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Abstract. — We consider the Wigner equation corresponding to a nonlinear Schrödinger evolu-

tion of the Hartree type in the semiclassical limit �h ! 0.
Under appropriate assumptions on the initial data and the interaction potential, we show that the

Wigner function is close in L2 to its weak limit, the solution of the corresponding Vlasov equation.
The strong approximation allows the construction of semiclassical operator-valued observables,

approximating their quantum counterparts in Hilbert-Schmidt topology.
The proof makes use of a pointwise-positivity manipulation, which seems necessary in working

with the L2 norm and the precise form of the nonlinearity. We employ the Husimi function as
a pivot between the classical probability density and the Wigner function, which—as it is well

known—is not pointwise positive in general.
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1. Introduction

1.1. Formulations of the problem. The time evolution of a density matrix AeðtÞ
in a self-consistent field of Hartree type is described by the initial value problem



ieqtA
eðtÞ ¼ ½H e;AeðtÞ�;

Aeð0Þ ¼ Ae
0;

�
ð1:1Þ

where ½�:�� denotes the commutator, e :¼ �h is the Planck constant and Ae
0 is the

initial datum. The dimension of the system is chosen equal to three. The Hamil-
tonian H e for a particle of mass m is given by

H e ¼ � e2

2m
Dþ Vð1:2Þ

and V is a self-consistent potential determined by

Vðx; tÞ ¼
Z
R3

fðx� x 0Þre
t ðx 0Þ dx 0;ð1:3Þ

where fðxÞ is the two-body interaction and re
t ðxÞ ¼ reðx; x; tÞ is the position

density given in terms of the integral kernel reðx; y; tÞ of the density matrix
AeðtÞ, i.e.

ðAeðtÞGÞðxÞ ¼
Z

reðx; y; tÞGðyÞ dy; ðfor any G a L2ðR3ÞÞ:ð1:4Þ

The pair interaction potential f is assumed to be spherically symmetric, a natural
assumption from the physical point of view.

When we deal with a pure state, namely, the initial datum Ae
0 is an orthogonal

projection onto a wave function ue
0, then equation (1.1) reduces to a nonlinear

Schrödinger equation, called Hartree equation (see equation (3.1) below).
On the other side, when the initial datum is not a pure state, it is said to be

a ‘‘mixed state’’, namely, it is represented by a density matrix Ae
0 which is a

convex combination (mixture) of ortogonal projections. In that case, due to the
nonlinearity, the Schrödinger picture does not hold anymore and the Hartree
dynamics is given by equation (1.1).

In this paper, we are interested in initial data of the mixed type; see the state-
ment of Theorem 2.1 for details. We are going to look at the dynamics (1.1) in the
regime ef 1, the so-called semiclassical regime, where we expect the dynamics to
‘‘approach’’ the one of the corresponding classical system. We will introduce the
Wigner function

f eðx; k; tÞ ¼
� 1

2p

�3 Z
R3

eiykre
�
xþ e

y

2
; x� e

y

2
; t
�
dy;ð1:5Þ

related to the operator AeðtÞ through its integral kernel reðx; y; tÞ, and we will
show that f eðx; k; tÞ converges in L2 to the probability distribution g ¼ gðx; k; tÞ
that solves the corresponding classical Vlasov equation:

qtgþ k � qxg ¼ T
g
0 g:ð1:6Þ
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The nonlinear operator T g
0 g is defined as:

ðT g
0 gÞðx; k; tÞ ¼ ðqxf ? rg

t Þ � qkgðx; k; tÞð1:7Þ

¼
�Z

R3
dyqxfðx� yÞrg

t ðyÞ
�
� qkgðx; k; tÞ;

and r
g
t ¼ r

g
t ðxÞ is the spatial probability density associated with gðx; k; tÞ, namely:

r
g
t ðxÞ ¼

Z
R3

dkgðx; k; tÞ:ð1:8Þ

Moreover, a semi-classical approximation of AeðtÞ will be constructed; the precise
statement of the result is given in Section 2.1.

Problem (1.1) has several equivalent formulations, each of them yielding a
corresponding initial value problem. For example, by looking at the integral
kernel reðx; y; tÞ, it is easy to check that it satisfies the von Neumann equation

ie
q

qt
re ¼ � e2

2
Dx þ ðf ? re

t ÞðxÞ �
�
� e2

2
Dy þ ðf ? re

t ÞðyÞ
�� �

re;ð1:9Þ

where we put:

re
t ðzÞ :¼ reðz; z; tÞ;ð1:10Þ

namely re
t ðzÞ is the spatial probability density associated with the quantum state

described by reðx; y; tÞ.
Another description is in terms of the Wigner function f eðx; k; tÞ which is

related to the density matrix AeðtÞ through (1.5) or, equivalently, through its
inverse transform

ðAeðtÞGÞðxÞ ¼
Z

f e
� xþ y

2
; k; t

�
eiðx�yÞðk=eÞGðyÞ dk dy;ð1:11Þ

ðfor any G a L2ðR3ÞÞ

called Weyl transformation (see equations (1.17), (3.6) for the relation between
the Wigner function and the Weyl symbol). The Wigner function satisfies the
(nonlinear) Wigner equation

qt f
e þ k � qx f e ¼ T f

e f
e;ð1:12Þ

where T f
e is a suitable nonlinear pseudodi¤erential operator (see (3.8) and (3.10)).

A very straightforward connection between the three descriptions is that

kAekHS ¼ kreð� ; �ÞkL2ðR3�R3Þ ¼ ð2peÞ3=2k f ekL2ðR3�R3Þ;ð1:13Þ
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where k � kHS is the Hilbert-Schmidt norm. This in particular allows to translate
easily L2 estimates between the di¤erent formulations, and to transfer approxi-
mations from the function level to the operator level.

It must be noted that a natural assumption for the initial datum in the Density
Matrix Formalism is that the operator is positive semi-definite and trace-class
(with trace equal to one), i.e. it has a singular value decomposition of the form

Ae
0 ¼

X
lmjum43umjð1:14Þ

with kumkL2ðR3Þ ¼ 1, lm b 0,
P

lm ¼ 1. It is well known that the trace is pre-
served in time. This is an important physical fact, as the trace is the quantum
counterpart of the total probability of a classical density in a statistical formula-

tion. The trace is given by trðAeÞ ¼
Z

reðx; xÞ dx ¼
Z

f eðx; kÞ dx dk (see also

Lemma 3.1 and the discussion below).

1.2. Physical context. Equation (1.1) describes the situation in which we have a
large number of particles in a mean-field regime (see for instance [31, 18, 14], for
the case of smooth potentials, and [4, 12, 5, 11, 19, 28] for more singular interac-
tions). In this paper we want to study the semiclassical behavior (for e ! 0) of the
solution of equation (1.1).

The Wigner function is a well known tool in the study of the semiclassical lim-
it of quantum dynamics. (see also definition (3.4) below). Indeed, there are many
works using the Wigner function to study the semiclassical limit of a number of
problems (linear, non-linear, stochastic, systems etc) see e.g. [21, 22, 20, 13, 27,
29, 30] for a very small selection, and the references therein. One of the main
advantages, is that the (formal, at this level) limit, as e ! 0, of the Wigner equa-
tion is typically some familiar equation of classical statistical mechanics. In that
sense, the ‘‘correspondence principle’’ between classical and quantum mechanics
is quantified in a straightforward, easy to present way. Indeed, for the problem
we deal with here, for example, guessing the result from formal calculations is
pretty straightforward.

In most of the existing literature, the notion of convergence is in weak topol-
ogy (see e.g. the works mentioned above for precise statements). Indeed, the
weak-� semiclassical limit for this problem is worked out e.g. in [20]. In fact (out-
side coherent states techniques), until very recently, virtually all the results were
in weak topology. There is a natural analytical question of understanding when
and why convergence in some natural strong topology fails; moreover, if one
has possible numerical applications in mind, it would be desirable to know e.g.
whether (possibly large in L2 or pointwise sense) oscillations develop or not.
Quantifying constructively the rate of convergence in terms of the data of the
problem is also another natural question.

Another big family of methods that yield strong topology semiclassical
asymptotics (in linear as well as nonlinear problems) is based on coherent states
(e.g. [9, 15, 16, 18, 25, 6, 3]). However, this is not really pertinent here, as
coherent and mixed states (the kind of data we treat here) in nonlinear problems
behave quite di¤erently.
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In the quantum-classical correspondence, the idea is that the Wigner function
converges, in the semiclassical limit, to a classical phase-space probability mea-
sure. However, the Wigner function itself is not pointwise positive in general.
Working around this fact will be among the main points of the proofs. Indeed,
it has often been remarked that the extensive arsenal of positivity techniques,
developed in the context of classical phase-space equations, would be a good
ingredient to transfer to their quantum counterparts. This becomes even more
important in non-linear problems. In this paper we employ such pointwise-
positivity techniques to the (nonlinear) Wigner equation, for the first time to the
best of our knowledge. The key idea is to work with the Husimi function:

~ff eðx; kÞ ¼ F�1
a;b!x;k½e�ðea2þeb2Þ=4Fz;y!a;b½ f ðz; yÞ��ð1:15Þ

¼ 1

ðpeÞ3
Z
R3�R3

e�ðx�x 0Þ2=e�ðk�k 0Þ2=ef ðx 0; k 0Þ dx 0 dk 0;

where we denoted by F�1
a;b!x;k the inverse Fourier transform from L2ðR3

a � R3
bÞ

to L2ðR3
x � R3

kÞ. The Husimi function (1.15) is a variation of the Wigner function,
which does translate the operator positivity into pointwise positivity on the
phase-space (see (4.2) and (4.3) below). The equation for the Husimi function
itself has been derived only recently in closed form, and it is of infinite order in
general [1]; it helps us in guessing the precise manipulations that are needed here.
However, once formulated, the estimates we need can be proven without using
the infinite-order Husimi equation itself. It should also be noted that the Husimi
function is used only in the proof; it does not appear in the statement of the
result, which is formulated in terms of the Wigner function. We believe that
such use of positivity techniques in nonlinear Wigner equations could provide a
fruitful approach in other problems as well.

1.3. Notation. We specify that here and henceforth we use the following conven-
tions for the Fourier transform in Rd :

ĜGðkÞ ¼ Fx!k½GðxÞ� ¼
Z
Rd

e�ikxGðxÞ dx:ð1:16Þ

The Weyl Quantization is defined as follows: for any F a L2ðR3 � R3Þ and
G a L2ðR3Þ,

ðOpWeylðFÞGÞðxÞ ¼ e�3

Z
F
� xþ y

2
; k
�
eiðx�yÞðk=eÞGðyÞ dk dy:ð1:17Þ

We denote by H nðRdÞ the Sobolev space W n;2ðRdÞ of functions in L2ðRdÞ
whose derivatives up to the order n are also in L2ðRdÞ, i.e., for any function G
on Rd

kGkH nðRdÞ ¼
Xn

jaj¼0

kqa
xGðxÞkL2ðRd Þð1:18Þ
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We denote by Ck
b ðRdÞ the space of continuous and uniformly bounded func-

tions whose derivatives, up to the order k, are also continuous and uniformly
bounded.

1.4. Organization of the paper. The plan of the paper is the following. Section 2
is devoted to the statement of our main result together with some remarks con-
cerning it and fixing the notations. In Section 3 we recall the main features of the
Hartree dynamics rephrased in the Wigner formalism. In Section 4 we introduce
the definition and various properties of the Husimi Transform (HT). Then, in
Section 5 we recall the main features of the Vlasov evolution, namely, the classi-
cal dynamics we recover in the limit e ! 0. Finally, in Section 6 we prove the
main result of this paper.

2. The main result

2.1. Statement of the result. All over the paper we make the following assump-
tions for the interaction potential that we suppose to be spherically symmetric:

iÞ f a H 1ðR3Þð2:1Þ

iiÞ
Z
R3

dSjf̂fðSÞj jSjn < þl; n ¼ 0; 1; . . . ; 4:ð2:2Þ

Theorem 2.1. Under the above assumptions on f, let AeðtÞ be the solution of the
Hartree problem (1.1), and f eðtÞ the Wigner function associated with it. Denote
f eð0Þ ¼ f e

0 , and let us suppose that:

• bC;C 0 > 0 such that

k f e
0 kH 3ðR3�R3Þ aC;

Z
f e
0 ðx; kÞjkj

2
dx dkaC 0 andð2:3Þ Z

f e
0 ðx; kÞ dx dk ¼ 1:

• bM0 > 0, a a ð0; 1� (independent of e), such thatZ
jkj>M0=2

j f e
0 j

2
dx dk ¼ Oðe2aÞ;ð2:4Þ

Z
jkj>M0=4

j f e
0 j dx dk ¼ OðeaÞ;ð2:5Þ

Moreover

k f e
0 kL1ðR3Þ ¼ Oðeaþ3=2eM

2
0
=16eÞ:ð2:6Þ
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Let fge
0ge be any family of probability distributions bounded in H 3ðR3 � R3Þ

(uniformly in e), supported on the set fðx; kÞ a R3 � R3 : jkjaM0g, such that

k f e
0 � ge

0kL2ðR3�R3Þ ¼ OðeaÞ;ð2:7Þ

( for example ge
0 ¼ wM0

~ff e
0

�Z
wM0

~ff e
0 dx dk where ~ff e

0 is the Husimi Transform of f e
0

as in (1.15) and wM0
is a smooth function identically equal to 1 for jkjaM0=2 and

vanishing for jkjbM0, see Proposition 2.1 below).
Then, if we denote by geðtÞ the solution of the Vlasov equation (1.6) with initial

datum geð0Þ ¼ ge
0, there exist positive constants C0, C1, C2 (else we need to say

independent of e, t), such that

k f eðtÞ � geðtÞkL2ðR3�R3Þ aC0e
C1e

C2t

eð2=7Þa:ð2:8Þ

In particular it follows that the density matrix AeðtÞ can be approximated by the
semiclassical operator BeðtÞ whose Wigner function is geðtÞ. More specifically

kAeðtÞ � BeðtÞkHS

kAeð0ÞkHS

aC0e
C1e

C2t

eð2=7Þa:ð2:9Þ

In the statement of the theorem we do not require the existence of a semiclass-
ical limit f e

0 ! g00 , we strictly need only assumptions on the quantum data f e
0 .

These assumptions guarantee the existence of semi-classical initial data ge
0 fulfill-

ing the hypotheses of Theorem 2.1, as established by Proposition 2.1 below.
On the other hand, if one supposes a priori the existence of such a family,
the statement of Theorem 2.1 holds, without assuming conditions (2.4), (2.5)
and (2.6).

Proposition 2.1. Let wM0
¼ wM0

ðjkjÞ be a monotone Cl function satisfying

wM0
¼ 1 if jkja M0

2
and wM0

¼ 0 if jkjbM0, and let ~ff e
0 be the Husimi Trans-

form of f e
0 as in (1.15).

Suppose ge
0 be defined by

ge
0 ¼

wM0

~ff e
0R

wM0

~ff e
0 dx dk

;ð2:10Þ

then

(1)

Z
ge
0 dx dk ¼ 1 and ge

0 b 0

(2) kge
0kH 3 ¼ Oð1Þ

(3) supp ge
0 J fjkjaM0g

(4) k f e
0 � ge

0kL2 ¼ OðeaÞ.

The proof of Proposition 2.10 is given in the Appendix.
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Remarks:

• For a sharper expression on the behaviour in time of the error see (the end of )
the proof in Section 6. In this form, the constants C0, C1 depend on the
H 3-norm of the initial data f e

0 and ge
0, the initial total energy of f e

0 , suitable
moments of f̂f (as in equation (2.2)), and kfkH 1 . All these quantities are
bounded uniformly in e by assumption. The constant C2 depends on those
quantities mentioned above that involve only f.

• The investigation of the semiclassical limit of the Wigner Transform by looking
at the L2 asymptotics arises quite naturally because such a norm is invariant
under the time evolution. However, while for the linear case everything goes
on easily (provided that the potential is su‰ciently smooth; see e.g. [21, 29,
2]), for the nonlinear case one has to face an extra di‰culty, which is the moti-
vation of the present paper. In fact the L2-norm of the di¤erence between the
Wigner Transform and its classical counterpart is estimated in terms of the
L1-norm of the same di¤erence. Therefore, to conclude, we need a control of
large momenta. This could be achieved by the energy conservation, but for an
e¤ective use of it we would need the positivity of the Wigner Transform, which
is not the case. This di‰culty has been overcome by using the Husimi Transform.

• For the sake of concreteness we work in dimension three, but our results hold
as well in any dimensions. We also expect the result to hold without any impor-
tant di¤erences if a regular enough external potential is added.

2.2. Remarks on the Initial Data and Regularity Assumptions.

Remark 2.1. The assumptions we made on f and ge
0 guarantee the existence and

uniqueness for the Vlasov equation (1.6) in the space of probability measures.

Remark 2.2. An explicit example for which the assumptions of Theorem 2.1 are
verified, is a superposition of coherent states, namely, for an e-independent probabil-
ity density g0 a H 3ðR3 � R3Þ and supported on fðx; kÞ a R3 � R3 : jkjaM0g,

f e
0 ðx; kÞ ¼

Z
dx 0 dk 0deðx� x 0Þdeðk � k 0Þg0ðx 0; k 0Þ;ð2:11Þ

where deðx� x 0Þdeðk � k 0Þ is the Wigner transform of a coherent state centered in
ðx 0; k 0Þ. (see for instance [27]). We observe that in this case the exponent a in (2.7)
is equal to 1.

In this case, any of the families fge
0ge in Theorem 2.1 will converge to g0 in

L2ðR3 � R3Þ.

Remark 2.3. Consider the case of a superposition of coherent states discussed
in Remark 2.2. For a pure coherent state centered in ðx 0; k 0Þ and described by a
density matrix Ae

x 0;k 0 and a Wigner function f e
x 0;k 0 ðx; kÞ, we have

kAe
x 0;k 0kHS ¼ 1; k f e

x 0;k 0kL2ðR3�R3Þ ¼
1

ð2peÞ3=2
:
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In contrast, when we deal with a mixture of coherent states (as in (2.11)), we have
k f e

0 kL2 aC (C independent of e). As a consequence (see (1.13)), the corresponding
density matrix Ae has vanishing Hilbert-Schmidt norm. This is the reason why we
consider the relative error in (2.9) (the situation we take into account is the mixed
state one).

3. The Hartree dynamics in the Wigner picture

The semiclassical Hartree equation (with unit mass, m ¼ 1) for a pure state is

ieqtu
e ¼ � e2D

2
ue þ ðf ? juej2Þue:ð3:1Þ

For a mixed state, we have to pass to the von Neumann equation for the kernel
reðx; y; tÞ,

ie
q

qt
re ¼ � e2

2
Dx þ ðf ? re

t ÞðxÞ �
�
� e2

2
Dy þ ðf ? re

t ÞðyÞ
�� �

re;ð3:2Þ

where we put:

re
t ðzÞ :¼ reðz; z; tÞ;ð3:3Þ

namely re
t ðzÞ is the spatial probability density associated with the quantum state

described by reðx; y; tÞ.
The Wigner Transform of the wavefunction ueðx; tÞ is defined by,

W e½ue�ðx; k; tÞ :¼
� 1

2p

�3 Z
R3

eiykue
�
xþ e

y

2
; t
�
ue
�
x� e

y

2
; t
�
dy:ð3:4Þ

More generally for a mixed state described by a density matrix, namely a positive
trace class operator AeðtÞ with kernel reðx; y; tÞ, the Wigner function f e is

f eðx; k; tÞ ¼
� 1

2p

�3 Z
R3

eiykre
�
xþ e

y

2
; x� e

y

2
; t
�
dy:ð3:5Þ

The Wigner function is intimately related to the Weyl symbol, but one should be
cautious with the scaling in the Planck constant:

ðAeðtÞGÞðxÞ ¼
Z

f e
� xþ y

2
; k; t

�
eiðx�yÞðk=eÞGðyÞ dk dyð3:6Þ

¼ OpWeylðe3f eÞGðxÞ for G a L2ðR3Þ:

533strong semiclassical approximation of wigner functions



The spatial probability density can be easily expressed in terms of the Wigner
function as well, namely

re
t ðzÞ :¼ reðz; z; tÞ ¼

Z
R3

f eðz; k; tÞ dk; Ez a R3:ð3:7Þ

Defining

Vðx; tÞ ¼
Z
R3

fðx� x 0Þre
t ðx 0Þ dx 0 ¼

Z
R3

fðx� x 0Þ
Z
R3

f eðx 0; k; tÞ dk dx 0;ð3:8Þ

the self-consistent Hartree potential, the Wigner function evolves according to the
Wigner equation,

qt f
e þ k � qx f e ¼ T f

e f
e;ð3:9Þ

where, for any w a L2ðR3 � R3Þ

ðT f
e wÞðx; kÞ ¼

i

ð2pÞ3
Z 1=2

�1=2

dl

Z
R3

dSV̂VðS; tÞeiSxðS � qkÞwðx; k þ elS; tÞ;ð3:10Þ

and V̂VðS; tÞ is the Fourier transform (with respect to the space variable) of the
potential Vðx; tÞ defined in (3.8). It will be useful to observe that (3.8) implies

V̂VðS; tÞ ¼ f̂fðSÞr̂re
t ðSÞ:ð3:11Þ

It is well known (and easy to check), that the dynamics (3.9) preserves the

integral of the Wigner function f e on the phase space R3 � R3 i.e. the trace (see
[7] and Lemma 3.1 below). This corresponds to the conservation of the L2-norm
of the wave function ue, in case of a pure state, or to the conservation of the trace
in case of a density matrix. For this reason we will haveZ

R3

Z
R3

f eðx; k; tÞ dk dx ¼
Z

reðx; x; tÞ dx ¼ 1; for any tb 0:ð3:12Þ

Lemma 3.1 (L1 regularity). Consider the initial value problem for equation (3.9)
with initial datum f e

0 . Under our assumptions on f (more precisely, it is su‰cient
that f̂f a L1ðR3Þ), the trace is preserved by the time evolution. Moreover, if

f e
0 a L1ðR3 � R3Þ, f eðtÞ stays in L1ðR3 � R3Þ for all t a R.

Proof. The trace associated with a Wigner function f eðtÞ, namely, Ið f eðtÞÞ ¼
trðOpWeylðe3f eðtÞÞÞ, is easily seen to be

Ið f eðtÞÞ ¼
ZZ

f eðx; k; tÞ dk dx ¼
Z

re
t ðxÞ dxð3:13Þ

where the dx integral is understood to be absolutely convergent. The result for the
preservation of the trace itself can be found in [7] (under the assumption f a Ll,
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which obviously holds in this context). So far the dk integral does not have to be
absolutely convergent, but only Cauchy-PV.

Now, since re
t a L1ðR3Þ for any t (and in particular kre

t kL1ðR3Þ ¼ kre
0kL1ðR3Þ

¼ 1), it follows that bre
tr
e
t a LlðR3Þ for any t (indeed kbre

tr
e
t kLlðR3Þ a 1), and there-

fore

kV̂VkL1ðR3Þ a kr̂re
t kLlðR3Þkf̂fkL1ðR3Þ a kf̂fkL1ðR3Þ:

Now we can rewrite the Wigner equation (3.9) as

ðqt þ k � qxÞ f e ¼ i

ð2pÞ3
Z

V̂VðSÞeiSx
f e
�
x; k þ eS

2 ; t
�
� f e

�
x; k � eS

2 ; t
�

e
dS:ð3:14Þ

One readily observes that the L1-norm (with respect to x and k) of the rhs of
(3.14) is bounded by

2

eð2pÞ3
kf̂fkL1ðR3Þk f ekL1ðR3�R3Þ:ð3:15Þ

Since the free propagator (associated with the lhs of (3.14)) preserves the
L1-norm, the result follows by applying the Gronwall lemma. Observe that the
constant grows like eðC=eÞt (i.e. diverging behaviour as e ! 0) but this does not
play any role here and we get all we need in justifying that the phase-space inte-
gral of f e is absolutely convergent. r

In the present context we need extra regularity properties in the framework of
the Wigner formalism. Actually we can establish the following

Lemma 3.2 (Sobolev regularity). Assume the potential f to satisfy the conditionZ
dSjf̂fðSÞj jSjmþ1 < þl;

for some mb 0. Then, for any T > 0, there is a constant C such that

k f eðTÞkHmðR3�R3Þ a k f eð0ÞkHmðR3�R3Þe
CTð3:16Þ

In particular for m ¼ 0 (i.e. looking at the L2-norm), we have

k f eðTÞkL2ðR3�R3Þ ¼ k f eð0ÞkL2ðR3�R3Þ:ð3:17Þ

Proof. By using the same observation as before, i.e. that jV̂VðSÞja kr̂re
t kLl jf̂fðSÞj

a jf̂fðSÞj, it follows that equation (3.9) can be treated in the same way as a prob-
lem with a smooth, time-dependent potential. The proof for the corresponding
time-independent linear problem [29, 2] can be adapted to that end in a straight-
forward manner—this can be seen in more detail e.g. in [26].
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4. Husimi Transform and Husimi dynamics

Given a Wigner function f e associated to a physical state (pure or mixed), we
define the Husimi transform (HT) as

~ff eðx; kÞ ¼ F�1
a;b!x;k½e�ðea2þeb2Þ=4Fz;y!a;b½ f ðz; yÞ��ð4:1Þ

¼ 1

ðpeÞ3
Z
R3�R3

e�ðx�x 0Þ2=e�ðk�k 0Þ2=ef ðx 0; k 0Þ dx 0 dk 0

We sometimes denote by F the smoothing map

f ! Fð f Þ ¼ ~ff :

The remarkable feature of the HT relies on the fact that ~ff e
b 0 (see also the

discussion in the Introduction). Indeed, in case of a pure state described by a
wave function u, it can be verified by direct computation that

~ff eðx; kÞ ¼ 1

ðpeÞ3
Z
R3�R3

e�ðx�x 0Þ2=e�ðk�k 0Þ2=eW e½u�ðx 0; k 0Þ dx 0 dk 0ð4:2Þ

¼
Z

dx 0uðx 0Þ 1

ðpeÞ3=4
eði=eÞk

0ðx�x 0Þe�ðx�x 0Þ2=2e

					
					
2

b 0:

More generally,

~ff eðx; kÞ ¼ 1

ðpeÞ3=2
3Aeeði=eÞk

0ðx�x 0Þe�ðx�x 0Þ2=2e; eði=eÞk
0ðx�x 0Þe�ðx�x 0Þ2=2e4L2

x 0
;ð4:3Þ

where Ae is the density matrix associated with the Wigner function f e.
Applying the map F to the Wigner equation (3.9), one finds [1]

qt ~ff
e þ

�
k � qx þ

e

2
qx � qk

�
~ff e ¼ ~TT f

e
~ff e;ð4:4Þ

where

~TT f
e ~ww ¼ i

ð2pÞ3
Z 1=2

�1=2

dl

Z
R3

dS ~̂VV~VVðS; tÞeiSxðS � qkÞ~ww
�
xþ i

e

2
S; k þ elS

�
:ð4:5Þ

The key observation is that, up to a small error, equation (4.4) can be recasted
as

qt ~ff
e þ k � qx ~ff e ¼ T

~ff
e
~ff e þ EðtÞ;ð4:6Þ

where

EðtÞ ¼ E1ðtÞ þ E2ðtÞð4:7Þ
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and

E1 ¼ � e

2
qx � qk ~ff e; E2 ¼ ~TT f

e
~ff � T

~ff
e
~ff e ¼ FðT f

e f Þ � T
~ff
e
~ff e:ð4:8Þ

It is straightforward to observe that, according to (3.10) (and (3.11)), we have

ðT ~ff
e ~wwÞðx; kÞ ¼ i

ð2pÞ3
Z 1=2

�1=2

dl

Z
R3

dS ~̂VV~VVðS; tÞeiSxðS � qkÞ~wwðx; k þ elS; tÞ;ð4:9Þ

where

~̂VV~VVðS; tÞ ¼ e�eS 2=4V̂VðS; tÞ ¼ f̂fðSÞ ~̂rr~rre
t ðSÞ ¼ f̂fðSÞr̂r ~ff

t ðSÞ;ð4:10Þ

and the last equality follows easily by direct computation by setting:

r
~ff
t ðxÞ ¼

Z
dk~ff eðx; k; tÞ:ð4:11Þ

This observation will lead to the proof of Lemma 6.1.
The point here is that, up to a small error, the (non-negative) Husimi function

satisfies the same nonlinear equation with self-consistent potential as the Wigner
transform does. Indeed this observation was one of the main findings of [1, 2],
namely that (at least formally) to the leading order the Husimi equations are
like the Wigner equations, but the potential has been replaced by a mollified
version of itself. That is used here, since the dk marginal of the Husimi function
is the mollification of the marginal of the Wigner function. Thus we preserve the
structure of the quantum phase-space equation, while we change our function
with one that remains non-negative.

It must be noted that, once we formulate E2 ¼ FðT f
e f Þ � T

~ff
e
~ff e, we do not

really need the infinite order machinery to proceed (to the proof of Lemma 6.1
in this case).

5. Vlasov evolution

The Vlasov equation describes the situation in which we have a large number of
classical particles in a mean-field regime (see for instance [8, 23, 32], for the case
of smooth potentials, and [17], for more singular interactions).

Denoting by F t
V ðx; kÞ the flow associated with the system:

_xx ¼ k;
_kk ¼ �qxf ? rg e

t ;

�
ð5:1Þ

one can easily verify that the solution geðtÞ of (1.6) with initial datum ge
0 (see the

claim of the Theorem 2.1) is obtained by propagating the initial datum through
the characteristic curves of the flow F t

V ðx; kÞ, namely.

geðx; k; tÞ ¼ ge
0ðF�t

V ðx; kÞÞ:ð5:2Þ
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Therefore in proving existence and uniqueness of the solution of (1.6) one has to
deal with a system of ODEs with a self-consistent field (see (5.1)) and the smooth-
ness of the potential f is su‰cient to apply a fixed point argument (see [8, 10,
24]).

Also for the Vlasov equation we need some regularity properties of the solu-
tion and we will make use of the following

Lemma 5.1 (Vlasov regularity). Assume the potential f a Cmþ1
b ðR3Þ for some

mb 1. Then there is a constant C such that

kgeðtÞkHmðR3�R3Þ a kge
0kHmðR3�R3Þe

Ctð5:3Þ

The same proof holding for the Wigner case does apply here.

6. Proof of Theorem 2.1

In the course of the proof we will denote by C any positive constant, possibly
depending on f, f e

0 or ge
0, but neither on t nor on e.

It is not di‰cult to show that under suitable smoothness assumptions the
Wigner and Husimi functions are close in L2. In particular, by direct computa-
tion the following inequality can be proven

k ~ff eðtÞ � f eðtÞkL2ðR3�R3Þ aCeCte;ð6:1Þ

(see also Lemma A.1 in [2]).
Moreover we can also show that ~ff e practically solves the nonlinear Wigner

equation up to a small error in L2 (see (4.6)). This will be used in the main body
of the proof below.

Indeed, we recast equation (4.6) as

qt ~ff
e þ k � qx ~ff e � T

~ff
e
~ff e ¼ EðtÞ;ð6:2Þ

(see Section 4) and observe that (6.2) can be seen as aWigner equation with a time-
dependent source term. The error EðtÞ is ensured to be small by the following:

Lemma 6.1. Assume f e
0 to satisfy all the assumptions of Theorem 2.1, and EðtÞ be

defined by equations (4.6)–(4.8). Then

kEðtÞkL2ðR3�R3Þ aCeCte:ð6:3Þ

Proof. We first bound E1 (see (4.7) and (4.8)). We have

kE1ðtÞkL2ðR3�R3Þ ¼
e

2
kqx � qk ~ff ekL2ðR3�R3Þ a

e

2
k f ekH 2ðR3�R3Þ aCeCte;ð6:4Þ

where we estimated, uniformly in e, the H 2-norm of ~ff e with the H 2-norm of f e

and we used property (3.16) for f e.
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Moreover, since we have

E2 ¼ ~TT f
e
~ff e � T

~ff
e
~ff e;ð6:5Þ

then, by (4.9) and (4.5) we get

E2 ¼
i

ð2pÞ3
Z 1=2

�1=2

dl

Z
R3

dS ~̂VV~VVðS; tÞeiSxðS � qkÞð6:6Þ

� ~ff e
�
xþ i

e

2
S; k þ elS

�
� ~ff eðx; k þ elSÞ

� �
and we remind that E2 ¼ E2ðx; k; tÞ. Thus, by taking the Fourier transform
Fx;k!p;q we find:

cE2E2ðp; qÞ ¼
i

ð2pÞ3
Z 1=2

�1=2

dl

Z
R3

dSf̂fðSÞr̂r ~ff
t ðSÞeielSqS � ðiqÞð6:7Þ

�c~ff e~ff eðp� S; qÞ½eðe=2ÞS 2

e�ðe=2ÞpS � 1�;

namely

cE2E2ðp; qÞ ¼
i

ð2pÞ3
Z 1=2

�1=2

dl

Z
R3

dSf̂fðSÞr̂r f
t ðSÞeielSqS � ðiqÞð6:8Þ

� f̂f eðp� S; qÞe�ðe=4Þp2

e�ðe=4Þq2 ½1� e�ðe=2ÞS 2

eðe=2ÞpS�;

By applying the Taylor formula, for some x a ð0; eÞ we get

½1� e�ðe=2ÞS 2

eðe=2ÞpS� ¼ e

2
ðS2 � p � SÞe�ðx=2ÞS 2

eðx=2ÞpSð6:9Þ

and hence

je�ðe=4Þp2e�ðe=4Þq2 ½1� e�ðe=2ÞS2

eðe=2ÞpS�jð6:10Þ

a
e

2
ðS2 þ jpj jSjÞa eðS2 þ jp� Sj jSjÞ:

Finally we obtain

jcE2E2ðp; qÞj2 aCe2jqj2
�Z

dSjf̂fðSÞj jSjðS2 þ jp� Sj jSjÞj f̂f eðp� S; qÞj
�2
;ð6:11Þ

where we used (6.10) and the uniform Ll control on r̂r
f
t .
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Then, by applying the Cauchy-Schwarz inequality

jcE2E2ðp; qÞj2 aCe2jqj2
�Z

dSjf̂fðSÞj jSj2
�

ð6:12Þ

�
�Z

dSjf̂fðSÞjðS2 þ jp� Sj jSjÞ2j f̂f eðp� S; qÞj2
�
:

Therefore

kE2kL2ðR3�R3Þ aCe
�Z

dSjf̂fðSÞj jSj2
�

ð6:13Þ

�
�Z

dSjf̂fðSÞj jSj4
�
k f ekH 2ðR3�R3Þ aCeCte;

where we made use of property (3.16) for f e and the assumptions we did on f (see
(2.2)).

Then, by (6.4) and (6.13) we obtain that (6.3) holds true and the proof of
Lemma 6.1 is concluded. r

Before moving on, let us make a remark on notation: as it has been explained
previously (see e.g. the statement of Theorem 2.1, or the discussion in Section 2.2)
the classical initial data ge

0 may or not depend on e. However all the character-
istics of interest here (Sobolev norms, support etc) are bounded uniformly in e.
Consistently with that, and for simplicity in the notation, we will drop the super-
script e, and refer to the initial data g0 and the classical solution gðtÞ in the sequel.

For convenience of the reader, we recall that, according to the statement of
Theorem 2.1, g0 satisfies the property:

supp g0 J fðx; kÞ a R3 � R3 : jkjaM0g;ð6:14Þ

for a certain constant M0 not depending on e.
By virtue of (6.1), in order to prove Theorem 2.1 (more precisely, formula

(2.8)) it su‰ces to bound in L2 the remainder htðx; kÞ ¼ ~ff eðx; k; tÞ � gðx; k; tÞ;
indeed we will show that

khtkL2ðR3�R3Þ ¼ k ~ff eðtÞ � gðtÞkL2ðR3�R3Þ aCeCe
Ct

eð2=7Þa:ð6:15Þ

Then, (2.8) will follow straightforward by joining (6.1) and (6.15).

Proof of equation (6.15). By (1.6) and (4.6) the evolution of ht is given by

qtht þ k � qxht ¼ T
~ff
e ht þ ðT ~ff

e � T
~ff
0 Þgþ ðT ~ff

0 � T
g
0 Þgþ EðtÞ:

h0ðx; kÞ ¼ ~ff e
0 ðx; kÞ � g0ðx; kÞ:

(
ð6:16Þ
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Let W t be the (L2 preserving) Wigner-Liouville flow associated with the
equation:

qtht þ k � qxht ¼ T
~ff
e ht:ð6:17Þ

Then, from (6.16) we have:

ht ¼ W th0 þ
Z t

0

dsW t�sðEðsÞÞ þ
Z t

0

dsW t�sðr1ðsÞ þ r2ðsÞÞÞ;ð6:18Þ

where (see (3.10) and (1.7))

r1ðsÞ :¼ ðT ~ff
e � T

~ff
0 Þgðx; k; sÞð6:19Þ

¼ i

ð2pÞ3
Z 1=2

�1=2

dl

Z
R3

dSf̂fðSÞr̂r ~ff
s ðSÞ

� eiSxðS � qkÞ½gðx; k þ elS; sÞ � gðx; k; sÞ�;

and

r2ðsÞ :¼ ðT ~ff
0 � T

g
0 Þgðx; k; sÞð6:20Þ

¼
�Z

R3
dyqxfðx� yÞ½r ~ff

s ðyÞ � rg
s ðyÞ�

�
� qkgðx; k; sÞ:

Next, from (6.18), we have:

khtkL2ðR3�R3Þ a kh0kL2ðR3�R3Þ þ
Z t

0

dskEðsÞkL2ðR3�R3Þð6:21Þ

þ
Z t

0

dsðkr1ðsÞkL2ðR3�R3Þ þ kr2ðsÞkL2ðR3�R3ÞÞ;

and, by Lemma 6.1

khtkL2ðR3�R3Þ a kh0kL2ðR3�R3Þ þ CðeCt þ 1Þeð6:22Þ

þ
Z t

0

dsðkr1ðsÞkL2ðR3�R3Þ þ kr2ðsÞkL2ðR3�R3ÞÞ:

Moreover by (2.7) and estimate (6.1), we easily get:

kh0kL2ðR3�R3Þ ¼ k ~ff e
0 � g0kL2ðR3�R3Þð6:23Þ

a k ~ff e
0 � f e

0 kL2ðR3�R3Þ þ k f e
0 � g0kL2ðR3�R3Þ ¼ Cea:
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Then, we finally get:

khtkL2ðR3�R3ÞaCðeCt þ 1Þea þ
Z t

0

dsðkr1ðsÞkL2ðR3�R3Þ þkr2ðsÞkL2ðR3�R3ÞÞ:ð6:24Þ

Next we evaluate the L2-norm of r1ðsÞ.
We observe that, by virtue of the positivity of ~ff e, the Ll-norm of r̂r

~ff
t is

uniformly bounded. In fact, we have:

kr̂r ~ff
t kLlðR3Þ a kr ~ff

t kL1ðR3Þ ¼
Z
R3

dx

Z
R3

dk~ff eðx; k; tÞ
				 				¼ 1;ð6:25Þ

where the last equality is easily obtained by direct computation (see (4.1) and
(3.12)). Then, by applying the Taylor formula in (6.19), we can estimate the
L2-norm of r1ðsÞ as follows:

kr1ðsÞkL2ðR3�R3Þ aCe2
�Z

R3
dSjf̂fðSÞj jSj3

�
kgðsÞkH 3ðR3�R3Þ aCeCse2;ð6:26Þ

where, in the last inequality, we used property (5.3) for gðsÞ and assumption (2.2)
for f. Then, by (6.24) we get

khtkL2ðR3�R3Þ aCðeCt þ 1Þea þ CðeCt þ 1Þe2 þ
Z t

0

dskr2ðsÞkL2ðR3�R3Þ:ð6:27Þ

Now, let us look at the L2-norm of r2ðsÞ.
By (6.20) we have

kr2ðsÞk2L2ðR3�R3Þ a

Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2ð6:28Þ

�
�Z

R3
dyjqxfðx� yÞj

Z
R3

dwj ~ff eðy;w; sÞ� gðy;w; sÞj
�2
:

We split the integral Z
R3

dwj ~ffsðy;wÞ � gsðy;wÞjð6:29Þ

into the two domains jwjaM and jwj > M, where M is chosen in the following
way.

If X ðtÞ, KðtÞ is the classical flow generated by the force field

�
Z

dyqxfðx� yÞzðy; tÞ;
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where z is any spatial probability density, then

jKðtÞja jKð0Þj þ kqxfkLlt:

Therefore, by virtue of assumption (6.14) on the initial datum g0, there exists a
positive constant M for which (for taT arbitrary but fixed)

gðx; k; tÞ ¼ 0 if jkj > M:ð6:30Þ

Clearly M ¼ MðtÞ depends on time and it is straightforward to check that:

MðtÞ ¼ M0 þ kqxfkLlt;ð6:31Þ

where M0 is the same as in (6.14).
Hence, by (6.28), we have:

kr2ðsÞk2L2ðR3�R3Þð6:32Þ

a

Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2

�
�Z

R3
dyjqxfðx� yÞj

Z
jwjaM

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2

þ
Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2

�
�Z

R3
dyjqxfðx� yÞj

Z
jwj>M

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2

þ 2

Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2

�
�Z

R3
dyjqxfðx� yÞj

Z
jwjaM

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�

�
�Z

R3
dyjqxfðx� yÞj

Z
jwj>M

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�

a 2

Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2

�
�Z

R3
dyjqxfðx� yÞj

Z
jwjaM

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2

þ 2

Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2

�
�Z

R3
dyjqxfðx� yÞj

Z
jwj>M

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2
:
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We first bound the first term on the right hand side of (6.32). We find�Z
R3

dyjqxfðx� yÞj
Z
jwjaM

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2

ð6:33Þ

¼
�Z

R3
dy

Z
R3

dwjqxfðx� yÞjwjwjaMðwÞj ~ff eðy;w; sÞ � gðy;w; sÞj
�2

a
4

3
pM 3kqxfk2L2k ~ff eðsÞ � gðsÞk2L2ðR3�R3Þ

a
4

3
pM 3kqxfk2L2khsk2L2ðR3�R3Þ:

Therefore, we obtain

2

Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2ð6:34Þ

�
�Z

R3
dyjqxfðx� yÞj

Z
jwjaM

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2

aCeCsM 3khsk2L2ðR3�R3Þ ¼ CeCsðC þ sÞ3khsk2L2ðR3�R3Þ;

by virtue of Lemma 5.1, (6.31) and assumption (2.1) on f.
Now let us look at

2

Z
R3

dx

Z
R3

dkjqkgðx; k; sÞj2ð6:35Þ

�
�Z

R3
dyjqxfðx� yÞj

Z
jwj>M

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2
:

By (6.30) we have

2

Z
dx dkjqkgðx; k; sÞj2ð6:36Þ

�
�Z

R3
dyjqxfðx� yÞj

Z
jwj>M

dwj ~ff eðy;w; sÞ � gðy;w; sÞj
�2

¼ 2

Z
dx dkjqkgðx; k; sÞj2

�
�Z

R3
dyjqxfðx� yÞj

Z
jwj>M

dwj ~ff eðy;w; sÞj
�2

a 4

Z
dx dkjqkgðx; k; sÞj2
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�
�Z

R3
dyjqxfðx� yÞj

Z
jwjbe�o

dwj ~ff eðy;w; sÞj
�2

þ 4

Z
dx dkjqkgðx; k; sÞj2

�
�Z

R3
dyjqxfðx� yÞj

Z
M<jwjae�o

dwj ~ff eðy;w; sÞ � geðy;w; sÞj
�2
;

where o > 0 will be fixed later (see (6.49))). Here geðy;w; sÞ denotes the solution
of the classical Liouville equation generated by the force field

�
Z

dyqxfðx� yÞr ~ff ðy; tÞ;

namely

qtg
e þ k � qxge ¼ T

~ff
0 g

e;ð6:37Þ

and the initial datum is the same of the Vlasov evolution, namely, geðy;w; 0Þ ¼
g0ðy;wÞ. Note that ge enters freely in the game because it satisfies the support
property (6.30).

Let us estimate the term:

4

Z
dx dkjqkgðx; k; sÞj2

�Z
R3

dyjqxfðx� yÞj
Z
jwjbe�o

dwj ~ff eðy;w; sÞj
�2
:ð6:38Þ

Note that here the positivity of ~ff e is crucial because it allows us to use the energy
conservation. Indeed

4

Z
R3

dx dkjqkgðx; k; sÞj2
�Z

R3
dyjqxfðx� yÞj

Z
jwjbe�o

dwj ~ff eðy;w; sÞj
�2

ð6:39Þ

a 4kgðsÞk2H 1kqxfk2Ll

�Z
R3

dy

Z
jwjbe�o

dw~ff eðy;w; sÞ
�2

aCe4o
�Z

R3
dy

Z
R3

dw
w2

2
~ff eðy;w; sÞ

�2
aCe4o:

To show the last inequality, we denote by gðw; sÞ ¼
Z

dyf eðy;w; sÞ the distribu-

tion of momenta (which is obviously positive and with integral in dw equal to
one) and by ~ggðw; sÞ the smoothed version of gðw; sÞ. Then, denoting by F 0 the
smoothing acting only on the momentum variable, we set ~gg ¼ F 0ðgÞ (clearly, the
action is exactly as in (4.1) for F). As we observed for the spatial distribution re

t

(see (4.10)), even in this case it is straightforward to see that the smoothing
commutes with the partial integration on the phase-space, namely
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~ggðw; sÞ ¼ F 0ðgÞðw; sÞ ¼ F 0
�Z

dyf eðy;w; sÞ
�

¼
Z

dyFð f eÞðy;w; sÞ ¼
Z

dy~ff eðy;w; sÞ:

Therefore, we can write the term

Z
R3

dy

Z
R3

dw
w2

2
~ff eðy;w; sÞ in (6.39) as

Z
R3

dy

Z
R3

dw
w2

2
~ff eðy;w; sÞ ¼

Z
R3

dw
w2

2
~ggðw; sÞ:

Moreover, we have Z
R3

dw
w2

2
~ggðw; sÞ ¼

Z
dw

w2

2
eeDgðw; sÞ;ð6:40Þ

because the action of the smoothing operator is exactly the same of the heat flow
eeD (see (4.1)). Now we use the well-known (and easy to check) propertyZ

dw
w2

2
eeDgðw; sÞa

Z
dw

�w2

2
þ Ce

�
gðw; sÞ ¼

Z
dw

w2

2
gðw; sÞ þ Ce;

to conclude that:Z
R3

dy

Z
R3

dw
w2

2
~ff eðy;w; sÞa

Z
dw

w2

2
gðw; sÞ þ Ceð6:41Þ

¼
Z
R3

dy

Z
R3

dw
w2

2
f eðy;w; sÞ þ Ce:

Now, by the energy conservation:Z
R3

dy

Z
R3

dw
w2

2
f eðy;w; sÞð6:42Þ

a

Z
R3

dy

Z
R3

dwf eðy;w; sÞ
�w2

2
þ f � r f ðsÞ

2

�
þ C

¼
Z
R3

dy

Z
R3

dwf e
0 ðy;wÞ

�w2

2
þ f � r f ð0Þ

2

�
þ CaC;

where, in the first inequality, we used that the potential f is bounded from below
(as a consequence of assumption (2.2)) and the last bound follows from our
assumptions.

Thus, by (6.41) and (6.42) we get (6.39) (the Ll control on qxf is guaranteed
by (2.2) and the H 1 control on g is guaranteed by (5.3)).
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Next we estimate the term on the last line of (6.36), namely:

4

Z
dx dkjqkgðx; k; sÞj2ð6:43Þ

�
�Z

R3
dyjqxfðx� yÞj

Z
M<jwjae�o

dwj ~ff eðy;w; sÞ � geðy;w; sÞj
�2

aCeCse�3ok ~ff e � gek2L2ðR3�R3Þ:

To control the L2-norm of ~ff eðsÞ � geðsÞ we set pe
s ¼ ~ff eðsÞ � geðsÞ. Then, by

(4.6) and (6.37), the equation for pe
s is:

qs p
e
s þ k � qx pe

s ¼ T
~ff
e p

e
s þ ðT ~ff

0 � T
~ff
e ÞgeðsÞ þ EðsÞ:

pe
0ðx; kÞ ¼ ~ff e

0 ðx; kÞ � g0ðx; kÞ:

(
ð6:44Þ

We proceed as before using that the flow generated by �k � qx þ T
~ff
e is isometric

in L2. Therefore

kpe
skL2 a kpe

0kL2 þ
Z s

0

dtkEðtÞkL2 þ
Z s

0

kðT ~ff
0 � T

~ff
e ÞgeðtÞkL2 dtð6:45Þ

The first two terms on the right hand side of (6.45) have been estimated previ-
ously (see (6.23) and Lemma 6.1) and they give rise to

kpe
0kL2 aCea and

Z s

0

dtkEðtÞkL2 aCðeCs þ 1Þe:ð6:46Þ

Moreover, the last term in (6.45) can be estimated exactly as the term r1ðsÞ (see
(6.19) and (6.26)) because the Liouville dynamics for ge controls the H 3-norm
(that is finite and uniformly bounded in e at time t ¼ 0 since geð0Þ ¼ g0). There-
fore we find: Z s

0

kðT ~ff
0 � T

~ff
e ÞgeðtÞkL2 dtaCðeCs þ 1Þe2:ð6:47Þ

Thus, finally we get:

kpe
skL2 aCðeCs þ 1Þea:ð6:48Þ

Therefore, by setting

o <
a

3
ð6:49Þ
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we find

4

Z
dx dkjqkgðx; k; sÞj2ð6:50Þ

�
�Z

R3
dyjqxfðx� yÞj

Z
M<jwjae�o

dwj ~ff eðy;w; sÞ � geðy;w; sÞj
�2

aCðeCs þ 1Þe�3oþa;

with �3oþ a > 0.
In the end, by collecting (6.34), (6.39) and (6.50), we obtain that:

kr2ðsÞk2L2ðR3�R3Þ aCðeCsðC þ sÞ3khsk2L2ðR3�R3Þ þ e4o þ ðeCs þ 1Þe�3oþaÞ;ð6:51Þ

that gives an optimal bound for o ¼ a
7 , namely:

kr2ðsÞkL2ðR3�R3Þ aCðeCsðC þ sÞ3=2khskL2ðR3�R3Þ þ ðeCs þ 1Þeð2=7ÞaÞ;ð6:52Þ

and Z t

0

dskr2ðsÞkL2ðR3�R3Þð6:53Þ

aC
�
ðeCt þ 1þ tÞeð2=7Þa þ

Z t

0

dseCsðC þ sÞ3=2khskL2ðR3�R3Þ

�
:

By (6.27) and (6.53), we can finally control the L2-norm of ht, obtaining:

khtkL2ðR3�R3Þ aC
�
ðeCt þ 1Þea þ ðeCt þ 1þ tÞeð2=7Það6:54Þ

þ
Z t

0

dsðC þ sÞ3=2eCskhskL2ðR3�R3Þ

�
:

The, by applying the Gronwall lemma, we find that

khtkL2ðR3�R3Þ aCðeCt þ 1þ tÞeð2=7Þae
R t

0
dsðCþsÞ3=2eCs

;ð6:55Þ

and hence (6.15) holds true.
Finally, by virtue of (6.1) and (6.55), we deduce (2.8) and hence the proof of

Theorem 2.1 is concluded. r

Remark 6.1. We observe that, for example, in the case in which the initial datum
is given by (2.11), the rate of convergence is estimated by e2=7.
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Appendix A. Existence of semiclassical initial data:

proof of Proposition 2.1

Let ge
0 be defined by (2.10). Set N ¼ NðeÞ :¼

�Z
~ff e
0 ðx; kÞwM0

ðjkjÞ dx dk
��1

.

Property (1) follows by the positivity of the Husimi function and (3) follows
by construction. Since

kge
0kH 3ðR3�R3Þ aCNk f e

0 kH 3ðR3�R3Þ;ðA:1Þ

where C depends on the Ll norm of wM0
and its derivatives, (2) follows as soon

as we show that N ¼ NðeÞ ¼ Oð1Þ (see below).
So it is only left to check (4).
Observe that

k f e
0 � ge0kL2 ¼ k f e

0 �N ~ff e
0 wM0

kL2ðA:2Þ
a kð1�NwM0

Þ f e
0 kL2 þ kNwM0

ð f e
0 � ~ff e

0 ÞkL2 ;

a j1�Nj k f e
0 kL2 þNkð1� wM0

Þ f e
0 kL2 þNk f e

0 � ~ff e
0 kL2

Obviously, the estimate for the second term of the last line of (A.2) comes from
assumption (2.4), and for the third term from the fact that k f e

0 � ~ff e
0 kL2 ¼

Oðek f e
0 kH 2Þ as shown in lemma A.1 of [2]. To see that the first term is OðeaÞ,

i.e. that j1�Nj ¼ OðeaÞ, one has to observe that (denote for brevity deðkÞ ¼
1

ðpeÞ3=2
e�jkj2=e)

1� 1

N

				 				 ¼ Z
ð ~ff e

0 wM0
� ~ff e

0 Þ dx dk
				 				a kð1� wM0

Þ ~ff e
0 kL1ðA:3Þ

a

Z
jkj>M0=2

deðk � k 0Þ f e
0 ðx 0; k 0Þ dx 0 dk 0 dk

¼
Z
jkj>M0=2
jk 0 j>M0=4

deðk � k 0Þ f e
0 ðx 0; k 0Þ dx 0 dk 0 dk

þ
Z
jkj>M0=2
jk 0 j<M0=4

deðk � k 0Þ f e
0 ðx 0; k 0Þ dx 0 dk 0 dk

a

Z
k AR3

deðkÞ dk
Z
jk 0 j>M0=4

j f e
0 ðx 0; k 0Þj dx 0 dk 0

þ sup
jkj>M0=2
jk 0 j<M0=4

jdeðk � k 0Þj k f e
0 kL1 ¼ OðeaÞ

where we made use of assumptions (2.5) and (2.6) in the final step.
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Now obviously,

1� 1

N

				 				aCea ) jN � 1jaCeajNjðA:4Þ

) jN � 1jaCeað1þ jN � 1jÞ

) jN � 1ja Cea

1� Cea
¼ OðeaÞ:
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