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ABSTRACT. — We study an integral non coercive functional defined on H{(Q), proving the exis-
tence of a minimum in W L.

KEy worbps: Integral functionals, direct methods of the calculus of variations, coercivity, lower
order terms.
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In this paper we study a class of integral functionals defined on H{ (), but non
coercive on the same space, so that the standard approach of the Calculus of
Variations does not work. However, the functionals are coercive on W HQ)
and we will prove the existence of minima, despite the non reﬂexwlty of
WOl I(Q), which implies that, in general, the Direct Methods fail due to lack of
compactness.

Let J be the functional defined as

U)_/[ —l—()ljj)v|v| /" /f” ve Hy(Q)

We assume that Q is a bounded open set of RY, N > 2, that j: Q x RY - R
is such that j(-,¢) is measurable on Q for every & in RY, j(x,-) is convex and
belongs to C'(RY) for almost every x in Q, and

(1) alé] < ji(x, &) < Bl
(2) |je(x, &) < ylél,

for some positive «, f and y, for almost every x in Q, and for every & in RY. We
assume that b is a measurable function on Q such that

(3) 0 < b(x) < B, foralmostevery x in Q,

where B > 0, while f belongs to some Lebesgue space. For k£ > 0 and s € R, we
define the truncature function as 7% (s) = max(—k, min(s, k)).
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In [3] the minimization in H(Q) of the functional

J(x, Vo) m
I(U)_/[+|v| /fv 0<O0<1, felL™Q),

was studied. It was proved that 7(v) is coercive on the Sobolev space WO1 4(Q),
for some ¢ = ¢(6,m) in (1,2), and that I(v) achieves its minimum on WOI"](Q).
This approach does not work for § > 1 (see Remark 7 below). Here we will able
to overcome this difficulty thanks to the presence of the lower order term / |v|

which will y1e1d the coercivity of J on W1 1(Q) then we will prove the existence
of minima in W (Q) even if it is a non reﬂexwe space.

Integral functlonals like J or [ are studied in [1], in the context of the
Thomas—Fermi—von Weizsidcker theory.

We are going to prove the following result.

THEOREM 1. Let f € L*(Q). Then there exists u in W, (Q) A L2(Q) minimum
of J, that is,

@) /[XV% IR / e AL

Jor every vin HJ(Q). Moreover Ty (u) belongs to HJ(Q) for every k > 0.

In [2] we studied the following elliptic boundary problem:

T a(x)Vu B .
dlv<(1+b(x)|u|)2)+u_f in Q,
u=20 on 0Q,

(5)

under the same assumptions on Q, b and f, Wlth 0<a < a( ) < p. Tt is easy
to see that the Euler equation of J, with j(x, &) = 1a(x)|& |?, is not equation (5).
Therefore Theorem 1 cannot be deduced from [2] Nevertheless some technical
steps of the two papers (for example, the a priori estimates) are similar.

We will prove Theorem 1 by approximation. Therefore, we begin with the
case of bounded data.

LEmMMA 2. If g belongs to L*(Q), then there exists a minimum w belonging to
HJ(Q) n L™ (Q) of the functional

UGEMDH/ﬁ T2 [ - [ oo

PROOF. Since the functional is not coercive on Hj(Q), we cannot directly
apply the standard techniques of the Calculus of Variations. Therefore, we
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begin by approximating it. Let M > 0, and let J), be the functional defined

as
JM<v>=/Q[ ((xf;; sy [P = [ oeni@),

Since J; 1s both weakly lower semicontinuous (due to the convexity of j and to
De Giorgi’s theorem, see [4]) and coercive on H{(Q), for every M > 0 there ex-
ists a minimum wy, of Jy, on H} (Q). Let A4 = ||q]|Ly ) let M > A, and consider
the inequality Jys(war) < Jp(T4(war)), which holds true since wy, is @ minimum
of Jy;. We have

J(x, Vwar) - 1
/9[14-b( NTar(war)| /| vl /QVM
]'(x,VTA(wM)) 1 e )
< /Q[l+b(x)|TM(TA(WM))H2+2/Q|TA( M)l /QgTA( )

_ J(x, Vway) 1 -
= /{WM|<A} [1 +b(x)|TM(WM)|]2 +2L |T4(wnr)| /QgTA(WM)’

where, in the last passage, we have used that T (T4(war)) = Tar(war) on the set
{Iwum| < A4}, and that j(x,0) = 0. Simplifying equal terms, we thus get

/ (x, Vwar)
{arl =01y [T+ B() [ Tag (war) ]

1 2 2
w5 [P = ITaoa) Pl < [ gloss = Tatwar)

Dropping the first term, which is nonnegative, we obtain

%/Q[WM = Ta(wan)][war + Ta(wur)] < /QQ[WM — Ta(wn)l,

which can be rewritten as

1

5 /Q s — T ()| [war + Ta(war) — 2g] < 0.

We then have, since wy = T4(wys) on the set {|wy| < 4},

1 1
5/ [WM—A][WM—I—A—2g]+—/ Wy + A]wy — A —29] < 0.
{wpu>A} {wm<—4}
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Since |g| < 4, we have 4 —2g > —A4, and —A4 — 2g < A, so that

1 1
OS—/ [va—A]2+—/ [war + A)* <0,
2 {wyu>A4} 2 {wy<—4}

which then implies that meas({|wy/| > A4}) =0, and so |wy/| < 4 almost every-
where in Q. Recalling the definition of 4, we thus have

(6) W= @) < 191l 2=

Since M > |\g[| .« (q)> We thus have T (war) = wy. Starting now from Jus(wy) <
Ju(0) = 0 we obtain, by (6),

x,Vw
/[1 +(b |:}4 2 /|WM| /QWMSmeas(Q)HgHiq(m
M

which then implies, by (1) and (3), and dropping the nonnegative second term,

o
[1+ Bllg]l ;- ()]

2 2
2/Q|VWM| gmeas(Q)HgHm(Q)

Thus, {wy} is bounded in H}(Q)NL*(Q), and so, up to subsequences, it
converges to some function w in H}(Q) n L*(Q) weakly in H}(Q), strongly in
L?(Q), and almost everywhere in Q. We prove now that

V) e [ Ye)
@) /9{1 bW 1;}23{/9[1 )

Indeed, since j is convex, we have

M J(x,Vw) B Je(x, V) Vwy — wl.
/Q[l n b(x)|WM|]2 = /Q[l + b(x)|wM|]2 /Q 1+ b<X>|WM|]2 | |

Using assumption (1), the fact that w belongs to H{(Q), the almost everywhere
convergence of wy, to w and Lebesgue’s theorem, we have

) J(x,Vw) B Jj(x,Vw)
) i /Q 1+ b wul /Q L+ b))

Using assumption (2), the fact that w belongs to H (), and the almost every-
where convergence of wy, to w, we have by Lebesgue’s theorem that

jf(xv VW) o j§<x7 VW)

M—+0 [1 + b(X)|WM|]2 - [1 + b(X)|w|]2’ Strongly n (LZ(Q))N
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Since Vw), tends to Vw weakly in the same space, we thus have that

. Je(x, Vw) Ve — ] =
) Mlinﬁoc/g[wb(xnwm}z Vira = =0

Using (8) and (9), we have that (7) holds true. On the other hand, using (1) and
Lebesgue’s theorem again, it is easy to see that

im j(X,VU) _ j(x,Vv) 1
ML+m/gz[1+b(x)|TM(u)|]2 /g[1+b(x)|v|]2’ Vo € Hy(€).

Thus, starting from Jy(wa) < Jar(v), we can pass to the limit as M tends to
infinity (using also the strong convergence of wy, to w in L*(Q)), to have that w
is a minimum. |

As stated before, we prove Theorem 1 by approximation. More in detail, if
Jfu = T,(f) then Lemma 2 with g = f, implies that there exists a minimum u, in
HJ(Q) n L™ (Q) of the functional

L T

In the following lemma we prove some uniform estimates on .

LEMMA 3. Let u, in H}(Q) N L‘”(Q) be a minimum of J,,. Then

(1) /Q |VTk<un>|2s *2—”‘ /Q 1P
(12 Jl <4 [ s
1 [wul<ly [ }1/2<meas<9>1/2+23[ / |f|ﬂl/2>;

(14) [iGewr <4 [ i
Q {lun| =K}
where Gy(s) = s — Ty(s) for k = 0 and s in R.

PrOOF. The minimality of u, implies that J,(u,) < J,(0), that is,
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Using (1) on the left hand side, and Young’s inequality on the right hand side

gives
|V“n|2 1/21/21/2
o ——t s < s :
/Q[l+b(x)|u,,|]2 2Jo " T 2)a "2 an

which then implies (10). Let now k > 0. The above estimate, and (3), give

1 / ) / |Vun| /
_ VT (u,)|” <
(1+ Bk)2 Q| () {un <k} [1 4+ b( x)|u,,| 20‘ |f|

and therefore (11) is proved. On the other hand, dropping the first positive term
in (15) and using Holder’s inequality on the right hand side, we have

1 ) . = 1/2 , 1/2
s Ll < [l < | L1027 [ ]
Q Q Q Q
that is, (12) holds. Holder’s inequality, assumption (3), and estimates (10) and
(12) give (13):
1/2 1
Vuy,
L i ] JRRZES
+ b(x) ] Q

16 [ 1vu=
1 1/2 1/2
< {—/ |f|2} meas(Q)l/2+2B{/ |f|2] .
20 [e) Q
We are left with estimate (14). Since J,(u,) < J,,(Tx(u,)) we have
l/ X Vun) / | nl /fnun
2Jal +b(x) |un|

1 Ti(
e R ey NEACAIY W)
2 Q[1+b( |Tk“n

Recalling the definition of Gy (s), and using that |s|* — | T;(s)|* > |Gk (s)|?, the last
inequality implies

%/[(X VGk|Z:| 3 ), Gt < [ A6

Dropping the first term of the left hand side and using Holder’s inequality on the
right one, we obtain

1 1/2 1/2
I |Gk<un>|2s[/{un|2k}|f|2] [ 1G]

that is, (14) holds. O
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LEMMA 4. Let u, in H}(Q) N L*(Q) be a minimum of J,. Then there exists a
subsequence still denoted by {u,}, and a function u in W1 Q) A LX(Q), with
Ti(u) in H}(Q) for every k >0, such Zhat Uy converges to u almost everywhere
in Q, strongly in L*(Q) and weakly in W (Q), and Ty (u,) converges to Ty (u)
weakly in Hj(Q). Moreover,

(17) lim —VH Vu

— . 2 N
A o] T b ek in (L(Q)"

PrOOF. By (13) the sequence u, is bounded in W '(Q). Therefore, it is rela-
tively compact in L'(Q). Hence, up to subsequences still denoted by u,, there
exists u in L'(Q) such that u, almost everywhere converges to u. From Fatou’s
lemma applied to (12) we then deduce that u belongs to L?(Q).

We are going to prove that u, strongly converges to u in L*(Q). Let E be a
measurable subset of Q; then by (14) we have

/|un|232/|Tk(un)|2+2/|ck(un>|2
E E E

< 2k*meas(E) + 2/ |Gre(u)|?
Q

S2k2meas(E)+8/ ViR
{lun| =&}
Since u, is bounded in L>(Q) by (12), we can choose k large enough so that the
second integral is small, uniformly with respect to n; once k is chosen, we can
choose the measure of £ small enough such that the first term is small. Thus,
the sequence {u} is equiintegrable and so, by Vitali’s theorem, u, strongly con-
verges to u in L*(Q).

Now we to prove that u, weakly converges to u in W0 (Q) Let E be a
measurable subset of Q. By Holder’s inequality, assumption (3), and (10), one

has, fori e {1,...,N},
Vut, |* 2 )7
/E[l +b(x)|un|]21 [/E [0l ]

ouy,
ox;| —

/ /|Vun| <
5 |f|ﬂm JiL +B|un|ﬂl/2.

Since the sequence {u,} is compact in L*(Q), this estimate implies that the se-
quence { “} is equuntegrable Thus, by Dunford—Pettis theorem, and up to sub-
sequences, there exists ¥; in L'(Q) such that 5 6“” “ weakly converges to Y; in L!'(Q).
Since 5 a“” is the distributional partial derivative of u,, we have, for every n in N,

uy, dp
= [ w22, VYopeCr(Q).
[Sp—— [ w3, woecr@
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We now pass to the limit in the above identities, using that d;u, weakly converges
to Y;in L'(Q), and that u, strongly converges to u in L?>(Q): we obtain

9
Yip=— | u=—, Vpe C"Q).
/Q @ /ani % 0()

This implies that Y; = %, and this result is true for every i. Since Y; belongs to
LY(Q) for every i, u belongs to WOI’I(Q), as desired.

Since by (11) it follows that the sequence { Ty (u,)} is bounded in H}(Q), and
since u, tends to u almost everywhere in Q, then Tj(u,) weakly converges to
Ty (u) in H}(Q), and Ty (u) belongs to H} (Q) for every k > 0.

Finally, we prove (17). Let ® be a fixed function in (L (Q))". Since u, almost
everywhere converges to u in Q, we have

lim e = °
n—+oo | + b(X)|Un| 1 + b(x)|u|

almost everywhere in Q.

By Egorov’s theorem, the convergence is therefore quasi uniform; i.e., for every
0 > 0 there exists a subset Es of Q, with meas(Es) < d, such that

(18) lim i ®

LU p s =1 b0l uniformly in Q\ Ej.

We now have
Vu, Vu
v - [ "
/Ql + b(x) |uy | /Ql + b(x)|ul '
) [}
< Vu,  —m—-— — / Vu - ———
/Q\Eé L+ b(X)|ua|  Jong, 1+ b(x)|ul

S, / (V] + V]
%)

Using the equiintegrability of |Vu,| proved above, and the fact that |Vu| belongs
to L'(Q), we can choose J such that the second term of the right hand side is
arbitrarily small, uniformly with respect to n, and then use (18) to choose n large
enough so that the first term is arbitrarily small. Hence, we have proved that

Vu Vu
19 I = kly in (L'(Q))".
(19) O T b0 ]~ T4 b0 ek in (L)
Vi,
N ) i l+b.(x)\u,,\
(L?*(Q))™, so that it weakly converges to some function ¢ in the same space.

Since (19) holds, we have that ¢ = 1+bv(z)\u|> and (17) is proved. O

On the other hand, from (10) it follows that the sequence is bounded in
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REMARK 5. The fact that we need to prove (17) is one of the main differences
with the paper [2].

PrROOF OF THEOREM 1. Let u, be as in Lemma 4. The minimality of u,, implies
that

o e
S/[ xw|u| /H_/f”

for every v in H}(Q). The result will then follow by passing to the limit in the
previous inequality. The right hand side of (20) is easy to handle since f, con-
verges to f in L?(Q). Let us study the limit of the left hand side of (20). The

convexity of j implies that
j(xa Vun) j(xaVTk<u))
/9[1 + b(x) uy])? = /9[1 + b(x) un])?
_/jf(vaTk(”))'( Vu, VT () )
a1+ b(0)[un] N1+ b(x)|unl]  [1 4 b(x)|un]] /-

By (17), assumptions (1) and (2), and Lebesgue’s theorem, we have

s j(x,Vu,,) j(xaVTk(u»
ot | 4 bl A 1+ b))
[ HYI0) V= Tito)
o -6l T+ b))

that is, since j:(x, VT (u)) - V(u — Tr(u)) = 0,

[ LTIy [T
a1+ bl = = o[+ b(x) )

Letting k tend to infinity, and using Levi’s theorem, we obtain

J(x,Vu) L J(x, Vuy,)
&1 A 4 bl it | L+ 600wl

Inequality (21) and Lemma 4 imply that

lim inf / Jx, V“” / Ik / fottn
n—-+oo [ |un|
J(x, Vu)
> [T [l - [
1+ b(x)|ul]
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Thus, for every v in H} (Q),

R Ay Rl A e A

so that u is a minimum of J; its regularity has been proved in Lemma 4. =]

REMARK 6. If we suppose that the coefficient b(x) satisfies the stronger assump-
tion
0 < A4 <b(x) <B, almosteverywhere in Q,

it is possible to prove that J(u) < J(w) not only for every w in HJ(Q), but also
for the test functions w such that

Ti(w) belongs to H} (Q) for every k > 0,
(22) log(1 + A|w|) belongs to H}(Q),
w belongs to L?(Q).

Indeed, if w is as in (22), we can use Ty (w) as test function in (4) and we have

J(u) < J(Te(w)) = /Q g +(Z(V|T;k‘”w / ITe(w) — / ITi(w)

In the right hand side is possible to pass to the limit, as k tends to infinity, so that
we have J(u) < J(w), for every test function w as in (22).

REMARK 7. We explicitly point out the differences, concerning the coercivity,
between the functionals studied in [3] and the functionals studied in this paper.
Indeed, let 0 < p < ¥2, and consider the sequence of functions

1
vn—exp{ <| B 1)}—17
defined in Q = B;(0). Then
1
log( +|Dn|) (| |p 1))

is bounded in H}(Q) (since the function v(x) = e ‘}, — 1 belongs to H}(Q) by the
assumptions on p), but, by Levi’s theorem,

| ol
n—%Too/ |an| /Q | ‘/H‘l =+,

Hence, the functional

UGHOI(Q)H/ _Ivel® /|Vlog + o))

L+ [o])?
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which is of the type studied in [3], is non coercive on Wol’ ! (Q). On the other hand,
recalling (16), we have

Vol fogve? 1 )2
Jvei = [l < 5 [ g [0l

Thus, the functional
vemi@e [ Vol [
a (1 +[v])?

which is of the type studied here, is coercive on WOI’ HQ).
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