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Topology — Poincaré series for maximal De Concini–Procesi models of root
arrangements, by Giovanni Gaiffi and Matteo Serventi.

Abstract. — In this paper we focus on maximal complex De Concini–Procesi models associated

to root arrangements of types A, B, C, D and we compute inductive formulas for their Poincaré
series.
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1. Introduction

In [4], [5], De Concini and Procesi constructed wonderful models for the com-
plement of a subspace arrangement in a vector space. In general, given a sub-
space arrangement, there are several De Concini–Procesi models associated to
it, depending on distinct sets of initial combinatorial data (‘‘building sets’’, see
Section 2.1).

The interest in these varieties was at first motivated by an approach to
Drinfeld construction of special solutions for Khniznik–Zamolodchikov equation
(see [8]). Then real and complex De Concini–Procesi models turned out to play
a central role in several fields of mathematical research: subspace (and toric)
arrangements, toric varieties, moduli spaces of curves, configuration spaces, box
splines, index theory and discrete geometry (see for instance [6], [7], [9], [10], [11],
[13], [17], [18] and [23]).

Among the building sets associated to a given subspace arrangement there are
always a minimal one and a maximal one with respect to inclusion: as a conse-
quence there are always a minimal and a maximal De Concini–Procesi model.
Several examples of minimal models (associated to the minimal building set of
irreducible subspaces) have been studied in detail. More recently, the relevance
of real and complex maximal models was pointed out (maximal models appear
for instance in [3], [16], [21], [1] and in the context of toric varieties, see [14] for
further references).

The case of root arrangements is particularly interesting. In this paper we will
compute inductive formulas for the Poincaré series of maximal complex models
associated to root arrangements of types A, B, C, D.

Let us consider for instance the arrangements of type An. Our purpose is to
compute the series



fAðq; tÞ ¼ tþ
X
nb2

PCAn�1
ðqÞ t

n

n!
a Q½q�½½t��

Here, for every nb 2,

PCAn�1
ðqÞ ¼

X
rkðH 2iðYCAn�1

;ZÞÞqi

is the Poincaré polynomial of the maximal complex De Concini–Procesi model
YCAn�1

and the variable q has degree two (in odd degree, the integer cohomology

of De Concini–Procesi models is 0—see [5]).
By carefully counting the elements of a basis for the integer cohomology

which was first described by Yuzvinski (see [22] and also [12]), we find an induc-
tively defined series in infinite variables g0; g1; g2; . . . gn; . . . with the following
property: when we replace g0 with t and, for every i; rb 1, gr

i with
qr�q

q�1 t
r, we

obtain the series fAðq; tÞ (Theorem 3.1).
Some explicit computations (using the Computer Algebra system Axiom)

show that our method is e¤ective (see Section 3.2). The same technique can be
extended to the case Bn (see Theorem 3.3), which, from the point of view of sub-
spaces and models, is equal to Cn, and also to the Dn case (see Section 3.4).

In Section 4 we show that the series in infinite variables computed in the pre-
ceding sections encode more general results. For instance, they allow us to obtain
the Poincaré series of the families of De Concini–Procesi models whose building
sets are the maximal building sets CAn

, CBn
, CDn

tensored by Ch: it is su‰cient to
perform di¤erent substitutions of the variables g0; g1; . . . gn; . . . We observe that in
the An case the complements of these tensored arrangements are classical general-
izations of the pure braid space (see [2] and [20]).

We also point out the connection of our formulas with the rich combinatorics
of the corresponding real maximal De Concini–Procesi models: we show how to
specialize our series in infinite variables to obtain series whose coe‰cients are the
Euler characteristics of these real models.

We wish to thank Filippo Callegaro for some useful conversations.

2. Basic concepts

2.1. Some combinatorics of subspace arrangements

Let V be a finite dimensional vector space over an infinite field K and denote by
V � its dual. Let now G be a finite set of subspaces of V � and denote by CG its
closure under the sum.

Definition 2.1. Given a subspace U a CG, a decomposition of U in CG is a
collection fU1; . . . ;Ukg ðk > 1Þ of non zero subspaces in CG such that

1. U ¼ U1 a � � �aUk

2. for every subspace AHU, A a CG, we have ABU1; . . . ;ABUk a CG and A ¼
ðABU1Þa � � �a ðABUkÞ.
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Definition 2.2. A subspace F a CG which does not admit a decomposition is
called irreducible and the set of irreducible subspaces is denoted by FG.

One can prove (see [5]) that every subspace U a CG has a unique decomposi-
tion into irreducible subspaces.

Definition 2.3. A collection G of subspaces of V � is called building if every
element C a CG is the direct sum G1 a � � �aGk of the set of maximal elements
G1; . . . ;Gk of G contained in C.

Remark 2.1 (see [5]). The set of irreducible subspaces of a given family of sub-
spaces of V � is building. A set of subspaces of V � which is closed under the sum is
building.

Given a family G of subspaces of V � there are di¤erent sets B of subspaces of
V � such that CB ¼ CG; if we order by inclusion the collection of such sets, it turns
out that the minimal element is FG and the maximal one is CG.

Definition 2.4 (see [5]). Let G be a building set of subspaces of V �. A subset
SHG is called G-nested if and only if for every subset fA1; . . . ;Akg ðkb 2Þ of
pairwise non comparable elements of S the subspace A ¼ A1 þ � � � þ Ak does not
belong to G.

Remark 2.2. If C is a building family of subspaces closed under the sum, then the
subspaces of a C-nested set are totally ordered (with respect to inclusion).

2.2. Wonderful models

Let now V be a finite dimensional complex vector space and denote by V � its
dual.

Let us consider a finite subspace arrangement G in V � and, for every A a G,
let us denote by A? its annihilator in V .

For every A a G we have a rational map

pA : V ! V=A? ! PðV=A?Þ

which is regular on V � A?.
We then consider the embedding

fG : AG ! V �
Y
A AG

PðV=A?Þ

given by inclusion on the first component and the maps pA on the other com-
ponents. The De Concini–Procesi model YG associated to G is the closure of
fGðAGÞ in V �

Q
A AG PðV=A?Þ.

These wonderful models are particularly interesting when the arrangement G is
building: they turn out to be smooth varieties and the complement of AG in YG is
a divisor with normal crossings, described in terms of G-nested sets. Moreover,
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their integer cohomology rings are torsion free (see [5]). In [22] Yuzvinski explic-
itly described Z-bases of these rings (see also [12]): we briefly recall these results
concerning cohomology.

Let G be a building set of subspaces of V �. Let HHG, let B a G such that
AWB for each A a H and define

dH;B :¼ dimB� dim
� X

A AH

A
�
:

With these notations, in the polynomial ring Z½cA�A AG, we put

PH;B :¼
Y
A AH

cA

� X
CIB

cC

�dH;B

and we denote by I the ideal generated by these polynomials as H and B vary.

Theorem 2.1 (see [5]). There is a surjective ring homomorphism

f : Z½cA�A AG ! H �ðYG;ZÞ

whose kernel is I and such that fðcAÞ a H 2ðYG;ZÞ.

Definition 2.5. Let G be a building set of subspaces of V �. A function

f : G ! N

is G-admissible (or simply admissible) if f ¼ 0 or, if f A 0, suppð f Þ is G-nested
and for all A a suppð f Þ one has

f ðAÞ < dsuppð f ÞA;A

where suppð f ÞA :¼ fC a suppð f Þ : CWAg.

Definition 2.6. A monomial mf ¼
Q

A AG c
f ðAÞ
A a Z½cA�A AG is admissible if f is

admissible.

Theorem 2.2 (see [22] and also [12]). The set BG of all admissible monomials
corresponds to a Z-basis of H �ðYG;ZÞ.

3. Maximal models of reflection arrangements of classical type

We now focus on the cohomology rings of maximal De Concini–Procesi models
for root arrangements of type An, Bn (Cn) and Dn.

3.1. Type An�1

Let W be a complex vector space of dimension n and consider the arrangement
given by hyperplanes Hij :¼ fzi � zj ¼ 0g where zi (i ¼ 1; . . . ; n) are the coordi-
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nates. The intersection of these hyperplanes is the line N ¼ fz1 ¼ � � � ¼ zng: we
consider the quotient V ¼ W=N and the arrangement provided by the images

of the hyperplanes Hij via the quotient map W !p V .
We can choose linear functionals fij in V � such that the zeroes of fij form the

hyperplane pðHijÞ and the set f fijg is a root system of type An�1.
In V � we consider the subspace arrangement AAn�1

given by the lines 3 fij4 and
denote for brevity by CAn�1

its closure under the sum and by FAn�1
the set of irre-

ducible subspaces in CAn�1
.

Our purpose is to compute the series

fAðq; tÞ ¼ tþ
X
nb2

PCAn�1
ðqÞ t

n

n!
a Q½q�½½t��ð1Þ

where, for every nb 2,

PCAn�1
ðqÞ ¼

X
rkðH 2iðYCAn�1

;ZÞÞqi

is the Poincaré polynomial of YCAn�1
(the variable q has degree 2).

In [22], Yuzvinsky noticed there is a bijective correspondence (actually an iso-
morphism of partially ordered sets) between the elements of FAn�1

and the subsets
of f1; . . . ; ng of cardinality at least two: this correspondence identifies the subset
fi1; . . . ; ikg with 3 fi1i2 ; . . . ; fik�1ik4. Since every subspace in CAn�1

has a unique de-
composition into irreducible subspaces, we can identify elements of CAn�1

with
families of disjoint subsets of cardinality at least two of f1; . . . ; ng. Furthermore,
given two such collections X ¼ fX1; . . . ;Xkg and Y ¼ fY1; . . . ;Yrg we say that
Y is included in X (and write Y HX ) if for every i a f1; . . . ; rg there exists
j a f1; . . . ; kg such that Yi HXj; our identification thus becomes an isomorphism
of partially ordered sets (we order CAn�1

by inclusion).
A CAn�1

-nested set is a subset of CAn�1
strictly ordered by inclusion. Now

we will see how to associate a graph (actually a forest of levelled oriented rooted
trees) to a CAn�1

-nested set. Let us first recall by an example the FAn�1
case

(see [22]). Let us take, as FA8
-nested set, the collection S :¼ fð1; 2; 3; 4; 5Þ;

ð6; 7; 8; 9Þ; ð1; 4; 5Þ; ð6; 7Þg; we associate to S the following graph:

ð1; 2; 3; 4; 5Þ ð6; 7; 8; 9Þ

ð1; 4; 5Þ 2 3 ð6; 7Þ 8 9

1 4 5 6 7

where the edges are directed from the top to the bottom.
Let us now consider the CA15

-nested set

S :¼ fð1; 2; 3; 4; 5Þð8; 10; 12; 13; 14; 16Þ; ð1; 2; 4; 5Þð8; 10; 12Þ; ð1; 2Þð10; 12Þg:
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We associate to it the levelled forest GðSÞ:

ð1; 2; 3; 4; 5Þ ð8; 10; 12; 13; 14; 16Þ

ð1; 2; 4; 5Þ 3 ð8; 10; 12Þ 13 14 16

ð1; 2Þ 4 5 ð10; 12Þ 8

1 2 10 12

where, again, the orientation is from the top to the bottom, and the elements of
the nested set can be read ‘‘level by level’’ from the vertices which are not leaves
(we call level 1 the level which contains the roots, and level k þ 1 the one which
contains the vertices which are k steps away from a root).

Let now S be a CAn�1
-nested set and let us denote by B (resp. A) the element

of S determined by the vertices (not leaves) at level k (resp. k þ 1). Then A is the
maximal element of S strictly contained in B.

Hence if B is given by the family fB1; . . . ;Bkg, A by fA1; . . . ;Arg and, for
every i a f1; . . . ; kg, we set IBi

:¼ f j a f1; . . . ; rg : Aj HBig, we have

dimBi �
X
j A IBi

dimAj ¼ joutðvBi
Þj � 1

where vBi
is the vertex of GðSÞ associated to Bi and outðvBi

Þ is the set of outgoing
edges from vBi

. Then we obtain:

dfAg;B ¼
X

v ALevðkÞ
ðjoutðvÞj � 1Þð2Þ

where LevðkÞ is the set of vertices (not leaves) of GðSÞ belonging to level k.

Definition 3.1. A levelled forest G is admissible if, for any level k, one has

X
v ALevðkÞ

ðjoutðvÞj � 1Þ ¼
� X

v ALevðkÞ
joutðvÞj

�
� jLevðkÞjb 2:

Definition 3.2. Let G be a levelled admissible forest on nb 2 leaves. We denote
by contðGÞ the contribution given to the series (1) by all the monomials mf of the
basis such that supp f is a nested set whose graph is (up to a relabelling of the
leaves) isomorphic to G.

Proposition 3.1. Let G be a levelled admissible forest on nb 2 leaves. Then we
have

contðGÞ ¼ n!

jAutðGÞjCGðqÞ
tn

n!
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where

CGðqÞ ¼
Y
k level

qT
v ALevðkÞðjoutðvÞj�1Þ � q

q� 1

and AutðGÞ is the group of automorphisms of G.

Proof. We notice that there are n!
jAutðGÞj di¤erent CAn�1

-nested sets whose associ-
ated graph is isomorphic to G.

The thesis follows by observing that, if G ¼ GðSÞ, where S is a CAn�1
-nested

set, the contribution to the Poincaré polynomial PCAn�1
ðqÞ of the monomials mf

such that supp f ¼ S is CGðqÞ. r

Our idea to compute the series (1) is to consider all levelled forests (not neces-
sarily admissible) on at least two leaves and to associate, to each of them, a
monomial that encodes the data we are interested in: number of levels and, for
each level k, the number

P
v ALevðkÞðjoutðvÞj � 1Þ. We will put together these

monomials in a series, which will be calculated inductively, and from which one
can obtain the series (1).

Definition 3.3. A trivial tail of a (levelled) oriented forest T is given by a
subtree T 0 which has a single leaf and stems from a vertex v of T with
joutðvÞj ¼ 1.

Definition 3.4. Two (levelled) oriented forests T1 and T2 are equivalent if they
di¤er only by trivial tails.

Definition 3.5. Given an equivalence class of (levelled) rooted oriented forests
modulo trivial tails we call minimal representative the forest in this class with no
trivial tails.

Let us now define the following series

~ppAðg0; g1; g2; g3; . . .Þ :¼ g0 þ
X
G

g
trðGÞ
0

jAutðGÞj
Y
v

g
joutðvÞj�1
lðvÞ

where G runs among minimal representatives of levelled oriented forests on at
least two leaves, trðGÞ is the number of trees of G (we are considering also the
degenerate tree given by a single leaf ), v varies among the vertices (not leaves)
of G and lðvÞ is the level of v.

Definition 3.6. A monomial of ~ppA is bad if we can find i and j, with 1a i < j,
such that gj appears in the monomial but gi doesn’t.

We notice that bad monomials correspond to forests with a level k such thatP
v ALevðkÞðjoutðvÞj � 1Þ ¼ 0.
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Definition 3.7. A monomial m of ~ppA has valency k if k ¼ maxf jb 1 :
gj appears in mg.

Proposition 3.2. Given a levelled oriented forest G on nb 2 leaves, let mG be
the monomial of ~ppA associated to G. Then the degree of mG is n.

Proof. One can restrict to trees and then proceed by induction on the valency
of mG. r

Theorem 3.1. Removing bad monomials from ~ppA and replacing g0 with t and, for

every i; rb 1, gr
i with

qr�q

q�1 t
r we obtain the Poincaré series (1).

Proof. Let’s start by observing that, if we remove bad monomials, we haven’t
removed all monomials corresponding to non admissible forests; in fact we still
have the ones corresponding to forests in which there is (at least) a level k such
that X

v ALevðkÞ
ðjoutðvÞj � 1Þ ¼ 1:

Anyhow the contribution of such monomials is killed by our substitution; indeed
they have a variable whose exponent is 1 and

qr�q

q�1 ¼ 0 if r ¼ 1.

Let now G be an admissible forest on nb 2 leaves; let mG be the monomial
of G in ~ppA and kb 1 be its valency. For all 1a ja k the exponent of the vari-
able gj in mG is X

v ALevð jÞ
ðjoutðvÞj � 1Þ:

Our claim then follows from Proposition 3.1 and Proposition 3.2. r

The problem is now reduced to the computation of ~ppA. To this end we define

~~pp~ppA :¼ 1þ
X
T

1

jAutðTÞj
Y
v

g
joutðvÞj�1
lðvÞ

where T runs among minimal representatives of levelled oriented trees on nb 2
leaves and v among the vertices (not leaves) of T. One immediately checks that:

~ppA ¼ eg0
~~pp~ppA � 1;ð3Þ

therefore, all we need is a formula for ~~pp~ppA.

Theorem 3.2. The following recursive formula holds:

~~pp~ppA ¼ eg1
~~pp~ppA½1� � 1

g1
ð4Þ

where ~~pp~ppA½1� is ~~pp~ppAðg1; g2; g3; . . .Þ evaluated in ðg2; g3; g4; . . .Þ.
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Proof. The formula is recursive, as one can easily check by induction on the
valency.

Let T be a tree on nb 2 leaves (recall that we are taking into account only
minimal representatives modulo trivial tails). Let im1

1 . . . imr
r be a partition of n of

length k made by positive integers i1; . . . ; ir such that, for each j a f1; . . . ; rg, ij
occurs mj times (and k ¼

Pr
j¼1 mj). Suppose that exactly k edges stem from the

root; furthermore, suppose that, if we cut o¤ the root of T and these edges, we
get a forest of k trees, fT1; . . . ;Tkg, such that, for each j a f1; . . . ; rg, mj of them
are isomorphic and have ij leaves (here we are considering also the degenerate
tree given by a single leaf ).

If, for every i a f1; . . . ; kg, we call mTi
the monomial of Ti in ~~pp~ppA and mT the

one of T we have:

mT ¼ gk�1
1

1

m1!m2! . . .mr!

Yk

i¼1

mTi
½1�:

We conclude by observing that
Qk

i¼1 mTi
½1� appears exactly k!

m1!m2!...mr!
times in

ð~~pp~ppA½1�Þ
k. r

3.2. Some examples

Theorem 3.2 allows us to compute ~~pp~ppA; once we have ~~pp~ppA we can compute ~ppA and,
using Theorem 3.1, the series fA; here we exhibit some examples of these compu-
tations made with the help of the Computer Algebra system Axiom.

As a first example, we show the monomials of ~~pp~ppA of valency less than or equal
to 3 and degree less than or equal to 3:

1

24
g33 þ

� 7

24
g2 þ

7

24
g1 þ

1

6

�
g23 þ

� 1

4
g22 þ

� 3

4
g1 þ

1

2

�
g2 þ

1

4
g21 þ

1

2
g1 þ

1

2

�
g3

þ 1

24
g32 þ

� 7

24
g1 þ

1

6

�
g22 þ

� 1

4
g21 þ

1

2
g1 þ

1

2

�
g2 þ

1

24
g31 þ

1

6
g21 þ

1

2
g1 þ 1:

If we look at terms of degree 3 and valency 3 we find:

g33
4!

þ g2g
2
3

8
þ g2g

2
3

6
þ g22g3

4
þ g1g

2
3

8
þ g1g

2
3

6
þ g1g2g3

2
þ g1g2g3

4
þ g21g3

4
:

These nine monomials correspond to the levelled trees with 4 leaves and 3 levels
(modulo equivalence):

x x x x

x x x x

x x x x x x x x

x x x x x x x x x x x x x
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x x x x x

x x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x x x x x

Then we show ~pp up to degree 5, without bad monomials:

degrees 1, 2 and 3

g0 þ
1

2
g0g1 þ

1

2
g20 þ

1

2
g0g1g2 þ

1

6
g0g

2
1 þ

1

2
g20g1 þ

1

6
g30 ;

degree 4

3

4
g0g1g2g3 þ

7

24
g0g1g

2
2 þ

� 1

4
g0g

2
1 þ

3

4
g20g1

�
g2 þ

1

24
g0g

3
1

þ 7

24
g20g

2
1 þ

1

4
g30g1 þ

1

24
g40 ;

degree 5

3

2
g0g1g2g3g4 þ

5

8
g0g1g2g

2
3 þ

� 7

12
g0g1g

2
2 þ

� 1

2
g0g

2
1 þ

3

2
g20g1

�
g2

�
g3

þ 1

8
g0g1g

3
2 þ

� 5

24
g0g

2
1 þ

5

8
g20g1

�
g22 þ

� 1

12
g0g

3
1 þ

7

12
g20g

2
1 þ

1

2
g30g1

�
g2

þ 1

120
g0g

4
1 þ

1

8
g20g

3
1 þ

5

24
g30g

2
1 þ

1

12
g40g1 þ

1

120
g50 :

At last here it is the series fA up to degree 7 (with respect to t):

fAðq; tÞ ¼ tþ 1

2
t2 þ

� 1

6
qþ 1

6

�
t3 þ

� 1

24
q2 þ 1

3
qþ 1

24

�
t4

þ
� 1

120
q3 þ 41

120
q2 þ 41

120
qþ 1

120

�
t5

þ
� 1

720
q4 þ 187

720
q3 þ 61

60
q2 þ 187

720
qþ 1

720

�
t6

þ
� 1

5040
q5 þ 19

112
q4 þ 2389

1260
q3 þ 2389

1260
q2 þ 19

112
qþ 1

5040

�
t7 þ � � �
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3.3. Type Bn

Let V be a complex vector space of dimension n. We consider in V � the line
arrangement corresponding to a root system of type Bn and denote by CBn

its
closure under the sum and by FBn

the set of irreducible subspaces of CBn
. Our

aim is to compute the series:

fBðq; tÞ :¼
t

2
þ
X
nb2

PCBn
ðqÞ tn

2nn!
a Q½q�½½t��ð5Þ

where, for each nb 2, PCBn
ðqÞ is the Poincaré polynomial of YCBn

.
In [22], Yuzvinsky divided the elements of FBn

into two classes: strong ele-
ments and weak elements; if we denote by x1; . . . ; xn a V � the coordinate func-
tions, strong elements are the subspaces of V � like 3xi1 ; . . . ; xik4 (kb 1), whose
annihilator in V is the subspace Hi1;...; ik :¼ fxi1 ¼ � � � ¼ xik ¼ 0g. They can be
put in bijective correspondence with subsets of f1; . . . ; ng of cardinality greater
than or equal to 1 (such subsets will be called strong). A weak element is a sub-
space whose annihilator is of type Li1;...; ik ; j1;...; js :¼ fxi1 ¼ � � � ¼ xik ¼ �xj1 ¼ � � �
¼ �xjsg (rþ sb 2); therefore weak elements can be put in a bijective correspon-
dence with subsets of f1; . . . ; ng of cardinality greater than or equal to 2 (such sub-
sets will be called weak) equipped with a partition (possibly trivial) into 2 parts.

Moreover, if we order FBn
by inclusion of subspaces, we can read this order as

follows:

• a subset that includes a strong subset of f1; . . . ; ng is strong;

• a weak subset A is smaller than a strong subset B if and only if AHB;

• a weak subset A ¼ A1 AA2 is smaller than a weak subset B ¼ B1 AB2 if and
only if either Ai HBi (i ¼ 1; 2) or A1 HB2 and A2 HB1.

Coming to the maximal building set, we observe that there is a bijective corre-
spondence between elements of CBn

and families of disjoint subsets of f1; . . . ; ng
in which at most one is strong and in each of the weak ones a partition into two
parts is fixed. Given two such families X ¼ fX1; . . . ;Xkg and Y :¼ fY1; . . . ;Yhg
we say that X is greater than Y (and write X IY ) if for every i a f1; . . . ; hg
there exists j a f1; . . . ; kg such that Yi HXj as elements of FBn

.
It is again possible to associate levelled forests to CBn

-nested sets (a CBn
-nested

is a subset of CBn
strictly ordered by inclusion); the rules are the same as in the

case An�1 but we have to divide the vertices of our graphs into two classes:
weak vertices and strong vertices. We notice that we lose the information con-
cerning partitions of weak sets. From now we call ‘‘strong tree’’ a tree with at
least one strong vertex and ‘‘weak tree’’ a tree with no strong vertices; a forest is
‘‘strong’’ if it contains a strong tree, otherwise is weak.

Let now S be a CBn
-nested set and GðSÞ be its associated forest; let us denote

by B (resp. A) the element of S determined by the vertices (not leaves) at level k
(resp. k þ 1); then A is the maximal element of S strictly contained in B. If
B is given by a family of weak subsets, dfAg;B can be computed, in terms of
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outgoing edges, exactly as in the An case. Otherwise, B is associated to a family
fB1; . . . ;Bkg (kb 1) of subsets of f1; . . . ; ng, where B1 is strong. Then we have

dfAg;B ¼ jwoutðvB1
Þj þ

Xk

i¼2

ðjoutðvBi
Þj � 1Þð6Þ

where vBi
is the vertex of GðSÞ which corresponds to Bi and woutðvB1

Þ is the
set of outgoing edges from vB1

to a weak vertex (we are considering the leaves
as weak vertices).

The following lemma and corollary explain how to take in account the infor-
mation on the partitions associated to weak sets, which is not contained in the
graphs.

Lemma 3.1 (see [22]). Let S be a FBn
-nested set and GðSÞ be its associated for-

est. If we denote by pðGðSÞÞ the number of di¤erent FBn
-nested sets U such that

GðUÞ ¼ GðSÞ, then

log2 pðGðSÞÞ ¼
X
vB

dimB

where vB ranges over all the maximal weak vertices (not leaves), i.e. the weak ver-
tices (not leaves) which are not preceded, according to the orientation, by other
weak vertices.

Corollary 3.1. Let G ¼ GðSÞ be a levelled forest associated to a CBn
-nested

set S. Let fvX1
; . . . ; vXj

g be the maximal weak vertices of GðSÞ. Then G corre-

sponds to 2T
j

i¼1ðjXi j�1Þ di¤erent CBn
-nested sets.

As in the An case, to compute the Poincaré series (5) we define a series in infi-
nite variables g0; g1; g2; . . . . We need to extend the definition of trivial tail to
strong trees.

Definition 3.8. A trivial tail of a levelled oriented strong tree T is given by
a weak subtree T 0 which has a single leaf and stems from a vertex v of T with
joutðvÞj ¼ 1.

Then we define a series which will take into account the contribution of strong
forests to the Poincaré series:

~QQBðg0; g1; g2; . . .Þ :¼
X
G

1

jAutðGÞj

� g0

2

�trðGÞ�1 Y
v AGs

� glðvÞ
2

�jwoutðvÞj Y
v AGw

g
joutðvÞj�1
lðvÞ

where G runs among minimal representatives (modulo trivial tails) of levelled ori-
ented strong forests on nb 1 leaves, Gs is the set of strong vertices of G, Gw is the
set of weak vertices (not leaves); we notice that an automorphism sends strong
vertices to strong vertices and weak vertices to weak vertices.
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Then we put:

QBðg0; g1; g2; . . .Þ :¼ ~ppA

� g0

2
; g1; g2; . . .

�
þ ~QQBðg0; g1; g2; . . .Þ:ð7Þ

Remark 3.1. From equation (3) it follows ~ppA
�g0
2 ; g1; . . .

�
¼ eðg0=2Þ

~~pp~ppAðg1;g2;...Þ � 1.

We notice that, if G is a (strong or weak) levelled oriented forest on nb 2
leaves, then the corresponding monomial mG in QBðg0; g1; g2; . . .Þ has degree n.

Theorem 3.3. If we remove bad monomials from QB and replace g0 with t and,
for every i; rb 1, gr

i with
qr�q

q�1 t
r, we obtain the series (5).

Proof. It is a computation very similar to the one of Theorem 3.1:
~ppA
�g0
2 ; g1; g2; . . .

�
counts the contribution of weak forests, ~QQB of strong forests.

r

We now need to compute ~QQB; to this end we define

~~QQ~QQBðg1; g2; . . .Þ :¼
X
T

1

jAutðTÞj
Y
v ATs

� glðvÞ
2

�jwoutðvÞj Y
v ATw

g
joutðvÞj�1
lðvÞ

where T runs among minimal representatives of classes of strong trees on nb 1
leaves, Ts is the set of strong vertices of T andTw is the set of the weak ones (not
leaves). Then, since each strong forest has exactly one strong tree we have:

~QQB ¼
�
~ppA

� g0

2
; g1; g2; . . .

�
þ 1

�
~~QQ~QQB:

Theorem 3.4. The following inductive formula holds:

~~QQ~QQB ¼ ~ppA

� g0

2
; g1; g2; . . .

�
½1� þ ~~QQ~QQB½1�

�
1þ ~ppA

� g0

2
; g1; g2; . . .

�
½1�

�
:ð8Þ

Proof. We will prove the equivalent formula

~~QQ~QQB ¼
�X

jb0

g
j
1

�
1
2
~~pp~ppAðg1; g2; . . .Þ½1�

� j

j!

�
~~QQ~QQB½1� þ

X
jb1

g
j
1

�
1
2
~~pp~ppAðg1; g2; . . .Þ½1�

� j

j!
:ð9Þ

Let T be a strong tree on nb 1 leaves; suppose that T has only one strong ver-
tex (therefore its root is strong). Let im1

1 . . . imr
r be a partition of n of length kb 1

made by positive integers i1; . . . ; ir such that, for each j a f1; . . . ; rg, ij occurs mj

times. Let us suppose that k edges stem from the (strong) root of T and that,
if we cut o¤ the root of T and these edges, we get a forest of k weak trees,
fT1; . . . ;Tkg, such that, for each j a f1; . . . ; rg, mj of them are isomorphic
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and have ij leaves. If we call mT the monomial of T in ~~QQ~QQB and, for every
i a f1; . . . ; kg, mTi

the one of Ti in ~~pp~ppAðg1; g2; . . .Þ, we have

mT ¼ 1

m1!m2! . . .mr!

gk
1

2k

Yk

i¼1

mTi
½1�:

To obtain the second addendum on the right side of formula (9) we observe thatQk
i¼1 mTi

½1� appears exactly k!
m1!m2!...mr!

times in ð~~pp~ppAðg1; g2; . . .Þ½1�Þ
k.

Suppose now that T has more than one strong vertex and that the (strong)
root of T is connected to j þ 1b 1 vertices such that j of them are weak and
one (which we will denote by v) is strong.

If j ¼ 0 then exactly one edge stems from the root of T and (by assumption)
it reaches v. If we call T 0 the tree which stems from v we have that mT ¼ mT 0 ½1�.
Let j > 0 and suppose that the j subtrees whose roots are the j weak vertices are
divided into h subsets containing respectively m1;m2; . . . ;mh isomorphic trees.
Let us denote by fT1; . . . ;Tjg these trees and let Tjþ1 be the strong tree whose
root is v. We have

mT ¼ 1

m1!m2! . . .mh!

g
j
1

2 j
mTjþ1

½1�
Yj

q¼1

mTq
½1�

where, as usual, mT is the monomial of T in ~~QQ~QQB, mTjþ1
is the one of Tjþ1 and,

for each q a f1; . . . ; jg, mTq
is the monomial of Tq in ~~pp~ppA.

We end by observing that
Q j

q¼1 mTq
½1� appears exactly j!

m1!m2!...mh!
times in ~~pp~pp j

A.
r

3.4. Type Dn

Let V be a complex vector space of dimension n. We consider in V � the line
arrangement corresponding to a root system of type Dn and denote by CDn

its
closure under the sum.

The series we are interested in is the following:

fDðq; tÞ :¼ tþ q
t2

4
þ
X
nb3

PCDn
ðqÞ tn

n!2n�1
a Q½q�½½t��ð10Þ

where, as usual, for each nb 3, PCDn
ðqÞ is the Poincaré polynomial of YCDn

. The
combinatorics is essentially the same as in the case Bn: the only di¤erence is that
strong sets must have cardinality at least two. Therefore for the computation of
the Poincaré series we just need to modify a little what we have done in that case.

We set

~QQDðg0; g1; g2; . . .Þ :¼ 2
X
G

1

jAutðGÞj

� g0

2

�trðGÞ�1 Y
v AGs

� glðvÞ
2

�jwoutðvÞj Y
v AGw

g
joutðvÞj�1
lðvÞ
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where G is a strong levelled oriented forest whose strong vertices correspond to
subsets of cardinality at least two and

~~QQ~QQDðg1; g2; . . .Þ :¼ 2
X
T

1

jAutðTÞj
Y
v ATs

� glðvÞ
2

�jwoutðvÞj Y
v ATw

g
joutðvÞj�1
lðvÞ

where the strong vertices of the strong levelled oriented tree T correspond to sub-
sets of cardinality at least two. Now, if we define QD :¼ 2~ppA

�g0
2 ; g1; g2; . . .Þ þ ~QQD

we can compute the Poincaré series as in Theorem 3.3; moreover we have that

~QQD ¼
�
~ppA

� g0

2
; g1; g2; . . .

�
þ 1

�
~~QQ~QQD

and ~~QQ~QQD satisfies a recurrence relation similar to (9):

~~QQ~QQD ¼
�X

jb0

g
j
1

�
1
2
~~pp~ppAðg1; g2; . . .Þ½1�

� j

j!

�
~~QQ~QQD½1� þ 2

�X
jb1

g
j
1

�
1
2
~~pp~ppAðg1; g2; . . .Þ½1�

� j

j!

�
� g1:

4. Final remarks

4.1. Induced subspace arrangements

The tensor product allows us to obtain new building subspace arrangements Gh

starting from a given building arrangement G in V �.

Definition 4.1. We will call ‘induced by G’ the subspace arrangement Gh in
V � nCh ðhb 1Þ given by the subspaces AnCh, as A varies in G.

For instance, if G is a building set associated to a root system of type A, the
complements of the arrangements Gh are classical generalizations of the pure
braid space (see [2] and [20]).

It is immediate to check that, for any given building arrangement G in V �, Gh

is still building, and therefore one can consider its De Concini–Procesi model. Let
us focus on the case when the starting arrangements are the maximal building sets
of type A, Bð¼ CÞ, D. Our series ~ppA, QB, QD allow us to obtain quickly the Poin-
caré series of the families of models associated to the induced building sets: we
only have to perform di¤erent substitutions of the variables g0; g1; . . .

For instance, let us fix hb 1 and consider the A case: after removing bad
monomials from ~ppA, if we replace g0 with t as before and, for every i; rb 1, gr

i

with
qrh�q

q�1 tr, we obtain the Poincaré series for the models YðCAn Þh (the same substi-
tutions work also in the other cases).

4.2. The Euler characteristic of maximal compact models

The De Concini–Procesi construction can be repeated also for real (projective)
subspace arrangements, producing real (compact) models.
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Let us consider a real building set of subspaces in an euclidean vector space
and denote by YGðCÞ and YGðRÞ the complex model and the real compact model
associated to it; it is well known (see [15] and [19]) that H 2iðYGðCÞ;Z2ÞG
HiðYGðRÞ;Z2Þ; given that dimH 2iðYGðCÞ;Z2Þ ¼ dimH 2iðYGðCÞ;QÞ, we have

X
i

ð�1Þ i dimH 2iðYGðCÞ;QÞ ¼
X
i

ð�1Þ i dimHiðYGðRÞ;Z2Þ:

This, since the homology is finitely generated, is equal to the Euler characteristic
wðYGðRÞÞ. Therefore our Poincaré series can be specialized to provide series
for the Euler characteristic of the corresponding maximal real compact De
Concini–Procesi models: it is su‰cient to put q ¼ �1.

Moreover, we observe that one can obtain series for the Euler characteris-
tic, in a simpler way, directly from the series ~ppA, QB and ~QQD, by removing bad

monomials and replacing g0 with t, and gr
i with � ð1þð�1Þ rÞ

2 tr.
We point out that there are other ways to compute the Euler characteristic of

these models. For instance, in the An case the maximal real compact model can
be obtained by gluing ðnþ 1Þ! permutohedra of dimension n� 1. Therefore an-
other formula for the Euler characteristic can be obtained by counting the faces
of the ðnþ 1Þ! permutohedra and taking into account their identifications (every
face of codimension i is identified with 2 iþ1 � 1 other i-codimensional faces): this
formula involves eulerian numbers (the components of the h-vector of the permu-
tohedron are the eulerian numbers). At the same way, in the Bn and Dn cases, the
maximal real compact model can be obtained by gluing polytopes which are
generalized permutohedra (see [17], [18], [23]). Therefore the coe‰cients of the
specializations of the series ~ppA, QB and QD correspond to formulas where the
numbers of faces of such polytopes come into play.
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