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Abstract. — We study an integral non coercive functional defined on H 1
0 ðWÞ, proving the exis-

tence of a minimum in W
1; 1
0 ðWÞ.
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In this paper we study a class of integral functionals defined on H 1
0 ðWÞ, but non

coercive on the same space, so that the standard approach of the Calculus of
Variations does not work. However, the functionals are coercive on W

1;1
0 ðWÞ

and we will prove the existence of minima, despite the non reflexivity of
W

1;1
0 ðWÞ, which implies that, in general, the Direct Methods fail due to lack of

compactness.
Let J be the functional defined as

JðvÞ ¼
Z
W

jðx;‘vÞ
½1þ bðxÞjvj�2

þ 1

2

Z
W

jvj2 �
Z
W

fv; v a H 1
0 ðWÞ:

We assume that W is a bounded open set of RN , N > 2, that j : W� RN ! R

is such that jð�; xÞ is measurable on W for every x in RN , jðx; �Þ is convex and
belongs to C1ðRNÞ for almost every x in W, and

ajxj2 a jðx; xÞa bjxj2;ð1Þ
j jxðx; xÞja gjxj;ð2Þ

for some positive a, b and g, for almost every x in W, and for every x in RN . We
assume that b is a measurable function on W such that

0a bðxÞaB; for almost every x in W;ð3Þ

where B > 0, while f belongs to some Lebesgue space. For k > 0 and s a R, we
define the truncature function as TkðsÞ ¼ maxð�k;minðs; kÞÞ.



In [3] the minimization in H 1
0 ðWÞ of the functional

IðvÞ ¼
Z
W

jðx;‘vÞ
½1þ jvj�y

�
Z
W

fv; 0 < y < 1; f a LmðWÞ;

was studied. It was proved that IðvÞ is coercive on the Sobolev space W
1;q
0 ðWÞ,

for some q ¼ qðy;mÞ in ð1; 2Þ, and that IðvÞ achieves its minimum on W
1;q
0 ðWÞ.

This approach does not work for y > 1 (see Remark 7 below). Here we will able

to overcome this di‰culty thanks to the presence of the lower order term

Z
W

jvj2,

which will yield the coercivity of J on W
1;1
0 ðWÞ; then we will prove the existence

of minima in W 1;1
0 ðWÞ, even if it is a non reflexive space.

Integral functionals like J or I are studied in [1], in the context of the
Thomas–Fermi–von Weizsäcker theory.

We are going to prove the following result.

Theorem 1. Let f a L2ðWÞ. Then there exists u in W
1;1
0 ðWÞBL2ðWÞ minimum

of J, that is,

Z
W

jðx;‘uÞ
½1þ bðxÞjuj�2

þ 1

2

Z
W

juj2 �
Z
W

fua

Z
W

jðx;‘vÞ
½1þ bðxÞjvj�2

þ 1

2

Z
W

jvj2 �
Z
W

fv;ð4Þ

for every v in H 1
0 ðWÞ. Moreover TkðuÞ belongs to H 1

0 ðWÞ for every k > 0.

In [2] we studied the following elliptic boundary problem:

�div
� aðxÞ‘u
ð1þ bðxÞjujÞ2

�
þ u ¼ f in W;

u ¼ 0 on qW;

8<
:ð5Þ

under the same assumptions on W, b and f , with 0 < aa aðxÞa b. It is easy
to see that the Euler equation of J, with jðx; xÞ ¼ 1

2 aðxÞjxj
2, is not equation (5).

Therefore Theorem 1 cannot be deduced from [2]. Nevertheless some technical
steps of the two papers (for example, the a priori estimates) are similar.

We will prove Theorem 1 by approximation. Therefore, we begin with the
case of bounded data.

Lemma 2. If g belongs to LlðWÞ, then there exists a minimum w belonging to
H 1

0 ðWÞBLlðWÞ of the functional

v a H 1
0 ðWÞ 7!

Z
W

jðx;‘vÞ
½1þ bðxÞjvj�2

þ 1

2

Z
W

jvj2 �
Z
W

gv:

Proof. Since the functional is not coercive on H 1
0 ðWÞ, we cannot directly

apply the standard techniques of the Calculus of Variations. Therefore, we
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begin by approximating it. Let M > 0, and let JM be the functional defined
as

JMðvÞ ¼
Z
W

jðx;‘vÞ
½1þ bðxÞjTMðvÞj�2

þ 1

2

Z
W

jvj2 �
Z
W

gv; v a H 1
0 ðWÞ:

Since JM is both weakly lower semicontinuous (due to the convexity of j and to
De Giorgi’s theorem, see [4]) and coercive on H 1

0 ðWÞ, for every M > 0 there ex-
ists a minimum wM of JM on H 1

0 ðWÞ. Let A ¼ kgkLlðWÞ, let M > A, and consider
the inequality JMðwMÞa JMðTAðwMÞÞ, which holds true since wM is a minimum
of JM . We have

Z
W

jðx;‘wMÞ
½1þ bðxÞjTMðwMÞj�2

þ 1

2

Z
W

jwM j2 �
Z
W

gwM

a

Z
W

jðx;‘TAðwMÞÞ
½1þ bðxÞjTMðTAðwMÞÞj�2

þ 1

2

Z
W

jTAðwMÞj2 �
Z
W

gTAðwMÞ

¼
Z
fjwM jaAg

jðx;‘wMÞ
½1þ bðxÞjTMðwMÞj�2

þ 1

2

Z
W

jTAðwMÞj2 �
Z
W

gTAðwMÞ;

where, in the last passage, we have used that TMðTAðwMÞÞ ¼ TMðwMÞ on the set
fjwM jaAg, and that jðx; 0Þ ¼ 0. Simplifying equal terms, we thus get

Z
fjwM jbMg

jðx;‘wMÞ
½1þ bðxÞjTMðwMÞj�2

þ 1

2

Z
W

½jwM j2 � jTAðwMÞj2�a
Z
W

g½wM � TAðwMÞ�:

Dropping the first term, which is nonnegative, we obtain

1

2

Z
W

½wM � TAðwMÞ�½wM þ TAðwMÞ�a
Z
W

g½wM � TAðwMÞ�;

which can be rewritten as

1

2

Z
W

½wM � TAðwMÞ�½wM þ TAðwMÞ � 2g�a 0:

We then have, since wM ¼ TAðwMÞ on the set fjwM jaAg,

1

2

Z
fwM>Ag

½wM � A�½wM þ A� 2g� þ 1

2

Z
fwM<�Ag

½wM þ A�½wM � A� 2g�a 0:
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Since jgjaA, we have A� 2gb�A, and �A� 2g < A, so that

0a
1

2

Z
fwM>Ag

½wM � A�2 þ 1

2

Z
fwM<�Ag

½wM þ A�2 a 0;

which then implies that measðfjwM jbAgÞ ¼ 0, and so jwM jaA almost every-
where in W. Recalling the definition of A, we thus have

kwMkLlðWÞ a kgkLlðWÞ:ð6Þ

Since M > kgkLlðWÞ, we thus have TMðwMÞ ¼ wM . Starting now from JMðwMÞa
JMð0Þ ¼ 0 we obtain, by (6),

Z
W

jðx;‘wMÞ
½1þ bðxÞjwM j�2

þ 1

2

Z
W

jwM j2 a
Z
W

gwM ameasðWÞkgk2LlðWÞ;

which then implies, by (1) and (3), and dropping the nonnegative second term,

a

½1þ BkgkLlðWÞ�
2

Z
W

j‘wM j2 ameasðWÞkgk2LlðWÞ:

Thus, fwMg is bounded in H 1
0 ðWÞBLlðWÞ, and so, up to subsequences, it

converges to some function w in H 1
0 ðWÞBLlðWÞ weakly in H 1

0 ðWÞ, strongly in
L2ðWÞ, and almost everywhere in W. We prove now that

Z
W

jðx;‘wÞ
½1þ bðxÞjwj�2

a lim inf
M!þl

Z
W

jðx;‘wMÞ
½1þ bðxÞjwM j�2

:ð7Þ

Indeed, since j is convex, we have

Z
W

jðx;‘wMÞ
½1þ bðxÞjwM j�2

b

Z
W

jðx;‘wÞ
½1þ bðxÞjwM j�2

�
Z
W

jxðx;‘wÞ
½1þ bðxÞjwM j�2

� ‘½wM � w�:

Using assumption (1), the fact that w belongs to H 1
0 ðWÞ, the almost everywhere

convergence of wM to w and Lebesgue’s theorem, we have

lim
M!þl

Z
W

jðx;‘wÞ
½1þ bðxÞjwM j�2

¼
Z
W

jðx;‘wÞ
½1þ bðxÞjwj�2

:ð8Þ

Using assumption (2), the fact that w belongs to H 1
0 ðWÞ, and the almost every-

where convergence of wM to w, we have by Lebesgue’s theorem that

lim
M!þl

jxðx;‘wÞ
½1þ bðxÞjwM j�2

¼ jxðx;‘wÞ
½1þ bðxÞjwj�2

; strongly in ðL2ðWÞÞN :
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Since ‘wM tends to ‘w weakly in the same space, we thus have that

lim
M!þl

Z
W

jxðx;‘wÞ
½1þ bðxÞjwM j�2

� ‘½wM � w� ¼ 0:ð9Þ

Using (8) and (9), we have that (7) holds true. On the other hand, using (1) and
Lebesgue’s theorem again, it is easy to see that

lim
M!þl

Z
W

jðx;‘vÞ
½1þ bðxÞjTMðvÞj�2

¼
Z
W

jðx;‘vÞ
½1þ bðxÞjvj�2

; Ev a H 1
0 ðWÞ:

Thus, starting from JMðwMÞa JMðvÞ, we can pass to the limit as M tends to
infinity (using also the strong convergence of wM to w in L2ðWÞ), to have that w
is a minimum. r

As stated before, we prove Theorem 1 by approximation. More in detail, if
fn ¼ Tnð f Þ then Lemma 2 with g ¼ fn implies that there exists a minimum un in
H 1

0 ðWÞBLlðWÞ of the functional

JnðvÞ ¼
Z
W

jðx;‘vÞ
½1þ bðxÞjvj�2

þ 1

2

Z
W

jvj2 �
Z
W

fnv; v a H 1
0 ðWÞ:

In the following lemma we prove some uniform estimates on un.

Lemma 3. Let un in H 1
0 ðWÞBLlðWÞ be a minimum of Jn. ThenZ

W

j‘unj2

ð1þ bðxÞjunjÞ2
a

1

2a

Z
W

j f j2;ð10Þ

Z
W

j‘TkðunÞj2 a
ð1þ BkÞ2

2a

Z
W

j f j2;ð11Þ
Z
W

junj2 a 4

Z
W

j f j2;ð12Þ
Z
W

j‘unja
1

2a

Z
W

j f j2
� �1=2

measðWÞ1=2 þ 2B

Z
W

j f j2
� �1=2 !

;ð13Þ
Z
W

jGkðunÞj2 a 4

Z
fjunjbkg

j f j2;ð14Þ

where GkðsÞ ¼ s� TkðsÞ for kb 0 and s in R.

Proof. The minimality of un implies that JnðunÞa Jnð0Þ, that is,Z
W

jðx;‘unÞ
½1þ bðxÞjunj�2

þ 1

2

Z
W

u2n a

Z
W

fnun:ð15Þ
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Using (1) on the left hand side, and Young’s inequality on the right hand side
gives

a

Z
W

j‘unj2

½1þ bðxÞjunj�2
þ 1

2

Z
W

u2n a
1

2

Z
W

u2n þ
1

2

Z
W

f 2n ;

which then implies (10). Let now kb 0. The above estimate, and (3), give

1

ð1þ BkÞ2
Z
W

j‘TkðunÞj2 a
Z
fjunjakg

j‘unj2

½1þ bðxÞjunj�2
a

1

2a

Z
W

j f j2;

and therefore (11) is proved. On the other hand, dropping the first positive term
in (15) and using Hölder’s inequality on the right hand side, we have

1

2

Z
W

junj2 a
Z
W

j fnunja
Z
W

j fnj2
� �1=2 Z

W

junj2
� �1=2

;

that is, (12) holds. Hölder’s inequality, assumption (3), and estimates (10) and
(12) give (13):

Z
W

j‘unja
Z
W

j‘unj2

½1þ bðxÞjunj�2

" #1=2 Z
W

½1þ bðxÞjunj�2
� �1=2

ð16Þ

a
1

2a

Z
W

j f j2
� �1=2

measðWÞ1=2 þ 2B

Z
W

j f j2
� �1=2 !

:

We are left with estimate (14). Since JnðunÞa JnðTkðunÞÞ we have

1

2

Z
W

jðx;‘unÞ
½1þ bðxÞjunj�2

þ 1

2

Z
W

junj2�
Z
W

fnun

a
1

2

Z
W

jðx;‘TkðunÞÞ
½1þ bðxÞjTkðunÞj�2

þ 1

2

Z
W

jTkðunÞj2 �
Z
W

fnTkðunÞ:

Recalling the definition of GkðsÞ, and using that jsj2 � jTkðsÞj2 b jGkðsÞj2, the last
inequality implies

1

2

Z
W

jðx;‘GkðunÞÞ
½1þ bðxÞjunj�2

þ 1

2

Z
W

jGkðunÞj2 a
Z
W

fnGkðunÞ:

Dropping the first term of the left hand side and using Hölder’s inequality on the
right one, we obtain

1

2

Z
W

jGkðunÞj2 a
Z
fjunjbkg

j f j2
" #1=2 Z

W

jGkðunÞj2
� �1=2

;

that is, (14) holds. r
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Lemma 4. Let un in H 1
0 ðWÞBLlðWÞ be a minimum of Jn. Then there exists a

subsequence, still denoted by fung, and a function u in W
1;1
0 ðWÞBL2ðWÞ, with

TkðuÞ in H 1
0 ðWÞ for every k > 0, such that un converges to u almost everywhere

in W, strongly in L2ðWÞ and weakly in W 1;1
0 ðWÞ, and TkðunÞ converges to TkðuÞ

weakly in H 1
0 ðWÞ. Moreover,

lim
n!þl

‘un

1þ bðxÞjunj
¼ ‘u

1þ bðxÞjuj weakly in ðL2ðWÞÞN :ð17Þ

Proof. By (13), the sequence un is bounded in W
1;1
0 ðWÞ. Therefore, it is rela-

tively compact in L1ðWÞ. Hence, up to subsequences still denoted by un, there
exists u in L1ðWÞ such that un almost everywhere converges to u. From Fatou’s
lemma applied to (12) we then deduce that u belongs to L2ðWÞ.

We are going to prove that un strongly converges to u in L2ðWÞ. Let E be a
measurable subset of W; then by (14) we haveZ

E

junj2 a 2

Z
E

jTkðunÞj2 þ 2

Z
E

jGkðunÞj2

a 2k2 measðEÞ þ 2

Z
W

jGkðunÞj2

a 2k2 measðEÞ þ 8

Z
fjunjbkg

j f j2:

Since un is bounded in L2ðWÞ by (12), we can choose k large enough so that the
second integral is small, uniformly with respect to n; once k is chosen, we can
choose the measure of E small enough such that the first term is small. Thus,
the sequence fu2ng is equiintegrable and so, by Vitali’s theorem, un strongly con-

verges to u in L2ðWÞ.
Now we to prove that un weakly converges to u in W 1;1

0 ðWÞ. Let E be a
measurable subset of W. By Hölder’s inequality, assumption (3), and (10), one
has, for i a f1; . . . ;Ng,

Z
E

qun

qxi

����
����a

Z
E

j‘unja
Z
E

j‘unj2

½1þ bðxÞjunj�2

" #1=2 Z
E

½1þ bðxÞjunj�2
� �1=2

a
1

2a

Z
W

j f j2
� �1=2 Z

E

½1þ Bjunj�2
� �1=2

:

Since the sequence fung is compact in L2ðWÞ, this estimate implies that the se-
quence

�
qun
qxi

�
is equiintegrable. Thus, by Dunford–Pettis theorem, and up to sub-

sequences, there exists Yi in L1ðWÞ such that qun
qxi

weakly converges to Yi in L1ðWÞ.
Since qun

qxi
is the distributional partial derivative of un, we have, for every n in N,Z

W

qun

qxi
j ¼ �

Z
W

un
qj

qxi
; Ej a Cl

0 ðWÞ:
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We now pass to the limit in the above identities, using that qiun weakly converges
to Yi in L1ðWÞ, and that un strongly converges to u in L2ðWÞ: we obtainZ

W

Yij ¼ �
Z
W

u
qj

qxi
; Ej a Cl

0 ðWÞ:

This implies that Yi ¼ qu
qxi

, and this result is true for every i. Since Yi belongs to
L1ðWÞ for every i, u belongs to W 1;1

0 ðWÞ, as desired.
Since by (11) it follows that the sequence fTkðunÞg is bounded in H 1

0 ðWÞ, and
since un tends to u almost everywhere in W, then TkðunÞ weakly converges to
TkðuÞ in H 1

0 ðWÞ, and TkðuÞ belongs to H 1
0 ðWÞ for every kb 0.

Finally, we prove (17). Let F be a fixed function in ðLlðWÞÞN . Since un almost
everywhere converges to u in W, we have

lim
n!þl

F

1þ bðxÞjunj
¼ F

1þ bðxÞjuj almost everywhere in W:

By Egorov’s theorem, the convergence is therefore quasi uniform; i.e., for every
d > 0 there exists a subset Ed of W, with measðEdÞ < d, such that

lim
n!þl

F

1þ bðxÞjunj
¼ F

1þ bðxÞjuj uniformly in WnEd:ð18Þ

We now haveZ
W

‘un

1þ bðxÞjunj
�F�

Z
W

‘u

1þ bðxÞjuj �F
����

����
a

Z
WnEd

‘un �
F

1þ bðxÞjunj
�
Z
WnEd

‘u � F

1þ bðxÞjuj

�����
�����

þ kFkLlðWÞ

Z
Ed

½j‘unj þ j‘uj�:

Using the equiintegrability of j‘unj proved above, and the fact that j‘uj belongs
to L1ðWÞ, we can choose d such that the second term of the right hand side is
arbitrarily small, uniformly with respect to n, and then use (18) to choose n large
enough so that the first term is arbitrarily small. Hence, we have proved that

lim
n!þl

‘un

1þ bðxÞjunj
¼ ‘u

1þ bðxÞjuj weakly in ðL1ðWÞÞN :ð19Þ

On the other hand, from (10) it follows that the sequence
‘un

1þbðxÞjunj
is bounded in

ðL2ðWÞÞN , so that it weakly converges to some function s in the same space.
Since (19) holds, we have that s ¼ ‘u

1þbðxÞjuj , and (17) is proved. r
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Remark 5. The fact that we need to prove (17) is one of the main di¤erences
with the paper [2].

Proof of Theorem 1. Let un be as in Lemma 4. The minimality of un implies
that Z

W

jðx;‘unÞ
½1þ bðxÞjunj�2

þ 1

2

Z
W

junj2 �
Z
W

fnunð20Þ

a

Z
W

jðx;‘vÞ
½1þ bðxÞjvj�2

þ 1

2

Z
W

jvj2 �
Z
W

fnv

for every v in H 1
0 ðWÞ. The result will then follow by passing to the limit in the

previous inequality. The right hand side of (20) is easy to handle since fn con-
verges to f in L2ðWÞ. Let us study the limit of the left hand side of (20). The
convexity of j implies thatZ

W

jðx;‘unÞ
½1þ bðxÞjunj�2

b

Z
W

jðx;‘TkðuÞÞ
½1þ bðxÞjunj�2

�
Z
W

jxðx;‘TkðuÞÞ
½1þ bðxÞjunj�

�
� ‘un

½1þ bðxÞjunj�
� ‘TkðuÞ
½1þ bðxÞjunj�

�
:

By (17), assumptions (1) and (2), and Lebesgue’s theorem, we have

lim inf
n!þl

Z
W

jðx;‘unÞ
½1þ bðxÞjunj�2

b

Z
W

jðx;‘TkðuÞÞ
½1þ bðxÞjuj�2

�
Z
W

jxðx;‘TkðuÞÞ
½1þ bðxÞjuj� �

‘½u� TkðuÞ�
½1þ bðxÞjuj� ;

that is, since jxðx;‘TkðuÞÞ � ‘ðu� TkðuÞÞ ¼ 0,Z
W

jðx;‘TkðuÞÞ
½1þ bðxÞjuj�2

a lim inf
n!þl

Z
W

jðx;‘unÞ
½1þ bðxÞjunj�2

:

Letting k tend to infinity, and using Levi’s theorem, we obtainZ
W

jðx;‘uÞ
½1þ bðxÞjuj�2

a lim inf
n!þl

Z
W

jðx;‘unÞ
½1þ bðxÞjunj�2

:ð21Þ

Inequality (21) and Lemma 4 imply that

lim inf
n!þl

Z
W

jðx;‘unÞ
½1þ bðxÞjunj�2

þ 1

2

Z
W

junj2 �
Z
W

fnun

b

Z
W

jðx;‘uÞ
½1þ bðxÞjuj�2

þ 1

2

Z
W

juj2 �
Z
W

fu:
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Thus, for every v in H 1
0 ðWÞ,Z

W

jðx;‘uÞ
½1þ bðxÞjuj�2

þ 1

2

Z
W

juj2 �
Z
W

fua

Z
W

jðx;‘vÞ
½1þ bðxÞjvj�2

þ 1

2

Z
W

jvj2 �
Z
W

fv;

so that u is a minimum of J; its regularity has been proved in Lemma 4. r

Remark 6. If we suppose that the coe‰cient bðxÞ satisfies the stronger assump-
tion

0 < Aa bðxÞaB; almost everywhere in W;

it is possible to prove that JðuÞa JðwÞ not only for every w in H 1
0 ðWÞ, but also

for the test functions w such that

TkðwÞ belongs to H 1
0 ðWÞ for every k > 0;

logð1þ AjwjÞ belongs to H 1
0 ðWÞ;

w belongs to L2ðWÞ:

8><
>:ð22Þ

Indeed, if w is as in (22), we can use TkðwÞ as test function in (4) and we have

JðuÞa JðTkðwÞÞ ¼
Z
W

jðx;‘TkðwÞÞ
½1þ bðxÞjTkðwÞj�2

þ 1

2

Z
W

jTkðwÞj2 �
Z
W

fTkðwÞ:

In the right hand side is possible to pass to the limit, as k tends to infinity, so that
we have JðuÞa JðwÞ, for every test function w as in (22).

Remark 7. We explicitly point out the di¤erences, concerning the coercivity,
between the functionals studied in [3] and the functionals studied in this paper.
Indeed, let 0 < r < N�2

2 , and consider the sequence of functions

vn ¼ exp Tn

� 1

jxjr � 1
�� �

� 1;

defined in W ¼ B1ð0Þ. Then

logð1þ jvnjÞ ¼ Tn

� 1

jxjr � 1
�
;

is bounded in H 1
0 ðWÞ (since the function vðxÞ ¼ 1

jxjr � 1 belongs to H 1
0 ðWÞ by the

assumptions on r), but, by Levi’s theorem,

lim
n!þl

Z
W

j‘vnj ¼ r

Z
W

exp 1
jxjr � 1
h i
jxjrþ1

¼ þl:

Hence, the functional

v a H 1
0 ðWÞ 7!

Z
W

j‘vj2

ð1þ jvjÞ2
¼
Z
W

j‘ logð1þ jvjÞj2;
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which is of the type studied in [3], is non coercive on W
1;1
0 ðWÞ. On the other hand,

recalling (16), we haveZ
W

j‘vj ¼
Z
W

j‘vj
1þ jvj ð1þ jvjÞa 1

2

Z
W

j‘vj2

ð1þ jvjÞ2
þ 1

2

Z
W

ð1þ jvjÞ2:

Thus, the functional

v a H 1
0 ðWÞ 7!

Z
W

j‘vj2

ð1þ jvjÞ2
þ
Z
W

jvj2;

which is of the type studied here, is coercive on W 1;1
0 ðWÞ.
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