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Mathematical Physics — The 2-D constrained NS equation and stochastic vortex
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Dedicato a Giovanni Prodi.

ABSTRACT. — We consider a modified version of the two-dimensional NS equation introduced in
(4], [5] preserving energy and momentum of inertia. The physical motivation of this approach is the
occurrence of different dissipation time scales. The constraint we consider is related to the gradient
flow structure of the 2-D Navier-Stokes equation with respect to the Wasserstein metric. In this
paper we justify the choice of this metric from the point of view of the stochastic vortex theory.
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1. INTRODUCTION

Let us consider the Navier-Stokes equation (NS equation in the sequel) in the
plane for the vorticity w = w(x, ):

(1.1) (0 +u-V)o(x,t) = Aw(x, ).
Here x € R?, t € R" and u = u(x, t) € R? is the velocity field defined as:

u=v>y, ¢¥=-A"lo.

Explicitly:
N 1 x*t
(1.2) u=Kxo, K@x)=Vg)=—p "o
2 |_x|
where
1
(1.3) 9(x) = 5. logl

is the fundamental solution for the Poisson equation in the plane.

The present paper is dedicated to the memory of Professor Giovanni Prodi (28 luglio 1925-29
gennaio 2010). Also the first three issues of Rendiconti Lincei RLM 2011 were dedicated to the
memory of Professor Prodi.
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Due to the dissipation term in the right hand side of eqn. (1.1), the asymp-
totic behavior of the solutions is trivial, namely w(x,¢) — 0 pointwise and in

the L? sense for p > 1. However / w and / xw are conserved. In the sequel
we shall assume o to be a probability distribution so that « is non negative
and | w =1 constantly in time. We also fix the reference frame in such a
way that / xew = 0 constantly in time.

It is well known that for the Euler equation
(1.4) (0 +u-Vo(x,t) =0,

we have many conserved quantities as the energy:

(L.5) E(w) —%/tpa)dx,

and the moment of inertia (related to the invariance of E with respect to the
group of rotations):

(1.6) (o) :%/ 2w dx.

Due to the condition divu = 0 also all the integrals of the form

(1.7) Fy(@) = [ dlw) ds

(some time called Casimirs) are equally well conserved.
Such Euler invariants vary for the NS evolution. More precisely / increases by
a constant rate:

(1.8) I(0) =2,

while £ and Fy, for a convex ¢, are dissipated with rates

(1.9) E—- [0l B=- [ s’

Looking at eqns. (1.9) one realizes that the energy and the moment of inertia
could vary on a different and longer scale of times with respect to F,; (whenever
the last term in (1.9) dominates on the first one).

This may suggest to consider, in the first approximation, £ and I as constant,
looking at a master equation which modifies the NS equation leaving constant
both energy and moment of inertia, but retaining all the other features of the
NS dynamics.
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To implement this program it is convenient to consider the NS evolution as a
gradient flow [19]. Namely one can write:

(1.10) 0,0 = —div wVLé—E + vdiv a)Vé—S ,
ow ow

where S(w) = / wlogw is the Entropy functional.

A way to modify eqn. (1.10) in order that the functional E and I are sepa-
rately invariant, is to project the dissipation part on the manifold £ = const and
I = const. This is equivalent to write:

(L11)  dw= —div[wvﬂs—E] + vdiv[a)V(

0 0 0
o S 1 E)]’

oo ‘o0 dw

and determining the multipliers ¢ and b to guarantee the constance of £ and /.
A straightforward computation leads us to

(1.12) 0w+ u - Vo = div(Vo — bV — awx)
. x2
= div [wV(logw — by — ay)] ,

where
(1.13) 2 fe? 2V ai_2fa)|Vlﬁ|2+Vfa)2

' 2 [w| V| — V2’ 2 [l V> = V2
and
(1.14) V:/wx~le:/dx/dyw(x)w(y)x'Vg(x—y) = —%.

Eqn. (1.12) has been introduced in [4]. In [5] the nature of the NS equation as
a gradient flow on the manifold of the probability densities has been discussed
in some more detail. We also remark that the procedure of projecting the NS
equation on a given manifold is not unique. Here we made a choice suggested
by the particular way of expressing the equation as a gradient flow. Indeed the
NS equation can be written as

(1.15) 8w =—JVwE —VyS

where Vy is the gradient with respect to the Wasserstein metric and JVy is the
ant-gradient with respect to the same metric (see [19]).

For an analysis of the gradient flow theory in connection with the mass trans-
port problem see also [1] and [19].
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Note that if we want that the inertial (Euler) part of the NS equation is the
anti-gradient of the energy functional, the metric must be the one given by the
Wasserstein distance. On the other hand, fixed the metric, the functional for
the dissipative part has to be the entropy. In other words, the energy fixes the
metric and the metric fixes the entropy. The interest of the constrained NS
equation is basically due to its asymptotic behavior. In facts it is proven in [4]
that, as ¢+ — oo, the solutions of (1.12) tends to a particular stationary solution
of the Euler equation which solves the so called Mean-Field equation

ebl//+zz(x2/2)
1.16 S
(116) o="
where
(1.17) 7 - / Qhiale’2)

introduced and studied in [2] and [3].

It is worth to underline that such solutions are really observed in numerical
simulations (see [17]).

For fixed values of ¢ < 0 and b in a suitable range, eqn. (1.16), has been intro-
duced in connection with the approaches related to the Statistical Mechanics of
point vortices (see [14], [10], [17]). For a mathematical study see [2], [3], [8], [9]
and the Appendix of [4].

Although the way to write the constrained NS equation in the form (1.15)
is very natural and it is in agreement with the Statistical Mechanics of point
vortices, it is also somehow arbitrary. The heat equation can be written as a
gradient flow of many functionals (besides the entropy). For instance introducing
the Enstrophy functional

we have

o0&
Aw = di
o = div {g(w)V 50)}

for the weight function g(w) =1, which shows that the heat flow is also a
gradient flow (for the metric H~!) for the Enstrophy functional. Therefore pro-
jections on a given manifold depends on the metric we are considering and give
different results.

In the present note we focus our attention in showing that eqn. (1.10) can
indeed be justified from the point of view of the stochastic vortex theory for the
NS equation which we are going to introduce. Actually the stochastic vortex
model is a finite dimensional approximation for the NS equation so that, in this
context, we can project without ambiguity.
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Consider the diffusion process Xy (7) = {x1(7)...xy(7)} € R*" solution of the
following stochastic differential equation

(1.18) dx; (1) ZK xi(1) = x;(£)) dt + V2 dwi(1)

]751

where w;(f) are N independent Brownian motions. It is well known that the
empirical measure in R?

(1.19) y(t,dx) = Za(x xi(t

(actually a measure valued stochastic process) converge, in the limit N — o to
the solution w(?) of (1.1), provided that

(1.20) Uy (0,dx) — wo(x) dx

weakly, in the sense of the convergence of probability measures.

There is a large literature on the argument. We quote [13] where a special class
of diffusion processes yielding nonlinear diffusion equations in the limit N — oo
have been introduced. In [11] and [12] the problem relative to the NS equation
has been approached, by regularizing the kernel K in (1.2) and removing the
regularization suitably with N. Then in [15] and [16] the limit without regulariza-
tion was directly exploited for a sufficiently large value of the viscosity coefficient.

Moreover it can be proven a convergence result looking at the whole process,
rather than at the distribution at a fixed time, however, in the present context, we
are interested only at some PDE aspects so that we do not look for the maximal
generality.

Having at our disposal a finite dimensional approximation of the NS equa-
tion, it is natural to project this system on the constant energy and/or constant
moment of inertia manifold. This procedure, due to the fact we are working in a
finite dimensional setting, is not ambiguous. Then we take the limit N — oo and
interpret the result. We will find that this procedure will give us the same projec-
tion obtained accordingly to the Wasserstein metric, namely the one described in
eqn. (1.12).

The plan of the paper is the following. In Section 2 we will constrain N
independent Brownian motions to the manifold / = const and find that the cor-
responding empirical measure uy (¢, dx) approximate the solution of the con-
strained heat flow seen as a gradient flow for the Entropy functional.

We then extend those consideration to the interacting case, by using the
Tanaka’s map (introduced in [18]) which is a very efficient tool for this kind of
limit whenever the diffusion coefficient is constant.

In Section 3 we consider (a regularized version of) the stochastic vortex sys-
tem and constrain the motion to the constant energy manifold. Again we find
the expected result namely eqn. (1.12) adapted to the present case.
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Because the purpose of this paper is to show the correspondence between
the projection made with the Wasserstein metric and the one obtained with
the vortex approximation, we do not perform a simultaneous projection on
both the manifolds E = const. and I = const., which is technically involved,
but we only consider them separately. Moreover, as regards the projection on
the constant energy manifold, we also introduce an extra cut-off preventing a
denominator to become too small (see eqn. (3.21) below). This difficulty was
also present in [5]. There it was overcome by means of a smallness assumption.
Here our result, which is valid globally in time for the modified problem, can
also be interpreted as holding for the original problem, but only for a short
time.

This paper is suited for a special issue in memory of G. Prodi. He played a
very important role in the scientific community, promoting the idea of approach-
ing the mathematical theory of the NS equation from the point of view of its
statistical properties. We hope that the present contribution is a small step in
this direction.

2. VORTEX THEORY FOR THE CONSTRAINED NS EQUATION

According to the previous section, the NS equation constrained to the manifold
I = const reads as

(2.1) (0 +u-V)io =Aw +% div(xw),

1 .
where I = 3 / o(f)x* turns out to be a constant of motion. Note that eqn. (2.1)

has been considered by Gallay and Wayne [7] by a different point of view, namely
by suitably scaling the usual NS equation. The time asymptotics of eqn. (2.1)
selects the so called Oseen’s vortex, which is a gaussian function and hence a
special solution to the Mean-Field equation for f = 0.

Now we want to show that eqn. (2.1) can be derived by projecting the stochas-
tic vortex system into the manifold / = const and then performing the mean-field
limit exactly as for the unconstrained case. The starting point is the same study
for the heat equation which clearly takes the form

1 ..
(2.2) 0w = Aw + 7 div(xw).
2.1. Constrained heat equation and particle approximation

Consider N independent standard Brownian motions {w;}" . Define {,} " by

(23> b; = x; +w;
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where {x;} Y, are N independent random variables in R? with law . Then set-
ting

(2.4) (2, dx) = NZ(S X —

the empirical measure (note that this is a measure valued stochastic process) we
have, for any ¢ > 0,

(2.5) 131_{1& E[uy (2, dx)] = o(x, t) dx

in the sense of weak convergence of probability measures, where w(¢) solves the
heat equation with initial datum .

Introducing
1
zz/dxxzwo(x)

we want to project the process By = {b;} l]i , on the manifold

1 N
{YN =ik NZJ’? :21}-

i1
For that we introduce the process Xy(#) solution to the stochastic differential
equation:

Xy @ Xn

(2.6) dXy (1) = A(Xn (1)) di + (1 - NI

) dBy

where A is a drift term to be determined to assure the condition
X2 1 &
(2.7) I(Xy) =N =—3N"x}()=1

Note that, because of the identity

1
(2.8) VI(Xy) = NXN
then
(2.9) VI(XN)®VI(XN)_XN®XN

VI(xy)|*? 2N

thus the last term in the right hand side of (2.6) is nothing else than the projection
on the manifold /(Xy) = 1.
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A standard computation using the Ito’s calculus yields

1 Xy ® Xy
(2.10)  dI(Xy) = XN.<1 T

]
< )dBN+NXN-Adt+dt.

The last term is a consequence of the identity A7(Xy) = 2. Setting

(2.11) A(Xy) = i
we have
(2.12) dI(Xy) =0.

In conclusion the process we are going to consider is

Xy Xy ® Xy
(2.13) dXn(f) = —ﬁdtnt(l —W>dBN,
or, in terms of components,

_ ﬁ o X, ® Xj
(2.14) dx;(t) = 2Idt+db, NI db;.

Note that the interaction produced by the constraint, namely the last term in
eqns. (2.14), is vanishing in the limit N — oo, as we shall see in a moment, thus
the remaining effect of the constraint is the drift term, which, however, does not
produce interactions. Indeed, by the Ito isometry, foralli=1... N

(2.15) lz / xﬁlx’ i ] 2NI [/ ol }

On the other hand, by symmetry,

J=1

and hence the right hand side of (2.15) is bounded by .
Next we introduce N independent processes Yy = {y;} l.]il defined as the solu-
tion of

(2.16) dyi(t) = — 2L dr + db,

with the same initial distribution wy.
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Clearly
(2.17) E(|lxi — »i()[*) = 0
as N — oo. On the other hand Yy is a Brownian motion on a different time scale.
In facts defining:
(1) = €20y, (1
we have that
dhi(t) = V2 db, (1)

and hence v;(z(¢)) = db;(t) where dt = e!!/"dt, is a Brownian motion. Finally
we can apply (2.5) on the time scale 7 to conclude

ProrosITION 1. Suppose that {Xi}i]i | are N independent random variables with
law wy, then for all t > 0:

(2.18) lim E(uy (1)) = (1)

N—w

in the sense of weak convergence of measures, where w solves eqn. (2.2) with initial
datum wy.

In conclusion constraining the heat equation on the manifold / = const, pro-
duces only a time scaling.

Of course this could be seen from the very beginning by transforming eqn.
(2.2) into the heat equation by a suitable change of coordinates.

2.2. Constrained (regularized) NS equation and particle approximation

When dealing with the stochastic particle approximation for the NS equation, the
kernel K in (1.2) is often regularized by smearing the logarithmic divergence. The
regularization can possibly removed when N — oo (see e.g. [12]). The purpose of
the present work is to understand the role of the projections on given manifolds
so that we regularize the NS equation without removing the cutoff. As we shall
see later on, the regularization is necessary in any case, to give sense to the
stochastic process constrained to the manifold with fixed energy.
Therefore our starting point is the regularized NS equation

(2.19) (0 + u: - V)o(x, 1) = Aw(x, 1).

Here x € R?, t € R and u,(x, ¢) is the regularized velocity field defined as:
(2.20) u, = K, o, K,(x)=V,g,(x),

where ¢, is any regularization of the Poisson kernel g such that

(2.21) [Ko(x) = Ke(p)] < Llx = .
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The corresponding stochastic vortex approximation is

(222) (1) ZK xi(t) = x;(1)) di + V2 dwi(1).

]#z

To proceed as before for the heat equation, we project the right hand side on
the manifold 7 = const. Since the inertial (Eulerian) part preserves the moment of
inertia because

(2.23) > xi Ky(xi—x;) =0,

J#i
it is enough to project the Brownian part only so that the process we want to
study is

X; ® X;

2NI dby.

(2.24)  dxi(1) ZK (x;(1) — ))dt——dt+db

]#1

We already showed that the last term in (2.24) is indeed negligible. Thus,
introducing the process

(2.25) dy;(1) Z K. (yi(2) — y;(£)) dr — 2—dz + db;,
N

we realize that the two measures

N
N (2, dx) %Zéx xi(2))dx, vy(t,dx) = Z5(x—yl

=

have the same expected asymptotic behavior .

On the other hand we know that %dt + db; is the differential of a Brownian
motion so that, by a time scaling, we can reduce the present problem to the con-
vergence problem of unconstrained stochastic vortex system which is very well
understood (see e.g. [12]). In conclusion we have:

THEOREM 1. Suppose that {xi}i]i , are N independent random variables with
law wy, then for all t > 0:

(2.26) lim E(uy (1) = (1)
— 00
in the sense of weak convergence of measures, where w solves

1
(0r+u,- Vo =Aw + 7 div(xw).

with initial datum .
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3. ENERGY CONSTRAINT FOR NAVIER-STOKES EQUATION
Consider the regularized NS equation:
(3.1) (0 +u-V)o(x,t) = Aw(x, 1),
where u = u,.

According to [4] and [5] we can constrain the NS equation on the manifold
E = const. in the following way:

(3.2) (0 +u-V)o =Aw — b(t)div(oVyg * ),
where
(3.3) br) = L BAg 0

[ dxw|Vg * o

We want to show that the same result can be obtained using the stochastic
vortex theory. For this reason, as already done in section 2.1 for the moment of
inertia I, we will consider a system of N stochastic vortices and constrain their
equations on the manifold E = const.

3.1. Constrained vortices: a formal analysis

The starting system is (here g = ¢,):
(3.4) dx; = Zvi — X;) dt + V2 dw;

where {w,-}i]i | are N independent Brownian motions. For a system of N stochas-
tic vortices the mean field energy takes the form:

(3.5) E=E(xy,...,xy Zg

1<1

To assure that the process (3.4) is constrained on the manifold E = const.,
we introduce a new process Yy = { y,}fi 1> which is a modified version of the pro-
cesses (3.4), such that dE(Yy) = 0.

Therefore we set:

VE® VE
VE|?
where the last term is the orthogonal projection of the N Brownian motions on

the manifold E = const., while A is a drift term to be determined in order that
dE = 0.

(3.6) dYy = VY Edt+ A(Yy(1)) di + ﬁ(l )dWN
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The differential of the mean field energy is computed using the Ito formula:
1
(3.7) dE(Yy) =VE -dYy + EdYNDzEdYN

|
i i,j

Here:
1
(3.8) V.E = Nz Vig(yi - yj)v V= V}’i
J
and
5 1@
(3.9) (D E) 9(yi — yy)-

N ayoy]
Substituting (3.6) in (3.7) we obtain:

VEQ®VE

dE(Yy) = V2VE - (1 ~E

)dWN+VE-Adt

(17VE®VE

VEP JawypE(1 = Y awy

IVE|?

VEQ® VE

+dWyD*EdWy + 2(1 ~ Ve

) dWyD2EdWy

VED?EVE
= = dr

= VE-Adi+AEdi - ;
VE|

Setting now

2
AE VEdi (VED EVE

3.10 A=— VE dt
(.10 VE \VE|* )

we have dE(Yy) = 0, thus the process we are going to consider is:

(3.11) dYy = (VLE— |VA£|2VE)dz+ﬁdWN

) E ED?EVE
—\/EV ®V W \% \Y%

_— +———+—VEdt
ver N Ve
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or, in terms of components,

(3.12)  dy = (Z Vig(y — by (0)Vg(yi — yj)) dt + /2 dw,

V,ED?,EVE V2

+ jile dt — —— V]E : deViE‘7
; \VE|* |VE|2JZ
where
AE

3.13 by(t) = .
(.13) O
Introducing
(3.14) N(t,dx) = 25 x — y(t

the empirical measure associated to the processes (3.12), remembering that:

(3.15) Zv,g Xi = Xp) = ut (xq),
we have:

(3.16) VER =N [ ) Pyl
(3.17) AE = N/d,uNAg * ly

and we can rewrite (3.12) in the following way:

(3.18) dy; = (u(y;) — bN<t)ul(yi)) it /3 dv
D} Eu(yx)
i) d
zk:lf‘u | Uy dx)’ u(y) t
V2
N i o)
where
(3.19) o) M

J ()P, ()

13
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3.2. A further cutoff

Equations (3.2) and (3.18) present denominators of the form:

(3.20) / Ju(x)*o(dx); / ()| (d).

We cannot a priori exclude that they are vanishing, so that for this reason, we
introduce a further regularization.
The regularization we propose is the following. Consider

Z):/u(x) o(dx

Dy (1) = max{n, D°(t)}

then we define

for some # > 0, and then we replace D”(z) by D,’(¢) in (3.2).
In a similar way, defining

D (0 / () Py ()

we replace it by

(3.21) Dy (1) = max{n, Dy (1) }.
in (3.18).

The regularized equation we are now considering is:
(3.22) (0 +u-V)o =Aw — b"(1) div(wVg * w)
where

bI(t) = fdxa)Ag*a),
Dy (1)

and the approximating process is defined accordingly

(3.23) dy; = (u(y;) = b (Ou*(y:)) dt + V2 dw;
yj /kEu yk)

u\yi d

Z 3. (vi) dt

V2
_ ;) - dwiu(yi
N [ () Pty () Z “0s) - sy
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where

" JdrnAg * py
M=)

We can now show that the expectation of the empiric measure related to the
processes (3.23):

(3.24) v (8, dx) = Zé x— yi(t

converges to w(x, t) solution of (3.22), in the limit N — co.

THEOREM 2. Suppose that {xi}[]il are N independent random variables with law
wo, then for all t > 0:

(3.25) lim E(uy (1)) = (1)

N=w
in the sense of weak convergence of measures, where w solves
(0 +u-V)o =Aw — b"(t)div(wVg * o)

with initial datum oy.

REMARK. Note that the above theorem can be interpreted as a convergence
limit for the original uncutoffed problem, but for a short time T. Indeed suppose
D®(0) > ¢ > 0 then choosing # > 0 sufficiently large, there exists 7' > 0 s.t. for
t < T the solution of the regularized equation (3.22) agrees with that of (3.2).
We will not exploit further this point.

We shall prove Theorem 2 in two steps. We first show that the last two terms
in (3.23) are small for large N, allowing us to consider the following essential
process

(3.26) dz; = (u(z;) — by (ut(z;)) dt + V2 dw;.

Then we control this new process by using the Tanaka’s map we shall introduce
later on.

3.3. A preliminary step
Setting dYy = {dy,-}fil and dWy = {dw[}fil, process (3.23) can be written as:
(3.27) dYy = U(Yn(1))dt +V2dWy + Ry (Yn(1)) dWy + Ry( Yy (1)) dt
where

(3.28) Ui = u(yi) — b ()u™(y:)
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and Ry and R, denote the last two terms in the right and side of (3.23) respec-
tively.

The expectation of R; and R, are negligible as can be seen by the use of the
Ito isometry. Indeed, for any fixed ¢ > 0:

[E[(/OIRI(YN(S))dWN(s))Z]

—F ( Tu(yi) > u(y) - dwjﬂ
0 N [lu(y)*py(dy)

— yi))ub( y])m(yk)dwﬁdw"/]
JZko;y l/ / Nf|u )| ﬂN(dy)) iAWk
V > (i) ]ﬁ<uﬁ<yj>)2ds]
(N [u(y) ey (dy))®

L[ )
=—F —— ds].
N V T () e () ]

On the other hand, by symmetry:
2 NE
[E[ ()] ]—IZE[ ;) ]:1_
()P (dy) 7 L () s (dy)
Thus:

u((s)) 3, () - i) 2
529 E[(/o N [ (o) e () )]

1 ! ;
_ [E[ ua)® ]t
f u(y |ﬂN dy) ] N
By the Cauchy-Schwarz inequality it follows that:

U S ul(s)) - dwi(s)ului(s))]
(330 N[El/o S () Py (dly)

On the other hand for R, we have:
2ct
< —
n*N

where we have used the boundedness of u, Dj*(s) and of (D? E), 5=
52 ( Xk) Js )
/fg .

/OtdSRz(YN(S»

(3.31) [E[

cx@
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It is therefore natural to compare process (3.27) with the solution to:
(3.32) dZy = U(Zy(1)) dt +V2dWy.

Since the drift U is Lipschitz continuous, it follows easily that:

(3.33) —[E[Zb/, —zi(t ]—>0

as N — oo.
3.4. Tanaka’s map and constrained NS equation

The proof of Theorem 2 makes use of the Kantorovich-Rubinstein distance
(or Wasserstein distance) W which we are going to define.

DEFINITION. Let X be a metric space with metric function d : X x X — R*.

Let u; and p, be two Borel probability measure on X. Denote by © a joint rep-
resentation of u; and w,, namely a Borel measure on X x X such that:

(3.34) /n(dxl,dxz)f(x,-) = /,ui(dx)f(x), i=1,2,

for any measurable function f. Then:

(3.35) Wiy, 1) = i%f/n(dxl,dxz)d(xl,xz).

It is well known that I is a metric on the space M (X) of all Borel probability
measures on X. Moreover the topology induced by the metric W is equivalent to
the topology of the weak convergence of probability measure (see e.g. [6]).

We shall use the above definition for X = R? with:

(336) d(x7y) :min{1a|x_y|}
and X = Q = C([0, T], R?) with:

(3.37) dr(x,y) = sup d(x(z), y(1)).
tel0, 7]

We denote by W the corresponding Wasserstein distance between measures

for X = R? and by Wq when X = Q.
Note that when X = R? if y,(dx) = L3 0(x — x}) dx with i = 1,2 we have:

(3.38) Wy, 1) mm{ del,xs }
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where the minimum is taken over all the permutations S of 1,...,N. This
formula is well known (see e.g. [11] for the proof). Therefore we can rephrase
Theorem 2 in the following way:

THEOREM 3. Suppose that {xi}i]i1 are independent random variables with law .y,
then for all t > 0:

(3.39) lim E[WV (py (1), (1))] = 0

N—0
where uy (t,dx) is the empirical distribution (3.24) and w(t) solves (3.22).

REMARK. It can be easily shown that Theorem 3 implies (3.25) at least for
Lipschitz test functions. In fact let ¢ be a Lipschitz function then:

Elun (4)] — = U¢ )i (dx) — /¢ }

_ E{ [ o) - 800 < | [ wtas. e

where 7 € M(Q) x M(Q) is a joint representation of uy and @ and C is the
Lipschitz constant of ¢. Minimizing now on 7 we get:

(3.40) Elun ()] — o(4) < CE[W (uy, w)].

PRrOOF OF THEOREM 3. Consider the process introduced in eqn. (3.26)
(3.41)  dz=— (Z Vig(zi — z;) — bL(O)Vg(zi — z_,)) dt + /2 dw;

or, in integral form,

(342) Z,‘(Z) = % [Z /OI(VLQ(ZZ‘ — Zj) — b/’z/(S)Vg(Z,‘ — Zj)) ds| + \/EWZ‘(Z)

and the associated empirical measure:
(3.43) v(t,dz) = 25 z—z(t

By the use of triangular inequality we have:

(3.44) Wy (1), o(t) < W(uy (1), iy(2) + Wiy (1), ().

We have already shown that the first term in the right hand side of (3.44) is
vanishing (see (3.33)), thus it remains to control the last term only.
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For any p € M(Q), define the map y € Q — x7(y) € Q by the following im-
plicit formula:

(3.45) () = i+ /0 s / K((5) — x(2))p(d)

- [Cayo) [ K20 - @t

where

(3.46) b(s) = JAg(x!(z) —gf(ig))p(dZ)p(dy)
n

and:

(3.47) D max{n,/|u | p dy)}

The application y — x7(y) is well defined by means of the classical iteration
scheme, due to the Lipschitz continuity of K and Ag and the boundedness from
below of Dy (s).

It is now possible to define the Tanaka’s map 6 : M(Q) — M(Q) in the fol-
lowing way:

(3.48) / F(3)(0p)(dy) = / F(x()p(dy)

where F € C(Q).

The interest of the Tanaka’s map is due to the following observations. De-
noting by P.(dy) the conditional Wiener measure starting from x, by wo(dx)
the distribution of x and by A(dy) € M(Q) the measure:

(3.49) Ady) = / 0 (dx)Py(dy)

we have that

(3.50) 0). = w

where o is the distribution of the process x = {x(¢)},. o 7; and x(z) solves:

(3.51)  x(z \/_wt—i—/ ds/ — B($) K (x(s) — y)]ews(dy)

with wy(dy) = w,(y) dy and w,(y) solution of (3.22).
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Notice that if F : Q — R? is defined by:
(3.52) F(w) = /(w(0)), 1€[0,T]

for some measurable f:R?> — R?, then A,(dy) € M(R?), where M(R?) is the
space of the Borel probability measures on R?, defined as:

(3.53) /M@M@=/MWWW

is the distribution x + w(¢), where w(¢) is a standard Brownian motion and x is
the random variable whose distribution is given by w(dx).
In addition:

(3.54) Ovn = fiy

where vy € M(Q) is the empirical distribution of N Brownian motions w;, i.e.:

N
(3.55) =Y o= VA dx, w= ()

i=1
and gy € M(Q) is defined as:

N

(356) ﬂN = %25(2 - Zi) dZ? Zi = {Zi(t>}te[0,T]'

i=1

where z;(¢) are the processes solutions of (3.42).

Relations (3.50) and (3.54) can be easily proven.

In fact let w, be the solution of equation (3.22) and x, the process solution of
3.51. Then, by the Lipschitz continuity of the drift, it is a well known fact that the
pair (wy, x;) is unique and that:

(3.57) /f(x)a)t(x) dx:/[Ex[f(x[)]a)o(x)dx

where wy(x) is the distribution of the initial datum x and E, denotes the condi-
tional expectation with respect to the event xo = x. Thus we can write for every
we Q:

(3.58)  x(1) = x,(w)

=V [ s [IKG0) — ) = PR ()~ D).
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Using relation (3.57) we have:

/K xs(w) — y)ay(dy) = /[EX[K(XS(W) — x(1))]wo(x) dx

— [ Klutn) - xe) )
and an analogous result holds for K+ (x — y). With similar calculations we obtain

b(t) = b)(1).
Using all these results in equation (3.58) gives:

(3.59) x(t) = x}Hw)
Thus by relations (3.57) and (3.59) we have

/ F(x)ou(x) dx = / Ef (x)leon(x) dx

= [ FstDiamonody = [ r)02)@)

proving (3.50).
Consider now equation (3.42) and note that we can solve it for every w € Q:

zi(t) = z,(wi)
=5 9 gt = 0) — B 6Vl ) = )] + V(1)

= XY (w;).

Using now this relation and the definition of the Tanaka’s map we obtain:

/ F(3)(0v) (dy) = / F( (7)) va(dy)
=—ZF X2 (b)) Z / X (b)) dy
=—Z/ Y= z(0) dy = / F(»)iy(dy)

proving (3.54).
If we now take two distributions o, f € M(Q), denoting by 7 € M(Q) x M(Q)
a joint representation of o« and £, we define 7y by:

(3.60) /F(z,y)ng(dz,dy) = /F(x“(z),xﬂ(y))n(dz,dy).

7y is obviously a joint representation of fo and 6.
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Our aim is now to show that:

(3-61) W((02)(2), (0B)(1)) <= CWa(w, )

for any pair o, f € M(Q) (note that this inequality is purely deterministic). We
will prove this inequality later on.
For the moment we apply (3.61) to distributions iy and w:

(3.62) E[W (f,(1), (1))] < E[W((0vy)(2), (02)(1))]
< CE[Wa(vy, 2.

where 1 and vy are defined in (3.53) and (3.55) respectively.
The following result is well known:

THEOREM. Suppose that {w,-}i/l | are N independent Brownian motions. Then

(3.63) lim E[Wq(vy,A)] =0

N—oo

where A and vy are defined in (3.53) and (3.55) respectively. (See e.g. [11] for the
proof).

Using now (3.63) in (3.62) we obtain the desired result.

Now it remains to show inequality (3.61). For this purpose we want to control
the quantity |x}(y) — xf(h)|

We have:

|x2(y) = x/ ()]

<lyo—hl+ /0 ds / K(x*(y) = x7(2)) — K(E(h) — x%(2)) (k)

/ds

/ B1(S) / K (e () — 3P () — KA (2 (3) — 3P (0) [Bldlo)

t
-I—/ds
0

+/0 dSIbZ(S)—bZ(S)I/IK(XS(y)—xs“‘(Z))W(dZ)

/K X(z))o(dz) — /K (xF(h) — xP(v))B(dv)

bi(s) [/Ki(xg(y)—xf(v))ﬂ(dv)—/KL(Xf(y)_xf(Z))“(dZ)H
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Note that we can write:

/ K(xP () — x2(2))a(dz) - / K(xP(h) — x(0))B(dv)

where 7 is a joint representation of o and /.
It is now possible to use the following estimates:

(3.64) |K(x—y) = K(z—y)| < L|x -z,

1 JAg(x2(2) = xP(y))eldz)aldy)| _ C
(3.65) b1(9)] = e <
and
(3.66) / K(x ) alds) < €
to obtain

() — XD )| < |y — bl + L /0 ds|x?(y) — xB(n)|

rL /0 ds / x2() — B () |n(dy, dh)

cL ts x%(y) = xP(h)|n
+2 /0 d/| 3(y) — x () |n(dy, dh)

=S i) -l + ¢ [ ) - b
For the last term in the above inequality we have:
|bg(s) — b3(s)]
_ | SAg(f (h) — xP () Blan)p(dy) — [Ag(x¥(z) — x}(v))o(dz)a(dv)

D(s) Dy (s)
< 5|03 - DJ(o) [ Agtxz(e) — w3 @atdpatar)
I [ agtabion - < panpias)

- [ g(x2(2) - x)ataz)atan)|.
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Consider now:

\ / Ag(xP () — xP (1)) B(dm)B(dy) — / Ag(x?(2) — () )u(dz)u(dl)

\ [ satston - <tonpanpan - [ Ag(x;’(Z)—Xf(y))a(dZ)ﬂ(dy)‘

] +| [ Bgee) st plar) — [ gl (z) = 0ot

<1 / 5 () = x2(2) v, )

where L' is the Lipschitz constant of Ag and =« is a joint representation of the
distributions o and £ defined in (3.34).
Using now the boundedness of Ag and Dy (s) we have:

Cc . 2L C
86 = 1)1 = 25 1D;(5) = D) + 25 [ Ied3) =2y ),
Because Dj( max{n, / |u™(x o(dz) } we must consider three different
cases:
° D“(s) =7, that 1mplles |D°‘ D{]]| =0,
* Dy(s /|u ,7 = / P (xP(2))|*B(dz), which implies
1D(s) — DUs |—'/|u (eENPatds) — [ W0 Ppa)

/ [0*(2(2)] — [P (< ()]
X [u*(x2(2))] + [ (xP ()] (d=, )
<4GiL / %(2) — X (y)|ldz, dy);

where L’ is the Lipschitz constant on Ag, =« is a joint representation of o and 8
defined in (3.34).

* Dy(s) = /|u Dﬂ( ) = 5 that implies:

(367)  |D—DF| = / u*(x4(2)) Paldz) — 1

< / ju*(x4(2)) Padz) — / P (b (2)) 2 Bld2)

<4aiL [ () - 20l ),
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Thus we have

t t
(3.68) /0 ds|D} — Df| < 4CiL /0 ds / X4(2) = () |ldz, ).

Putting all these inequality together we have

t
() — P ()] < |y — Il + Ly / ds|x*(y) — xP ()|

L / ds / () — X () |(dly, d)

where
L =11 +£)
n
2L'C,  8CC?
Ly=L+—"+ LL.

n? n?

Using now the Gronwall Lemma and definition (3.36) we have:

At ) < [t + s [ as [ ) st atay.an]e
Defining;

(3.69) 10 ) = sup (2) <L)

and

(3.70) 20 = [ alas. dnyy(y.o),

we have forr <t

(371) AxE )3t () < [suply, b+ [ dse(o)| et
and hence
(3.72) y(y,h,t) < [dT(y,h) +L2/Otdsx(s)} el

Integrating now by n(dy, dh) and using again the Gronwall Lemma we have

(3.73) 2(1) < { / n(dy, dh) dr(y, h)} el e LT,
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Minimizing now on 7 we obtain
(3.74) W((02)(2), (0B)(1)) < Wal, Ble2Te" el T,

so that (3.61) is proved.
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