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ABSTRACT. — We consider the Wigner equation corresponding to a nonlinear Schrédinger evolu-
tion of the Hartree type in the semiclassical limit 77 — 0.

Under appropriate assumptions on the initial data and the interaction potential, we show that the
Wigner function is close in L? to its weak limit, the solution of the corresponding Vlasov equation.
The strong approximation allows the construction of semiclassical operator-valued observables,
approximating their quantum counterparts in Hilbert-Schmidt topology.

The proof makes use of a pointwise-positivity manipulation, which seems necessary in working
with the L? norm and the precise form of the nonlinearity. We employ the Husimi function as
a pivot between the classical probability density and the Wigner function, which—as it is well
known—is not pointwise positive in general.
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1. INTRODUCTION

1.1. Formulations of the problem. The time evolution of a density matrix 4%(z)
in a self-consistent field of Hartree type is described by the initial value problem
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(L ie0,;A%(t) = [H*, A*(1)],
' A(0) = 4g,
where [-.-] denotes the commutator, ¢ := 7 is the Planck constant and A is the

initial datum. The dimension of the system is chosen equal to three. The Hamil-
tonian H* for a particle of mass m is given by

82

(1.2) Hi=——A+V

2m

and V is a self-consistent potential determined by

(1.3) Vi = [ =5 a

where ¢(x) is the two-body interaction and p?(x) = p®(x,x,t) is the position
density given in terms of the integral kernel p®(x, y,7) of the density matrix
A&(D), 1.e.

(14) umam:/wmwmmw,®mw6aﬂm»

The pair interaction potential ¢ is assumed to be spherically symmetric, a natural
assumption from the physical point of view.

When we deal with a pure state, namely, the initial datum A4 is an orthogonal
projection onto a wave function u, then equation (1.1) reduces to a nonlinear
Schrodinger equation, called Hartree equation (see equation (3.1) below).

On the other side, when the initial datum is not a pure state, it is said to be
a “mixed state”, namely, it is represented by a density matrix 4§ which is a
convex combination (mixture) of ortogonal projections. In that case, due to the
nonlinearity, the Schrédinger picture does not hold anymore and the Hartree
dynamics is given by equation (1.1).

In this paper, we are interested in initial data of the mixed type; see the state-
ment of Theorem 2.1 for details. We are going to look at the dynamics (1.1) in the
regime ¢ < 1, the so-called semiclassical regime, where we expect the dynamics to
“approach” the one of the corresponding classical system. We will introduce the
Wigner function

(L.5) fix,k,t) = (%)2 /{RSeiJ’kpg(x+8%,x—s%,t) dy,

related to the operator A%(z) through its integral kernel p*(x, y,?), and we will
show that f#(x, k, ) converges in L? to the probability distribution g = g(x, k, t)
that solves the corresponding classical Vlasov equation:

(1.6) g +k-oxg=Tyy.
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The nonlinear operator T is defined as:
(17) (T(;lg)(kav t) = (a‘f¢*ptq) 'akg(xakv [)

- ( /W dydg(x — y)p! (y)> - Okg(x,k, 1),

and p{ = p!(x) is the spatial probability density associated with g(x, k, 7), namely:

(1.8) pl(x) = /[R3 dkg(x,k, 1).

Moreover, a semi-classical approximation of 4%(z) will be constructed; the precise
statement of the result is given in Section 2.1.

Problem (1.1) has several equivalent formulations, each of them yielding a
corresponding initial value problem. For example, by looking at the integral
kernel p?(x, y, 1), it is easy to check that it satisfies the von Neumann equation

1.9 ] g &= —éA % pt — _iA & &
(19) ie=pt = | =S A+ Gxp)0) = (=5 A+ @xp))) |"
where we put:

(1'10) pf(Z) = pa(z,z, t),

namely p{(z) is the spatial probability density associated with the quantum state
described by p*(x, y,1).

Another description is in terms of the Wigner function f*(x,k,7) which is
related to the density matrix 4*(¢) through (1.5) or, equivalently, through its
inverse transform

(1.11) (4%(1)G)(x) = /f*’(x;r Yk, l)ei(x’y><k/‘°‘)G(y) dk dy,

(for any G € L*(R?))

called Weyl transformation (see equations (1.17), (3.6) for the relation between
the Wigner function and the Weyl symbol). The Wigner function satisfies the
(nonlinear) Wigner equation

(1.12) Of kO f=TIf,

where T/ is a suitable nonlinear pseudodifferential operator (see (3.8) and (3.10)).
A very straightforward connection between the three descriptions is that

(1.13) 140 s = 10°C 2 aqeers) = (2721 o ey
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where || - || ;5 1s the Hilbert-Schmidt norm. This in particular allows to translate
easily L? estimates between the different formulations, and to transfer approxi-
mations from the function level to the operator level.

It must be noted that a natural assumption for the initial datum in the Density
Matrix Formalism is that the operator is positive semi-definite and trace-class
(with trace equal to one), i.e. it has a singular value decomposition of the form

(1.14) A= "Im

with [l 23y =1, 4w =0, 374, = 1. It is well known that the trace is pre-

served in time. This is an important physical fact, as the trace is the quantum
counterpart of the total probability of a classical density in a statistical formula-

tion. The trace is given by tr(A4%) = [ p®(x,x)dx = / fE(x, k) dxdk (see also

Lemma 3.1 and the discussion below).

um><um|

1.2. Physical context. Equation (1.1) describes the situation in which we have a
large number of particles in a mean-field regime (see for instance [31, 18, 14], for
the case of smooth potentials, and [4, 12, 5, 11, 19, 28] for more singular interac-
tions). In this paper we want to study the semiclassical behavior (for ¢ — 0) of the
solution of equation (1.1).

The Wigner function is a well known tool in the study of the semiclassical lim-
it of quantum dynamics. (see also definition (3.4) below). Indeed, there are many
works using the Wigner function to study the semiclassical limit of a number of
problems (linear, non-linear, stochastic, systems etc) see e.g. [21, 22, 20, 13, 27,
29, 30] for a very small selection, and the references therein. One of the main
advantages, is that the (formal, at this level) limit, as ¢ — 0, of the Wigner equa-
tion is typically some familiar equation of classical statistical mechanics. In that
sense, the “correspondence principle’” between classical and quantum mechanics
is quantified in a straightforward, easy to present way. Indeed, for the problem
we deal with here, for example, guessing the result from formal calculations is
pretty straightforward.

In most of the existing literature, the notion of convergence is in weak topol-
ogy (see e.g. the works mentioned above for precise statements). Indeed, the
weak-+ semiclassical limit for this problem is worked out e.g. in [20]. In fact (out-
side coherent states techniques), until very recently, virtually all the results were
in weak topology. There is a natural analytical question of understanding when
and why convergence in some natural strong topology fails; moreover, if one
has possible numerical applications in mind, it would be desirable to know e.g.
whether (possibly large in L?> or pointwise sense) oscillations develop or not.
Quantifying constructively the rate of convergence in terms of the data of the
problem is also another natural question.

Another big family of methods that yield strong topology semiclassical
asymptotics (in linear as well as nonlinear problems) is based on coherent states
(e.g. [9, 15, 16, 18, 25, 6, 3]). However, this is not really pertinent here, as
coherent and mixed states (the kind of data we treat here) in nonlinear problems
behave quite differently.
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In the quantum-classical correspondence, the idea is that the Wigner function
converges, in the semiclassical limit, to a classical phase-space probability mea-
sure. However, the Wigner function itself is not pointwise positive in general.
Working around this fact will be among the main points of the proofs. Indeed,
it has often been remarked that the extensive arsenal of positivity techniques,
developed in the context of classical phase-space equations, would be a good
ingredient to transfer to their quantum counterparts. This becomes even more
important in non-linear problems. In this paper we employ such pointwise-
positivity techniques to the (nonlinear) Wigner equation, for the first time to the
best of our knowledge. The key idea is to work with the Husimi function:

(115)  fo(rk) = b e A bl f (2 p)l]
1 ! ’
= W/R? " o (¥ ) Je—(k—k >Z/gf(x/,k/) dx’ dk’,

where we denoted by 7, in . the inverse Fourier transform from L?(R} x R})
to L*(R? x R}). The Hus1m1 function (1.15) is a variation of the Wigner function,
which does translate the operator positivity into pointwise positivity on the
phase-space (see (4.2) and (4.3) below). The equation for the Husimi function
itself has been derived only recently in closed form, and it is of infinite order in
general [1]; it helps us in guessing the precise manipulations that are needed here.
However, once formulated, the estimates we need can be proven without using
the infinite-order Husimi equation itself. It should also be noted that the Husimi
function is used only in the proof; it does not appear in the statement of the
result, which is formulated in terms of the Wigner function. We believe that
such use of positivity techniques in nonlinear Wigner equations could provide a
fruitful approach in other problems as well.

1.3. Notation. We specify that here and henceforth we use the following conven-
tions for the Fourier transform in R?:

(1.16) G(k) = Z_k|G(x)] = /4 e **G(x) dx.
R
The Weyl Quantization is defined as follows: for any F € LZ(R3 X |R3) and
G e L*(R?),

(1.17)  (Op"'(F)G)(x) = &3 / F()Hz_y ,k)e“’c’y)(k/s)G(y) dk dy.

We denote by H"(R?) the Sobolev space W"2(R“) of functions in L?(R¢)
Whose derivatives up to the order v are also in L?>(R?), i.e., for any function G
on R?

(1.18) 1G]z Z 10FG O L2 ey

la|=0
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We denote by le(IRd) the space of continuous and uniformly bounded func-
tions whose derivatives, up to the order k, are also continuous and uniformly
bounded.

1.4. Organization of the paper. The plan of the paper is the following. Section 2
is devoted to the statement of our main result together with some remarks con-
cerning it and fixing the notations. In Section 3 we recall the main features of the
Hartree dynamics rephrased in the Wigner formalism. In Section 4 we introduce
the definition and various properties of the Husimi Transform (HT). Then, in
Section 5 we recall the main features of the Vlasov evolution, namely, the classi-
cal dynamics we recover in the limit ¢ — 0. Finally, in Section 6 we prove the
main result of this paper.

2. THE MAIN RESULT

2.1. Statement of the result. All over the paper we make the following assump-
tions for the interaction potential that we suppose to be spherically symmetric:

(2.1) i) ¢ e HY(R?)

(2.2) ﬁ)/thwnm”<+m,n:0wa4
RS

THEOREM 2.1. Under the above assumptions on ¢, let A*(t) be the solution of the
Hartree problem (1.1), and f*(t) the Wigner function associated with it. Denote
fE(0) = £, and let us suppose that:

e 3C, C" > 0 such that
23) Wl <€ [ SR dxde< ¢ and

/ﬁ@@ﬂ&_L

e IM, > 0, o € (0, 1] (independent of ¢), such that

(2.4) / |/ dx dic = O(e%),
‘k‘>M0/2

(2.5) (/ e dxdk = O(&%),
| Mo /4

Moreover

(2.6) il sy = 0(8a+3/2eM02/168)‘
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Let {g&}, be any family of probability distributions bounded in H3(R* x R?)
(uniformly in €), supported on the set {(x,k) € R® x R* : |k| < My}, such that

(2.7) 176" = 9oll 12w ) = O(%),

(for example g§ = yp1, 1o / / Yo dx dk where fg is the Husimi Transform of f

as in (1.15) and y ;, is a smooth function identically equal to 1 for |k| < My/2 and
vanishing for |k| > My, see Proposition 2.1 below).

Then, if we denote by g*(t) the solution of the Viasov equation (1.6) with initial
datum ¢*(0) = g§, there exist positive constants Cy, Cy, C, (else we need to say
independent of ¢, t), such that

é & eCat o
(2.8) 1F51) = 9O gy < Coe ¢ 6@/,

In particular it follows that the density matrix A*(t) can be approximated by the
semiclassical operator B(t) whose Wigner function is g*(t). More specifically

14%(2) = B*(1)]| ys e (2/T)a
(29) O =

In the statement of the theorem we do not require the existence of a semiclass-
ical limit f — gJ), we strictly need only assumptions on the quantum data f.
These assumptions guarantee the existence of semi-classical initial data g fulfill-
ing the hypotheses of Theorem 2.1, as established by Proposition 2.1 below.
On the other hand, if one supposes a priori the existence of such a family,
the statement of Theorem 2.1 holds, without assuming conditions (2.4), (2.5)
and (2.6).

ProPOSITION 2.1. Let yy, = ya,(|k|) be a monotone C* function satisfying
I, = 1 if k| < —° and yy, =0 if |k| = Mo, and let fo be the Husimi Trans-

Sform of f§ as in (1 15).

Suppose g be defined by

XMofE)g
f)(MOf(f dx dk

(2.10) gi =
/gédxdk: 1 and g§ >0

(1)
2) gl = O(1)

(3) supp gi < {|k| < My}
@) 1/ = g5l = O(e”).

The proof of Proposition 2.10 is given in the Appendix.
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REMARKS:

e For a sharper expression on the behaviour in time of the error see (the end of)
the proof in Section 6. In this form, the constants Cy, C; depend on the
H3-norm of the initial data f7 and g¢, the initial total energy of £, suitable
moments of ¢ (as in equation (2.2)), and ||¢| ;. All these quantities are
bounded uniformly in ¢ by assumption. The constant C, depends on those
quantities mentioned above that involve only ¢.

e The investigation of the semiclassical limit of the Wigner Transform by looking
at the L? asymptotics arises quite naturally because such a norm is invariant
under the time evolution. However, while for the linear case everything goes
on easily (provided that the potential is sufficiently smooth; see e.g. [21, 29,
2]), for the nonlinear case one has to face an extra difficulty, which is the moti-
vation of the present paper. In fact the L>-norm of the difference between the
Wigner Transform and its classical counterpart is estimated in terms of the
L'-norm of the same difference. Therefore, to conclude, we need a control of
large momenta. This could be achieved by the energy conservation, but for an
effective use of it we would need the positivity of the Wigner Transform, which
is not the case. This difficulty has been overcome by using the Husimi Transform.

e For the sake of concreteness we work in dimension three, but our results hold
as well in any dimensions. We also expect the result to hold without any impor-
tant differences if a regular enough external potential is added.

2.2. Remarks on the Initial Data and Regularity Assumptions.

REMARK 2.1. The assumptions we made on ¢ and g§ guarantee the existence and
uniqueness for the Vlasov equation (1.6) in the space of probability measures.

REMARK 2.2. An explicit example for which the assumptions of Theorem 2.1 are
verified, is a superposition of coherent states, namely, for an e-independent probabil-
ity density gy € H*(R® x R*) and supported on {(x,k) e R* x R : |k| < M},

(2.11) Jo(x k) = /dx’ dk'd.(x — x")d.(k — k")go(x", k"),

where 0,(x — x")0,(k — k') is the Wigner transform of a coherent state centered in
(x',k"). (see for instance [27]). We observe that in this case the exponent o in (2.7)
is equal to 1.

In this case, any of the families {g(}, in Theorem 2.1 will converge to go in
L*(R? x R?).

REMARK 2.3. Consider the case of a superposition of coherent states discussed
in Remark 2.2. For a pure coherent state centered in (x' k') and described by a
density matrix A%, ., and a Wigner function f, ,.(x,k), we have

1

4% ko llus =1 157wl 2w swey = _(27[8)3/2'
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In contrast, when we deal with a mixture of coherent states (as in (2.11)), we have
|/l 2 < C (C independent of €). As a consequence (see (1.13)), the corresponding
density matrix A* has vanishing Hilbert-Schmidt norm. This is the reason why we
consider the relative error in (2.9) (the situation we take into account is the mixed
state one).

3. THE HARTREE DYNAMICS IN THE WIGNER PICTURE
The semiclassical Hartree equation (with unit mass, m = 1) for a pure state is

&2A

(3.1) ied® = —=—u’ + (¢ * || P)us.

For a mixed state, we have to pass to the von Neumann equation for the kernel
pc‘l(x’ y7 l))

82 82
(32 ingt= |5 A a0~ (=58 G|

where we put:

(33) pf(Z) = p‘p‘(z,z, t)?

namely p?(z) is the spatial probability density associated with the quantum state
described by p(x, y,1).
The Wigner Transform of the wavefunction u*(x, 7) is defined by,

(3.4)  Weul(x,k,t) = (21_71)3 /} ei}’kﬁg(x + 8%, t)u‘g (x - 8%,1‘) dy.
R’

More generally for a mixed state described by a density matrix, namely a positive
trace class operator 4%(¢) with kernel p?(x, y, t), the Wigner function f* is

(3.5) fix,k,t) = (%)3 /R3 ei}’kpg(x+8%,x— 8%,1) dy.

The Wigner function is intimately related to the Weyl symbol, but one should be
cautious with the scaling in the Planck constant:

(3.6) (4°(1)G)(x) = / fc(x; Y k. Z)ei(x_y)(k/”) G(y) di dy

= O0p"N(EF)G(x) for G e LAH(R?).
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The spatial probability density can be easily expressed in terms of the Wigner
function as well, namely

(3.7) PE(z) = p(z, 1) = /R iekdk, Ve R

Defining

(3.8) V(x,1)= / d(x — x")pi(x") dx’ :/ P(x — x’)/ S k1) dk dx,
R} R3 R3

the self-consistent Hartree potential, the Wigner function evolves according to the
Wigner equation,
(3.9) Off+k-0f" =TIfe,
where, for any w € L?(R® x R?)
1/2

dA
~1/2

(3.10)  (T/w)(x,k) dSV(S,0)e™x(S - dp)w(x, k + elS, 1),

R3

and V(S, 1) is the Fourier transform (with respect to the space variable) of the
potential V(x, ) defined in (3.8). It will be useful to observe that (3.8) implies

(3.11) V(S 1) = $(S)pi(S).

It is well known (and easy to check), that the dynamics (3.9) preserves the
integral of the Wigner function /¢ on the phase space R® x R? i.e. the trace (see
[7] and Lemma 3.1 below). This corresponds to the conservation of the L>-norm
of the wave function u*, in case of a pure state, or to the conservation of the trace
in case of a density matrix. For this reason we will have

(3.12) / fix,k,t)dkdx = /p‘g(x, x,t)dx =1, foranyt>0.
R3 R3

LeEMMA 3.1 (L' regularity). Consider the initial value problem for equation (3.9)
with initial datum Jo. Under our assumptions on ¢ (more precisely, it is sufficient
that ¢eL (R )), the trace is preserved by the time evolution. Moreover, if
f& e LN(R? x R?), £%(¢) stays in L"(R® x R?) for all t € R.

PrOOF. The trace associated with a Wigner function f*(¢), namely, I(f*(¢)) =
tr(Op"e(e3£4(1))), is easily seen to be

(3.13) I(fg(z))—//f‘?(x,k,t)dkdx—/pf(x)dx

where the dx integral is understood to be absolutely convergent. The result for the
preservation of the trace itself can be found in [7] (under the assumption ¢ € L™,
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which obviously holds in this context). So far the dk integral does not have to be
absolutely convergent, but only Cauchy-PV.
Now, since p? e L! ( 3) for any t (and in particular [|pf]l,1 gy = 5l L1 (r2)

= 1), it follows that p? € L*(R?) for any ¢ (indeed ||p? | e ) < 1) and there-
fore

V1 ey < 1600 e 191l o ey < ML

Now we can rewrite the Wigner equation (3.9) as

. ' oo e S kS0 = [ (x k-2t
1) @rk-anrt =t [ e SLAS S RELLSS SUPN

One readily observes that the L'-norm (with respect to x and k) of the rhs of
(3.14) is bounded by

2 7 e
(3.15) m||¢||L1(R3)||f'||L1<R3xma3)-

Since the free propagator (associated with the lhs of (3.14)) preserves the
L'-norm, the result follows by applying the Gronwall lemma. Observe that the
constant grows like e(¢/?" (i.e. diverging behaviour as ¢ — 0) but this does not
play any role here and we get all we need in justifying that the phase-space inte-
gral of f* is absolutely convergent. O

In the present context we need extra regularity properties in the framework of
the Wigner formalism. Actually we can establish the following

LemMA 3.2 (Sobolev regularity). Assume the potential ¢ to satisfy the condition

[ asigslism < oe,
for some m = 0. Then, for any T > 0, there is a constant C such that

(3.16) ||f£<T)||Hm(R3><R3) = ||f£(0)||H'"(R3><R3)eCT

In particular for m = 0 (i.e. looking at the L?>-norm), we have

(3.17) I (D 2@oxmy = 1 O] 2o xwe)-

PROOF. By using the same observation as before, i.e. that V(S| < L |6(S)]
< |4(S)|, it follows that equation (3.9) can be treated in the same way as a prob-
lem with a smooth, time-dependent potential. The proof for the corresponding
time-independent linear problem [29, 2] can be adapted to that end in a straight-
forward manner—this can be seen in more detail e.g. in [26].




536 A. ATHANASSOULIS ET AL.

4. Husimi TRANSFORM AND HUSIMI DYNAMICS

Given a Wigner function f* associated to a physical state (pure or mixed), we
define the Husimi transform (HT) as

(4.1) k) = Z50 et g (2]

a,b—x,k Z,

= 1)3/ o X e Uk e (o ) ! A
e R3xR3

We sometimes denote by ®@ the smoothing map
f =) =1

The remarkable feature of the HT relies on the fact that /¢ > 0 (see also the
discussion in the Introduction). Indeed, in case of a pure state described by a
wave function u, it can be verified by direct computation that

~ 1 n2 ’
(42)  fix k) = % / == o= (k=K [ e (k') A’ dk!
7e)” JRIxR?
2
oo b ek (ext) —(x—x')2)2e
= dxu(x)( )3/46 e > 0.
TE) ™

More generally,

(43)  fi(x.k) S 1)3/2 (AU (=) (=2 (iR (=) g6 22,
e X

where A¢ is the density matrix associated with the Wigner function f*¢.
Applying the map @ to the Wigner equation (3.9), one finds [1]

(44) 0f + (k- x50 ) * = TIT",
where
~ j 1/2 2 .
@45 Tli=——=[ / dSV (S, 1)eS(S - ak)w(x+ ifS,k—l—eiS).
(2n)” J-172 R 2

The key observation is that, up to a small error, equation (4.4) can be recasted
as

(4.6) o+ k-0 ff =TI + E(1),
where

(4.7 E(t)=E\(t)+ Ex(?)
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and

(48)  E=—3sdcaf, E=T/f-1/f =0T/ -T/f"

It is straightforward to observe that, according to (3.10) (and (3.11)), we have

] ] 1/2 2 .
(4.9) (T{W)(x,k)—(21)3 / / di [ dSV(S,0)e™ (S - o)w(x, k + &iS, 1),
V4 —1/2 R3

where
(4.10) V(S,1) = e SP (S, 1) = §(S)pE(S) = d(S)p! (S),

and the last equality follows easily by direct computation by setting:

(4.11) pl(x) = / dkf*(x, k, 1).

This observation will lead to the proof of Lemma 6.1.

The point here is that, up to a small error, the (non-negative) Husimi function
satisfies the same nonlinear equation with self-consistent potential as the Wigner
transform does. Indeed this observation was one of the main findings of [1, 2],
namely that (at least formally) to the leading order the Husimi equations are
like the Wigner equations, but the potential has been replaced by a mollified
version of itself. That is used here, since the dk marginal of the Husimi function
is the mollification of the marginal of the Wigner function. Thus we preserve the
structure of the quantum phase-space equation, while we change our function
with one that remains non-negative. -

It must be noted that, once we formulate E; = ®(7/f) — T/f*, we do not
really need the infinite order machinery to proceed (to the proof of Lemma 6.1
in this case).

5. VLASOV EVOLUTION

The Vlasov equation describes the situation in which we have a large number of
classical particles in a mean-field regime (see for instance [8, 23, 32], for the case
of smooth potentials, and [17], for more singular interactions).

Denoting by ®},(x, k) the flow associated with the system:

%=k,
G- {k——éxaﬁ*pf’x,

one can easily verify that the solution g®(z) of (1.6) with initial datum g (see the
claim of the Theorem 2.1) is obtained by propagating the initial datum through
the characteristic curves of the flow @}, (x, k), namely.

(5:2) g°(x, ki 1) = g5(@y(x, k).
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Therefore in proving existence and uniqueness of the solution of (1.6) one has to
deal with a system of ODEs with a self-consistent field (see (5.1)) and the smooth-
ness of the potential ¢ is sufficient to apply a fixed point argument (see [8, 10,
24]).

Also for the Vlasov equation we need some regularity properties of the solu-
tion and we will make use of the following

LEmMaA 5.1 (Vlasov regularity). Assume the potential ¢ € C[,”“(R3) for some
m > 1. Then there is a constant C such that

(5:3) l9° Ol o xry < N6l e ey

The same proof holding for the Wigner case does apply here.

6. PROOF OoF THEOREM 2.1

In the course of the proof we will denote by C any positive constant, possibly
depending on ¢, £ or g§, but neither on ¢ nor on .

It is not difficult to show that under suitable smoothness assumptions the
Wigner and Husimi functions are close in L2. In particular, by direct computa-
tion the following inequality can be proven

(6.1) 175(0) = SOl oo sy < Ceey

(see also Lemma A.1 in [2]). R

Moreover we can also show that f* practically solves the nonlinear Wigner
equation up to a small error in L? (see (4.6)). This will be used in the main body
of the proof below.

Indeed, we recast equation (4.6) as

(6.2) Of k0o f" — TIf* = E(1),

(see Section 4) and observe that (6.2) can be seen as a Wigner equation with a time-
dependent source term. The error E(7) is ensured to be small by the following:

LEMMA 6.1. Assume f; to satisfy all the assumptions of Theorem 2.1, and E(t) be
defined by equations (4.6)—(4.8). Then

(6.3) VE@) (st cmy < Ce.

PrOOF. We first bound E) (see (4.7) and (4.8)). We have

Hfs||H2(R3><R3) < Cee,

NS

e re
(64) [E(Dll2@exr) = 5 10x - OS Ml 2mexmy) <

where we estimated, uniformly in & the H2-norm of f* with the H2-norm of f*
and we used property (3.16) for f*.
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Moreover, since we have

(6.5) E, =T/f— T/f*

then, by (4.9) and (4.5) we get

- i
(20

12 .
(6.6) £ / ai [ dsv(s,0eS:(s - o)

1/2 R?
re & re
X [f (x—f—zES,k—ks}vS) — fA(x, k +&AS)

and we remind that E, = E»(x,k,t). Thus, by taking the Fourier transform
Fe ke—p,q We find:

. 1/2 . p -
(6.7) Expa) = [ dn [ asispl ()07 (g
(27)” J-1)2 R
X A (p — S, q)[e 5 e S 1,
namely

o~

68)  Br(pq) = —— / " [ asps)pl $)1e95s - (ig
. 2\P,4q) = (2ﬂ)3 L . Pi q

X Fo(p — S, q)e NP CIE | _ o=/ o(e/20pS]

By applying the Taylor formula, for some & € (0,¢) we get

(6.9) [1 — e~ /287 /20S] = 2(52 —p - S)e~ /8% (E/2)pS
and hence
(6.10) |~ /P o=/ Na[] — o= (e/2)8(e/2)p8)
&
< 5(S*+1plIS]) < &(S” + |p = SIIS]).

Finally we obtain
N 2 20 .12 7 2 re 2
6.11) Balp.o)f® < Clof* ([ asigs)II(s> + lo - SIISDIF(p ~ S.0)])

where we used (6.10) and the uniform L* control on ﬁtf .
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Then, by applying the Cauchy-Schwarz inequality
612 [Epo)l’ < 2l ([ asids) 1sF)

< ([ SIS +1p = SISV (2 - 5. 0)F).

Therefore
(6.13)  1Bxllon) < Cof [ aSl(s)] ISP
< ([ SIS )11 ) < Ce

where we made use of property (3.16) for f* and the assumptions we did on ¢ (see
(2.2)).

Then, by (6.4) and (6.13) we obtain that (6.3) holds true and the proof of
Lemma 6.1 is concluded. O

Before moving on, let us make a remark on notation: as it has been explained
previously (see e.g. the statement of Theorem 2.1, or the discussion in Section 2.2)
the classical initial data g§ may or not depend on ¢. However all the character-
istics of interest here (Sobolev norms, support etc) are bounded uniformly in &.
Consistently with that, and for simplicity in the notation, we will drop the super-
script ¢, and refer to the initial data gy and the classical solution g(¢) in the sequel.

For convenience of the reader, we recall that, according to the statement of
Theorem 2.1, gy satisfies the property:

(6.14) supp go < {(x, k) e R* x R? : |k| < My},

for a certain constant M, not depending on .
By virtue of (6.1), in order to prove Theorem 2.1 (more precisely, formula

(2.8)) it suffices to bound in L? the remainder /,(x,k) = f*(x,k, 1) — g(x,k, 1);
indeed we will show that

re e o
(6.15) 12l 2 sy = 1F2(0) = GO o ey < Ce 62T
Then, (2.8) will follow straightforward by joining (6.1) and (6.15).

PROOF OF EQUATION (6.15). By (1.6) and (4.6) the evolution of %, is given by

(6.16) {‘Mr k- =TS h+ (TS = T)g + (T — T{)g + E(0).
ho(x. k) = fg (x,k) — go(x, k).
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Let Q' be the (L? preserving) Wigner-Liouville flow associated with the
equation:

(6.17) dhy + k- 0ch, = T/ h,.
Then, from (6.16) we have:
t t
(6.18) hy = Q'hy + / dsQ'*(E(s)) + / dsQ" ™ (r1(s) + r2(s))),
0 0
where (see (3.10) and (1.7))

(6.19) ri(s) = (Tf T )g(x. k. 5)

1/2

27z) 1/2 R} aSi S)P: ()

e (S - 0)[g(x, k + &S, 5) — g(x, k,s)],

and
(6200 rals) == (T] = T)g(x.ks)
= ([ g = 9ol () = 1)) - gl o)
Next, from (6.18), we have:

t
(6.21) ||ht||L2(R3xR3) = ||h0||L2(R3x[Re3) +/0 ds||E(S)||L2(R3xR3)

[ s 6y + 126 o)
and, by Lemma 6.1
(6.22) 1ell 22 sy < 10l 2o ey + Cle“ +1)e
+/Otds(||rl(s)||L2(R3><R3) + Ir2() | L2 mo w3y -
Moreover by (2.7) and estimate (6.1), we easily get:

(6.23) ||h0HL2(R3><R3) = Hfog - gOHLZ(R3><R3)
</ - /[()C||L2(R3><R3) + /0 - 90||L2(R3xR3) = Ce”.
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Then, we finally get:
t
(6.24) (|l 2o wge) < C(e” + 1)e” +/0 ds({lr1 ()N 2wy + 11209 [ 2@ ) -

Next we evaluate the L>-norm of rq(s).
We observe that, by virtue of the positivity of /%, the L*-norm of p, is
uniformly bounded. In fact, we have:

625 10l leeioy < Wl ey = [ x| [ ditekon)| =

RS

where the last equality is easily obtained by direct computation (see (4.1) and
(3.12)). Then, by applying the Taylor formula in (6.19), we can estimate the
L?-norm of ry(s) as follows:

(6:26) I lzwose, < € [ ASIBSIISP) 96y < CeC2

where, in the last inequality, we used property (5.3) for g(s) and assumption (2.2)
for ¢. Then, by (6.24) we get

t
(6.27) Al 2o xmey < Ce“ + 1)e* + C(e“ +1)é? —I—/O ds||r2(s) || 12 (3 xm3)-

Now, let us look at the L>-norm of ry(s).
By (6.20) we have

(6.28) ||72(S)||22<R3><R3) < ‘/R} dx . dk|8kg(x,k,s)|2
= 2
<( [ wlodtr=nl [ vl s grm.9)])
R R*
We split the integral
(6.29) [ vl = gty

into the two domains |w| < M and |w| > M, where M is chosen in the following
way.
If X(¢), K(¢) is the classical flow generated by the force field

- / dydsd(x — Y. 1),



STRONG SEMICLASSICAL APPROXIMATION OF WIGNER FUNCTIONS 543

where ( is any spatial probability density, then
[K(0)] < [K(0)| + [[0xg] L 1.

Therefore, by virtue of assumption (6.14) on the initial datum g, there exists a
positive constant M for which (for # < T arbitrary but fixed)

(6.30) g(x,k,t) =0 if |k| > M.
Clearly M = M (t) depends on time and it is straightforward to check that:
(6.31) M(t) = My + ||0x¢|| . £,

where M, is the same as in (6.14).
Hence, by (6.28), we have:

(6.32) )@

s/ dx/ dk|owg(x, k, 5)|?
R} R3

X (/R3 dy|dcp(x — p)| dw|fé(y,w,s) — g(y,w, s)|)2

wl<M

+/ dx/ dk|org(x, k, 5)|*

R3 R3

<( [ dlogr =)
"

+2/ dx [ dk|oeg(x, k,s)|?
R? R?

~ 2
dw|f*(y,w,s) —g(y,w, S)|>

[w|>M

< ([ dlogls— )

< / dy[oud(x — )|
R3 [w|>M
32/ dx/ dk|og(x, k, )|
R3 R}
«( / dylop(x — )|
R3 lwl<M

+2/ dx/ dk|dkg (. k, 5)|
R} R}

<( [ arlogte— )

dw|7(p,w,5) = g3, w,9)])

wl<M

dwlf(r,w,5) = g, w,5)])

~ 2
dw| 75 (v ,5) = 97,0,

- 2
dW|fL(y,W75) - g(y’ W,S)|) .

[w|>M
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We first bound the first term on the right hand side of (6.32). We find

(6.33) (/R3 dyloxg(x — »)| oy dw|fé(y,w,s) — g(», w,s)|>2
= 2
= (/3 dy/3 dw[dxd(x — )X < WS (1, w,8) = 9(, w,s)|)
R Jr

4 .
< M0l 7: 11 £ (5) — ) 7o

B~ W

2 2
< —7TM3H5x¢||L2||hSHL2(R3xR3)'

98]

Therefore, we obtain

6.34) 2 / dx / dk|org(x, k, )|
R3 R3

~ 2
([ @t [ anlF ) - gl
R lwl<M
< Ce“ M| hy|| 72 s ms) = Ce“(C+ ) il 72 o oy

by virtue of Lemma 5.1, (6.31) and assumption (2.1) on ¢.
Now let us look at

6.35) 2 / dx / dk|okg(x, k, s)|*
R3 R?

~ 2
([ wiede -l [ @l s - gm)l)
R3 [w|>M
By (6.30) we have

(6.36) 2 / dx dk|drg(x, k, 5))*
= 2
([ a1 [ @l ) =g
R3 [w|>M
= 2/dxdk|8kg(x,k,s)|2
= 2
([ wieger=nl [ anlf )
R [w|>M

S4/dxdk|6kg(x,k,s)|2
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X (/R3 dy|0,d(x — )| o dW|f€(y,w,s)|>2

+4/dxdk|akg(x,k,s)|2

< ([ dlogts= )

where @ > 0 will be fixed later (see (6.49))). Here g*(y, w, s) denotes the solution
of the classical Liouville equation generated by the force field

~ 2
A7 (v ,5) = 3w 9)] )

M<|w|<e

- / dydsd(x — )’ (3.1,

namely
(6.37) 03" +k-0.5° = T g,

and the initial datum is the same of the Vlasov evolution, namely, g*(y,w,0) =
go(y,w). Note that g* enters freely in the game because it satisfies the support
property (6.30).

Let us estimate the term:

(6.38) 4 / dxdk|6kg(x,k,s)|2< /R dy]oud(x — ) dw| (v, w,s)|)2.

=

Note that here the positivity of f* is crucial because it allows us to use the energy
conservation. Indeed

639) 4 [ axaklowg(e k)P ([ el [ awlFonol)

[w| =&

2 2 e 2
< 4lg) Il ([ av [ ACAS)
h wl>e™

2 2
< Cg“w( dy dww—ff(y,w,s)) < Ce*,
e e 2

To show the last inequality, we denote by y(w,s) = / dyf*(y,w,s) the distribu-

tion of momenta (which is obviously positive and with integral in dw equal to
one) and by J(w,s) the smoothed version of y(w,s). Then, denoting by ®' the
smoothing acting only on the momentum variable, we set 7 = ®'(y) (clearly, the
action is exactly as in (4.1) for @). As we observed for the spatial distribution p?
(see (4.10)), even in this case it is straightforward to see that the smoothing
commutes with the partial integration on the phase-space, namely
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7,) = @) 5) = @' [ dyf*(3.10,9)
= [ @t s = [ dfoms),

2 ~
Therefore, we can write the term / dy / dw % fé(y,w,s) in (6.39) as
R R

/dy/ dw—f VW, ) /dw—yws
R3

Moreover, we have
w2 _ w2 A
(6.40) . dwjy(w, 5) = dwje y(w,s),

because the action of the smoothing operator is exactly the same of the heat flow
e® (see (4.1)). Now we use the well-known (and easy to check) property

/dwe y(w,s) /dw +C£ (w,s) /dw y(w,s) + Ce,

to conclude that:
w? -, w?
(6.41) /[R3 dy/R3 dw7f (y,w,s) < /dwjy(w,s) + Ce

2
:/ dy dwlfc(y,w,s)+Cs.
R R3 2

Now, by the energy conservation:

(6.42) / dy/ dw “(y,w,s)

< /dey/RdefS(y,w,s)<72+prf())+C

/dy/ awfy y,w)(M; g[HPT(@)—FCSC,

where, in the first inequality, we used that the potential ¢ is bounded from below
(as a consequence of assumption (2.2)) and the last bound follows from our
assumptions.

Thus, by (6.41) and (6.42) we get (6.39) (the L* control on 0.¢ is guaranteed
by (2.2) and the H' control on g is guaranteed by (5.3)).
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Next we estimate the term on the last line of (6.36), namely:
(6.43) 4 / dx dk|ocg(x, k, 5

~ 2
([ wied-nl [l s - g i)
R} M<|w|<e@
< Ce%e || £ = gl fa oy

To control the L2-norm of f*(s) — gé(s) we set p¢ = f*(s) — g°(s). Then, by
(4.6) and (6.37), the equation for p? is:

(6.4 {as”f k0t = Tfp+ (T = TH)g"(s) + EG5).
p8<x7 k) = ﬁ)ﬁ(xa k) - gO(X7 k)

We proceed as before using that the flow generated by —k - 0, + ch is isometric
in L?. Therefore

(645) [1p%l2 < [1ple + / dr| E@)||: + / (T = T (), de

The first two terms on the right hand side of (6.45) have been estimated previ-
ously (see (6.23) and Lemma 6.1) and they give rise to

S
(6.46) Ipill,> < Cs*  and / Ao E() |2 < Ce© + 1)e.
0

Moreover, the last term in (6.45) can be estimated exactly as the term r;(s) (see
(6.19) and (6.26)) because the Liouville dynamics for g controls the H3-norm
(that is finite and uniformly bounded in ¢ at time 7 = 0 since g*(0) = go). There-
fore we find:

(6.47) / T — THg# ()|, de < C(e© + D)e.
0

Thus, finally we get:
(6.48) 1Pl < C(e® + 1)e™.

Therefore, by setting

(6.49) W<z



548 A. ATHANASSOULIS ET AL.

we find
(6.50) 4 / dx dk|deg(x, k, s)|*
=y e 2
([ wieger=nl [l - g 0om))
R M<|w|<e@
< C(eCs + 1)8—3w+o:7

with —3w + o > 0.
In the end, by collecting (6.34), (6.39) and (6.50), we obtain that:

(6:51)  Ira(9)l sy < Ce®(C ) sl Loy + 6™ 4 (€% + D>+,
that gives an optimal bound for w =%, namely:
(6:52) r2(9) | 2@ xmy < C(C + )l 2o oy + (€ + D)%),

and

t
653 [ a9l
t
< C((e+ 14+ 06/ 4 / dse(C +5) Iy 2 )
0
By (6.27) and (6.53), we can finally control the L?-norm of %, obtaining:
(6.54) [ Pp— c((ecf F1)e* 4 (e€ 4 1+ 1)e@ 7
! 3/2 Cs
+ [ as(C e o).

The, by applying the Gronwall lemma, we find that

3024 Cs

(6.55) el 2 g ey < Ce€ +1 +t)8<z/7>aefo ds(C+s) 7

and hence (6.15) holds true.
Finally, by virtue of (6.1) and (6.55), we deduce (2.8) and hence the proof of
Theorem 2.1 is concluded. O

REMARK 6.1. We observe that, for example, in the case in which the initial datum
is given by (2.11), the rate of convergence is estimated by */”.
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APPENDIX A. EXISTENCE OF SEMICLASSICAL INITIAL DATA:
PROOF OF PROPOSITION 2.1

~ -1
Let g be defined by (2.10). Set N = N(¢) := ( / FoCe, k), () dxdk) .

Property (1) follows by the positivity of the Husimi function and (3) follows
by construction. Since

(A1) 1901l 32 <) < CNIG |32 <

where C depends on the L* norm of y,, and its derivatives, (2) follows as soon
as we show that N = N(¢g) = O(1) (see below).

So it is only left to check (4).

Observe that

(A2) g = 9% lle = 15 — Nfs2anlI»
<= N o' ez + 1N, (5 = )22
< U= Nz + NI =200 15 22 + NG = Solle

Obviously, the estimate for the second term of the last line of (A.2) comes from
assumption (2.4), and for the third term from the fact that | ff — ;> =
O(e|| f ]l r2) as shown in lemma A.1 of [2]. To see that the first term is O(&”),
i.e. that |21 — N| = 0(¢g"), one has to observe that (denote for brevity o°(k) =

1 = . N
(A3) ‘I_N‘:‘/<fOXMO_ﬁ))dxdk g”(l_XMO)fOHLI
< / 58(]( _ k/)f()g(x/’k/) dx/ dk/ dk
‘k‘>M0/2
- [k|>Mo/z o (k = k') fg (X', k") dx" dic" dk
[k'|>Mo/4

+ Sk — k') f2(x' k') d’ i’ dlke

lk|> Mo /2
[k'|<Mo/4

< / 5% (k) dk IS (x' k)| dx' di!
keR? |k'|>M, /4

+ sup [0°(k =KD/l = O(”)
|k|>Mo/2
' |[< Mo /4

where we made use of assumptions (2.5) and (2.6) in the final step.
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Now obviously,

1
(A.4) ’1—N‘SC8“ = |N—1| < Ce*|N|
= |[N—-1|<Ce*(1+|N—1))
Ce*
-1 < —= “.
= IN-1l< =55 =0)
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