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Abstract. — We consider a modified version of the two-dimensional NS equation introduced in

[4], [5] preserving energy and momentum of inertia. The physical motivation of this approach is the

occurrence of di¤erent dissipation time scales. The constraint we consider is related to the gradient
flow structure of the 2-D Navier-Stokes equation with respect to the Wasserstein metric. In this

paper we justify the choice of this metric from the point of view of the stochastic vortex theory.
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1. Introduction

Let us consider the Navier-Stokes equation (NS equation in the sequel) in the
plane for the vorticity o ¼ oðx; tÞ:

ðqt þ u � ‘Þoðx; tÞ ¼ Doðx; tÞ:ð1:1Þ

Here x a R2, t a Rþ and u ¼ uðx; tÞ a R2 is the velocity field defined as:

u ¼ ‘?c; c ¼ �D�1o:

Explicitly:

u ¼ K � o; KðxÞ ¼ ‘?gðxÞ ¼ � 1

2p

x?

jxj2
;ð1:2Þ

where

gðxÞ ¼ � 1

2p
logjxjð1:3Þ

is the fundamental solution for the Poisson equation in the plane.
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Due to the dissipation term in the right hand side of eqn. (1.1), the asymp-
totic behavior of the solutions is trivial, namely oðx; tÞ ! 0 pointwise and in

the Lp sense for p > 1. However

Z
o and

Z
xo are conserved. In the sequel

we shall assume o to be a probability distribution so that o is non negative

and

Z
o ¼ 1 constantly in time. We also fix the reference frame in such a

way that

Z
xo ¼ 0 constantly in time.

It is well known that for the Euler equation

ðqt þ u � ‘Þoðx; tÞ ¼ 0;ð1:4Þ

we have many conserved quantities as the energy:

EðoÞ ¼ 1

2

Z
co dx;ð1:5Þ

and the moment of inertia (related to the invariance of E with respect to the
group of rotations):

IðoÞ ¼ 1

2

Z
x2o dx:ð1:6Þ

Due to the condition div u ¼ 0 also all the integrals of the form

FfðoÞ ¼
Z

fðoÞ dxð1:7Þ

(some time called Casimirs) are equally well conserved.
Such Euler invariants vary for the NS evolution. More precisely I increases by

a constant rate:

_IIðoÞ ¼ 2;ð1:8Þ

while E and Ff, for a convex f, are dissipated with rates

_EE ¼ �
Z

o2; _FFf ¼ �
Z

f 00ðoÞj‘oj2:ð1:9Þ

Looking at eqns. (1.9) one realizes that the energy and the moment of inertia
could vary on a di¤erent and longer scale of times with respect to Ff (whenever
the last term in (1.9) dominates on the first one).

This may suggest to consider, in the first approximation, E and I as constant,
looking at a master equation which modifies the NS equation leaving constant
both energy and moment of inertia, but retaining all the other features of the
NS dynamics.

2 m. pulvirenti and e. rossi



To implement this program it is convenient to consider the NS evolution as a
gradient flow [19]. Namely one can write:

qto ¼ �div o‘? dE

do

� �
þ n div o‘

dS

do

� �
;ð1:10Þ

where SðoÞ ¼
Z

o logo is the Entropy functional.

A way to modify eqn. (1.10) in order that the functional E and I are sepa-
rately invariant, is to project the dissipation part on the manifold E ¼ const and
I ¼ const. This is equivalent to write:

qto ¼ �div o‘? dE

do

� �
þ n div o‘

� dS

do
� a

dI

do
� b

dE

do

�� �
;ð1:11Þ

and determining the multipliers a and b to guarantee the constance of E and I .
A straightforward computation leads us to

qtoþ u � ‘o ¼ divð‘o� bo‘c� aoxÞð1:12Þ

¼ div o‘
�
logo� bc� a

x2

2

�� �
;

where

b ¼ 2I
R
o2 þ 2V

2I
R
oj‘cj2 � V 2

; a ¼ � 2
R
oj‘cj2 þ V

R
o2

2I
R
oj‘cj2 � V 2

;ð1:13Þ

and

V ¼
Z

ox � ‘c ¼
Z

dx

Z
dyoðxÞoðyÞx � ‘gðx� yÞ ¼ � 1

4p
:ð1:14Þ

Eqn. (1.12) has been introduced in [4]. In [5] the nature of the NS equation as
a gradient flow on the manifold of the probability densities has been discussed
in some more detail. We also remark that the procedure of projecting the NS
equation on a given manifold is not unique. Here we made a choice suggested
by the particular way of expressing the equation as a gradient flow. Indeed the
NS equation can be written as

qto ¼ �J‘WE � ‘WSð1:15Þ

where ‘W is the gradient with respect to the Wasserstein metric and J‘W is the
ant-gradient with respect to the same metric (see [19]).

For an analysis of the gradient flow theory in connection with the mass trans-
port problem see also [1] and [19].
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Note that if we want that the inertial (Euler) part of the NS equation is the
anti-gradient of the energy functional, the metric must be the one given by the
Wasserstein distance. On the other hand, fixed the metric, the functional for
the dissipative part has to be the entropy. In other words, the energy fixes the
metric and the metric fixes the entropy. The interest of the constrained NS
equation is basically due to its asymptotic behavior. In facts it is proven in [4]
that, as t ! l, the solutions of (1.12) tends to a particular stationary solution
of the Euler equation which solves the so called Mean-Field equation

o ¼ ebcþaðx2=2Þ

Z
ð1:16Þ

where

Z ¼
Z

ebcþaðx2=2Þ;ð1:17Þ

introduced and studied in [2] and [3].
It is worth to underline that such solutions are really observed in numerical

simulations (see [17]).
For fixed values of a < 0 and b in a suitable range, eqn. (1.16), has been intro-

duced in connection with the approaches related to the Statistical Mechanics of
point vortices (see [14], [10], [17]). For a mathematical study see [2], [3], [8], [9]
and the Appendix of [4].

Although the way to write the constrained NS equation in the form (1.15)
is very natural and it is in agreement with the Statistical Mechanics of point
vortices, it is also somehow arbitrary. The heat equation can be written as a
gradient flow of many functionals (besides the entropy). For instance introducing
the Enstrophy functional

E ¼ 1

2

Z
o2;

we have

Do ¼ div gðoÞ‘ dE

do

� �

for the weight function gðoÞ ¼ 1, which shows that the heat flow is also a
gradient flow (for the metric H�1) for the Enstrophy functional. Therefore pro-
jections on a given manifold depends on the metric we are considering and give
di¤erent results.

In the present note we focus our attention in showing that eqn. (1.10) can
indeed be justified from the point of view of the stochastic vortex theory for the
NS equation which we are going to introduce. Actually the stochastic vortex
model is a finite dimensional approximation for the NS equation so that, in this
context, we can project without ambiguity.
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Consider the di¤usion process XNðtÞ ¼ fx1ðtÞ . . . xNðtÞg a R2N solution of the
following stochastic di¤erential equation

dxiðtÞ ¼
1

N

X
jAi

KðxiðtÞ � xjðtÞÞ dtþ
ffiffiffi
2

p
dwiðtÞð1:18Þ

where wiðtÞ are N independent Brownian motions. It is well known that the
empirical measure in R2

mNðt; dxÞ ¼
1

N

XN
i

dðx� xiðtÞÞ dxð1:19Þ

(actually a measure valued stochastic process) converge, in the limit N ! l to
the solution oðtÞ of (1.1), provided that

mNð0; dxÞ ! o0ðxÞ dxð1:20Þ

weakly, in the sense of the convergence of probability measures.
There is a large literature on the argument. We quote [13] where a special class

of di¤usion processes yielding nonlinear di¤usion equations in the limit N ! l
have been introduced. In [11] and [12] the problem relative to the NS equation
has been approached, by regularizing the kernel K in (1.2) and removing the
regularization suitably with N. Then in [15] and [16] the limit without regulariza-
tion was directly exploited for a su‰ciently large value of the viscosity coe‰cient.

Moreover it can be proven a convergence result looking at the whole process,
rather than at the distribution at a fixed time, however, in the present context, we
are interested only at some PDE aspects so that we do not look for the maximal
generality.

Having at our disposal a finite dimensional approximation of the NS equa-
tion, it is natural to project this system on the constant energy and/or constant
moment of inertia manifold. This procedure, due to the fact we are working in a
finite dimensional setting, is not ambiguous. Then we take the limit N ! l and
interpret the result. We will find that this procedure will give us the same projec-
tion obtained accordingly to the Wasserstein metric, namely the one described in
eqn. (1.12).

The plan of the paper is the following. In Section 2 we will constrain N
independent Brownian motions to the manifold I ¼ const and find that the cor-
responding empirical measure mNðt; dxÞ approximate the solution of the con-
strained heat flow seen as a gradient flow for the Entropy functional.

We then extend those consideration to the interacting case, by using the
Tanaka’s map (introduced in [18]) which is a very e‰cient tool for this kind of
limit whenever the di¤usion coe‰cient is constant.

In Section 3 we consider (a regularized version of ) the stochastic vortex sys-
tem and constrain the motion to the constant energy manifold. Again we find
the expected result namely eqn. (1.12) adapted to the present case.
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Because the purpose of this paper is to show the correspondence between
the projection made with the Wasserstein metric and the one obtained with
the vortex approximation, we do not perform a simultaneous projection on
both the manifolds E ¼ const: and I ¼ const:, which is technically involved,
but we only consider them separately. Moreover, as regards the projection on
the constant energy manifold, we also introduce an extra cut-o¤ preventing a
denominator to become too small (see eqn. (3.21) below). This di‰culty was
also present in [5]. There it was overcome by means of a smallness assumption.
Here our result, which is valid globally in time for the modified problem, can
also be interpreted as holding for the original problem, but only for a short
time.

This paper is suited for a special issue in memory of G. Prodi. He played a
very important role in the scientific community, promoting the idea of approach-
ing the mathematical theory of the NS equation from the point of view of its
statistical properties. We hope that the present contribution is a small step in
this direction.

2. Vortex theory for the constrained NS equation

According to the previous section, the NS equation constrained to the manifold
I ¼ const reads as

ðqt þ u � ‘Þo ¼ Doþ 1

I
divðxoÞ;ð2:1Þ

where I ¼ 1

2

Z
oðtÞx2 turns out to be a constant of motion. Note that eqn. (2.1)

has been considered by Gallay and Wayne [7] by a di¤erent point of view, namely
by suitably scaling the usual NS equation. The time asymptotics of eqn. (2.1)
selects the so called Oseen’s vortex, which is a gaussian function and hence a
special solution to the Mean-Field equation for b ¼ 0.

Now we want to show that eqn. (2.1) can be derived by projecting the stochas-
tic vortex system into the manifold I ¼ const and then performing the mean-field
limit exactly as for the unconstrained case. The starting point is the same study
for the heat equation which clearly takes the form

qto ¼ Doþ 1

I
divðxoÞ:ð2:2Þ

2.1. Constrained heat equation and particle approximation

Consider N independent standard Brownian motions fwigN
i¼1. Define fbigN

i¼1 by

bi ¼ xi þ wið2:3Þ
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where fxigN
i¼1 are N independent random variables in R2 with law o0. Then set-

ting

mNðt; dxÞ ¼
1

N

XN
i¼1

dðx� biðtÞÞ dxð2:4Þ

the empirical measure (note that this is a measure valued stochastic process) we
have, for any tb 0,

lim
N!l

E½mNðt; dxÞ� ¼ oðx; tÞ dxð2:5Þ

in the sense of weak convergence of probability measures, where oðtÞ solves the
heat equation with initial datum o0.

Introducing

I ¼ 1

2

Z
dxx2o0ðxÞ;

we want to project the process BN ¼ fbigN
i¼1 on the manifold

YN ¼ fyigN
i¼1

���� 1N
XN
i¼1

y2i ¼ 2I

( )
:

For that we introduce the process XNðtÞ solution to the stochastic di¤erential
equation:

dXNðtÞ ¼ AðXNðtÞÞ dtþ
�
1� XN nXN

2NI

�
dBNð2:6Þ

where A is a drift term to be determined to assure the condition

IðXNÞ ¼
X 2

N

2N
¼ 1

2N

XN
i¼1

x2
i ðtÞ ¼ I :ð2:7Þ

Note that, because of the identity

‘IðXNÞ ¼
1

N
XNð2:8Þ

then

‘IðXNÞn‘IðXNÞ
j‘IðXNÞj2

¼ XN nXN

2NI
ð2:9Þ

thus the last term in the right hand side of (2.6) is nothing else than the projection
on the manifold IðXNÞ ¼ I .
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A standard computation using the Ito’s calculus yields

dIðXNÞ ¼
1

N
XN �

�
1� XN nXN

2NI

�
dBN þ 1

N
XN � Adtþ dt:ð2:10Þ

The last term is a consequence of the identity DIðXNÞ ¼ 2. Setting

AðXNÞ ¼ �XN

2I
ð2:11Þ

we have

dIðXNÞ ¼ 0:ð2:12Þ

In conclusion the process we are going to consider is

dXNðtÞ ¼ �XN

2I
dtþ

�
1� XN nXN

2NI

�
dBN ;ð2:13Þ

or, in terms of components,

dxiðtÞ ¼ � xi

2I
dtþ dbi �

X
j

xi n xj

2NI
dbj:ð2:14Þ

Note that the interaction produced by the constraint, namely the last term in
eqns. (2.14), is vanishing in the limit N ! l, as we shall see in a moment, thus
the remaining e¤ect of the constraint is the drift term, which, however, does not
produce interactions. Indeed, by the Ito isometry, for all i ¼ 1 . . .N

E
�XN

j¼1

Z t

0

xi n xj

2NI
dbjðsÞ

�2" #
¼ 1

2NI
E

Z t

0

dsx2
i ðsÞ

� �
:ð2:15Þ

On the other hand, by symmetry,

Eðx2
i ðsÞÞ ¼

1

N

XN
j¼1

Eðx2
j ðsÞÞ ¼ 2I

and hence the right hand side of (2.15) is bounded by t
N
.

Next we introduce N independent processes YN ¼ fyigN
i¼1 defined as the solu-

tion of

dyiðtÞ ¼ � yi

2I
dtþ dbið2:16Þ

with the same initial distribution o0.
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Clearly

Eðjxi � yiðtÞj2Þ ! 0ð2:17Þ

as N ! l. On the other hand YN is a Brownian motion on a di¤erent time scale.
In facts defining:

hiðtÞ ¼ eð1=2IÞtyiðtÞ
we have that

dhiðtÞ ¼ eð1=2IÞt dbiðtÞ

and hence viðtðtÞÞ ¼ dbiðtÞ where dt ¼ eð1=IÞt dt, is a Brownian motion. Finally
we can apply (2.5) on the time scale t to conclude

Proposition 1. Suppose that fxigN
i¼1 are N independent random variables with

law o0, then for all tb 0:

lim
N!l

EðmNðtÞÞ ¼ oðtÞð2:18Þ

in the sense of weak convergence of measures, where o solves eqn. (2.2) with initial
datum o0.

In conclusion constraining the heat equation on the manifold I ¼ const, pro-
duces only a time scaling.

Of course this could be seen from the very beginning by transforming eqn.
(2.2) into the heat equation by a suitable change of coordinates.

2.2. Constrained (regularized) NS equation and particle approximation

When dealing with the stochastic particle approximation for the NS equation, the
kernel K in (1.2) is often regularized by smearing the logarithmic divergence. The
regularization can possibly removed when N ! l (see e.g. [12]). The purpose of
the present work is to understand the role of the projections on given manifolds
so that we regularize the NS equation without removing the cuto¤. As we shall
see later on, the regularization is necessary in any case, to give sense to the
stochastic process constrained to the manifold with fixed energy.

Therefore our starting point is the regularized NS equation

ðqt þ ue � ‘Þoðx; tÞ ¼ Doðx; tÞ:ð2:19Þ

Here x a R2, t a Rþ and ueðx; tÞ is the regularized velocity field defined as:

ue ¼ Ke � o; KeðxÞ ¼ ‘?geðxÞ;ð2:20Þ

where ge is any regularization of the Poisson kernel g such that

jKeðxÞ � KeðyÞjaLjx� yj:ð2:21Þ
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The corresponding stochastic vortex approximation is

dxiðtÞ ¼
1

N

X
jAi

KeðxiðtÞ � xjðtÞÞ dtþ
ffiffiffi
2

p
dwiðtÞ:ð2:22Þ

To proceed as before for the heat equation, we project the right hand side on
the manifold I ¼ const. Since the inertial (Eulerian) part preserves the moment of
inertia because X

jAi

xi � Keðxi � xjÞ ¼ 0;ð2:23Þ

it is enough to project the Brownian part only so that the process we want to
study is

dxiðtÞ ¼
1

N

X
jAi

KeðxiðtÞ � xjðtÞÞ dt�
xi

2I
dtþ dbi �

X
j

xi n xj

2NI
dbj:ð2:24Þ

We already showed that the last term in (2.24) is indeed negligible. Thus,
introducing the process

dyiðtÞ ¼
1

N

X
jAi

KeðyiðtÞ � yjðtÞÞ dt�
yi

2I
dtþ dbi;ð2:25Þ

we realize that the two measures

mNðt; dxÞ ¼
1

N

XN
i¼1

dðx� xiðtÞÞ dx; nNðt; dxÞ ¼
1

N

XN
i¼1

dðx� yiðtÞÞ dx

have the same expected asymptotic behavior .
On the other hand we know that

yi
2I dtþ dbi is the di¤erential of a Brownian

motion so that, by a time scaling, we can reduce the present problem to the con-
vergence problem of unconstrained stochastic vortex system which is very well
understood (see e.g. [12]). In conclusion we have:

Theorem 1. Suppose that fxigN
i¼1 are N independent random variables with

law o0, then for all tb 0:

lim
N!l

EðmNðtÞÞ ¼ oðtÞð2:26Þ

in the sense of weak convergence of measures, where o solves

ðqt þ ue � ‘Þo ¼ Doþ 1

I
divðxoÞ:

with initial datum o0.

10 m. pulvirenti and e. rossi



3. Energy constraint for Navier-Stokes equation

Consider the regularized NS equation:

ðqt þ u � ‘Þoðx; tÞ ¼ Doðx; tÞ;ð3:1Þ

where u ¼ ue.
According to [4] and [5] we can constrain the NS equation on the manifold

E ¼ const: in the following way:

ðqt þ u � ‘Þo ¼ Do� bðtÞ divðo‘g � oÞ;ð3:2Þ

where

bðtÞ ¼
R
dxoDg � oR
dxoj‘g � oj2

:ð3:3Þ

We want to show that the same result can be obtained using the stochastic
vortex theory. For this reason, as already done in section 2.1 for the moment of
inertia I, we will consider a system of N stochastic vortices and constrain their
equations on the manifold E ¼ const:

3.1. Constrained vortices: a formal analysis

The starting system is (here g ¼ ge):

dxi ¼
1

N

XN
j¼1

‘?gðxi � xjÞ dtþ
ffiffiffi
2

p
dwið3:4Þ

where fwigN
i¼1 are N independent Brownian motions. For a system of N stochas-

tic vortices the mean field energy takes the form:

E ¼ Eðx1; . . . ; xNÞ ¼
1

N

X
i< j

gðxi � xjÞ:ð3:5Þ

To assure that the process (3.4) is constrained on the manifold E ¼ const:,
we introduce a new process YN ¼ fyigN

i¼1, which is a modified version of the pro-
cesses (3.4), such that dEðYNÞ ¼ 0.

Therefore we set:

dYN ¼ ‘?E dtþ AðYNðtÞÞ dtþ
ffiffiffi
2

p �
1� ‘En‘E

j‘Ej2
�
dWNð3:6Þ

where the last term is the orthogonal projection of the N Brownian motions on
the manifold E ¼ const:, while A is a drift term to be determined in order that
dE ¼ 0.
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The di¤erential of the mean field energy is computed using the Ito formula:

dEðYNÞ ¼ ‘E � dYN þ 1

2
dYND

2E dYNð3:7Þ

¼
X
i

‘iE � dyi þ
1

2

X
i; j

dyiD
2
i; jE dyj:

Here:

‘iE ¼ 1

N

X
j

‘igðyi � yjÞ; ‘i ¼ ‘yið3:8Þ

and

ðD2
i; jEÞa;b ¼

1

N

q2

qya
i qy

b
j

gðyi � yjÞ:ð3:9Þ

Substituting (3.6) in (3.7) we obtain:

dEðYNÞ ¼
ffiffiffi
2

p
‘E �

�
1� ‘En‘E

j‘Ej2
�
dWN þ ‘E � Adt

þ
�
1� ‘En‘E

j‘Ej2
�
dWND

2E
�
1� ‘En‘E

j‘Ej2
�
dWN

þ dWND
2E dWN þ 2

�
1� ‘En‘E

j‘Ej2
�
dWND

2E dWN

¼ ‘E � Adtþ DE dt� ‘ED2E‘E

j‘Ej2
dt:

Setting now

A ¼ � DE

j‘Ej2
‘E dtþ

�‘ED2E‘E

j‘Ej4
�
‘E dtð3:10Þ

we have dEðYNÞ ¼ 0, thus the process we are going to consider is:

dYN ¼
�
‘?E � DE

j‘Ej2
‘E

�
dtþ

ffiffiffi
2

p
dWNð3:11Þ

�
ffiffiffi
2

p ‘En‘E

j‘Ej2
dWN þ ‘ED2E‘E

j‘Ej4
‘E dt
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or, in terms of components,

dyi ¼
1

N

�X
j

‘?gðyi � yjÞ � bNðtÞ‘gðyi � yjÞ
�
dtþ

ffiffiffi
2

p
dwið3:12Þ

þ
X
j;k

‘jED
2
j;kE‘kE

j‘Ej4
‘iE dt�

ffiffiffi
2

p

j‘Ej2
X
j

‘jE � dwj‘iE;

where

bNðtÞ ¼
DE

j‘Ej2
:ð3:13Þ

Introducing

mNðt; dxÞ ¼
1

N

X
i

dðx� yiðtÞÞ dx;ð3:14Þ

the empirical measure associated to the processes (3.12), remembering that:

‘iE ¼ 1

N

X
j

‘igðxi � xjÞ ¼ u?ðxiÞ;ð3:15Þ

we have:

j‘Ej2 ¼ N

Z
juðxÞj2mNðdxÞð3:16Þ

DE ¼ N

Z
dmNDg � mNð3:17Þ

and we can rewrite (3.12) in the following way:

dyi ¼ ðuðyiÞ � bNðtÞu?ðyiÞÞ dtþ
ffiffiffi
2

p
dwið3:18Þ

þ 1

N 2

X
j;k

uðyjÞD2
j;kEuðykÞ

j
R
juðxÞj2mNðdxÞj

2
uðyiÞ dt

�
ffiffiffi
2

p

N
R
juðxÞj2mNðdxÞ

X
j

uðyjÞ � dwjuðyiÞ

where

bNðtÞ ¼
R
dmNDg � mNR
juðxÞj2mnðdxÞ

:ð3:19Þ
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3.2. A further cuto¤

Equations (3.2) and (3.18) present denominators of the form:Z
juðxÞj2oðdxÞ;

Z
juðxÞj2mNðdxÞ:ð3:20Þ

We cannot a priori exclude that they are vanishing, so that for this reason, we
introduce a further regularization.

The regularization we propose is the following. Consider

DoðtÞ ¼
Z

juðxÞj2oðdxÞ;

then we define

Do
h ðtÞ ¼ maxfh;DoðtÞg

for some h > 0, and then we replace DoðtÞ by Do
h ðtÞ in (3.2).

In a similar way, defining

DmN ðtÞ ¼
Z

juðxÞj2mNðdxÞ

we replace it by

DmN
h ðtÞ ¼ maxfh;Dm

NðtÞg:ð3:21Þ

in (3.18).
The regularized equation we are now considering is:

ðqt þ u � ‘Þo ¼ Do� bhðtÞ divðo‘g � oÞð3:22Þ

where

bhðtÞ ¼
R
dxoDg � o
Do

h ðtÞ
;

and the approximating process is defined accordingly

dyi ¼ ðuðyiÞ � b
h
NðtÞu?ðyiÞÞ dtþ

ffiffiffi
2

p
dwið3:23Þ

þ 1

N 2

X
j;k

uðyjÞD2
j;kEuðykÞ

ðDo
N;hÞ

2
uðyiÞ dt

�
ffiffiffi
2

p

N
R
juðxÞj2mNðdxÞ

X
j

uðyjÞ � dwjuðyiÞ
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where

b
h
NðtÞ ¼

R
dmNDg � mN
D

mN
h ðtÞ :

We can now show that the expectation of the empiric measure related to the
processes (3.23):

mNðt; dxÞ ¼
1

N

X
i

dðx� yiðtÞÞ dxð3:24Þ

converges to oðx; tÞ solution of (3.22), in the limit N ! l.

Theorem 2. Suppose that fxigN
i¼1 are N independent random variables with law

o0, then for all tb 0:

lim
N!l

EðmNðtÞÞ ¼ oðtÞð3:25Þ

in the sense of weak convergence of measures, where o solves

ðqt þ u � ‘Þo ¼ Do� bhðtÞ divðo‘g � oÞ

with initial datum o0.

Remark. Note that the above theorem can be interpreted as a convergence
limit for the original uncuto¤ed problem, but for a short time T. Indeed suppose
Doð0Þb c > 0 then choosing h > 0 su‰ciently large, there exists T > 0 s.t. for
t < T the solution of the regularized equation (3.22) agrees with that of (3.2).
We will not exploit further this point.

We shall prove Theorem 2 in two steps. We first show that the last two terms
in (3.23) are small for large N, allowing us to consider the following essential
process

dzi ¼ ðuðziÞ � bNðtÞu?ðziÞÞ dtþ
ffiffiffi
2

p
dwi:ð3:26Þ

Then we control this new process by using the Tanaka’s map we shall introduce
later on.

3.3. A preliminary step

Setting dYN ¼ fdyigN
i¼1 and dWN ¼ fdwigN

i¼1, process (3.23) can be written as:

dYN ¼ UðYNðtÞÞ dtþ
ffiffiffi
2

p
dWN þ R1ðYNðtÞÞ dWN þ R2ðYNðtÞÞ dtð3:27Þ

where

Ui ¼ uðyiÞ � b
h
NðtÞu?ðyiÞð3:28Þ
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and R1 and R2 denote the last two terms in the right and side of (3.23) respec-
tively.

The expectation of R1 and R2 are negligible as can be seen by the use of the
Ito isometry. Indeed, for any fixed t > 0:

E
�Z t

0

R1ðYNðsÞÞ dWNðsÞ
�2� �

¼ E
�Z t

0

uðyiÞ
P

j uðyjÞ � dwj

N
R
juðyÞj2mNðdyÞ

�2" #

¼
X
j;k

X
a;b; g

E

Z t

0

Z t

0

ðuaðyiÞÞ2ubðyjÞugðykÞ
ðN

R
juðyÞj2mNðdyÞÞ

2
dw

b
j dw

g
k

" #

¼ E

Z t

0

P
aðuaðyiÞÞ2

P
j;bðubðyjÞÞ2

ðN
R
juðyÞj2mNðdyÞÞ

2
ds

" #

¼ 1

N
E

Z t

0

juðyiÞj2R
juðyÞj2mNðdyÞ

ds

" #
:

On the other hand, by symmetry:

E
juðyiÞj2R

juðyÞj2mNðdyÞ

" #
¼ 1

N

X
j

E
juðyjÞj2R

juðyÞj2mNðdyÞ

" #
¼ 1:

Thus:

E
�Z t

0

uðyiðsÞÞ
P

j uðyjðsÞÞ � dwjðsÞ
N
R
juðyÞj2mNðdyÞ

�2" #
ð3:29Þ

¼ 1

N
E

Z t

0

juðyiðsÞÞj2R
juðyÞj2mNðdyÞ

ds

" #
¼ t

N
:

By the Cauchy-Schwarz inequality it follows that:

1

N
E

Z t

0

P
j uðyjðsÞÞ � dwjðsÞuðyiðsÞÞR

juðyÞj2mnðdyÞ

�����
�����

" #
a

ffiffiffiffiffi
t

N

r
:ð3:30Þ

On the other hand for R2 we have:

E

Z t

0

dsR2ðYNðsÞÞ
����

����
� �

a
2ct

h2N
ð3:31Þ

where we have used the boundedness of u, D
mN
h ðsÞ and of ðD2

j;kEÞa;b ¼
q2

qxa
j
qx

b

k

gðxj � xkÞ.
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It is therefore natural to compare process (3.27) with the solution to:

dZN ¼ UðZNðtÞÞ dtþ
ffiffiffi
2

p
dWN :ð3:32Þ

Since the drift U is Lipschitz continuous, it follows easily that:

1

N
E

X
i

jyiðtÞ � ziðtÞj
" #

! 0ð3:33Þ

as N ! l.

3.4. Tanaka’s map and constrained NS equation

The proof of Theorem 2 makes use of the Kantorovich-Rubinstein distance
(or Wasserstein distance) W which we are going to define.

Definition. Let X be a metric space with metric function d : X�X ! Rþ.
Let m1 and m2 be two Borel probability measure on X. Denote by p a joint rep-
resentation of m1 and m2, namely a Borel measure on X�X such that:Z

pðdx1; dx2Þ f ðxiÞ ¼
Z

miðdxÞ f ðxÞ; i ¼ 1; 2;ð3:34Þ

for any measurable function f . Then:

Wðm1; m2Þ ¼ inf
p

Z
pðdx1; dx2Þdðx1; x2Þ:ð3:35Þ

It is well known that W is a metric on the space MðXÞ of all Borel probability
measures on X. Moreover the topology induced by the metric W is equivalent to
the topology of the weak convergence of probability measure (see e.g. [6]).

We shall use the above definition for X ¼ R2 with:

dðx; yÞ ¼ minf1; jx� yjgð3:36Þ

and X ¼ W ¼ Cð½0;T �;R2Þ with:

dTðx; yÞ ¼ sup
t A ½0;T �

dðxðtÞ; yðtÞÞ:ð3:37Þ

We denote by W the corresponding Wasserstein distance between measures
for X ¼ R2 and by WW when X ¼ W.

Note that when X ¼ R2 if miðdxÞ ¼ 1
N

P
k dðx� xi

kÞ dx with i ¼ 1; 2 we have:

W ðm1; m2Þ ¼ min
S

1

N

X
i

dðx1
i ; x

2
SðiÞÞ

( )
ð3:38Þ
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where the minimum is taken over all the permutations S of 1; . . . ;N. This
formula is well known (see e.g. [11] for the proof ). Therefore we can rephrase
Theorem 2 in the following way:

Theorem 3. Suppose that fxigN
i¼1 are independent random variables with law o0,

then for all tb 0:

lim
N!0

E½W ðmNðtÞ;oðtÞÞ� ¼ 0ð3:39Þ

where mNðt; dxÞ is the empirical distribution (3.24) and oðtÞ solves (3.22).

Remark. It can be easily shown that Theorem 3 implies (3.25) at least for
Lipschitz test functions. In fact let f be a Lipschitz function then:

E½mNðfÞ� � oðfÞ ¼ E

Z
fðxÞmNðdxÞ �

Z
fðyÞoðdyÞ

� �

¼ E

Z
pðdx; dyÞðfðxÞ � fðyÞÞ

� �
aCE

Z
pðdx; dyÞjx� yj

� �

where p a MðWÞ �MðWÞ is a joint representation of mN and o and C is the
Lipschitz constant of f. Minimizing now on p we get:

E½mNðfÞ� � oðfÞaCE½WðmN ;oÞ�:ð3:40Þ

Proof of Theorem 3. Consider the process introduced in eqn. (3.26)

dzi ¼
1

N

�X
j

‘?gðzi � zjÞ � b
h
NðtÞ‘gðzi � zjÞ

�
dtþ

ffiffiffi
2

p
dwið3:41Þ

or, in integral form,

ziðtÞ ¼
1

N

X
j

Z t

0

ð‘?gðzi � zjÞ � b
h
NðsÞ‘gðzi � zjÞÞ ds

" #
þ

ffiffiffi
2

p
wiðtÞð3:42Þ

and the associated empirical measure:

~mmNðt; dzÞ ¼
1

N

X
i

dðz� ziðtÞÞ dz:ð3:43Þ

By the use of triangular inequality we have:

W ðmNðtÞ;oðtÞÞaWðmNðtÞ; ~mmNðtÞÞ þWð~mmNðtÞ;oðtÞÞ:ð3:44Þ

We have already shown that the first term in the right hand side of (3.44) is
vanishing (see (3.33)), thus it remains to control the last term only.
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For any r a MðWÞ, define the map y a W ! x
r
t ðyÞ a W by the following im-

plicit formula:

x
r
t ðyÞ ¼ yt þ

Z t

0

ds

Z
Kðxr

s ðyÞ � xr
s ðzÞÞrðdzÞð3:45Þ

�
Z t

0

dsbh
r ðsÞ

Z
K?ðxr

s ðyÞ � xr
s ðzÞÞrðdzÞ;

where

bh
r ðsÞ ¼

R
Dgðxr

s ðzÞ � xr
s ðyÞÞrðdzÞrðdyÞ

D
r
h ðsÞ

ð3:46Þ

and:

Dr
h ðsÞ ¼ max h;

Z
juðxr

s ðyÞÞj
2rðdyÞ

� �
:ð3:47Þ

The application y ! x
r
t ðyÞ is well defined by means of the classical iteration

scheme, due to the Lipschitz continuity of K and Dg and the boundedness from
below of Dr

h ðsÞ.
It is now possible to define the Tanaka’s map y : MðWÞ ! MðWÞ in the fol-

lowing way: Z
F ðyÞðyrÞðdyÞ ¼

Z
FðxrðyÞÞrðdyÞð3:48Þ

where F a CðWÞ.
The interest of the Tanaka’s map is due to the following observations. De-

noting by PxðdyÞ the conditional Wiener measure starting from x, by o0ðdxÞ
the distribution of x and by lðdyÞ a MðWÞ the measure:

lðdyÞ ¼
Z

o0ðdxÞPxðdyÞð3:49Þ

we have that

yl ¼ oð3:50Þ

where o is the distribution of the process x ¼ fxðtÞgt A ½0;T � and xðtÞ solves:

xðtÞ ¼
ffiffiffi
2

p
wt þ

Z t

0

ds

Z
½KðxðsÞ � yÞ � bhðsÞK?ðxðsÞ � yÞ�osðdyÞð3:51Þ

with osðdyÞ ¼ osðyÞ dy and osðyÞ solution of (3.22).
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Notice that if F : W ! R2 is defined by:

F ðwÞ ¼ f ðwðtÞÞ; t a ½0;T �ð3:52Þ

for some measurable f : R2 ! R2, then ltðdyÞ a MðR2Þ, where MðR2Þ is the
space of the Borel probability measures on R2, defined as:

Z
ltðdyÞ f ðyÞ ¼

Z
lðdwÞFðwÞð3:53Þ

is the distribution xþ wðtÞ, where wðtÞ is a standard Brownian motion and x is
the random variable whose distribution is given by o0ðdxÞ.

In addition:

ynN ¼ ~mmNð3:54Þ

where nN a MðWÞ is the empirical distribution of N Brownian motions wi, i.e.:

nN ¼ 1

N

XN
i¼1

dðx�
ffiffiffi
2

p
wiÞ dx; wi ¼ fwiðtÞgt A ½0;T �ð3:55Þ

and ~mmN a MðWÞ is defined as:

~mmN ¼ 1

N

XN
i¼1

dðz� ziÞ dz; zi ¼ fziðtÞgt A ½0;T �:ð3:56Þ

where ziðtÞ are the processes solutions of (3.42).
Relations (3.50) and (3.54) can be easily proven.
In fact let ot be the solution of equation (3.22) and xt the process solution of

3.51. Then, by the Lipschitz continuity of the drift, it is a well known fact that the
pair ðot; xtÞ is unique and that:

Z
f ðxÞotðxÞ dx ¼

Z
Ex½ f ðxtÞ�o0ðxÞ dxð3:57Þ

where o0ðxÞ is the distribution of the initial datum x and Ex denotes the condi-
tional expectation with respect to the event x0 ¼ x. Thus we can write for every
w a W:

xðtÞ ¼ xtðwÞð3:58Þ

¼
ffiffiffi
2

p
wt þ

Z t

0

ds

Z
½KðxsðwÞ � yÞ � bhðsÞK?ðxsðwÞ � yÞ�osðdyÞ:
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Using relation (3.57) we have:Z
KðxsðwÞ � yÞosðdyÞ ¼

Z
Ex½KðxsðwÞ � xðtÞÞ�o0ðxÞ dx

¼
Z

KðxsðwÞ � xsðbÞÞlðdbÞ

and an analogous result holds for K?ðx� yÞ. With similar calculations we obtain
bhðtÞ ¼ b

h
l ðtÞ.

Using all these results in equation (3.58) gives:

xðtÞ ¼ xl
t ðwÞð3:59Þ

Thus by relations (3.57) and (3.59) we haveZ
f ðxÞotðxÞ dx ¼

Z
Ex½ f ðxtÞ�o0ðxÞ dx

¼
Z

f ðxtðyÞÞlxðdyÞo0ðxÞ dx ¼
Z

f ðyÞðylÞðdyÞ

proving (3.50).
Consider now equation (3.42) and note that we can solve it for every w a W:

ziðtÞ ¼ ztðwiÞ

¼ 1

N

X
j

Z t

0

ds½‘?gðzsðwiÞ � zsðwjÞÞ � b
h
NðsÞ‘gðzsðwiÞ � zsðwjÞÞ� þ

ffiffiffi
2

p
wiðtÞ

¼ xnN
t ðwiÞ:

Using now this relation and the definition of the Tanaka’s map we obtain:Z
FðyÞðynNÞðdyÞ ¼

Z
FðxnN

t ðyÞÞnNðdyÞ

¼ 1

N

X
i

FðxnN
t ðbiÞÞ ¼

1

N

X
i

Z
F ðyÞdðy� xnN

t ðbiÞÞ dy

¼ 1

N

X
i

Z
FðyÞdðy� ziðtÞÞ dy ¼

Z
FðyÞ~mmNðdyÞ

proving (3.54).
If we now take two distributions a; b a MðWÞ, denoting by p a MðWÞ �MðWÞ

a joint representation of a and b, we define py by:Z
F ðz; yÞpyðdz; dyÞ ¼

Z
F ðxaðzÞ; xbðyÞÞpðdz; dyÞ:ð3:60Þ

py is obviously a joint representation of ya and yb.
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Our aim is now to show that:

W ððyaÞðtÞ; ðybÞðtÞÞaCWWða; bÞð3:61Þ

for any pair a; b a MðWÞ (note that this inequality is purely deterministic). We
will prove this inequality later on.

For the moment we apply (3.61) to distributions ~mmN and o:

E½Wð~mmnðtÞ;oðtÞÞ�a E½W ððynNÞðtÞ; ðylÞðtÞÞ�ð3:62Þ
aCE½WWðnN ; lÞ�:

where l and nN are defined in (3.53) and (3.55) respectively.
The following result is well known:

Theorem. Suppose that fwigN
i¼1 are N independent Brownian motions. Then

lim
N!l

E½WWðnN ; lÞ� ¼ 0ð3:63Þ

where l and nN are defined in (3.53) and (3.55) respectively. (See e.g. [11] for the
proof ).

Using now (3.63) in (3.62) we obtain the desired result.
Now it remains to show inequality (3.61). For this purpose we want to control

the quantity jxa
t ðyÞ � x

b
t ðhÞj.

We have:

jxa
t ðyÞ � x

b
t ðhÞj

a jyt � htj þ
Z t

0

ds

Z
jKðxa

s ðyÞ � xa
s ðzÞÞ � Kðxb

s ðhÞ � xa
s ðzÞÞjaðdzÞ

þ
Z t

0

ds

Z
Kðxb

s ðhÞ � xa
s ðzÞÞaðdzÞ �

Z
Kðxb

s ðhÞ � xb
s ðvÞÞbðdvÞ

����
����

þ
Z

jbh
b ðsÞj

Z
jK?ðxb

s ðhÞ � xb
s ðvÞÞ � K?ðxa

s ðyÞ � xb
s ðvÞÞjbðdvÞ

þ
Z t

0

ds b
h
b ðsÞ

Z
K?ðxa

s ðyÞ � xb
s ðvÞÞbðdvÞ �

Z
K?ðxa

s ðyÞ � xa
s ðzÞÞaðdzÞ

� �����
����

þ
Z t

0

dsjbh
b ðsÞ � bh

a ðsÞj
Z

jKðxa
s ðyÞ � xa

s ðzÞÞjaðdzÞ:
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Note that we can write:Z
Kðxb

s ðhÞ � xa
s ðzÞÞaðdzÞ �

Z
Kðxb

s ðhÞ � xb
s ðvÞÞbðdvÞ

¼
Z

½Kðxb
s ðhÞ � xa

s ðzÞÞ � Kðxb
s ðhÞ � xb

s ðvÞÞ�pðdz; dvÞ

where p is a joint representation of a and b.
It is now possible to use the following estimates:

jKðx� yÞ � Kðz� yÞjaLjx� zj;ð3:64Þ

jbh
a ðsÞj ¼

R
Dgðxr

s ðzÞ � xr
s ðyÞÞaðdzÞaðdyÞ

Da
h ðsÞ

�����
�����a C

h
ð3:65Þ

and Z
jKðxa

s ðyÞ � xa
s ðzÞÞjaðdzÞaC1ð3:66Þ

to obtain

jxa
t ðyÞ � x

b
t ðhÞja jyt � htj þ L

Z t

0

dsjxa
s ðyÞ � xb

s ðhÞj

þ L

Z t

0

ds

Z
jxa

s ðyÞ � xb
s ðhÞjpðdy; dhÞ

þ CL

h

Z t

0

ds

Z
jxa

s ðyÞ � xb
s ðhÞjpðdy; dhÞ

þ CL

h

Z t

0

dsjxa
s ðyÞ � xb

s ðhÞj þ C1

Z t

0

dsjbh
b ðsÞ � bh

a ðsÞj:

For the last term in the above inequality we have:

jbh
b ðsÞ � bh

a ðsÞj

¼
R
Dgðxb

s ðhÞ � xb
s ðyÞÞbðdhÞbðdyÞ

D
b
h ðsÞ

�
R
Dgðxa

s ðzÞ � xa
s ðvÞÞaðdzÞaðdvÞ

Da
h ðsÞ

�����
�����

a
1

h2
ðDa

h ðsÞ �Db
h ðsÞÞ

Z
Dgðxa

s ðzÞ � xa
s ðvÞÞaðdzÞaðdvÞ

����
����

þ
jDa

h ðsÞj
h2

����
Z

Dgðxb
s ðhÞ � xb

s ðyÞÞbðdhÞbðdyÞ

�
Z

Dgðxa
s ðzÞ � xa

s ðvÞÞaðdzÞaðdvÞ
����:
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Consider now:Z
Dgðxb

s ðhÞ � xb
s ðyÞÞbðdhÞbðdyÞ �

Z
Dgðxa

s ðzÞ � xa
s ðvÞÞaðdzÞaðdvÞ

����
����

a

Z
Dgðxb

s ðhÞ � xb
s ðyÞÞbðdhÞbðdyÞ �

Z
Dgðxa

s ðzÞ � xb
s ðyÞÞaðdzÞbðdyÞ

����
����

þ
Z

Dgðxa
s ðzÞ � xb

s ðyÞÞaðdzÞbðdyÞ �
Z

Dgðxa
s ðzÞ � xa

s ðvÞÞaðdzÞaðdvÞ
����

����
a 2L 0

Z
jxb

s ðyÞ � xa
s ðzÞjpðdy; dzÞ

where L 0 is the Lipschitz constant of Dg and p is a joint representation of the
distributions a and b defined in (3.34).

Using now the boundedness of Dg and Da
h ðsÞ we have:

jbh
b ðsÞ � bh

a ðsÞja
C

h2
jDa

h ðsÞ �Db
h ðsÞj þ

2L 0C

h2

Z
jxb

s ðyÞ � xa
s ðzÞjpðdy; dzÞ:

Because Da
h ðsÞ ¼ max h;

Z
juaðxa

s ðzÞÞj
2aðdzÞ

� �
we must consider three di¤erent

cases:

• Da
h ðsÞ ¼ Db

h ðsÞ ¼ h, that implies jDa
h �Db

h j ¼ 0,

• Da
h ðsÞ ¼

Z
juaðxa

s ðzÞÞj
2aðdzÞ, Db

h ðsÞ ¼
Z

jubðxb
s ðzÞÞj

2bðdzÞ, which implies

jDa
h ðsÞ �Db

h ðsÞj ¼
Z

juaðxa
s ðzÞÞj

2
aðdzÞ �

Z
jubðxb

s ðyÞÞj
2
bðdyÞ

����
����

¼
Z

½juaðxa
s ðzÞÞj � jubðxb

s ðyÞÞj�

� ½juaðxa
s ðzÞÞj þ jubðxb

s ðyÞÞj�pðdz; dyÞ

a 4C1L

Z
jxa

s ðzÞ � xb
s ðyÞjpðdz; dyÞ;

where L 0 is the Lipschitz constant on Dg, p is a joint representation of a and b
defined in (3.34).

• Da
h ðsÞ ¼

Z
juaðxa

s ðzÞÞj
2aðdzÞ, Db

h ðsÞ ¼ h that implies:

jDa
h �Db

h j ¼
Z

juaðxa
s ðzÞÞj

2aðdzÞ � hð3:67Þ

a

Z
juaðxa

s ðzÞÞj
2aðdzÞ �

Z
jubðxb

s ðzÞÞj
2bðdzÞ

a 4C1L

Z
jxa

s ðzÞ � xb
s ðyÞjpðdz; dyÞ:
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Thus we haveZ t

0

dsjDa
h �Db

h ja 4C1L

Z t

0

ds

Z
jxa

s ðzÞ � xb
s ðyÞjpðdz; dyÞ:ð3:68Þ

Putting all these inequality together we have

jxa
t ðyÞ � x

b
t ðhÞja jyt � htj þ L1

Z t

0

dsjxa
s ðyÞ � xb

s ðhÞj

þ L2

Z t

0

ds

Z
jxa

s ðyÞ � xb
s ðhÞjpðdy; dhÞ

where

L1 ¼ L
�
1þ C

h

�

L2 ¼ L1 þ
2L 0C1

h2
þ 8CC2

1

h2
L:

Using now the Gronwall Lemma and definition (3.36) we have:

dðxa
t ðyÞ; x

b
t ðhÞÞa dðyt; htÞ þ L2

Z t

0

ds

Z
dðxa

s ðyÞ; xb
s ðhÞÞpðdy; dhÞ

� �
eL1T :

Defining:

gðy; h; tÞ ¼ sup
sat

jxa
s ðyÞ � xb

s ðhÞjð3:69Þ

and

wðtÞ ¼
Z

pðdy; dhÞgðy; h; tÞ;ð3:70Þ

we have for ra t

dðxa
r ðyÞ; xa

r ðhÞÞa sup
rat

jyr � hrj þ
Z r

0

dswðsÞ
� �

eL1Tð3:71Þ

and hence

gðy; h; tÞa dTðy; hÞ þ L2

Z t

0

dswðsÞ
� �

eL1T :ð3:72Þ

Integrating now by pðdy; dhÞ and using again the Gronwall Lemma we have

wðtÞa
Z

pðdy; dhÞ dTðy; hÞ
� �

eL2Te
L1T

eL1T :ð3:73Þ
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Minimizing now on p we obtain

WððyaÞðtÞ; ðybÞðtÞÞaWWða; bÞeL2Te
L1T

eL1T ;ð3:74Þ

so that (3.61) is proved.
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