extension

K :¼ Qða1; b1; . . . ; am; bmÞ:

500 k. oguiso and f. perroni



We put l :¼ ½K : Q�. Then, choose su‰ciently large k such that q :¼ dðkÞ is a
prime number with q > l. Set n :¼ nðkÞ. As nC 1 mod 6, we can apply Theorem
2.6 for this n. Then, we obtain a McMullen’s pair ðSðnÞ;FðnÞÞ with important
values dðnÞ, aðnÞ, bðnÞ, d 0ðnÞ, a 0ðnÞ, b 0ðnÞ and the Salem polynomial jðxÞ as de-
scribed in Theorem 2.6. We set:

d :¼ dðnÞ; d 0 :¼ d 0ðnÞ; a :¼ aðnÞ; b :¼ bðnÞ; a 0 :¼ a 0ðnÞ; b 0 :¼ b 0ðnÞ:

We shall show that

a1; b1; . . . ; am; bm; a; bð4:0:8Þ

is a MAU of length 2ðmþ 1Þ. We then define amþ1 :¼ a and bmþ1 :¼ b, and con-
tinue in this way.

By the assumption (on the first 2m terms) and by Theorem 2.6(3) and Propo-
sition 2.7, we already know that each term of (4.0.8) is an algebraic integer of
absolute value 1. Thus, it su‰ces to show that they are multiplicatively indepen-
dent. We shall prove this from now.

First we compute the degree of the Salem polynomial jðxÞ and its Salem trace
polynomial rðxÞ. Since

n ¼ 360k þ 19C 19 mod 360;

we have CnðxÞ ¼ C19ðxÞ in Theorem 2.6(1) (cf. Theorem 2.3). On the other hand,
by Example 2.4, we have degC19ðxÞ ¼ 5. Thus

deg jðxÞ ¼ 360k þ 19� 5 ¼ 360k þ 14:

Hence

deg rðxÞ ¼ deg jðxÞ
2

¼ 180k þ 7 ¼ dðkÞ ¼ q:

As rðxÞ is irreducible over Z, it follows that

Q
�
dþ 1

d

�
: Q

� �
¼ q:

As q > l and q is a prime number, we have then that

K
�
dþ 1

d

�
: K

� �
¼ q:

So, rðxÞ is also irreducible over K . Let L be the Galois closure of K
�
dþ 1

d

	
in the

algebraic closure K . As

dþ 1

d
; d 0 þ 1

d 0
; hþ 1

h
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are roots of rðxÞ ¼ 0, there are s a GalðL=KÞ and t a GalðL=KÞ such that

s
�
dþ 1

d

�
¼ d 0 þ 1

d 0
; t

�
dþ 1

d

�
¼ hþ 1

h
:

Here h is the Salem number of jðxÞ. Extending s and t to GalðK=KÞ, we have

sðdÞ ¼ d 0 or sðdÞ ¼ 1

d 0
¼ d 0;

tðdÞ ¼ h or tðdÞ ¼ 1

h
:

Let

al11 b
k1
1 . . . almm bkm

m almþ1bkmþ1 ¼ 1ð4:0:9Þ

where li, mi are integers. Transforming (4.0.9) by s (and switching a 0 and b 0 if
necessary), we obtain either

al11 b
k1
1 . . . almm bkm

m ða 0Þlmþ1ðb 0Þkmþ1 ¼e1 or

al11 b
k1
1 . . . almm bkm

m ða 0Þlmþ1ðb 0Þkmþ1 ¼e1:

Here we use Theorem 2.6(3) and (4). In the first case, taking (the square of ) the
norm, we get

1 ¼ jða 0Þ2lmþ1ðb 0Þ2kmþ1 j ¼ jða 0=b 0Þlmþ1�kmþ1ða 0b 0Þlmþ1þkmþ1 j ¼ ja 0=b 0jlmþ1�kmþ1 :

Here we use ja 0b 0j ¼ jd 0j ¼ 1 (Theorem 2.6(4)). As ja 0=b 0jA 1 (Theorem 2.6(4)),
it follows that

lmþ1 � kmþ1 ¼ 0:

For the same reason, this is true also for the second case. Substituting this into
(4.0.9), and using ab ¼ d, we obtain

al11 b
k1
1 . . . almm bkm

m dkmþ1 ¼ 1:

Transforming this equality by t, we get either

al11 b
k1
1 . . . almm bkm

m hkmþ1 ¼ 1 or al11 b
k1
1 . . . almm bkm

m

� 1

h

�kmþ1

¼ 1:

Taking the norm, we get

hkmþ1 ¼ 1:
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As h > 1, this implies kmþ1 ¼ 0. Thus

lmþ1 ¼ kmþ1 ¼ 0:

Substituting this into (4.0.9), we obtain

al11 b
k1
1 . . . almm bkm

m ¼ 1:

As a1; b1; . . . ; am; bm is a MAU of length 2m, it follows that

l1 ¼ k1 ¼ � � � ¼ lm ¼ km ¼ 0:

This completes the proof. r
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