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Geometry — Completeness of Reidemeister-type moves for surfaces embedded in
three-dimensional space, by Giovanni Bellettini, Valentina Beorchia and
Maurizio Paolini.

Abstract. — In this paper we are concerned with labelled apparent contours, namely with appar-

ent contours of generic orthogonal projections of embedded surfaces in R3, endowed with a suitable
information on the relative depth. We give a proof of the following theorem: there exists a finite set

of elementary moves (i.e. local topological changes) on labelled apparent contours such that two
generic embeddings in R3 of a closed surface are isotopic if and only if their apparent contours can

be connected using only smooth planar isotopies and a finite sequence of moves. This result, that can
be obtained as a by-product of general results on knotted surfaces and singularity theory, is obtained

here with a direct and rather elementary proof.
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1. Introduction

In knot theory it is well known that two link diagrams represent ambient isoto-
pic knots or links, if and only if they are related by a finite number of local
Reidemeister moves or their inverses. The diagram of a link is simply the or-
thogonal projection of the image of the link onto some plane, together with
the knowledge of which strand goes over at each crossing. Up to a small pertur-
bation of the link, transversal crossings are the only possible singularities of the
diagram.

A similar question can be formulated for two-dimensional smooth closed (i.e.
compact without boundary) manifolds M embedded in R3, that is, understanding
when two embedded surfaces can be deformed into each other by a smooth path
of embeddings.

In analogy with the link diagram, we can rely on the apparent contour
AppConðjÞ of j :¼ p � e : M ! R2, i.e. the image of the singular points of a
generic orthogonal projection p : R3 ! R2 of an embedding e : M ! R3. The
apparent contour carries a natural orientation and leads to a graph similar to
a link diagram, with possibly the addition of cusps (see e.g. [25]). If we also
add a so-called Hu¤man labelling (see [15], [26], [7], [3]) which is a nonnegative
integer attached to each arc, giving information about the relative depth of
the corresponding fold with respect to the remaining preimages of the arc, an
apparent contour provides complete information on the 3D embedding (up to
compactly supported deformations of R3 in the projection direction) [3]. In



Section 3 we recall the main properties of the apparent contours needed in our
paper.

It turns out that there are six basic moves (local change of topology) on the
apparent contour that correspond to a general deformation of the embedded sur-
face; they can be used in exactly the same way as the Reidemeister moves on link
diagrams. Our aim is to show that this set of moves, namely K (from the russian
word kasanie ¼ tangency), L (lips), B (beak-to-beak), C (cusp-fold), S (swallow
tail) and T (triple point), is complete. This means that two embedded surfaces in
generic position with respect to the projection, that can be deformed into each
other, have apparent contours that can be connected using only smooth planar
isotopies and a finite sequence of such moves.

This list of moves (see Figure 2 for a graphical representation) is essentially
the same found in the literature for the related subject of maps from two-
manifolds into R2 (see e.g. [18]), even if the presence of the Hu¤man labelling
entails a di¤erent classification of the list of moves belonging to each of the six
aforementioned types: see Section 4. We also recall that the problem of finding
a complete set of Reidemeister-type moves relating two equivalent knotted sur-
faces in R4 has been solved. We refer in particular to the set of moves found
by Roseman [21], to the papers of Carter and Saito [5], [6] where generic
embedded surfaces in R4 are projected in R3 (diagram) and projected further
in R2 to construct a chart, and to the paper [13] of Goryunov. It must also be
remembered that similar classifications appear in various contexts, in particular
in Thom’s catastrophe theory [22] and in Cerf ’s theory [9], in the paper of
Wassermann [23], in the papers of Mancini and Ruas [16], and of Rieger [20].
We refer to the books [7], [8], [1] and [2] for further information.

The main result of the present paper (Corollary 6.1) can be obtained as a by-
product of general results present in the literature on the theory of knotted sur-
faces in R4, for instance it can be deduced from [4]. However, also because we are
concerned with embedded surfaces rather than immersed ones, we believe to be
worthwhile to provide a more specific and direct proof. See also Remark 6.3 for
more on this point.

Our proof has some similarities with the one described in [7] for the embed-
ding of surfaces in R4, and relies on the classification (reported very quickly in
Section 2) of the singularities of stable maps between 3-manifolds: see [11] and
references therein. Roughly, the idea of the proof is the following. Given an
orthogonal projection p : R3 ! R2 and a smooth closed surface M, we consider
an isotopy g a ClðM � ½0; 1�;R3Þ between an initial embedding (t ¼ 0) and a
final embedding ðt ¼ 1) of M in R3, in generic positions with respect to p. Since
it is convenient to deal with closed source manifolds, we extend in a smooth
periodic way g to a map (still denoted by g) defined on X :¼ M � S1. Let us in-
terpret as time the last coordinate t a S1, and denote by ðx; tÞ the points of X. Let
us now consider the level preserving map Fg : X ! Y :¼ R2 � S1 obtained as

the composition of the track ðx; tÞ a M � S1 ! ðgðx; tÞ; tÞ a R3 � S1 of g with
the projection map ðy; z; tÞ a R3 � S1 ! ðy; tÞ a R2 � S1, i.e.,

Fgðx; tÞ ¼ ðg1ðx; tÞ; g2ðx; tÞ; tÞ:
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Provided Fg is stable, its singular locus gives a stratification of X into smooth sub-
manifolds and, in a natural way, also a stratification fY0;Y1;Y2;Y3g of Y. The
family of apparent contours relating the two embeddings then satisfies

[

t AS1

ðAppConðjtÞ � ftgÞ ¼ Y1 AY2 AY3;ð1:1Þ

where jtðxÞ :¼ ðg1ðx; tÞ; g2ðx; tÞÞ, Y1 is the stratum of fold surfaces, Y2 is the
stratum of cusp curves and double curves, and Y3 is the discrete stratum of cusp-
fold points, swallow tails and triple points. Let us now consider the projection
p : Y ! S1, pðy; tÞ ¼ t. It turns out that, provided p is a stratified Morse func-
tion, the union of Y3 and the critical points of the restriction pjY2

determine the
complete list of moves on the apparent contours (see Corollary 6.1 and Figure 3).
A technical part of our proof, based on the standard definition of stability, is con-
tained in Lemmata 5.6, 5.8 and Corollary 5.7. The point is to show that the orig-
inal map Fg can be slightly deformed and made stable, and then perturbed once
more in order to make p stratified: this is the content of Theorem 5.5.

We conclude this introduction by observing that in [10, Definition 2] a di¤er-
ent notion of equivalence between maps is introduced. Such a definition can be
suitable when the target space Y is the cartesian product of a two-dimensional
manifold with R.

2. Stable maps and their singularities

In this section we briefly recall a few well known facts about singularity theory
(see for instance [11], [2], [1] and references therein).

2.1. Density of stable maps

Let X denote a closed smooth manifold of dimension m, and let Y be a smooth
manifold of dimension n without boundary. We denote by ClðX;YÞ the set of
smooth maps from X to Y endowed with the Whitney topology; ClðX;YÞ turns
out to be a Baire space.

Definition 2.1. Two maps F ;G a ClðX;YÞ are smoothly left-right equivalent
(briefly, equivalent) if there exist two di¤eomorphisms f : X ! X and c : Y ! Y
such that G � f ¼ c � F.

Definition 2.2. A map F a ClðX;YÞ is smoothly stable (briefly, stable) if
there exists a neighbourhood UF HClðX;YÞ of F such that any map in UF is
equivalent to F .

We set

StabðX;YÞ :¼ fF a ClðX;YÞ : F is stableg;
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which is an open subset of ClðX;YÞ. We recall that if F is stable, then any map
equivalent to F is stable. We also recall that the set EmbðX;YÞ of embeddings
of X into Y is open in ClðX;YÞ, and EmbðX;YÞJ StabðX;YÞ.

2.2. Nonremovable singularities of maps for m ¼ n ¼ 3

Assume in this section that m ¼ n ¼ 3. These dimensions are nice, so that
StabðX;YÞ is dense in ClðX;YÞ.

2.2.1. Stratification of X associated with a stable map. We recall (see [11, Chap.
7, Sec. 6]) that a map F a StabðX;YÞ has a singular locus in the source manifold
X of the following types:

• folds, denoted by S1ðF Þ. It is a smooth submanifold of X of codimension 1,
consisting of the points where the di¤erential dFx of F at x a X has corank 1;

• pleats, denoted by S12ðF ÞHS1ðF Þ. It is a smooth submanifold of X of codi-
mension 2 in X;

• swallow-tails inX, denoted by S13ðF ÞHS12ðF Þ. It is a smooth submanifold ofX
of codimension 3, and therefore it is a finite set of points.

Define X0 as the set of the regular points of F and

X1 :¼ S1ðF ÞnS12ðFÞ; X2 :¼ S12ðF ÞnS13ðFÞ; X3 :¼ S13ðFÞ;

where the index denotes the codimension in X. Then fX0;X1;X2;X3g forms a
stratification ofX, in the sense thatX is the union of the mutually disjoint smooth
submanifolds Xj (the strata), such that Xj ¼

S
jaha3 Xh for any j ¼ 0; 1; 2; 3. We

call such a stratification the stratification of X associated with the stable map F .

2.2.2. Stratification of Y induced by a stable map. By [11, Chap. 7, Th. 6.3], if
F a StabðX;YÞ the images of the strata Xi must intersect transversally. On
F ðX0Þ there are no conditions. The set F ðX1Þ must selfintersect transversally: the
resulting intersection is a set of double curves of codimension 2 in Y (points hav-
ing two singular preimages, i.e. two preimages in S1ðF Þ) and a set of triple points
(codimension 3, points with three singular preimages) in Y; moreover F ðX1Þ must
intersect FðX2Þ transversally, giving a finite set of cusp-fold points in Y. The
remaining cases have dimension that is too low to give rise to any intersection
set. Therefore, we define the following subsets of the target manifold Y (the index
denoting the codimension in Y and the superscript denoting the number of singu-
lar preimages):

• Y0 is the set of all h a Y such that no element in F �1ðhÞ belongs to
X1 AX2 AX3; hence Y0BF ðXÞJF ðX0Þ, namely Y0 is contained in the set of
regular values of F ;

• Y1 is the set of all h a Y such that F �1ðhÞ has one element in X1 and the other
elements in X0. Hence Y1 is contained in F ðX1Þ; we call Y1 the set of fold sur-
faces. It carries a natural orientation since it separates points where the number
of preimages of F jumps of two units;
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• Y 1
2 is the set of all h a Y such that F�1ðhÞ has one element in X2, and the other

elements in X0. We call Y 1
2 the set of cusp curves;

• Y 2
2 is the set of all h a Y such that F �1ðhÞ has two elements in X1 and the other

elements in X0. We call Y 2
2 the set of double curves;

• Y 1
3 is the set of all h a Y such that F�1ðhÞ has one element in X3, and the other

elements in X0. We call Y 1
3 the set of swallow tails;

• Y 2
3 is the set of all h a Y such that F�1ðhÞ has one element in X2, one element

in X1 and the other elements in X0. We call Y 2
3 the set of cusp-fold points;

• Y 3
3 is the set of all h a Y such that F �1ðhÞ has three elements in X1 and the

other elements in X0. We call Y 3
3 the set of triple points.

Such a description allows to define a natural stratification of the target mani-
fold Y in the smooth submanifolds Y0, Y1, Y2, Y3 (the strata), where

Y2 :¼ Y 1
2 AY 2

2 ; Y3 :¼ Y 1
3 AY 2

3 AY 3
3 :

This stratification will be denoted by fYjgF , and will be called the stratification
of Y induced by the stable map F . For simplicity of notation, unless otherwise
specified we drop the dependence on F of each strata Yj.

We conclude this section by recalling the definition of a stratified Morse func-
tion defined on the stratified space ðY; fYjgF Þ induced by the stable map F (see
[19], [12]).

Definition 2.3. Let F a StabðX;YÞ and let u : Y ! S1 be a smooth function.
We say that u is a stratified Morse function on ðY; fYjgF Þ if the following three
conditions hold:

– for any j a f0; 1; 2g the restriction ujYj
of u to stratum Yj is a Morse function,

and the set critðujYj
Þ of its critical points is finite;

– the critical values
S

j A f0;1;2g
ujYj

ðcritðujYj
ÞÞA uðY3Þ are distinct, where points of

Y3 are considered as critical points;
– if j a f1; 2; 3g and h a Yj, then kerðduhÞ does not contain any limit of a sequence

of tangent spaces to Yh at hk a Yh, where 0a h < j and limk!þl hk ¼ h.

3. Apparent contours

In this section we briefly recall the notions of apparent contour and labelling of an
apparent contour. In the sequel M is a two-dimensional smooth closed orientable
manifold, and j : M ! R2 is a smooth stable map.

The apparent contour AppConðjÞHR2 of j is the image through j of the
singular locus of j in M. We set

f ðyÞ :¼afj�1ðyÞg; y ¼ ðy1; y2Þ a R2:ð3:1Þ

The function f is constant on each connected component (called region) of
R2nAppConðjÞ, and it jumps of two units along an arc of AppConðjÞ. The
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apparent contour carries a natural orientation, so that the highest value of f lies
locally on the left, in this way f can also be recovered as twice the winding num-
ber of the apparent contour.

It is well known (see for instance [27] and references therein) that the sta-
bility of j implies that AppConðjÞ consists of a finite family of smooth im-
mersions of the circle S1 in R2 up to a finite number of points corresponding
to canonical cusps, denoted by CuspsðjÞ; self-intersections (called crossings) of
the immersions are in a finite number, transverse and double, and will be
denoted by CrossingsðjÞ. Denoting by ArcsðjÞ the arcs of AppConðjÞ, we have
AppConðjÞ ¼ ArcsðjÞACuspsðjÞACrossingsðjÞ. Therefore, AppConðjÞ has
the following structure: any point of AppConðjÞ has a neighbourhood in R2

which is di¤eomorphic to one of the pictures in Figure 1, with matching orienta-
tions and appropriate choice of the values of f and d (see below for the meaning
of the function d ). Because of the depth information coming from the embedding
(see the next sections) we distinguish cusps where d is decreasing from cusps
where d is increasing; a similar distinction is made for crossings. The gap shown
in the pictures for arcs at a crossing is just added for visual convenience to help
distinguish the arc with larger values of d (where d jumps by two, broken arc)
from the arc with smaller value of d (unbroken).

3.1. Labelling of an apparent contour

A Hu¤man labelling (labelling for short) of AppConðjÞ (see [15], [26], [7, p. 19],
[8, pp. 19, 20], [3]) is a pair ð f ; dÞ, where the function d : ArcsðjÞ ! N has the
following properties:

– d is locally constant on ArcsðjÞ;
– 0a dðyÞa lim infy!y f ðyÞ, for all y a ArcsðjÞ;
– the compatibility conditions betweeen f and d depicted in Figure 1 must be

satisfied.

3.2. Factorization of j through an embedding and a projection

Definition 3.1. Let p : R3 ! R2 be an orthogonal projection and let S be a
smooth closed surface embedded in R3. We say that S is in generic position with
respect to p if pjS : S ! R2 is stable.

Figure 1. (b), (c): the canonical cusp of AppConðjÞ, i.e. the semicubic curve ðy21 ; y31Þ. (d),
(e): the canonical crossings of AppConðjÞ. (a)–(e): compatibility conditions between f
(defined in (3.1)) and d (defined in Section 3.1).
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Remark 3.2. As shown in [3], the existence of a labelling on a planar graph
with crossings and cusps, is a necessary and su‰cient condition for the existence
of a smooth closed two-manifold S and of a smooth map j : S ! R2 factorizing
as

j ¼ p � e;

where e : S ! R3 is a smooth embedding, p : R3 ! R2 is an orthogonal projec-
tion such that S :¼ eðSÞ is in generic position with respect to p, and such that
the planar graph is AppConðjÞ. Moreover such an embedding is unique up to
reparametrizations of S and compactly supported deformations of R3 invariant
with respect to p.

The meanings of f and d then become the following:

– f ðyÞ is the number of points of S that project on y a R2;
– dðyÞ counts the number of layers of S in front of the point of the singular locus

of j that projects on y.

The following simple observation is concerned with the stability of p � e (see [17]
for general stability theorems for composite mappings), and shows that, in the
statement of Theorem 5.5, there is no loss of generality in assuming the initial
and final surfaces S0 and S1 to be in generic position with respect to p.

Remark 3.3. Given e a EmbðM;R3Þ and a neighbourhood Ue HClðM;R3Þ
of e, there exists êe a EmbðM;R3ÞBUe such that ŜS :¼ êeðMÞ is in generic position
with respect to p. Indeed, by identifying M with S :¼ eðMÞ we can suppose that
e : S ! R3 is the identity. Then k :¼ p � e a ClðS;R2Þ is a map between two
2-manifolds, with S closed. From the density of StabðS;R2Þ in ClðS;R2Þ it
follows that, given any neighboourhood UkHClðS;R2Þ of k there exists a
map j a StabðS;R2ÞBUk. Define ŜS :¼ fðjðy; zÞ; zÞ : ðy; zÞ a Sg. TakingUk small
enough and recalling that EmbðS;R3Þ is open in ClðS;R3Þ, we obtain that there
exists êe a EmbðM;R3ÞBUe such that êeðMÞ ¼ ŜS. Moreover pjŜS ¼ j, so that the
stability of j implies that ŜS is in generic position with respect to p.

4. Moves on apparent contours

In this section we list the moves on the apparent contour; in view of Theorem 5.5,
and as explained in the introduction, this list turns out to be complete (see Corol-
lary 6.1).

Definition 4.1. With reference to Figure 2, the moves on an apparent contour
are given as K, L, B, C, S, T, by identifying a box in R2 di¤eomorphic to the box
on the left side of the picture and replacing it with a box di¤eomorphic to the box
on the right side.

Remark 4.2. We require that the moves leave unchanged a (small) neighbour-
hood of the boundary of the box. The same definition as Definition 4.1 can be
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given, except for the move T, by switching the role of the two boxes: this is equiv-
alent to reverse the orientation of the t-axis, and to consider the inverse moves as
temporal inverse moves. The corresponding moves will be denoted by K�1, L�1,
B�1, C�1, S�1. The (direct) moves K, L, B, C, S, T are chosen in such a way that
they simplify the local topology of the apparent contour (i.e., they decrease the
number of crossings/cusps). There is no distinction between direct and inverse
moves of type T, as explained in the sequel.

We recall that all apparent contours that we consider in the present paper
are oriented, and therefore di¤erent orientations determine di¤erent moves. For
simplicity of notation, in most of the pictures of Figure 2 we do not specify the
orientation; moreover, we do not indicate the values of f before and after the
moves, since the values of f can be inferred from the orientation of the apparent
contour.

– The four moves of type K. We divide the moves of type K into four di¤erent
moves as follows. Up to a rotation of 180 degrees, we can assume that the
arc with the two extremal points on the left is in front of the other arc. The
four moves therefore are classified on the basis of the four possible orientations
of the two arcs. In addition they are parameterized by two nonnegative inte-
gers d and k, as explained in Section 4.3 below.

– The moves L and B. Up to a rotation of 180 degrees, we can assume that the
highest value of d is on the upper arc. Then there is one move L and one move
B, as depicted in Figure 2.

– The eight moves of type C. We divide the moves of type C into two groups of
four di¤erent types. First we distinguish the case when the cusp is in front of
the (vertical) arc. The first of the figures for C is in turn divided into four cases,
depending on whether the value of d decreases of increases when parameteriz-
ing the cusp, and on the orientation of the vertical arc. In the second figure the
cusp is behind the vertical arc: similarly as before, we have four cases. The set
of values taken by d along the cusped arc are fd þ k; d þ k þ 1; d þ k þ 2;
d þ k þ 3g. Again the meaning of the two parameters d and k is explained in
Section 4.3.

– The two moves of type S. We divide the moves of type S into two groups: in the
first picture the value of d jumps up by two at the crossing and is decreasing at
(both) cusps (the arcs are traversed according to their natural orientation),
whereas in the second picture d is increasing at the cusps.

– The sixteen moves of type T. The three arcs carry a natural ordering according
to their relative depth (increasing values of d); we can always rotate the picture
so that the nearest arc (lowest d), is the vertical one. We then have two di¤er-
ent possibilities for the position of the itermediate and of the furthest arcs.
Each of the three arcs can be oriented in two ways: the internal triangular
region can lie on the left or on the right. In the end we have sixteen di¤erent
possibilities which however also account for the corresponding time reversed
moves, in the sense that the inverse of a T move is still a T move. This is in
contrast to what happens for all the other moves. If d1, k1 and k2 denote
respectively the number of layers in front of the first fold (nearest arc), the
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number of layers interposed between the first and second fold and the number
of layers interposed between the second and the third fold, then d1 is the
value of d on the first arc, d1 þ k1 and d1 þ k1 þ 2 are the two values taken
by d on the second arc, and the values of d on the third arc are contained
in the set fd1 þ k1 þ k2 þ i : i ¼ 0; 2; 4g, the precise values depending on the
orientation of the first and second arc.

Remark 4.3. In order to make a complete classification of the moves, the
number of layers, at di¤erent depths, of the corresponding three dimensional
embedded surface must be taken into account: this introduces further degrees of
freedom in the list of di¤erent moves, as follows. Moves L, B and S have one
nonnegative integer parameter d, counting the number of layers in front of the
fold. Moves of type K and C have two nonnegative integer parameters d and k,
counting the number of layers in front of the first fold, and the number of layers
in between the two folds. Moves of type T have three nonnegative integer param-
eters, given respectively by the number of layers in front of the first fold surface,
by the number of layers between the first and the second fold surface, an by the
number of layers between the second and the third fold surface.

5. Stability of Fg and stratifiability of p

In order to state the main result (Theorem 5.5) we need some preparation. In this
section M denotes a smooth two-dimensional closed manifold.

Figure 2. List of moves on the apparent contour
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Recall [14] that an isotopy from M to R3 is a map g a ClðM � ½0; 1�;R3Þ
such that for any t a ½0; 1� the map gð�; tÞ : M ! R3 is an embedding.

Definition 5.1. Let S0 and S1 be the images in R3 of two smooth embeddings
of M. We say that S0 and S1 are isotopic if there exists an isotopy g such that
gðM; 0Þ ¼ S0 and gðM; 1Þ ¼ S1.

In the sequel it is convenient to consider maps g defined on a closed smooth man-
ifold. Therefore, we perform the following operations. We first reparametrize the
map gðx; �Þ by composing it with a strictly increasing Clð½0; 1�; ½0; 1�Þ function
having vanishing derivatives of all order at 0 and 1. We still denote by t the new
variable, so that

qkgðx; tÞ
qtk jt¼0

¼ qkgðx; tÞ
qtk jt¼1

¼ 0; k a N; kb 1:ð5:1Þ

We next extend g on the whole of M � R by reflecting it about 0 and 1, resulting
in a smooth periodic function of period 2 in the variable t. If we identify R=½0; 2�
with S1 we obtain a smooth function, still denoted by g, defined on the closed
smooth manifold M � S1 with values in R3. In this way 0 and 1 are two distinct
points in the oriented circle S1.

From now on we set

X :¼ M � S1:ð5:2Þ

Variables in X will be denoted by ðx; tÞ with x a M, x ¼ ðx1; x2Þ (locally) and
t a S1. Moreover, we shall denote as usual by ðy; zÞ a point of R3 ¼ R2 � R
where y ¼ ðy1; y2Þ a R2 and z a R.

5.1. The map Fg

From now on we set

Y :¼ R2 � S1:ð5:3Þ

Variables in Y will be denoted by ðy; tÞ with y ¼ ðy1; y2Þ a R2 and t a S1.
We let p : R3 ¼ R2 � R ! R2 denote the orthogonal projection defined by

pðy; zÞ :¼ y.

Definition 5.2. Let g a ClðX;R3Þ. We define Fg a ClðX;YÞ as

Fgðx; tÞ :¼ ðpðgðx; tÞÞ; tÞ; ðx; tÞ a X:ð5:4Þ

The map g a ClðX;R3Þ ! Fg a ClðX;YÞ is continuous.
It is immediately seen that the di¤erential of Fg has rank 2 at ðx; tÞ a X if and

only if the map

jt :¼ pðgð�; tÞÞ : x a M ! jtðxÞ :¼ ðg1ðx; tÞ; g2ðx; tÞÞ a R2ð5:5Þ
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has di¤erential with rank one at x a M. This in particular implies (1.1). Note that,
defining ftðyÞ as in (3.1) with jt in place of j, we have ftðyÞ ¼afF �1

g ðy; tÞg for any
ðy; tÞ a Y.

5.2. Statement of the main theorem

We denote by p : Y ! S1 the projection

pðy; tÞ :¼ t; y a R2; t a S1;ð5:6Þ

defined on the target manifold Y.
Let S0 and S1 be two isotopic embedded surfaces in R3, and let g be the iso-

topy. In order to prove the completeness of the set of moves (Section 6) we need
to have that Fg a StabðX;YÞ and, at the same time, that p : Y ! S1 is a strati-
fied Morse function on the stratification ðY; fYjgFg

Þ. Corollary 5.7 below shows
that Fg can be approximated by stable maps of the form Fg, for a suitable g. The
stability of Fg implies that pjY0

and pjY1
have no critical points (Remark 5.3) but

does not imply, in general, that p is a stratified Morse function (Remark 5.4): it
may happen that a curve in Y2 having an endpoint in Y3 has there a tangent line
contained in the plane ft ¼ constg.

Remark 5.3. Let a a ClðX;R3Þ be such that Fa a StabðX;YÞ, and let
ðY; fYjgFa

Þ be the stratification induced by Fa. Recalling definition (5.6) of p it
is immediate to check that pjY0

does not have any critical point. Moreover:

– pjY1
does not have any critical point, or equivalently the tangent plane to Y1

at a point is never orthogonal to ð0; 0; 1Þ. Indeed, if the rank of the di¤erential
of Fa at ðx; tÞ a X is two and Faðx; tÞ a Y1, necessarily the tangent space at
Faðx; tÞ contains a vector of the form ðc1; c2; 1Þ for some c1; c2 a R. In particu-
lar the tangent plane to Y1 at Faðx; tÞ is transversal to ft ¼ tg, and this holds
uniformly with respect to the points in Y1.

– Let ðy; tÞ a Y2 AY3 be a point which is limit of points ðyk; tkÞ belonging to Y1.
Assume that the limit of the sequence of tangent planes to Y1 at ðyk; tkÞ a Y1

exists, and denote by T such a limit. Then, by the previous item and by conti-
nuity, still ðc1; c2; 1Þ is one of the two vectors spanning T . Therefore T is trans-
verse to ft ¼ tg at ðy; tÞ.

Remark 5.4. Let as adopt the notation of Remark 5.3. Then the function p
could not be a stratified Morse function on ðY; fYjgF~gg

Þ, since the third condition
of Definition 2.3 may fail, when u ¼ p and j ¼ 3. For instance:

– It is not di‰cult to find an example of a map a a ClðX;R3Þ with Fa a
StabðX;YÞ, having a triple point at ðy; tÞ ¼ ð0; 0Þ a Y 3

3 with one of the dou-
ble curves in Y 2

2 parallel to ft ¼ 0g. This is the case for instance of a map
Fa a StabðX;YÞ having, locally around ð0; 0Þ, the fold surfaces of the form
fy1 ¼etg and fy2 ¼ 0g. These folds are obviously mutually transverse,
fy1 ¼ t ¼ 0g is locally one of the double curves and it is parallel to the plane
ft ¼ 0g.
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– Up to a change of variables in X and Y, a swallow tail singularity at ð0; 0Þ
has the local description h1 ¼ x1x2 þ x21x3 þ x41 , h2 ¼ x2, h3 ¼ x3. There are
two cusp curves and one double curve originating at the singularity with a
common tangent vector ð0; 0;�1Þ; moreover all the fold surfaces are locally
tangent at the singularity to the plane fh1 ¼ 0g. We can provide two sim-
ple realizations in our context of the canonical representation above. The
choice x ¼ ðx1; x2Þ, y ¼ ðh1; h2Þ, t ¼ x3 ¼ h3 corresponds to the move S,
whereas the choice x ¼ ðx1; x3Þ, y ¼ ðh1; h3Þ, t ¼ x2 ¼ h2 (whence pðaðx; tÞÞ ¼
ðtx1 þ x2x

2
1 þ x4

1 ; x2Þ) corresponds to an evolution that is degenerate at t ¼ 0:
indeed the corresponding apparent contour has a cusp with one of the two
departing arcs that is (locally) completely contained in another arc of the
contour.

In Lemma 5.8 we perform a further perturbation of a stable map Fb in order to
get a new map making the function p stratified. Eventually, stability of Fg and
stratifiability of p can be achieved at the same time, and this is one of the by-
products of the following theorem.

Theorem 5.5. Let p : R3 ¼ R2 � R ! R2 be the orthogonal projection, and for
j ¼ 0; 1 let ej a EmbðM;R3Þ be such that S0 :¼ e0ðMÞ and S1 :¼ e1ðMÞ are in
generic position with respect to p. Assume that g a ClðX;R3Þ is an isotopy be-
tween S0 and S1. Then for any neighbourhood Uej HClðM;R3Þ of ej, j ¼ 0; 1,
and for any neighbourhood Ug HClðX;R3Þ of g there exists a map ~gg a U g such
that

(i) ~SS0 :¼ ~ggðM; 0Þ and ~SS1 :¼ ~ggðM; 1Þ are in generic position with respect to p,
~ggð�; 0Þ a Ue0 , ~ggð�; 1Þ a Ue1 , and ~gg is an isotopy betweeen ~SS0 and ~SS1;

(ii) F~gg a StabðX;YÞ, where F~ggðx; tÞ :¼ ðp � ~ggðx; tÞ; tÞ for any ðx; tÞ a X;
(iii) p : Y ! S1 is a stratified Morse function on the stratification ðY; fYjgF~gg

Þ of
Y induced by F~gg.

5.3. Proof of Theorem 5.5

We split the proof into various steps.

Lemma 5.6. Let a a ClðX;R3Þ. For any neighbourhood Na of a in ClðX;R3Þ
we can find a neighbourhood VFa

of Fa in ClðX;YÞ such that for any G a VFa

there exists a a Na so that

Fa is equivalent to G:

Proof. Let Na be a neighbourhood of a. Let also VFa
be a neighbourhood

of Fa in ClðX;YÞ. We want to show that, reducing VFa
, any G a VFa

is equiva-
lent to a map having the third component equal to t. Write G in components
as G ¼ ðG1;G2;G3Þ : X ! R2 � S1. Then, provided VFa

is su‰ciently small, for
any x a M the function t a S1 ! Gx

3 ðtÞ :¼ G3ðx; tÞ a S1 is close to the identity in
ClðS1;S1Þ, and therefore it is invertible. Let gxð�Þ : S1 ! S1 be its inverse; note
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that the map ðx; tÞ a X ! gxðtÞ a S1 is smooth. Moreover gxðGx
3 ðtÞÞ ¼ t and

Gx
3 ðgxðsÞÞ ¼ s. Setting a ¼ ðax; azÞ a R2 � R, we define a : X ! R3 (writing t in

place of s) as

aðx; tÞ :¼ ðG1ðx; gxðtÞÞ;G2ðx; gxðtÞÞ; azðx; tÞÞ; ðx; tÞ a X:ð5:7Þ

Since a depends continuously on G, possibly restricting the neighbourhood VFa
we

can ensure that a a Na. Then the map ðx; tÞ a X ! Faðx; tÞ :¼ ðp � aðx; tÞ; tÞ a Y
satisfies

Faðx; tÞ ¼ ðG1ðx; gxðtÞÞ;G2ðx; gxðtÞÞ; tÞ; ðx; tÞ a X:

The map f : ðx; tÞ a X ! fðx; tÞ :¼ ðx; gxðtÞÞ a X is a di¤eomorphism of X.
Since G � f ¼ Fa ¼ idY � Fa, it follows that Fa is equivalent to G. r

Corollary 5.7. Let a a ClðX;R3Þ. For any neighbourhood Na of a in
ClðX;R3Þ there exists a a Na such that

Fa a StabðX;YÞ:

Proof. Let VFa
and a be as in Lemma 5.6. Since StabðX;YÞ is dense in

ClðX;YÞ, there exists H a VFa
BStabðX;YÞ. Therefore, choosing G ¼ H in

Lemma 5.6 we deduce that Fa is equivalent to H a StabðX;YÞ. As a conse-
quence, also Fa a StabðX;YÞ. r

Lemma 5.8. Let b a ClðX;R3Þ be such that Fb a StabðX;YÞ. For any neigh-
bourhood Wb of b in ClðX;R3Þ there exists a map b̂b a Wb such that
Fb̂b a StabðX;YÞ and

p : Y ! S1 is a stratified Morse function on ðY; fYjgFb̂b
Þ:ð5:8Þ

Proof. Since Fb a StabðX;YÞ, from Remark 5.3 it follows that pjY0
and pjY1

have no critical points. The examples in Remark 5.4 show however that Fb must
be slightly perturbed in order the function p to be a stratified Morse function. Let
Wb be a neighbourhood of b in ClðX;YÞ. Recalling Definition 2.3, in order to
prove (5.8) it remains to show that there exists b̂b a Wb such that the function
p : ðY; fYjgF

b̂b
Þ ! S1 satisfies the following three properties:

(1) if ðy; tÞ a Y3 then all curves in Y2 having ðy; tÞ as an end point cannot have a
limit tangent line at ðy; tÞ contained in ft ¼ tg;

(2) all critical values of pjY2
are distinct, and distinct from pðY3Þ, in turn consist-

ing of distinct points of S1;
(3) the critical points of pjY2

are nondegenerate.

Let us consider the stratification fYjgFb
induced by Fb, and let ðy; tÞ a Y3. Note

that if ðy; tÞ a Y 3
3 then only one of the three double curves concurring at ðy; tÞ

may have the property of having a limit tangent line contained in ft ¼ tg: indeed,
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if two of them share this property, then there is a fold surface in Y1 having the
tangent plane at ðy; tÞ parallel to ft ¼ tg, which is in contradiction with Remark
5.3. Recall also that, if ðy; tÞ a Y 1

3 is a swallow tail, then the two cusp curves and
the double curve concurring at ðy; tÞ have the same tangent vector there.

Assume now that there is a curve c in Y2 A fðy; tÞg having ðy; tÞ as an end
point with a limit tangent line at ðy; tÞ contained in ft ¼ tg. Let l ¼ ðl1; l2; l3Þ a
Clð½0; 1�;YÞ be a regular parameterization of c having ðy; tÞ as an end point, so
that lð0Þ ¼ ðy; tÞ and l 0

3ð0Þ ¼ 0. Pick a smooth function a : Y ! R satisfying

aðy; tÞ ¼ 0;
d

ds
aðlðsÞÞjs¼0A 0:ð5:9Þ

Let WHY be a neighbourhood of ðy; tÞ small enough so that all points in
Y3nfðy; tÞg are not contained in W; let also w be a smooth nonnegative function
on Y supported in W which is constantly equal to one in a small neighbourhood
of ðy; tÞ and let e a R. Define the function j : Y ! R as

jðy; tÞ :¼ tþ �wðy; tÞaðy; tÞ; ðy; tÞ a Y:

Then, provided jej is su‰ciently small, we have that for any y a R2 the function
t a S1 ! jðy; tÞ a S1 is invertible. Therefore, the map c : Y ! Y defined as
cðy; tÞ :¼ ðy; jðy; tÞÞ is a di¤eomorphism of Y. Define G : X ! Y as

G :¼ c � Fb:ð5:10Þ

Then G is equivalent to Fb, and therefore since by assumption Fb a StabðX;YÞ, it
follows that also G a StabðX;YÞ. Moreover

Gðx; tÞ ¼ ðp � bðx; tÞ; ixðtÞÞ; ðx; tÞ a X;

where

ixðtÞ :¼ tþ �wðFbðx; tÞÞaðFbðx; tÞÞ; ðx; tÞ a X:

Let VFb
be the neighbourhood of Fb given by Lemma 5.6 (take b ¼ a and

Wb ¼ Na). If j�jf 1 we have G a VFb
. Let us now consider the stratification

fY G
0 ;Y G

1 ;Y G
2 ;Y G

3 g induced on Y by G: by equality (5.10) it follows that such
a stratification is the image through c of the stratification induced by Fb. The
first relation in (5.9) implies that ðy; tÞ a Y G

3 ; moreover cðcÞHY G
2 A fðy; tÞg is

regularly parameterized in a neighbourhood of ðy; tÞ by s a ½0; 1� ! cðlðsÞÞ ¼
ðl1ðsÞ; l2ðsÞ; jðlðsÞÞÞ. Since

d

ds
jðlðsÞÞjs¼0 ¼ l 0

3ð0Þ þ e
d

ds
aðlðsÞÞjs¼0 ¼ e

d

ds
aðlðsÞÞjs¼0;ð5:11Þ

the second relation in (5.9) guarantees that the right hand side of (5.11) is non-
zero. It follows that assertion (1) is satisfied for the stratification induced by G.
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Denote by f : X ! X the di¤eomorphism of X defined by fðx; tÞ :¼
ðx; ðixÞ�1ðtÞÞ. From the proof of Lemma 5.6, it follows that there exists b̂b a Wb

such that

G � f ¼ Fb̂b:ð5:12Þ

Since G a StabðX;YÞ it follows that Fb̂b a StabðX;YÞ. Moreover, (5.12) implies
that the stratification of X associated with G is the image through f of the strat-
ification associated with Fb, and that the stratification of Y induced by G coin-
cides with the stratification induced by Fb̂b. We conclude therefore that the strati-
fication induced by Fb̂b satisfies condition (1).

If we now replace the function a in the previous argument with the func-
tion aþ b, where b : Y ! R is a smooth function satisfying bðy; tÞA 0 and
dbðy; tÞ ¼ 0, we obtain that pðY3Þ consists of distinct points of S1.

Considering the stratification of Y induced by Fb̂b, from condition (1) we
deduce that pjY2

has no critical points on the boundary points of Y2. Therefore,
being all critical points of pjY2

interior to any arc of Y2 we can argue using one
dimensional Morse theory, and obtain assertion (3). Also assertion (2) follows in
a standard way. r

We are now in the position to conclude the proof of the theorem.
We apply Corollary 5.7 to a ¼ g and to Na JU g, and we obtain a corre-

sponding map g a Na satisfying Fg a StabðX;YÞ. Possibly reducing Na, we can
assume that gð�; 0Þ a Ue0 and gð�; 1Þ a Ue1 . Since Fg a StabðX;YÞ, we can now
apply Lemma 5.8 to b ¼ g and to Wb a neighbourhood of g satisfying Wb JNa:
if we set

~gg :¼ b̂b;

it follows that ~gg a Wb JNa JUg, and ~gg satisfies assertions (ii) and (iii). More-
over ~ggð�; 0Þ a Ue0 and ~ggð�; 1Þ a Ue1 .

Since gð�; tÞ a EmbðM;R3Þ and EmbðM;R3Þ is open in ClðM;R3Þ it follows
(possibly reducingWb) that ~ggðM; 0Þ and ~ggðM; 1Þ are isotopic. Since by assumption
pjSj

a StabðSj ;R
2Þ, possibly reducing Wb and recalling that StabðSj;R

2Þ is open
in ClðSj;R

2Þ it follows that pj~ggðM;0Þ a StabðS0;R
2Þ and pj~ggðM;1Þ a StabðS1;R

2Þ.
This proves (i) and concludes the proof of Theorem 5.5.

6. Completeness of moves

Let p, e0, e1, ~gg, ðY; fYjgF~gg
Þ and p be as in Theorem 5.5. By compactness, the

set critðpjY2
Þ of critical points of pjY2

is finite. Since also Y3 consists of isolated
points, it follows that pjY2

ðcritðpjY2
ÞÞA pðY3Þ is a finite set of points of S1, that

we call the set of critical times. If t0 is not a critical time, the apparent contour
(given by a normal slice, i.e. the transversal intersection of Y1 AY2 AY3 with
ft ¼ t0g) varies smoothly, and its topology does not change. Hence we can find
a smooth path of di¤eomorphisms of R2 connecting the apparent contours at
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times t1 and t2 whenever the interval ½t1; t2� does not contain any critical time.
Moreover, in view of the classification results on singularities of stable mappings
between 3-manifolds (Section 2), we obtain the following corollary (compare with
Figure 3).

Corollary 6.1. A point ðy; tÞ a critðpjY2
ÞAY3 lies in one of the following

classes, each determining a move in the list of Section 4:

– ðy; tÞ a Y 2
2 is a local maximum (resp. a local minimum) of a double curve: moves

of type K (resp. of type K�1).
– ðy; tÞ a Y 1

2 is a local maximum (resp. local minimum) of a cusp curve that
bounds folds going downwards (resp. upwards): move L (resp. move L�1).

– ðy; tÞ a Y 1
2 is a local maximum (resp. local minimum) of a cusp curve that

bounds folds going upwards (resp. downwards): move B (resp. move B�1).
– ðy; tÞ a Y 1

3 : moves of type S.
– ðy; tÞ a Y 2

3 : moves of type C.
– ðy; tÞ a Y 3

3 : moves of type T.

Remark 6.2. A more precise classification of each move can be obtained by
looking at the orientation of the various folds involved and at the relative depth
of the preimages in the singular set X 1 ¼ S1ðF~ggÞ with respect to the regular pre-
images. For example, a points in Y 3

3 has three distinct preimages in X1 which can
be ordered according to the z coordinate (dropped by the projection p). Each of
the three involved folds, which are transversal with respect to ‘‘time’’ t, carries a
natural orientation and hence contributes with a sign. The relative depth of the
three singular preimages with respect to the remaining regular preimages provides
for the three nonnegative integers parameters as explained in Remark 4.3. Note
that a cusp curve forces the orientation of the two adjacent folds. In this way we
have a precise one-to-one correspondence between the list of moves of Section 4
and the list in Corollary 6.1.

Remark 6.3. Corollary 6.1 can be obtained as a special case of [4, Theorem
3.5.5] in which Carter, Rieger and Saito consider isotopies of immersed sur-
faces F in R3, realized as projections of embedded surfaces in R4, possibly with
pinch points. They seek all codimension one singularities of maps R3 IF !
R� R ! R. The majority of these singularities are related to self-intersections
and pinch points of F , which are excluded in our setting. Moreover, they
also consider singularities that arise from the presence of a height function
R� R ! R which we do not need here. The remaining codimension one singular-
ities correspond to those listed in Corollary 6.1. To be more specific, [4, Figure
9(row 1, column 1)] corresponds to move L; [4, Figure 9(2,1)] corresponds to
B; [4, Figure 9(3,1)] corresponds to S; [4, Figure 10(1,1)] corresponds to K;
[4, Figure 10(1,2)] corresponds to C; [4, Figure 10(2,1)] corresponds to T.
Theorem [4, 3.2.3] is a simpler version of [4, Theorem 3.5.5], in which the height
function is not considered, and hence it is more close to Corollary 6.1; it follows
by combining the classifications given by [13], [20] and [24].
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Figure 3. Each row represents the fold surfaces Y1 near di¤erent types of critical points
for p: K, L, inverse of B, inverse of S, C, T. The second and third pictures on each row
show the cutting with t ¼ const (apparent contour) before and after the critical value.
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