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Mathematical Analysis — A version of Gehring lemma in Orlicz spaces, by Luigi

Greco and Gabriella Zecca.

Dedicated to the memory of Professor Giovanni Prodi.

Abstract. — We present a version of the Gehring lemma, showing higher integrability in the

scale of Orlicz spaces for a function g satisfying reverse Hölder’s inequalities of the type
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under suitable integrability conditions on f which do not imply boundedness. We describe explicitly
in the general case how the improved integrability of g depends on the assumptions on f , thus

extending results of [4, 2] which deal with f exponentially integrable.
We also present some applications of our result to the theory of mappings of finite inner distor-

tion.
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1. Introduction

In this paper we study higher integrability results which can be deduced as a
consequence of reverse Hölder’s inequalities of the type
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gm
�1=m

a
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fgþ
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2B

hm
�1=m

:ð1:1Þ

Here, m > 1, g and h are nonnegative functions in Lm
loc and (1.1) hold for all balls

B with 2B contained in a domain of Rn. In the case that f is a bounded function,
the celebrated Gehring Lemma ([5]) and its several extensions show that there ex-
ists a new exponent s > m, depending on n, m and k f kl, such that g a Ls

loc, if the
same is true for h. We refer to the survey paper [11] and references therein.

The present paper is dedicated to the memory of Professor Giovanni Prodi (28 luglio 1925–29
gennaio 2010). Also the first three issues of Rendiconti Lincei RLM 2011 were dedicated to the

memory of Professor Prodi.



On the other hand, studying problems with some kind of degeneracy naturally
leads to consider the case of f unbounded. In this case, we do not have the same
sort of improvement in the integrability properties of g as above. As far as we
know, the first result for f unbounded appeared recently, in [4], where regularity
of mappings of exponentially integrable distortion is studied. A key tool there
was a result showing that, if reverse Hölder’s inequalities (1.1) hold with
m ¼ 1þ 1=n, expðbf Þ a L1

loc for some b > 0, and hC 0, then g a Lm logcb Lloc,
with c ¼ cðnÞ > 0. This result indicates precisely how the degree of the improved
regularity depends on b, and is qualitatively sharp, in the sense that examples
show that in general g B Lm loga Lloc, for su‰ciently large a. The result has been
extended in [2] allowing for general m > 1 and the nonhomogeneous term involv-
ing h, and used again for applications to some regularity problems arising in the
theory of generalized Newtonian fluids.

In [7, 8] we extended the results of [4] concerning mappings of finite distortion
by considering more general conditions on the distortion. In those paper, higher
integrability is not deduced from reverse Hölder’s inequalities, but is proved
directly by means of some estimates which appear to be stronger than reverse
inequalities. In [9] similar arguments are used to deal with solutions to degenerate
elliptic equations.

A generalization of the results on reverse Hölder’s inequalities of [4, 2]
appeared in a recent paper by Clop-Koskela on the regularity properties of
mappings of finite distortion, see [3, Lemma 3.1]. They assume that f is subexpo-
nentially integrable, that is,

expðPðbf mÞÞ a L1
loc;ð1:2Þ

for b > 0 and an increasing function P, such that t 7! PðtÞ=t is decreasing and the
divergence condition holds Z l

t0

PðtÞ
t2

dt ¼ l;ð1:3Þ

for some t0 > 0. Typical examples are PðtÞ ¼ t,

PðtÞ ¼ t

logðeþ tÞ ; PðtÞ ¼ t

logðeþ tÞ log logðee þ tÞ ; . . .ð1:4Þ

It is well known that (1.3) is a threshold condition in the theory of mappings
of finite distortion, see e.g. [1, 12, 13]. However, for general P, conditions (1.2)
and (1.3) do not even imply f m locally integrable, so P should satisfy additional
conditions. Under suitable assumptions, in [3] it is proved that, if reverse Hölder’s
inequalities (1.1) hold, then gmEðgÞcb is locally integrable, where

EðtÞ ¼ 1þ
Z t

1

PðtÞ
t2

dt:ð1:5Þ

This expression E which governs the improved integrability of f in [3] is sug-
gested by the following conjecture of Iwaniec and Martin.
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Conjecture 1.1 ([12, pg. 267]). Let F : W ! C be a planar mapping of finite

distortion K, such that ePðKÞ a L1. Then, jDF j2 belongs locally to the Orlicz space
LRðWÞ, where

RðtÞ ¼ PðtÞ
�
1þ

Z t

1

PðtÞ
t2

dt
��1

:

The result of [3] would imply a positive answer to this conjecture. Unfortu-
nately, the assumptions are rather involved and restrictive. So, while it is not clear
whether the result of [3] applies to functions essentially di¤erent from those in
(1.4), it is easy to find cases which cannot be handled by it. As an example, this
happen for the function

PðtÞ ¼ t

logQðeþ tÞ
;ð1:6Þ

with 0 < Q < 1. This is not a technical point, because trying to use (1.5) with P
given by (1.6) would give too high improvement, by a power of logarithm, which
is the same as for PðtÞ ¼ t and does not hold in this case, see Example 1.7 and
Remark 1.3 below. Instead, this shows that E is not the correct expression to
describe the improved integrability in the general case.

We shall also provide a more drastic example, showing that actually Conjec-
ture 1.1 has a negative answer (see Section 5).

In this paper, using ideas of [7, 8, 9], we prove a general and sharp higher
integrability result which extends those of [4, 2, 3], and describes exactly the
improved integrability of g in terms of the integrability assumption on f .

For a given t0 > 0, we consider a positive, continuous and strictly increasing
function

P : ½t0;l½ ! ½Pðt0Þ;l½ð1:7Þ

diverging at l and verifying the divergence condition (1.3). We assume also that
the inverse function P�1 satisfies the D2-condition: There exists a constant C1 > 1
such that

P�1ð2sÞaC1P
�1ðsÞ; EsbPðt0Þ:ð1:8Þ

We define the function

AðsÞ ¼
1; for 0a sa expðPðt0ÞÞ

exp

Z log s

Pðt0Þ

ds

P�1ðsÞ

" #
; for sb expðPðt0ÞÞ

8>><
>>:ð1:9Þ

Notice that (1.3) implies Z l

Pðt0Þ

ds

P�1ðsÞ ¼ l;ð1:10Þ
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see [8], therefore we have

lim
s!l

AðsÞ ¼ l:ð1:11Þ

Moreover, since P�1 diverges at l the function A increases at l more slowly
than any power of s with positive exponent, see [9].

We state our main result.

Lemma 1.2. Let W be a ball of Rn. For given P such that (1.3), (1.8) hold, and a
constant m > 1, there exists a positive exponent e ¼ eðn;m;C1Þ with the following
property. Let f , g and h be nonnegative functions on W verifying g; h a LmðWÞ,
expðPðbf mÞÞ a L1ðWÞ for a constant b > 0, and (1.1) holds, for all balls BH
2BHW. Then, we have gmAðgmÞeb a L1

locðWÞ, if the same is true for h. Moreover,
for each 0 < s < 1 we haveZ

sW

gmA
� gm

gm
W

�eb
aCgm

W

Z
W

expðbf mÞ þ C

Z
W

hmA
� hm

gm
W

�eb
ð1:12Þ

where gm
W ¼

Z
W

gm, and C is a positive constant depending only on n, m, F, b and s.

Remark 1.3. The result of Lemma 1.2 is optimal in the following sense. Exam-
ples in [8, Section 6] show both that no improvement can be expected without the
divergence condition (1.3), and that in general gmAðgmÞa B L1

loc, for su‰ciently
large a. In particular, A given by formula (1.9) cannot be substituted by any
function whose logarithm grows faster than logA at l. More details are given
in Section 4.

Remark 1.4. We stress that the exponent e depends on P only through the
constant C1 of the D2-condition (1.8). On the other hand, formula (1.9) with
t 7! PðbtÞ instead of P yields Ab. So in Lemma 1.2 it su‰ces to consider the
case b ¼ 1. We can also vary the parameter t0; this will a¤ect only the constant
C in estimate (1.12), and means that only su‰ciently large values of f ðxÞ are
relevant.

Remark 1.5. Often, we do not compute explicitly P�1, but find an equivalent
function. It will be clear from our proof of Lemma 1.2 that we can replace P�1 by
Q in the definition (1.9) of A, for any Q verifying

P�1ðsÞa aQðsÞ; EsbPðt0Þ;

for some constant a > 0. More precisely, defining (for sb expðPðt0ÞÞ)

AðsÞ ¼ exp

Z log s

Pðt0Þ

ds

QðsÞ

" #
;

then under the assumption expðPð f mÞÞ a L1, we have

hmAðhmÞe=a a L1 ) gmAðgmÞe=a a L1:
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To illustrate better Lemma 1.2, we shall present several examples obtained
particularizing the function P.

Example 1.6. The result of Faraco-Koskela-Zhong [4] and that of Bildhauer-
Fuchs-Zhong [2] are readily obtained in the case

PðtÞ ¼ t:ð1:13Þ

Example 1.7. Here we examine the function defined in (1.6), with 0 < Q < 1.
We find (see Remark 1.5)

AðsÞ ¼ exp½ðlog log sÞ1�Q�:ð1:14Þ

More examples are contained in the following table, where we specify the
asymptotic behavior of PðtÞ as t ! l, and that of AðtÞ in the sense of Remark
1.5.

P A

e t exp
log t

log log t

h i
tg, g > 1 exp½log1�1=g t�

t log t

tðlog tÞ�Q, 0 < Q < 1 exp½ðlog log tÞ1�Q�
tðlog tÞ�1 log log t

tðlog tÞ�1ðlog log tÞ�1 . . . ðlog . . . log
zfflfflfflfflfflffl}|fflfflfflfflfflffl{k

tÞ�Q;
0 < Q < 1

exp½ðlog log . . . log
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{kþ1

tÞ1�Q�

tðlog tÞ�1ðlog log tÞ�1 . . . ðlog . . . log
zfflfflfflfflfflffl}|fflfflfflfflfflffl{k

tÞ�1 log log . . . log
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{kþ1

t

We conclude this introduction mentioning that in Section 4 we shall give some
applications to the study of mappings of finite distortion.

2. Reverse Hölder’s inequalities in Rn

In this section, we prove a higher integrability result for functions defined in Rn.
From this, in Section 3 we will deduce Lemma 1.2. To shorten notation, we
introduce the function

F : ½0;l½ ! ½0;l½
by setting

FðtÞ ¼
0; for 0a t < t0

expðPðtÞÞ; for tb t0

�
ð2:1Þ
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Lemma 2.1. Let f , g and h be nonnegative functions on Rn such that g; h a
LmðRnÞ, Fðbf mÞ a L1ðRnÞ for a constant b > 0, and (1.1) holds, for all balls B
of Rn. Under this assumptions, we have gmAðgmÞeb a L1ðRnÞ for some e ¼
eðn;m;C1Þ > 0, if the same is true for h. Moreover, we have the uniform estimateZ

Rn

gmAðgmÞeb aC

Z
Rn

½Fðbf mÞ þ hmAðhmÞeb�:ð2:2Þ

2.1. Preliminary results. We note explicitly some consequences of the
D2-condition (1.8). First, we have

FðtÞ2 aFðC1tÞ; Etb 0:ð2:3Þ

Similarly, for every Q a �0; 1½, there exists a constant C2 > 0 such that

P�1ðlog smÞaC2P
�1ðQ log smÞ; Esb expðPðt0Þ=ðmQÞÞ:ð2:4Þ

We shall take

Q ¼ m� 1

2m
ð2:5Þ

so that C2 ¼ C2ðm;C1Þ.
Moreover, (1.8) implies

lim
t!l

PðtÞ
log t

¼ l:

Hence, without loss of generality, we may assume that

t 7! FðtÞ
t

is increasing and diverging at l:ð2:6Þ

Let now

F�ðsÞ ¼ sup
tb0

fst�FðtÞg; sb 0;ð2:7Þ

be the conjugate function to F. Condition (2.6) implies that F� is invertible. We
denote by

C ¼ ðF�Þ�1 : ½0;l½ ! ½0;l½

its inverse function, which is concave, strictly increasing and verifies Cð0Þ ¼ 0.
Since FðtÞ ¼ 0 for 0a t < t0, we easily find

CðsÞ ¼ s

t0
; Es a ½0;Fðt0Þ�:ð2:8Þ

34 l. greco and g. zecca



We need to recall more properties of C, see [8, 9]. First, we have

s

P�1ðlog sÞ aCðsÞa 2
s

P�1ðlog sÞ ; EsbFðt0Þ:ð2:9Þ

Obviously, (2.9) implies

lim
s!l

CðsÞ
s

¼ 0;ð2:10Þ

and divergence condition (1.3) on P yields a similar condition for C:Z l

1

CðsÞ
s2

ds ¼ l:ð2:11Þ

Moreover, in view of D2-condition (1.8), (2.9) implies that for every Q a �0; 1½,
there exists a constant C ¼ CðQ;CÞ > 0 such that

CðsQÞ
sQ

aC
CðsÞ
s

; Es > 0ð2:12Þ

and

sQ aCCðsÞ; Esb 1:ð2:13Þ

We shall consider powers of the function A defined by (1.9). To this aim, it
will be easier to work with a modified version of the function. Given e > 0, we
define

AeðsÞ ¼
1; for 0a saS

exp e

Z log s

logS

ds

P�1ðsÞ

� �
; for sbS

8><
>:ð2:14Þ

where SbFðt0Þ. Clearly, for every sb 0,

AeðsÞaAðsÞe aAeðsÞ exp e

Z logS

Pðt0Þ

ds

P�1ðsÞ

" #
:

The parameter S will be taken large enough depending on e, as described in the
following

Lemma 2.2. For each e > 0 and k > 0, there exists S0 bFðt0Þ2m=ðm�1Þ
such that,

if SbS0, then

s 7! AeðsÞ
s

is decreasing on �0;l½ð2:15Þ
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and

AeðF�ðksÞÞa 2AeðsÞ; Esb 0:ð2:16Þ

Proof. To show (2.15), for sbS we write

AeðsÞ
s

¼ 1

S
exp

Z log s

logS

� e

P�1ðsÞ � 1
�
ds

� �
;ð2:17Þ

hence it su‰ces to take S0 such that P�1ðsÞ > e, Esb logS0.
Inequality (2.16) will be deduced from

lim
s!l

AðF�ðksÞÞ
AðsÞ ¼ 1:ð2:18Þ

To prove (2.18) we first note that (2.10) implies

lim
s!l

F�ðksÞ
s

¼ l:

Hence, for s large enough we have F�ðksÞ > s, and by (1.9), (2.9)

AðF�ðksÞÞ
AðsÞ ¼ exp

Z F�ðksÞ

s

ds

sP�1ðlog sÞ

" #
a exp

Z F�ðksÞ

s

CðsÞ
s2

ds

" #

therefore it su‰ces to show that the exponent in the last term converges to 0. To
this end, integrating by parts and using (2.10) we can replace the integrand
CðsÞ=s2 by C 0ðsÞ=s, and then by the change of variable t ¼ CðsÞ, we arrive at
the integral Z ks

CðsÞ

dt

F�ðtÞ ¼
Z ks

CðsÞ

t

F�ðtÞ
dt

t
:ð2:19Þ

Since t 7! t=F�ðtÞ is decreasing, we see that the integral in (2.19) is controlled
by

CðsÞ
s

log
ks

CðsÞ ¼
CðsÞ
s

log k �CðsÞ
s

log
CðsÞ
s

ð2:20Þ

which clearly converges to 0 as desired.
Now, by (2.18), we find S0 bFðt0Þ such that

sbS0 ) AðF�ðksÞÞ
AðsÞ

� �e
< 2:ð2:21Þ
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Let us check that (2.16) holds for SbS0. Inequality (2.16) is trivial if F
�ðksÞaS,

and reduces directly to (2.21) if sbS. Thus, we assume F�ðksÞ > S > s. In this
case, we have

AeðF�ðksÞÞ
AeðsÞ

¼ AðF�ðksÞÞ
AðSÞ

� �e
a

AðF�ðkSÞÞ
AðSÞ

� �e

and we conclude using (2.21) again. r

2.2. Proof of Lemma 2.1. We may assume f b 1, and consider only the case
b ¼ 1. Our starting point is the following estimate for integrals on level sets of
the functions involved, which is a consequence of reverse Hölder’s inequalities:

Z
g>t

gm dxaC3t
m�1

Z
fg>t

fg dxþ C3

Z
h>t

hm dx;ð2:22Þ

with C3 depending only on n and m. This can be proved easily arguing as in
Section 3 of [11], using Calderón-Zygmund decomposition and Vitali’s Covering
Lemma.

Now we multiply both sides of (2.22) by ðAeðtmÞÞ0 and integrate w.r.t. t over
ð0;lÞ. Using Fubini theorem, we have

Z l

0

ðAeðtmÞÞ0 dt
Z
g>t

gm dx ¼
Z
Rn

gm½AeðgmÞ � 1� dxð2:23Þ
Z l

0

ðAeðtmÞÞ0 dt
Z
h>t

hm dx ¼
Z
Rn

hm½AeðhmÞ � 1� dx:ð2:24Þ

On the other hand,

Z l

0

tm�1ðAeðtmÞÞ0 dt
Z
fg>t

fg dx ¼
Z
Rn

ð fgÞBeð fgÞ dx;ð2:25Þ

where

BeðsÞ ¼
Z s

0

tm�1ðAeðtmÞÞ0 dt:ð2:26Þ

Now we need the following Young-type inequality.

Lemma 2.3. We have

fgBeð fgÞa e½C4Fð f mÞ þ C5g
mAeðgmÞ�;ð2:27Þ

for some positive constants C4 ¼ C4ðm;CÞ and C5 ¼ C5ðm;C1Þ.
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Proof. Clearly BeðsÞ ¼ 0 for saS1=m. For s > S1=m, we easily find

BeðsÞ ¼ e

Z s

S 1=m

mAeðtmÞtm�2

P�1ðlog tmÞ dta eAeðsmÞ
Z s

S 1=m

mtm�2

P�1ðlog tmÞ dt:ð2:28Þ

Moreover, as Sb 1,Z s

S 1=m

tm�2

P�1ðlog tmÞ dta
Z s

S 1=m

tðm�1Þ=2tðm�1Þ=2�1

P�1ðlog tðm�1Þ=2Þ dt:ð2:29Þ

Since s 7! s
P�1ðlog sÞ is increasing, we deduceZ s

S1=m

tm�2

P�1ðlog tmÞ dta
2

m� 1

sm�1

P�1
�
m�1
2m log sm

� :ð2:30Þ

Hence, using (2.4) with (2.5), and (2.9), we find

sBeðsÞa e
2mC2

m� 1

smAeðsmÞ
P�1ðlog smÞ a e

2mC2

m� 1
CðsmÞAeðsmÞ:ð2:31Þ

We define for tb 0 the function

FðtÞ ¼ CðtÞAeðtÞ:ð2:32Þ

By the properties of C and Ae, the function t 7! F ðtÞ=t2 is decreasing, so we have
the inequality

F ðaþ bÞa 2½FðaÞ þ FðbÞ�;ð2:33Þ

for every ab 0 and bb 0. Moreover, for tb 1,

F ðtÞaF ð1Þt2 ¼ Cð1Þt2:ð2:34Þ

By Young inequality with the couple F and F�, we get

f mgm
aFð f m=C1Þ þF�ðC1g

mÞ:ð2:35Þ

Applying F to both sides yields

Cðð fgÞmÞAeðð fgÞmÞ ¼ F ðð fgÞmÞaF ½Fð f m=C1Þ þF�ðC1g
mÞ�ð2:36Þ

a 2½FðFð f m=C1ÞÞ þ F ðF�ðC1g
mÞÞ�:

We have also from (2.34) and (2.3)

F ðFð f m=C1ÞÞaCð1ÞFð f m=C1Þ2 aCð1ÞFð f mÞ:ð2:37Þ

We estimate F ðF�ðC1g
mÞÞ by (2.16). Accordingly,

F ðF�ðC1g
mÞÞ ¼ C1g

mAeðF�ðC1g
mÞÞa 2C1g

mAeðgmÞ:ð2:38Þ
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By (2.31), (2.36), (2.37) and (2.38), we see that (2.27) holds with

C4 ¼ 4C2Cð1Þ m

m� 1
and C5 ¼ 8C2C1

m

m� 1
: r

By (2.22), (2.23), (2.24), (2.25) and (2.27), we obtainZ
Rn

gm½AeðgmÞ � 1�aC3C5e

Z
Rn

gmAeðgmÞ þ C3C4e

Z
Rn

Fð f mÞð2:39Þ

þ C3

Z
Rn

hm½AeðhmÞ � 1�:

Choosing e so that C3C5e < 1, the first integral in the right hand side of (2.39) can
be absorbed in the left hand side and we getZ

Rn

gmAeðgmÞaC

Z
Rn

gm þ C

Z
Rn

Fð f mÞð2:40Þ

þ C

Z
Rn

hm½AeðhmÞ � 1�;

provided we already know that gmAeðgmÞ a L1ðRnÞ. To get rid of this condition,
we apply the above argument with a truncation of Ae:

Ae;TðtÞ ¼ minfAeðtÞ;AeðTÞg

and then let T ! l. In fact, we immediately find properties (2.15) and (2.16)
with Ae;T in place of Ae. Also, defining Be;T using Ae;T in (2.26), we have

fgBe;Tð fgÞa e½C4Fð f mÞ þ C5g
mAe;TðgmÞ�

similarly to (2.27), with the same constants.
To conclude, we note that Cðð fgÞmÞ a L1. Indeed, we find

Cðð fgÞmÞaFð f mÞ þ gm:

Moreover, saCCðsmÞ, Esb 1, with a suitable constant C > 0, so that l ¼ fg is
integrable over the set fx : lðxÞb 1g. On the other hand, we have CðsÞ ¼ s=t0,
Es a ½0;Fðt0Þ�, so that l m is integrable over the set fx : lðxÞa 1g. Hence

lim
jBj!l

jBj1=m�1

Z
2B

l ¼ 0;

and (1.1) implies Z
Rn

gm dxa 2�n

Z
Rn

hm dx:

Inserting this into (2.40) yields (2.2), concluding the proof.
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3. Local inequalities

Here we prove Lemma 1.2. We shall modify the proof of Lemma 2.1 following
[11, Section 6] and using some ideas of [4, 2]. First, we notice that we may assumeZ

W

gm ¼ 1:ð3:1Þ

Then, we introduce the functions defined in Rn

G ¼ rg; H ¼ rh; V ¼ wW;ð3:2Þ

where rðxÞ ¼ distn=mðx;RnnWÞ. Arguing as in [11], see also [4, 2], it can be shown
that the following reverse Hölder’s inequalities

�Z
B

Gm
�1=m

aC

Z
2B

fG þ
�Z

2B

Hm
�1=m

þ
Z
2B

V

� 	
ð3:3Þ

hold for all balls B of Rn, with a constant C ¼ Cðn;mÞ > 0. As for (2.22), we can
readily deduce from (3.3) the followingZ

g>t

Gm
aC tm�1

Z
fG>t

fG þ
Z
H>t

Hm þ tm�1

Z
V>t

V

� 	
:ð3:4Þ

Now we can repeat the argument of the proof of Lemma 2.1, starting with (3.4)
instead of (2.22), using that V a 1 and ðAeðtmÞÞ0 ¼ 0 for ta 1. In this way, we
end up with the following inequalityZ

W

GmAeðGmÞaC

Z
W

Fð f mÞ þ
Z
W

HmAeðHmÞ
� 	

ð3:5Þ

replacing (2.40).
To conclude, we recall the normalization (3.1) and use that

inffrðxÞm : x a sWg ¼ ð1� sÞn

on

jWj; supfrðxÞm : x a Wg ¼ jWj
on

;

and the D2-property of Ae.

4. Some Applications

Here we study regularity of mappings of finite distortion. We shall recall only
a few fundamental concepts, referring the reader to [12] for a comprehensive
treatment. Given a domain W of Rn, nb 2, we consider mappings F in the
Sobolev class W

1;n�1
loc ðW;RnÞ whose Jacobian JF ¼ detDF is nonnegative and

locally integrable in W. A mapping F of this type is said to have finite inner
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distortion if the cofactor matrix DaF ðxÞ of DFðxÞ vanishes a.e. in the zero set of
the Jacobian:

JF ðxÞ ¼ 0 ) DaFðxÞ ¼ 0 a:e: in W:

Under this condition, we can define the inner distortion by

KI ðxÞ ¼ KI ðx;F Þ ¼
jDaF ðxÞjn

JF ðxÞn�1
; if JF ðxÞ > 0;

1; otherwise:

8><
>:ð4:1Þ

Hereafter, we use the operator norm for matrices. The following distortion in-
equality obviously holds

jDaF ðxÞjn aKI ðxÞJF ðxÞn�1:ð4:2Þ

Similarly, F is said to have finite outer distortion if DF ðxÞ vanishes a.e. in the
zero set of the Jacobian:

JF ðxÞ ¼ 0 ) DF ðxÞ ¼ 0 a:e: in W:

We can define the outer distortion by

KOðxÞ ¼ KOðx;F Þ ¼
jDF ðxÞjn

JF ðxÞ
; if JF ðxÞ > 0;

1; otherwise

8<
:ð4:3Þ

and have the distortion inequality

jDF ðxÞjn aKOðxÞJF ðxÞ:ð4:4Þ

In dimension n ¼ 2 the two notions coincide. In any dimension, a mapping of
finite outer distortion has clearly also finite inner distortion. On the contrary, if
n > 2, there exist mappings of finite inner distortion which do not have finite
outer distortion. In view of Hadamard’s inequality

JF a jDaF jn=ðn�1Þ
a jDF jn

we have KI b 1, KO b 1. Moreover, if F has finite outer distortion,

K
1=ðn�1Þ
I aKO aKn�1

I :ð4:5Þ

In [4, 7, 8, 3] the integrability properties of DF and JF are studied for a map-
ping F of finite outer distortion, under suitable integrability assumptions on KO.
In particular, [8, Theorem 4.1] ensures local integrability of JFAðJF Þeb under the
condition

FðbKOÞ a L1
locðWÞ;ð4:6Þ
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where b > 0, the notation and the assumptions of Introduction and Section 2
being in force. Here we give a higher integrability result for the Jacobian JF of a
mapping of finite inner distortion F , under the hypothesis

FðbK 1=ðn�1Þ
I Þ a L1

locðWÞ;ð4:7Þ

which is weaker than (4.6) in view of first inequality in (4.5).

Theorem 4.1. If condition (4.7) holds, then there exists e > 0 such that
JFAðJF Þbe a L1

locðWÞ.

Remark 4.2. Even assuming F of finite outer distortion, trying to deduce
Theorem 4.1 by the mentioned result of [8], if n > 2 we find the following di‰-
culty. By second inequality in (4.5), from assumption (4.7) we can only deduce

FðbK1=ðn�1Þ2
O Þ a L1

locðWÞ

and hence we cannot apply [8, Theorem 4.1] since in general t 7! logFðt1=ðn�1Þ2Þ
does not satisfy the divergence condition.

Condition (4.7) and the local integrability of the Jacobian imply integrability
properties of jDaF j. Indeed, recalling that C ¼ ðF�Þ�1 is concave and increasing,
from distortion inequality (4.2) we deduce

CðjDaF jn=ðn�1ÞÞaCðK 1=ðn�1Þ
I JF ÞaK

1=ðn�1Þ
I CðJF Þð4:8Þ

a
1

b
½FðbK 1=ðn�1Þ

I Þ þ JF �

and hence

CðjDaF jn=ðn�1ÞÞ a L1
locðWÞ:ð4:9Þ

Note that by (2.13) this means that jDaF j a L
p
locðWÞ, for all p < n

n�1 .
We shall use isoperimetric inequality. For the mappings that we consider here,

a version of the inequality can be deduced by elementary arguments from the case
of smooth mappings.

Lemma 4.3. For a given ball B ¼ Bðx0;RÞ let the mapping F a W 1;n�1ðB;RnÞB
LlðB;RnÞ verify JF a L1ðBÞ and obey to the rule of integration by parts, that is,Z

B

jðxÞJF ðxÞ dx ¼ �
Z
B

F 1 djbdF 2b� � �bdF n;ð4:10Þ

for all j a Cl
0 ðBÞ. ThenZ

Bðx0; rÞ
JF ðxÞ dxaCðnÞ

�Z
qBðx0; rÞ

jDaF ðxÞj ds
�n=ðn�1Þ

ð4:11Þ

for a.e. r a ð0;RÞ.
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Proof. Integrating by parts, we easily getZ
Bðx0; rÞ

JF ðxÞ dx ¼
Z
qBðx0; rÞ

F 1 x

jxj ;‘F
2 � � � � � ‘F n


 �
ds;ð4:12Þ

for a.e. r a ð0;RÞ. On the other hand, if Fh a ClðB;RnÞ, h a N, converge to F in
W 1;n�1ðB;RnÞ and a.e. in B, and verify kFhkla kFkl, then

Z
Bðx0; rÞ

JFh
ðxÞ dx ¼

Z
qBðx0; rÞ

F 1
h

x

jxj ;‘F
2
h � � � � � ‘F n

h


 �
ds

and Z
qBðx0; rÞ

jDaFhj ds

converge to the corresponding expressions for F in L1ð0;RÞ and hence (for a
subsequence) for a.e. r a ð0;RÞ. Therefore, (4.11) follows writing the isoperimet-
ric inequality for Fh and passing to the limit as h ! l. r

Corollary 4.4. If F a W
1;n�1
loc ðW;RnÞ verifies CðjDaF jn=ðn�1ÞÞ a L1

locðWÞ and
Jb 0 a.e., then (4.11) holds, for all x0 a W.

Proof. We truncate the components of F , setting for i ¼ 1; . . . ; n and k > 0,

Gi
k ¼ signðF iÞminfjF ij; kg;

apply Lemma 4.3 to Gk ¼ ðG1
k ; . . . ;G

n
k Þ, and finally let k ! l. Indeed, we have

jDaGkja jDaF j, detDGkðxÞ ¼ detDFðxÞ if for every component jF iðxÞja k
and detDGkðxÞ ¼ 0 otherwise. To show that each Gk obeys to the rule of integra-
tion by parts we use [6, Theorem 1.3 and Corollary 1.4]. We only remark that we
do not need to assume the technical condition

½t�1CðtÞ�0 a 0a ½t�sCðtÞ�0; s ¼ n2 � 2nþ 1

n2 � n� 1
:ð4:13Þ

Indeed, first inequality in (4.13) holds because C is concave. Second inequality in
(4.13) is used in [6] to show that

CðtÞbCtsð4:14Þ

for large values of t and for a suitable constant, and to deduce

inf
tb1

t1=ðn�1Þ
Z
jDaF j>t

jDaF j dx ¼ 0ð4:15Þ
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from (4.9). Actually, (4.14) is a particular case of (2.13). On the other hand, (4.15)
follows by [9, Lemma 2.10]. r

Proof of Theorem 4.1. We shall prove that the Jacobian satisfies a reverse
Hölder’s inequality and then apply Lemma 1.2.

There is no loss of generality in assuming that FðbK 1=ðn�1Þ
I Þ and JF are inte-

grable in W, hence CðjDaF jn=ðn�1ÞÞ a L1ðWÞ.
Now from (4.11), integrating with respect to r, we getZ

B

JF dxaCðnÞ
�Z

2B

jDaF j dx
�n=ðn�1Þ

;ð4:16Þ

for all balls BH 2BHW. Hence recalling (4.2) we have the reverse Hölder’s
inequality

�Z
B

JF dx
�1=m

a

Z
2B

ðCðnÞK 1=ðn�1Þ
I JF Þ1=m dx;ð4:17Þ

where m ¼ n
n�1 > 1. Therefore, we are in a position to apply Lemma 1.2 with

g ¼ J
1=m
F ; f ¼ ðCðnÞK 1=ðn�1Þ

I Þ1=m; h ¼ 0;ð4:18Þ

and CðnÞ�1
b in place of b, concluding the proof. r

Remark 4.5. We add a few comments to what we said in Remark 1.3, where
we noted that optimality of Lemma 1.2 follows from examples in [8, Section 6].
Actually, these examples are given in terms of mappings of finite distortion; how-
ever, it is well known that such a mapping satisfies the estimate

Z
B

JF dxaCðnÞ
�Z

2B

jDF jn
2=ðnþ1Þ

dx
�ðnþ1Þ=n

;ð4:19Þ

see e.g. [10], which together with distortion inequality (4.4) obviously give reverse
inequalities of the type (1.1). Indeed, (4.19) follows clearly also from (4.16).

5. A counterexample

In this section we show that the Conjecture 1.1 has in general a negative answer.
Recall our notation: FðtÞ ¼ expðPðtÞÞ, tb 1,

EðtÞ ¼ 1þ
Z t

1

PðtÞ
t2

dt;

and RðtÞ ¼ PðtÞ=EðtÞ.
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Actually, it is easy to see that the conjecture fails when P is very large. Indeed,
if PðtÞ ¼ e t, then RðtÞP t2, hence we should have jDF j a L4

loc, while in general
we only have

jDF j2 exp e
logðeþ jDF jÞ

log logðee þ jDF jÞ

� �
a L1

loc

for some e > 0, see [8].
The case PðtÞ ¼ e t is the first example considered in the table in the Introduc-

tion. We remark that in all the other cases considered there, the conjecture has
a positive answer. Surprisingly, the conjecture fails also in the subexponential
integrability case.

Proposition 5.1. There exist a function P : ½0;l½ ! ½0;l½ verifying divergence
condition (1.3) and a homeomorphism F of the closed ball B ¼ Bð0; 1=eÞ onto itself,
having finite distortion K ¼ KF satisfying FðKÞ a L1ðBÞ, but

RðjDF jnÞ B L1
locðBÞ; J logEðJÞ B L1

locðBÞ:ð5:1Þ

The function P can be found of class C1, concave, and verifying

lim
t!l

PðtÞ
tP 0ðtÞ ¼ 1:ð5:2Þ

In particular, for each Q a �0; 1½, the function t 7! PðtÞt�Q is increasing in a neigh-
borhood of l.

Proof. We note that in (5.1), the second condition implies the first one, by the
theory of higher integrability of the Jacobian. This follows e.g. by [10, Theorem
1] and maximal inequalities.

To construct P, we shall use the function

jðtÞ ¼ t

log2ðeþ tÞ
; tb 0;

which is concave, strictly increasing, and verifies

Z l

1

jðtÞ
t2

dt < l;ð5:3Þ

lim
t!l

j 0ðtÞjðtÞ ¼ l; lim
t!l

j 0ðtÞ log t ¼ 0;ð5:4Þ

lim
t!l

jðtÞ
tj 0ðtÞ ¼ 1:ð5:5Þ
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We start setting PðtÞ ¼ t, for all t a ½0; 1�. Then, we shall define a sequence of inter-
vals ½ak; bk�, k ¼ 0; 1; . . . , with ½a0; b0� ¼ ½0; 1�, bk�1 < ak, Ek a N, and ak ! l.
Moreover, we shall define P recursively, setting

PðtÞ ¼ Pðbk�1Þ þ
P 0ðbk�1Þ
j 0ðbk�1Þ

½jðtÞ � jðbk�1Þ�; t a ½bk�1; ak�ð5:6Þ

(where Pðbk�1Þ ¼ Pðbk�1�Þ and P 0ðbk�1Þ ¼ P 0ðbk�1�Þ depend on the definition
of P over ½ak�1; bk�1�), and

PðtÞ ¼ PðakÞ þ P 0ðakÞðt� akÞ; t a ½ak; bk�ð5:7Þ

(where PðakÞ ¼ Pðak�Þ and P 0ðakÞ ¼ P 0ðak�Þ depend on the definition of P over
½bk�1; ak�). Hence,

P : ½0;l½ ! ½0;l½

is strictly increasing, concave of class C1, for any choice of the intervals ½ak; bk�.
We shall set bk ¼ FðakÞ ¼ expðPðakÞÞ, for each k a N, and choose the points ak
so that

lim sup
t!l

log logEðFðtÞÞ
EðtÞ ¼ l:ð5:8Þ

Note that this implies divergence condition (1.3), as E cannot be bounded.
Assuming that we already defined ak�1 and bk�1 ¼ Fðak�1Þ, now we choose

ak. In view of (5.3), we easily see that EðakÞ can be bounded independently of ak:

EðakÞ ¼ Eðbk�1Þ þ
Z ak

bk�1

PðtÞ
t2

dt

aEðbk�1Þ þ
Pðbk�1Þ
bk�1

þ P 0ðbk�1Þ
j 0ðbk�1Þ

Z l

bk�1

jðtÞ
t2

dt:

On the other hand, as by concavity

PðtÞ
tP 0ðtÞ b 1;ð5:9Þ

we have

EðFðakÞÞb
Z bk

ak

PðtÞ
t2

dtb
P 0ðbk�1Þ
j 0ðbk�1Þ

j 0ðakÞ½PðakÞ � log ak�

b
P 0ðbk�1Þ
j 0ðbk�1Þ

j 0ðakÞ
P 0ðbk�1Þ
j 0ðbk�1Þ

½jðakÞ � jðbk�1Þ� � log ak

� 	
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By (5.4) we see that EðFðakÞÞ can be made arbitrarily large. Therefore, we can
choose ak su‰ciently large so that

log logEðFðakÞÞb k½EðakÞ þ 1�:ð5:10Þ

In order to get also (5.2), for t a ½bk�1; ak�, we compute

PðtÞ
tP 0ðtÞ

tj 0ðtÞ
jðtÞ � 1 ¼ jðbk�1Þ

jðtÞ
Pðbk�1Þ

bk�1P 0ðbk�1Þ
bk�1j

0ðbk�1Þ
jðbk�1Þ

� 1

� �
ð5:11Þ

In particular, making jðbk�1Þ=jðakÞ small enough, we can also impose the condi-
tion

PðakÞ
akP 0ðakÞ

akj
0ðakÞ

jðakÞ
� 1

����
����a 1

k
:ð5:12Þ

By (5.5) this implies

lim
k

PðakÞ
akP 0ðakÞ

¼ 1:ð5:13Þ

On the other hand, on ½ak; bk� the function P is a‰ne with positive coe‰cients,
thus

t 7! PðtÞ
tP 0ðtÞ

is decreasing. Hence by (5.9) we have also

lim
k

PðbkÞ
bkP 0ðbkÞ

¼ 1:ð5:14Þ

Finally, by (5.11) we conclude with (5.2).
Once we have defined the function P, we consider a radial stretching

F : B ! B,

FðxÞ ¼ rðjxjÞ x

jxj ;ð5:15Þ

where

rðrÞ ¼ exp �1�
Z 1=r

e

dt

tF�1ðtÞ

" #
; 0 < ra 1=e:ð5:16Þ

Note that divergence condition implies

lim
r!0

rðrÞ ¼ 0:

It is clear that F is a homeomorphism of B onto itself. Moreover, r a C1ð0; 1=eÞ
and we can easily find (setting r ¼ jxj):
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DF ðxÞ ¼ rðrÞ
r

Iþ r 0ðrÞ � rðrÞ
r

� �
xn x

r2
; JðxÞ ¼ r 0ðrÞ rðrÞ

r

� �n�1

;

r 0ðrÞ ¼ rðrÞ
r

1

F�1ð1=rÞ
a

rðrÞ
r

:

This implies

jDF j ¼ rðrÞ
r

;

hence F a W 1;pðBÞ, for all p < n. The distortion is

K ¼ KF ¼ rðrÞ
rr 0ðrÞ ¼ F�1ð1=rÞ;

thus clearly FðKÞ ¼ 1=r a L1ðBÞ. On the other hand, writing

J ¼ rðrÞ
r

� �n 1

F�1ð1=rÞ
and observing that

lim
r!0

rðrÞn

rF�1ð1=rÞ
¼ l;

we see that

Jb r1�n
b

1

r
ð5:17Þ

in a neighborhood of the origin. To show that J logEðJÞ B L1
locðBÞ, therefore, it

su‰ces to show that Z r0

0

r 0ðrÞrðrÞn�1 logEð1=rÞ dr ¼ lð5:18Þ

for r0 > 0 small enough. To this end, for large k a N, we take ck a �ak; bk½ so that

1 ¼
Z ck

ak

PðtÞ
t2

dt:ð5:19Þ

Thus EðckÞ ¼ EðakÞ þ 1 and by (5.10)

log logEðFðtÞÞb kEðtÞ; Et a ½ak; ck�:ð5:20Þ

Hence

logEð1=rÞb exp½kEðF�1ð1=rÞÞ�; 1

FðckÞ
a ra

1

FðakÞ
:ð5:21Þ
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Now we observe that

EðF�1ð1=rÞÞ ¼ 1þ
Z F�1ð1=rÞ

1

PðtÞ
t2

dtb 1þ
Z F�1ð1=rÞ

1

P 0ðtÞ
t

dt:

Making the change of variable s ¼ FðtÞ in the last integral, we have

EðF�1ð1=rÞÞb 1þ
Z 1=r

e

ds

sF�1ðsÞ
:

Hence, recalling the definition (5.16) of r, by (5.21) we get

logEð1=rÞb rðrÞ�k;
1

FðckÞ
a ra

1

FðakÞ
:ð5:22Þ

Moreover,Z 1=FðakÞ

1=FðckÞ
r 0ðrÞrðrÞn�1�k

dr ¼ 1

k � n
r
� 1

FðckÞ

�n�k

� r
� 1

FðakÞ

�n�k
� �

ð5:23Þ

We also note that

r
� 1

FðakÞ

�n�k

b ek�n

and

rð1=FðckÞÞ
rð1=FðakÞÞ

� �n�k

¼ exp ðk � nÞ
Z FðckÞ

FðakÞ

ds

sF�1ðsÞ

" #

¼ exp ðk � nÞ
Z ck

ak

P 0ðtÞ
t

dt

� �

b exp
k � n

2

Z ck

ak

PðtÞ
t2

dt

� �
¼ exp

k � n

2

� �
:

Above, we used the inequality 2tP 0ðtÞbPðtÞ for large t, and (5.19). In conclu-
sion, by (5.23) we have for large kZ 1=FðakÞ

1=FðckÞ
r 0ðrÞrðrÞn�1�k

drb
1

k � n

and by (5.22) we end up with (5.18). r

Remark 5.2. Since our mapping F in the proof of Proposition 5.1 is a radial
stretching, to show that in (5.1) the second condition implies the first one, we do
not really need the general theory of higher integrability of the Jacobian. Indeed,
recalling that rð1=eÞ ¼ 1=e and Eð1Þ ¼ 1, it su‰ces to integrate by parts to findZ 1=e

0

r 0rn�1 logEððr=rÞnÞ dra
Z 1=e

0

Rððr=rÞnÞrn�1 dr:
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Università degli Studi di Napoli ‘‘Federico II’’

Via Cintia—80126 Napoli

luigreco@unina.it

g.zecca@unina.it

50 l. greco and g. zecca


	mk1
	mk10
	mk11
	mk12
	mk13
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mkEnd-page

