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Mathematical Analysis — A version of Gehring lemma in Orlicz spaces, by LUIGI
GRECO and GABRIELLA ZECCA.

Dedicated to the memory of Professor Giovanni Prodi.

ABSTRACT. — We present a version of the Gehring lemma, showing higher integrability in the
scale of Orlicz spaces for a function ¢ satisfying reverse Holder’s inequalities of the type

()" < fye ()"

under suitable integrability conditions on f which do not imply boundedness. We describe explicitly
in the general case how the improved integrability of g depends on the assumptions on f, thus
extending results of [4, 2] which deal with f exponentially integrable.

We also present some applications of our result to the theory of mappings of finite inner distor-
tion.
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1. INTRODUCTION

In this paper we study higher integrability results which can be deduced as a
consequence of reverse Holder’s inequalities of the type

(1.1) (][BgM)l/ms 23fg+(f28h’”)l/m.

Here, m > 1, g and / are nonnegative functions in L;” and (1.1) hold for all balls

B with 2B contained in a domain of R”. In the case that f is a bounded function,
the celebrated Gehring Lemma ([5]) and its several extensions show that there ex-
ists a new exponent s > m, depending on n, m and || /|, such that g € L} , if the
same is true for 4. We refer to the survey paper [11] and references therein.

The present paper is dedicated to the memory of Professor Giovanni Prodi (28 luglio 1925-29
gennaio 2010). Also the first three issues of Rendiconti Lincei RLM 2011 were dedicated to the
memory of Professor Prodi.
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On the other hand, studying problems with some kind of degeneracy naturally
leads to consider the case of f unbounded. In this case, we do not have the same
sort of improvement in the integrability properties of g as above. As far as we
know, the first result for / unbounded appeared recently, in [4], where regularity
of mappings of exponentially integrable distortion is studied. A key tool there
was a result showing that, if reverse Holder’s inequalities (1.1) hold with
m=1+1/n, exp(Bf) € L\, for some >0, and 4 =0, then g e L™ log® Lige,
with ¢ = ¢(n) > 0. This result indicates precisely how the degree of the improved
regularity depends on f, and is qualitatively sharp, in the sense that examples
show that in general g ¢ L™ log” Lo, for sufficiently large «. The result has been
extended in [2] allowing for general m > 1 and the nonhomogeneous term involv-
ing &, and used again for applications to some regularity problems arising in the
theory of generalized Newtonian fluids.

In 7, 8] we extended the results of [4] concerning mappings of finite distortion
by considering more general conditions on the distortion. In those paper, higher
integrability is not deduced from reverse Hoélder’s inequalities, but is proved
directly by means of some estimates which appear to be stronger than reverse
inequalities. In [9] similar arguments are used to deal with solutions to degenerate
elliptic equations.

A generalization of the results on reverse Holder’s inequalities of [4, 2]
appeared in a recent paper by Clop-Koskela on the regularity properties of
mappings of finite distortion, see [3, Lemma 3.1]. They assume that f is subexpo-
nentially integrable, that is,

(1.2) exp(P(f™)) € Lige,

for # > 0 and an increasing function P, such that 7 — P(¢)/t is decreasing and the
divergence condition holds

“p
(1.3) / PO 4y = o,
to t
for some 7y > 0. Typical examples are P(¢) =1,
(14)  PO=—, P)= ’
' log(e+1)’ ~ log(e + t) loglog(ec + 1)

It is well known that (1.3) is a threshold condition in the theory of mappings
of finite distortion, see e.g. [1, 12, 13]. However, for general P, conditions (1.2)
and (1.3) do not even imply f” locally integrable, so P should satisfy additional
conditions. Under suitable assumptions, in [3] it is proved that, if reverse Holder’s
inequalities (1.1) hold, then g”E(g)? is locally integrable, where

(1.5) E() =1 +/11Pg>df.

This expression E which governs the improved integrability of f in [3] is sug-
gested by the following conjecture of Iwaniec and Martin.
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CONJECTURE 1.1 ([12, pg. 267]). Let F : Q — C be a planar mapping of finite
distortion K, such that e*®) e L'. Then, |DF |2 belongs locally to the Orlicz space
LR(Q), where

R(1) :P(t)(l +/l$dr)_l.

1

The result of [3] would imply a positive answer to this conjecture. Unfortu-
nately, the assumptions are rather involved and restrictive. So, while it is not clear
whether the result of [3] applies to functions essentially different from those in
(1.4), it is easy to find cases which cannot be handled by it. As an example, this
happen for the function

t

(1.6) P(t):m,

with 0 < 3 < 1. This is not a technical point, because trying to use (1.5) with P
given by (1.6) would give too high improvement, by a power of logarithm, which
is the same as for P(¢) = ¢ and does not hold in this case, see Example 1.7 and
Remark 1.3 below. Instead, this shows that E is not the correct expression to
describe the improved integrability in the general case.

We shall also provide a more drastic example, showing that actually Conjec-
ture 1.1 has a negative answer (see Section 5).

In this paper, using ideas of [7, 8, 9], we prove a general and sharp higher
integrability result which extends those of [4, 2, 3], and describes exactly the
improved integrability of g in terms of the integrability assumption on f.

For a given #) > 0, we consider a positive, continuous and strictly increasing
function

(1.7) P : [ty, o] — [P(ty), o0

diverging at co and verifying the divergence condition (1.3). We assume also that
the inverse function P! satisfies the A,-condition: There exists a constant C; > 1
such that

(1.8) P 1(20) < C\P7'(0), Vo= P(ty).
We define the function

1, for 0 < s < exp(P(1))

(1.9) A (s) = l /‘Ogs do
exp
P

———|, fors>exp(P(t
() P_l(o_) ( (0))

Notice that (1.3) implies

(1.10) / o _
P
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see [8], therefore we have

(1.11) lim o/ (s) = 0.
§— 00
Moreover, since P~! diverges at co the function .o/ increases at co more slowly
than any power of s with positive exponent, see [9].
We state our main result.

LeMMA 1.2. Let Q be a ball of R". For given P such that (1.3), (1.8) hold, and a
constant m > 1, there exists a positive exponent ¢ = g(n,m, Cy) with the following
property. Let f, g and h be nonnegative functions on Q verifying g,h € L"™(Q),
exp(P(Bf™)) € L'(Q) for a constant >0, and (1.1) holds, for all balls B =
2B < Q. Then, we have g™ .o/ (g’")gﬁ e LL_(Q), if the same is true for h. Moreover,
for each 0 < g < 1 we have

(1.12) /{Q gm&z(gm )Eﬂ < ng/fQ exp(Bf™) + c/fQ hm&f(hm )gﬁ

where g = ][ g™, and C is a positive constant depending only on n, m, ®, ff and o.
Q

REMARK 1.3. The result of Lemma 1.2 is optimal in the following sense. Exam-
ples in [8, Section 6] show both that no improvement can be expected without the
divergence condition (1.3), and that in general g".</(g™)* ¢ L. ., for sufficiently
large o. In particular, .7 given by formula (1.9) cannot be substituted by any
function whose logarithm grows faster than log.e/ at co. More details are given
in Section 4.

REMARK 1.4. We stress that the exponent ¢ depends on P only through the
constant C; of the Aj-condition (1.8). On the other hand, formula (1.9) with
t — P(pt) instead of P yields .#”. So in Lemma 1.2 it suffices to consider the
case f = 1. We can also vary the parameter ¢;; this will affect only the constant
C in estimate (1.12), and means that only sufficiently large values of f(x) are
relevant.

REMARK 1.5. Often, we do not compute explicitly P~!, but find an equivalent
function. It will be clear from our proof of Lemma 1.2 that we can replace P! by
Q in the definition (1.9) of .7, for any Q verifying

P (o) <00Q(s), Vo= P(ty),

for some constant o > 0. More precisely, defining (for s > exp(P(#)))

logs do
%<S> - P l/l’(to) @] ’

then under the assumption exp(P(f™)) € L', we have

Wt (h)* e LV = g™et(g™)" e L.
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To illustrate better Lemma 1.2, we shall present several examples obtained
particularizing the function P.

ExAMPLE 1.6. The result of Faraco-Koskela-Zhong [4] and that of Bildhauer-
Fuchs-Zhong [2] are readily obtained in the case

(1.13) P(t)=1t.
ExamPLE 1.7. Here we examine the function defined in (1.6), with 0 < & < 1.
We find (see Remark 1.5)

(1.14) =9

o/ (s) = exp[(loglogs)
More examples are contained in the following table, where we specify the

asymptotic behavior of P(z) as t — oo, and that of .</(¢) in the sense of Remark
1.5.

g o
e’ €Xp [lolgol%)[g t:|
7,y >1 expllog' =174
t logt
t(logt) ™, 0 <9< 1 exp[(loglog 1)1_3]
t(log 1)71 loglog ¢
k k+1
1 Y T ey
t(logt)” (loglogt)™ ...(log...log?)™", | exp[(loglog...log?) 7]
0<d<1
k k+1

1 1

——
loglog...logt

1 _ —
t(log?)” (loglog?)™ ...(log...logt)

We conclude this introduction mentioning that in Section 4 we shall give some
applications to the study of mappings of finite distortion.

2. REVERSE HOLDER’S INEQUALITIES IN R”

In this section, we prove a higher integrability result for functions defined in R”.
From this, in Section 3 we will deduce Lemma 1.2. To shorten notation, we
introduce the function

@ :[0,00] — [0, 0]
by setting
for0 <1<y

(2.1) for t > 1

(1)

to
exp(P(D),
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LemMmA 2.1. Let f, g and h be nonnegative functions on R" such that g,h €
L™(R™), ®(Bf™) e L'(R") for a constant B > 0, and (1.1) holds, for all balls B
of R". Under this assumptions, we have g"./(g")" e L'(R") for some &=
e(n,m, Cy) > 0, if the same is true for h. Moreover, we have the uniform estimate

(22) [amatm® <c [ o v e

2.1. Preliminary results. We mnote explicitly some consequences of the
A,-condition (1.8). First, we have

(2.3) O(1)? < ®(Cy1), Vi>0.

Similarly, for every $ € |0, 1], there exists a constant C; > 0 such that

(2.4) P (logs™) < C,P~ ! (3logs™), Vs> exp(P(ty)/(m9)).

We shall take

m—1
2. - -
2:5) ¥ 2m
so that C; = Cy(m, Cy).
Moreover, (1.8) implies
im 20 _
— 0 log t

Hence, without loss of generality, we may assume that

o) .. . . .
(2.6) t— ¥ is increasing and diverging at co.
Let now
(2.7) ®*(s) =sup{st — D(7)}, s=>0,
=0

be the conjugate function to ®@. Condition (2.6) implies that @* is invertible. We
denote by

¥ = ()" [0, 0] — [0, 0]

its inverse function, which is concave, strictly increasing and verifies W (0) = 0.
Since @(f) = 0 for 0 < ¢ < 1y, we easily find

(2.8) w@:% Vs e [0, d(10)].
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We need to recall more properties of ', see [8, 9]. First, we have

s s
—— <VY(s) <2———, Vs>DO(19).
P-(logs) — (s) < s = D(to)

(29) P-l(logs)’

Obviously, (2.9) implies
4
(2.10) fim L) _,
s—0 8

and divergence condition (1.3) on P yields a similar condition for WV:

(2.11) /I%T(s)ds: o0

Moreover, in view of As-condition (1.8), (2.9) implies that for every 4 € |0, 1],
there exists a constant C = C($,¥) > 0 such that

3
(2.12) wi ) ¥ s
S* N
and
(2.13) s < C¥(s), Vs=>1.

We shall consider powers of the function .7 defined by (1.9). To this aim, it
will be easier to work with a modified version of the function. Given ¢ > 0, we
define

1, for0<s<S

(2.14) Ay(s) = { /IOgS do }
exple —|, fors>S
P log S P71(0->

where S > ®(#). Clearly, for every s > 0,

log S
A,(s) < A (s)° < Ay(s) exp le/mg) Pdl—?‘)

The parameter S will be taken large enough depending on ¢, as described in the
following

LEMMA 2.2. For each ¢ > 0 and k > 0, there exists Sy > ®(10)*"/""V such that,
if S > Sy, then

KA
(2.15) § % is decreasing on |0, co|
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and

(2.16) Ay (D% (ks)) < 2e,(s), Vs> 0.

ProOOF. To show (2.15), for s > S we write

(2.17) ”QfST(S)zéexp[/lzs(P%@—l)da},

hence it suffices to take Sy such that P~!(a) > ¢, Vo > log Sp.
Inequality (2.16) will be deduced from

(2.18) lim (2 5)

s—o () =L

To prove (2.18) we first note that (2.10) implies

lim 2K _

§— 00 S

Hence, for s large enough we have ®*(ks) > s, and by (1.9), (2.9)

oA (@ (ks)) R R © (k) @ ()
A(s) _CXPM aPl(loga)]SeXp[/s Td"]

therefore it suffices to show that the exponent in the last term converges to 0. To
this end, integrating by parts and using (2.10) we can replace the integrand
W¥(0)/c* by W'(c)/0, and then by the change of variable T = W¥(g), we arrive at
the integral

ks ks
(2.19) / _dr / T do
vy (1) Sy @(r) 7

Since 7 — 7/®*(7) is decreasing, we see that the integral in (2.19) is controlled
by

¥ log ks = ¥ logk — ¥ logw

(2:20) Y(s) s s s

which clearly converges to 0 as desired.
Now, by (2.18), we find Sy > () such that

(2.21) §s=>8) = [%]8 < 2.
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Let us check that (2.16) holds for S > Sy. Inequality (2.16) is trivial if ®*(ks) < S,
and reduces directly to (2.21) if s > S. Thus, we assume ®*(ks) > S > s. In this
case, we have

A(® (ks)) _ Fz(cp*(ks))r _ [ﬂ(cb*(kS))T
A (s) A(S) |~ L AO)

and we conclude using (2.21) again. O
2.2. Proof of Lemma 2.1. We may assume f > 1, and consider only the case

S = 1. Our starting point is the following estimate for integrals on level sets of
the functions involved, which is a consequence of reverse Holder’s inequalities:

(2.22) / g"dx < C3t"! fgdx + C3 / h'™ dx,
g>t

fg>t h>t

with C; depending only on n and m. This can be proved easily arguing as in
Section 3 of [11], using Calder6on-Zygmund decomposition and Vitali’s Covering
Lemma.

Now we multiply both sides of (2.22) by (.«,(¢"))" and integrate w.r.t. t over
(0, 00). Using Fubini theorem, we have

(2.23) / (Lsz{s(t’"))/dt/ g"dx = / g"A(g") — 1] dx
0 g>t R"

(2.24) / (,szig(t’”))'dt/ h"dx = / h" A, (W) — 1] dx.
0 h>t "

On the other hand,

o0

(2.25) / tml(&/g(tm))/dt/ fydx = / (f9)%.(fg) dx,

0 fo>t R"
where

N
(2.26) Bu(s) = / 1t () dt.
0

Now we need the following Young-type inequality.
LeMMA 2.3. We have

(2.27) J9%:(19) < e[Ca®@(f™) + Csg™A:(g™)],

for some positive constants Cqy = Cq(m, V) and Cs = Cs(m, C)).
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PROOF. Clearly %,(s) = 0 for s < S'/". For s > S'/™ we easily find

K m&/g(lm)tm72

g — e 0
(2.28)  B.(s)=c¢ o P (log ™

K ml‘m72
dt < n —dt
< 8ti(s )/Sl/m P-1(log ™)

Moreover, as S > 1,

529 s tm—2 J s t(m—l)/Zt(m—l)/Z—l 4
. ——dt < .

(2:29) /Sl/m P-1(logem) ™ — /S]/m P-1(logtm=1/2)

o
P-1(loga)

(2 30) /s tm—Z gt < 2 sm—l
' sim P~1(log ™) = m—1 P~1(%=Llogsm)’

Since g — is increasing, we deduce

Hence, using (2.4) with (2.5), and (2.9), we find

2mCy  §"of,(s™) - 2mC2\P

2.31 B.(s) < <
(231) $%:(5) “m—1 P~1(logs™) “m—1

(8™)-e(s™).

We define for ¢ > 0 the function
(2.32) F(1) =P(1)A(1).

By the properties of ¥ and .<Z,, the function ¢ +— F(¢)/#? is decreasing, so we have
the inequality

(2.33) F(a+b) <2[F(a) + F(b)],
for every a > 0 and b > 0. Moreover, for t > 1,

(2.34) F() < F()2 =¥(1).

By Young inequality with the couple ® and ®*, we get
(2.35) STg" < O(f"/Cr) + @7 (Crg™).
Applying F to both sides yields

(2.36)  Y((f9)")4((f9)") = F((f9)") < FI®(f™"/C1) + @ (Cig™)]

< 2F(@(f"/C)) + F(@7(Cig™))]-
We have also from (2.34) and (2.3)

(2.37) F(®(f™/C)) < ¥(1)D(f"/C1)* < ¥(LD(/™).
We estimate F(®*(Cig™)) by (2.16). Accordingly,

(2.38) F(@*(Cig™)) = Crg" (P (C1g™)) < 2C1g™A:(g").
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By (2.31), (2.36), (2.37) and (2.38), we see that (2.27) holds with

C4 = 4C2‘P(1)L1 and C5 = 8C2C1

m — m —

By (2.22), (2.23), (2.24), (2.25) and (2.27), we obtain

239) [ g"lenlg") 1= CoCse [ g"anlg”) + CiCan [ o(r™)

n

+ Q/Hhm[&/g(hm) 1]

Choosing ¢ so that C3Cse < 1, the first integral in the right hand side of (2.39) can
be absorbed in the left hand side and we get

(2.40) /n g"(g") < C/n g" + C/W (™)

+ c/ W) — 1],
provided we already know that ¢g".<Z,(¢") € L'(R"). To get rid of this condition,
we apply the above argument with a truncation of .Z:
A, 7(t) = min{.oZ,(1), ,(T)}

and then let 7" — co. In fact, we immediately find properties (2.15) and (2.16)
with .7, r in place of .Z,. Also, defining 4, 7 using .7, r in (2.26), we have

J9B:1(f9) < e[Ca®@(f™) + Csg™.o; 7(g™)]

similarly to (2.27), with the same constants.
To conclude, we note that ¥((fg)"™) e L'. Indeed, we find

P((fg)") < (™) + g™

Moreover, o < C¥(¢™), Yo > 1, with a suitable constant C > 0, so that / = fg is
integrable over the set {x : /(x) > 1}. On the other hand, we have ¥(o) = g/,
Vo € [0,®(1)], so that /™ is integrable over the set {x : /(x) < 1}. Hence

lim |B|'" " [ I=o0,
[B|—o0 2B

/ g"dx < 2_"/ h™ dx.

Inserting this into (2.40) yields (2.2), concluding the proof.

and (1.1) implies
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3. LOCAL INEQUALITIES

Here we prove Lemma 1.2. We shall modify the proof of Lemma 2.1 following
[11, Section 6] and using some ideas of [4, 2]. First, we notice that we may assume

(3.1) /ng— 1.

Then, we introduce the functions defined in R”
(3.2) G=pg, H=ph V=pyq,

where p(x) = dist"/” (x, R"\Q). Arguing as in [11], see also [4, 2], it can be shown
that the following reverse Holder’s inequalities

(3.3) (/fB G’”)l/m < C{ | fo+ (]{B H’")l/m + ]i; V}

hold for all balls B of R", with a constant C = C(n,m) > 0. As for (2.22), we can
readily deduce from (3.3) the following

(3.4) / G gc{ ! fG+/ H”’+t’”1/ V}.
g>t 1G>t H>t V>t

Now we can repeat the argument of the proof of Lemma 2.1, starting with (3.4)
instead of (2.22), using that ¥ < 1 and (.«(¢™))" = 0 for ¢ < 1. In this way, we
end up with the following inequality

(35 /QG’”%(G"% < C{ /Q (/™) + /Q H’"&/e(H’”)}

replacing (2.40).
To conclude, we recall the normalization (3.1) and use that

U= 10 sup{p)”:x ey = 2

Wy Wy

inf{p(x)" : x € 6Q} =
and the A,-property of .o7,.

4. SOME APPLICATIONS

Here we study regularity of mappings of finite distortion. We shall recall only
a few fundamental concepts, referring the reader to [12] for a comprehensive
treatment. Given a domain Q of R”, n > 2, we consider mappings F in the
Sobolev class WIL’C"_I(Q; R") whose Jacobian Jr = det DF is nonnegative and
locally integrable in Q. A mapping F of this type is said to have finite inner
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distortion if the cofactor matrix D*F(x) of DF(x) vanishes a.e. in the zero set of
the Jacobian:

Jr(x)=0 = D’F(x)=0 ae.inQ.
Under this condition, we can define the inner distortion by

|D*F(x)|"
(4.1) Ki(x) = Ki(x,F) = Jp(x)" "’
1, otherwise.

if JF(X) >0,

Hereafter, we use the operator norm for matrices. The following distortion in-
equality obviously holds

(4.2) |D*F(x)|" < K;(x)Jr(x)"".

Similarly, F is said to have finite outer distortion if DF(x) vanishes a.e. in the
zero set of the Jacobian:

Jr(x)=0 = DF(x)=0 a..inQ.

We can define the outer distortion by

|IDF(x)|" .

— if J >0,
w3) Kol) = Ko(x. ) ={ sz * 7709

1, otherwise
and have the distortion inequality
(4.4) IDF(x)|" < Ko(x)Jr(x).

In dimension n = 2 the two notions coincide. In any dimension, a mapping of
finite outer distortion has clearly also finite inner distortion. On the contrary, if
n > 2, there exist mappings of finite inner distortion which do not have finite
outer distortion. In view of Hadamard’s inequality

Jr < |D*F|"""Y < |DF|"
we have K; > 1, Kp > 1. Moreover, if F has finite outer distortion,
(4.5) K'Y <Ko <K

In [4, 7, 8, 3] the integrability properties of DF and Jy are studied for a map-
ping F of finite outer distortion, under suitable integrability assumptions on K.
In particular, [8, Theorem 4.1] ensures local integrability of Jp.oZ(J, p)sﬂ under the
condition

(46) (D(ﬁKO) € Llloc(Q)v
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where f > 0, the notation and the assumptions of Introduction and Section 2
being in force. Here we give a higher integrability result for the Jacobian Jg of a
mapping of finite inner distortion F, under the hypothesis

(47) O(BK,"") € Liw(@),
which is weaker than (4.6) in view of first inequality in (4.5).

THEOREM 4.1. If condition (4.7) holds, then there exists ¢ >0 such that
Trt ()" € L (Q).

REMARK 4.2. Even assuming F of finite outer distortion, trying to deduce
Theorem 4.1 by the mentioned result of [8], if n > 2 we find the following diffi-
culty. By second inequality in (4.5), from assumption (4.7) we can only deduce

1/(n—1)?
(D(ﬁKO/( ) ) € Llloc(Q)

and hence we cannot apply [8, Theorem 4.1] since in general ¢ — log ®(¢'/ ("’”2)
does not satisfy the divergence condition.

Condition (4.7) and the local integrability of the Jacobian imply integrability
properties of |[D#F|. Indeed, recalling that ¥ = (<I)*)7l is concave and increasing,
from distortion inequality (4.2) we deduce

(4.8) w(D*F" )y < WKV e) < KOV ()
1 e
< B[d)(ﬁK}“ Uy )
and hence
(4.9) P(ID*F|"" V) e LL(Q).

Note that by (2.13) this means that |[D*F| e L] (Q), for all p < =,

We shall use isoperimetric inequality. For the mappings that we consider here,
a version of the inequality can be deduced by elementary arguments from the case
of smooth mappings.

LEMMA 4.3. For a given ball B = B(xq, R) let the mapping F € W'""1(B; R") n
L™ (B;R") verify Jp € L'(B) and obey to the rule of integration by parts, that is,

(4.10) /go(x)JF(x)dx:—/Fld¢AdF2A~-~/\dF”,
B B

for all p € C(B). Then
n/(n—1)
(4.11) / Jr(x) dx < C(n) ( / ID*F(x)| da)
B(xo,r) 0B(xq,r)

for a.e. r e (0,R).
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PRrOOF. Integrating by parts, we easily get

(4.12) / Tp(x) dx = / F1<X,VF2 X e x VF”> do,
B(xo,r) 2B(xo,7) |x]

for a.e. r € (0, R). On the other hand, if Fj, e C*(B;R"), h € N, converge to F in
whn=1(B;R") and a.e. in B, and verify ||F;||,, < ||F|,, then

/ Jp,(x)dx = / < JVF? X - x VFh”> do
B(xo,r) 0B(xq,r) | |

and

/ \D*Fy| do
0B(x,r)

converge to the corresponding expressions for F in L'(0, R) and hence (for a
subsequence) for a.e. r € (0, R). Therefore, (4.11) follows writing the isoperimet-
ric inequality for F;, and passing to the limit as & — oo. O

COROLLARY 4.4. If F e W' (Q;R") verifies W(|D*F|" " V) e L} (Q) and
J =0 a.e., then (4.11) holds, for all xy € Q.

ProOF. We truncate the components of F, setting for i =1,...,n and k > 0,
G| = sign(F") min{|F'|, K},

apply Lemma 4.3 to G = (G},...,G}'), and finally let kK — oo. Indeed, we have
|D* G| < |[D*F|, det DGy (x) = det DF(x) if for every component |Fi(x)| <k
and det DGy (x) = 0 otherwise. To show that each Gy obeys to the rule of integra-
tion by parts we use [6, Theorem 1.3 and Corollary 1.4]. We only remark that we
do not need to assume the technical condition

nt=2n+1

(4.13) [T <0< [P(r)], e p—

Indeed, first inequality in (4.13) holds because ¥ is concave. Second inequality in
(4.13) is used in [6] to show that

(4.14) Y1) > Cr’

for large values of ¢ and for a suitable constant, and to deduce

(4.15) inf 7!/~ 1>/ |D*F|dx =0
|D*F|>t

t>1
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from (4.9). Actually, (4.14) is a particular case of (2.13). On the other hand, (4.15)
follows by [9, Lemma 2.10]. O

PrROOF OF THEOREM 4.1. We shall prove that the Jacobian satisfies a reverse
Holder’s inequality and then apply Lemma 1.2.

There is no loss of generality in assuming that <I>(,8K,l/ (”71)) and Jr are inte-

grable in Q, hence W(|D*F|"/ "~ V) e LY(Q).
Now from (4.11), integrating with respect to r, we get

n/(n—1)
(4.16) ][ Jpdx < C(n)( ]Z ID*F| dx) ,
B 2B

for all balls B < 2B < Q. Hence recalling (4.2) we have the reverse Holder’s
inequality

(4.17) ( ][ Jr dx)l/m < ][ (Cl) KD gy g
B 2B
where m = %7 > 1. Therefore, we are in a position to apply Lemma 1.2 with
(4.18) g=J", f=(CmK """ h=o,
and C (11)71 S in place of 8, concluding the proof. O

REMARK 4.5. We add a few comments to what we said in Remark 1.3, where
we noted that optimality of Lemma 1.2 follows from examples in [8, Section 6].
Actually, these examples are given in terms of mappings of finite distortion; how-
ever, it is well known that such a mapping satisfies the estimate

(n+1)/n
(4.19) ][JF dx < C(n)(][ \DF|"/+) dx) ,
B 2B

see e.g. [10], which together with distortion inequality (4.4) obviously give reverse
inequalities of the type (1.1). Indeed, (4.19) follows clearly also from (4.16).

5. A COUNTEREXAMPLE

In this section we show that the Conjecture 1.1 has in general a negative answer.
Recall our notation: ®(¢) = exp(P(¢)), t > 1,

E(r)=1 —l—/j@dr,

and R(7) = P(1)/E(1).
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Actually, it is easy to see that the conjecture fails when P is very large. Indeed,
if P(1) =¢', then R(7) ~ 1%, hence we should have |DF| e L} ., while in general
we only have

log(e + |DF)
loglog(e¢ + |DF|)

|DF|*exp|e elLl,

for some ¢ > 0, see [8].

The case P(7) = e’ is the first example considered in the table in the Introduc-
tion. We remark that in all the other cases considered there, the conjecture has
a positive answer. Surprisingly, the conjecture fails also in the subexponential
integrability case.

PROPOSITION 5.1. There exist a function P : [0, o[ — [0, oo[ verifying divergence

condition (1.3) and a homeomorphism F of the closed ball B = B(0;1/e) onto itself,
having finite distortion K = Kr satisfying ®(K) € L'(B), but

(5.1) R(|DF|") ¢ Li,.(B), JlogE(J) ¢ L} (B).

The function P can be found of class C', concave, and verifying

. P@)
(5:2) Arg tP'(1)

=1.
In particular, for each 9 € )0, 1[, the function t — P(t)t~" is increasing in a neigh-

borhood of .

PRrROOF. We note that in (5.1), the second condition implies the first one, by the
theory of higher integrability of the Jacobian. This follows e.g. by [10, Theorem
1] and maximal inequalities.

To construct P, we shall use the function

t

l)=——7, 1= 07
o) log?(e + 1)
which is concave, strictly increasing, and verifies
0
9(7)
(5.4) lim ¢'(t)p(t) = o0, lim ¢'(¢)logt =0,
t— o0 t— o0
(5.5) tim 20 _ .

= 1'(1)
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We start setting P(7) = ¢, for all 7 € [0, 1]. Then, we shall define a sequence of inter-
vals [ak, b, k =0,1,..., with [ay,bo] = [0, 1], bx_1 < ax, Vk € N, and a; — o0.
Moreover, we shall define P recursively, setting

P'(bi-1)
' (bx-1)

(where P(byx_1) = P(bx—1—) and P'(bx—1) = P'(br—1—) depend on the definition
of P over [ay_1,bx_1]), and

(5.6) P(t) = P(bk_1) + [¢(I> — Q(bk_l)], t e [bk_l,ak]

(5.7) P(l) = P(ak) + P/(ak)(t — ak), te [ak,bk]

(where P(ayx) = P(ax—) and P’(ar) = P'(a;—) depend on the definition of P over
[br-1,ax]). Hence,

P:[0,00[— [0, 0]

is strictly increasing, concave of class C!, for any choice of the intervals [ay, by].
We shall set by, = ®(ax) = exp(P(ax)), for each k € N, and choose the points ax
so that

(5.8) limsup% =

Note that this implies divergence condition (1.3), as E cannot be bounded.
Assuming that we already defined a;_; and by = ®(ax_1), now we choose
ai. In view of (5.3), we easily see that E(ay) can be bounded independently of ay:

E(ay) = E(bg_1) + /bak @dr

P(by—1) 1"’(bk—1)/°0 o(7)
< E(bx1) + + dr.
(be-1) bir @' (bia) S, T2 ‘

On the other hand, as by concavity

P(1)
(5.9) i ="
we have
by T ! B
p0@) > [T e T )Pl - oga

P'(bk-1)
= (P/(bk—l) ® (ak)

{P’(bkl)

(p,(bk—l) [(ﬂ(ak) - ¢(bk—1)] - 10g ak}
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By (5.4) we see that E(®(ax)) can be made arbitrarily large. Therefore, we can
choose a; sufficiently large so that

(5.10) loglog E(®(ax)) = k[E(ax) + 1].
In order to get also (5.2), for ¢ € [by_1, ax], we compute

P(1) 19'(1) _§0(bk—1>{ P(bi—1)  br_19'(br-1)

PO ) T e P b)) plben)

In particular, making ¢(bx_1)/¢(ax) small enough, we can also impose the condi-
tion

(5.11) —1

(5.12)

IA

P(ay) akﬂﬂ’(ak)_l‘ 1
arP'(ar)  plak) k-

By (5.5) this implies

=1

. P(ak)
(5.13) hllcn P (ad)

On the other hand, on [ax, bx] the function P is affine with positive coefficients,
thus
P(1)

t
- tP'(1)

is decreasing. Hence by (5.9) we have also

. P(by)
5.14 1 =1
(5.14) P (by)
Finally, by (5.11) we conclude with (5.2).
Once we have defined the function P, we consider a radial stretching
F:B— B,

(5.15) F) = p()
where
r dr
(5.16) p(r):expl—l—/e Fl(r) , O<r<l/e.
Note that divergence condition implies
lim p(r) = 0.

r—0

It is clear that F is a homeomorphism of B onto itself. Moreover, p € C'(0,1/e)
and we can easily find (setting r = |x]):



48 L. GRECO AND G. ZECCA

DF(x) Zlﬂl—i— [p’(r) _M] x@x7 I = () {&} n—1)

r ¥ 2 r
r 1 r
p/(r) — /Q —_1 S & .
@ (1/r) r
This implies
pF| =20,
r

hence F € W''?(B), for all p < n. The distortion is

K=Ke =20 — o i1,

“ ')
thus clearly ®(K) = 1/r € L'(B). On the other hand, writing
G S
r ] om(1/r)
and observing that
lim% = o0,
r=0r® " (1/r)
we see that
1
(5.17) J=r > -
.

in a neighborhood of the origin. To show that Jlog E(J) ¢ L\ (B), therefore, it
suffices to show that

(5.18) /0 ()" log E(1 /1) dr = o0

for ry > 0 small enough. To this end, for large k € N, we take ¢ € Jax, bi[ so that

(5.19) - /a:kpg)df.

Thus E(cx) = E(ax) + 1 and by (5.10)

(5.20) loglog E(®(1)) = kE(t), Vt € [a, ck].
Hence

(5.21) log E(1/r) > exp[kE(® ' (1/r))],
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Now we observe that

o (1/r) >~(1/r) pr
15(@1>—1(1/r)):1+/1 @dzz 1+/1 © 4e.

T

Making the change of variable ¢ = ®(7) in the last integral, we have

1/r do
E@'(1/r) =1 +/ —_
@z [ oS
Hence, recalling the definition (5.16) of p, by (5.21) we get
1 1
5.22 log E(1/r) = p(r) %, <r< )
Moreover,

1/®(ay) n—= "
(5.23) /I/QW p%r)p(r)"_l_kdr—kin[/’(cp(lc,c)) k_p<<1>(1ak)) k]

We also note that

and

p(1/@(c)]" ™" oy [T do
[ )} =exp|(k )/m(ak) o® (o)

= exp (k —n) /Ck @dr}

ai
M- _ %k p _
Zexpkzn/ T(zr)dr}:exp{an}
L ay

Above, we used the inequality 27P’(7) > P(7) for large 7, and (5.19). In conclu-
sion, by (5.23) we have for large k

/1/<1>(ak) /( o( )nilikd
p(r)p(r r >
1/®(cx) k—n

and by (5.22) we end up with (5.18). O

REMARK 5.2. Since our mapping F in the proof of Proposition 5.1 is a radial
stretching, to show that in (5.1) the second condition implies the first one, we do
not really need the general theory of higher integrability of the Jacobian. Indeed,
recalling that p(1/e) = 1/e and E(1) = 1, it suffices to integrate by parts to find

1/e /e
[ oo g B ar < [ RGpa
0 0
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