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Calculus of Variations — On a result by Boccardo-Ferone-Fusco-Orsina, by
Marco Squassina, communicated on 6 June 2011.

Abstract. — Via a symmetric version of Ekeland’s principle recently obtained by the author we

improve, in a ball or an annulus, a result of Boccardo-Ferone-Fusco-Orsina on the properties of
minimizing sequences of functionals of calculus of variations in the non-convex setting.
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1. Introduction

In the study of non-convex minimization problems [4] of calculus of variations,
the idea of selecting minimizing sequences with nice properties to guarantee the
convergence towards a minimizer can be traced back to Hilbert and Lebesgue
[6, 8]. In [10], the author has recently obtained an abstract symmetric version of
the celebrated Ekeland’s variational principle [3] for lower semi-continuous func-
tionals, which is probably one of the main tools to perform the selection proce-
dure indicated above. More precisely, the new enhanced Ekeland type principle is
able to select points which are not only almost critical, in a suitable sense, but
also almost symmetric, provided that the functional does not increase under
polarizations [1]. In turn, under rather mild assumptions, starting from a given
minimizing sequence one can detect a new minimizing sequence enriched with
very nice features. The additional symmetry characteristics play a rǒle also
in non-compact problems, providing compactifying e¤ects. In 1999, Boccardo-
Ferone-Fusco-Orsina [2] considered functionals J : W 1;p

0 ðWÞ ! R of calculus of
variations,

JðuÞ ¼
Z
W

jðx; u;DuÞ; u a W
1;p
0 ðWÞ;

with no convexity assumption on x 7! jðx; s; xÞ and showed that, by merely rely-
ing upon some classical [7] growth estimates on the integrand jðx; s; xÞ, the exis-
tence of minimizing sequences with enhanced smoothness can be obtained by
combining the application of the classical Ekeland’s principle with a priori esti-
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mates (cf. [2, Lemmas 2.3 and 2.6]) based upon suitable Gehring-type lemmas [5].
We also refer the reader to [9] for other results in the same spirit.

The main goal of the present note is to highlight that, if we restrict the
attention to the case where W is either a ball or an annulus of RN and J decreases
upon polarizations, then arguing as in [2] but using the Ekeland’s principle
from [10], even more special minimizing sequences can be detected. More pre-
cisely, consider 1 < p < N, let p� denote the critical Sobolev exponent and let
j : W� R� RN ! R be a Carathéodory function such that

ajxj p � j2jsj
g2 a jðx; s; xÞa bjxj p þ j0 þ j1jsj

g1 ;ð1:1Þ

for a.e. x a W and every ðs; xÞ a R� RN , for some a; b > 0,

j0 a Lr0ðWÞ; r0 > 1; j1 a Lr1ðWÞ; r1 > N=p; j2 a Lr2ðWÞ; r2 > N;

and g1, g2 satisfying

0a g1 < p� r1 � 1

r1
; 0a g2 < min p;

N

N � 1

r2 � 1

r2

� �
:

We consider the following classes of half-spaces in RN

H� :¼ fHHRN is a half-space with 0 a Hg; if W is a ball;

H� :¼ fHHRN is a half-space with Rþ � f0gHH and 0 a qHg;
if W is an annulus;

For any nonnegative measurable function u we define uH to be the polarization
of u with respect a half-space H a H�. Moreover, we denote by u� the Schwarz
symmetrization (resp. the spherical cap symmetrization) if W is a ball (resp. if W is
an annulus). For definitions and properties of these notions, we refer to [1] and to
the references therein.

In this framework, merely under assumption (1.1), we have the following

Theorem 1.1. Assume that W is either a ball or an annulus in RN with Nb 2
and

JðuHÞa JðuÞ for all u a W
1;p
0þ ðWÞ and any H a H�:ð1:2Þ

Then for an arbitrary minimizing sequence ðuhÞHW
1;p
0þ ðWÞ for J there exist q > p,

a new minimizing sequence ðvhÞHW
1;p
0 ðWÞ for J and continuous mappings

Th : W
1;1
0þ ðWÞ ! W

1;1
0þ ðWÞ such that Thz is built from z via iterated polarizations

by half-spaces in H�, such that

sup
hb1

kvhkW 1; q
0

ðWÞ < þl; if r0 <
N

p
; sup

hb1

kvhkLlðWÞ < þl; if r0 >
N

p
;
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and, in addition,

lim
h

kvh � jvhj�kLN=ðN�1ÞðWÞ ¼ 0;

lim sup
h

kvh � uhkW 1; 1
0

ðWÞ a lim sup
h

kThuh � uhkW 1; 1
0

ðWÞ:

We stress that, under (1.1), J is bounded from below but, since we are not
assuming the convexity of x 7! jðx; s; xÞ, we can by no means conclude that J
has a minimum point. Nevertheless, a smooth minimizing sequence made by
almost Schwarz symmetric (for the ball) or almost spherical cap symmetric (for
the annulus) points can be constructed. As it can be readily checked by direct
computation, a class of integrands which satisfy (1.2) (with the equality in place
of the inequality) is, for instance, jðx; s; xÞ ¼ j0ðs; jxjÞ, for some continuous func-
tion j0 : R� Rþ ! R. Observe also that, of course, from the last conclusion of
Theorem 1.1, the limit v of ðvhÞ must be Schwarz symmetric, namely v ¼ v�.

Remark 1.2. We conclude with an important remark, which is probably one of
the main reasons why the conclusion of Theorem 1.1 is rather powerful in the
non-convex framework. Should one additionally assume that x 7! jðx; s; xÞ is
convex, it is then often the case that a functional which satisfies (1.2), fulfills in
turn the corresponding symmetrization inequality Jðu�Þa JðuÞ. In such a case,
starting from a given minimizing sequence ðuhÞHW

1;p
0þ ðWÞ for J one has that

ðu�
h ÞHW

1;p
0þ ðWÞ is a minimizing sequence too and it is then immediate from [2]

to find a further almost symmetric regular minimizing sequence ðvhÞ. On the other
hand, without the convexity of jðx; s; xÞ in the gradient, to the author knowledge,
no symmetrization inequality is available in the current literature. In some sense,
while JðuHÞa JðuÞ is often an algebraic fact, Jðu�Þa JðuÞ is rather a more geo-
metrical fact.

2. Symmetric Ekeland’s principle

Let X and V be two Banach spaces and SJX . We shall consider two maps
� : S ! V , u 7! u�, the symmetrization map, and h : S �H� ! S, ðu;HÞ 7! uH ,
the polarization map, H� being a path-connected topological space. As in [10], we
assume the following:

(1) X is continuously embedded in V ;
(2) h is a continuous mapping;
(3) for each u a S and H a H� it holds ðu�ÞH ¼ ðuHÞ� ¼ u� and uHH ¼ uH ;
(4) there exists ðHmÞHH� such that, for u a S, uH1...Hm converges to u� in V ;
(5) for every u; v a S and H a H� it holds kuH � vHkV a ku� vkV .

Moreover, the mappings � : S ! V and h : S �H� ! S can be extended to
� : X ! V and h : X �H� ! S respectively by setting u� :¼ ðYðuÞÞ� and
uH :¼ ðYðuÞÞH for all u a X , where Y : ðX ; k � kV Þ ! ðS; k � kV Þ is Lipschitz of
constant CY and such that YjS ¼ IdjS. In the above framework, we recall the
result from [10].
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Theorem 2.1. Assume that f : X ! RA fþlg is a proper and lower semi-
continuous functional bounded from below such that

f ðuHÞa f ðuÞ for all u a S and H a H�:ð2:1Þ

Let u a S, r > 0 and s > 0 with

f ðuÞa inf
X

f þ rs:

Then there exist v a X and a continuous map Tr : S ! S such that Trz is built via
iterated polarizations of z by half-spaces in H� such that

(a) kv� v�kV < Cr;
(b) kv� ukX a rþ kTru� ukX ;
(c) f ðvÞa f ðuÞ;
(d) f ðwÞb f ðvÞ � skw� vkX , for all w a X,

for some positive constant C depending only upon V, X and Y.

Let W be either a ball or an annulus of RN , Nb 2. In particular, by choosing

X ¼ ðW 1;1
0 ðWÞ; k � k

W
1; 1
0

ðWÞÞ; kuk
W

1; 1
0

ðWÞ ¼
Z
W

jDuj; S ¼ W 1;1
0þ ðWÞ;

as well as

V ¼ ðLN=ðN�1ÞðWÞ; k � kLN=ðN�1ÞðWÞÞ; YðuÞ ¼ juj;

then (1)–(5) hold true. The following by product, adapted to our purposes, holds
true.

Corollary 2.2. Let W be either a ball or an annulus of RN and let
J : W 1;1

0 ðWÞ ! RA fþlg be a lower semi-continuous functional bounded from
below with

JðuHÞa JðuÞ for all u a W
1;1
0þ ðWÞ and H a H�:ð2:2Þ

Let u a W 1;1
0þ ðWÞ and e > 0 be such that

JðuÞa inf
W

1; 1
0

ðWÞ
J þ e:

Then there exist v a W
1;1
0 ðWÞ and a continuous map Te : W

1;1
0þ ðWÞ ! W

1;1
0þ ðWÞ

such that Tez is built via iterated polarizations of z by half-spaces in H� such that
JðvÞa JðuÞ,

JðwÞb JðvÞ �
ffiffi
e

p
kw� vk

W
1; 1
0

ðWÞ; for all w a W
1;1
0 ðWÞ;ð2:3Þ
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and

kv� jvj�kLN=ðN�1ÞðWÞ aC
ffiffi
e

p
; kv� uk

W
1; 1
0

ðWÞ a
ffiffi
e

p
þ kTeu� uk

W
1; 1
0

ðWÞ;ð2:4Þ

for some positive constant C.

3. Proof of Theorem 1.1

The argument closely follows [2, proof of Theorem 3.1, p. 128], aiming to apply
Corollary 2.2 in place of the standard Ekeland’s variational principle [3]. We
will denote by C a generic positive constant which may vary from line to line.
Taking into account that g2 < p and g2r

0
2 < N=ðN � 1Þ, it easily follows that

~JJ : W 1;1
0 ðWÞ ! RA fþlg,

~JJðuÞ ¼ JðuÞ if u a W
1;p
0 ðWÞ;

þl if u a W 1;1
0 ðWÞnW 1;p

0 ðWÞ;

(

is a lower semi-continuous functional bounded from below. In light of assump-
tion (1.2), we have

~JJðuHÞa ~JJðuÞ for all u a W
1;1
0þ ðWÞ and H a H�:

Hence, we are in the framework of Corollary 2.2. Given a minimizing sequence
ðuhÞHW

1;p
0þ ðWÞ for J, let ðehÞH ð0; 1� be such that eh ! 0 as h ! l and

JðuhÞa inf
W

1; p
0

ðWÞ
J þ eh; for any hb 1:ð3:1Þ

Since the infimum of J over W 1;p
0 ðWÞ equals the infimum of ~JJ over W 1;1

0 ðWÞ, it
holds

~JJðuhÞa inf
W

1; 1
0

ðWÞ
~JJ þ eh; for any hb 1:

Then, by applying Corollary 2.2 to ~JJ, uh and eh, for any hb 1, there exists
vh a W

1;1
0 ðWÞ such that JðvhÞ ¼ ~JJðvhÞa ~JJðuhÞ ¼ JðuhÞ and, for any hb 1,

kvh � jvhj�kLN=ðN�1ÞðWÞ aC
ffiffiffiffi
eh

p
;ð3:2Þ

kvh � uhkW 1; 1
0

ðWÞ a
ffiffiffiffi
eh

p þ kTehuh � uhkW 1; 1
0

ðWÞ;

for some continuous maps Teh : W
1;1
0þ ðWÞ ! W

1;1
0þ ðWÞ as well as, for any hb 1,

~JJðvhÞa ~JJðwÞ þ ffiffiffiffi
eh

p Z
W

jDw�Dvhj; for all w a W
1;1
0 ðWÞ;

that is, being ~JJðvhÞ < þl,
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Z
W

jðx; vh;DvhÞa
Z
W

jðx;w;DwÞð3:3Þ

þ ffiffiffiffi
eh

p Z
W

jDw�Dvhj; for all w a W
1;p
0 ðWÞ:

Observe that ðuhÞ is bounded in W
1;p
0 ðWÞ since (3.1) and (1.1) yield

akDuhk p

L pðWÞ aC þ Ckj2kLr2 ðWÞkDuhkg2
L pðWÞ; ðg2 < pÞ:ð3:4Þ

In turn, ðvhÞ is bounded in W
1;1
0 ðWÞ, since by the second inequality of (3.2), it

holds

kvhkW 1; 1
0

ðWÞ a kvh � uhkW 1; 1
0

ðWÞ þ kuhkW 1; 1
0

ðWÞ

a
ffiffiffiffi
eh

p þ kTehuh � uhkW 1; 1
0

ðWÞ þ kuhkW 1; 1
0

ðWÞ

a
ffiffiffiffi
eh

p þ 3kuhkW 1; 1
0

ðWÞ a 1þ CkuhkW 1; p
0

ðWÞ aC:

In the last line, we exploited the fact that, by construction of Teh , for any hb 1,

kTehuhkW 1; 1
0

ðWÞ ¼
Z
W

jDu
H0...Hmeh

h j ¼
Z
W

jDu
H0...Hmeh

�1

h j ¼ � � � ¼
Z
W

jDuhj:

In conclusion, ðvhÞ is bounded in W
1;p
0 ðWÞ since by JðvhÞaC, (1.1) and

g2r
0
2 < N=ðN � 1Þ

akDvhk p

L pðWÞ aC þ Ckj2kLr2 ðWÞkvhk
g2

W
1; 1
0

ðWÞ aC;ð3:5Þ

and the variational inequality (3.3), choosing w ¼ vh þ j for a j a W
1;p
0 ðWÞ,

yields Z
suptðjÞ

jðx; vh;DvhÞa
Z
suptðjÞ

jðx; vh þ j;Dvh þDjÞ þ ffiffiffiffi
eh

p Z
suptðjÞ

jDjj;ð3:6Þ

for all hb 1 and any j a W
1;p
0 ðWÞ. Once these facts hold, the boundedness of ðvhÞ

in W
1;q
0 ðWÞ (case r0 < N=p) for some q > p follows as in [2, proof of Theorem

3.4] using (1.1) in (3.6). The boundedness in LlðWÞ (case r0 > N=p), follows by
choosing w ¼ maxð�k;minðk; vhÞÞ a W

1;p
0 ðWÞ in (3.3) and arguing as in [2, proof

of Theorems 3.5]. Recalling (3.2), the proof is complete.

Acknowledgment. The note is dedicated to the memory of my beloved mother Maria Grazia.
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