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Functional Analysis — A spectral Schwarz lemma, II, by Edoardo Vesentini.

Abstract. — The spectral Schwarz lemma holding for any operator-valued holomorphic map of
the open unit disc DHC into the algebra of all continuous linear operators acting on a complex

Banach space is extended to other scalar- and vector-valued gauges of continuous linear operators,
with particular attention to the numerical range and the numerical radius of any continuous linear

mapping acting on a complex Banach space.
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The main results of [12], devoted to establishing a spectral version of the classical
Schwarz inequality holding for a holomorphic operator-valued function of a
complex variable, are based on the fact that, given a complex Banach space E1,
and the unital Banach algebra LðEÞ of all linear operators X a LðEÞ, the spec-
tral radius X 7! rðXÞ is (a logarithmic-plurisubharmonic function and therefore)
a plurisubharmonic function of X .

This short addendum to [12] will develop a similar analysis, for some other
gauges associated to X—with special attention to the numerical range W ðX Þ
and the numerical radius vðX Þ when E is a complex Hilbert space and to their
extensions—due to G. Lumer [6], and to B. B. Bonsall and J. Duncan [1]—to
the case in which E is any complex Banach space.

1

Let B ¼ BE be the open unit ball of a complex Banach space E, and let
f : B ! ½0; 1� be a plurisubharmonic function on B such that fð0Þ ¼ 0. For any
u a qB the function ju : D ! ½0; 1� defined on z a D by juðzÞ ¼ fðzuÞ is subhar-
monic on D, and juð0Þ ¼ 0.

According to Lemma 1 in [12], if f is any scalar-valued holomorphic func-
tion on D such that f ð0Þ ¼ 0 and f ðDÞHD, then juð f ðzÞÞa jzj for all z a D
and juð f 0ð0ÞÞa 1; if either juð f 0ð0ÞÞ ¼ 1 or there is z a Dnf0g for which
juð f ðzÞÞ ¼ jzj, then this latter equality holds for all z a D.

Since u a qB is arbitrary, the following lemma holds (in which k kE is the
norm in E):

1Throughout the following, all normed spaces will be assumed to be complete.



Lemma 1. If F : B ! B is a holomorphic map such that F ð0Þ ¼ 0, then

fðF ðxÞÞa kxkE Ex a B

and

fððdFð0ÞÞvÞa 1 Ev a qB:

If either fðdFð0ÞvÞ ¼ 1 for some v a qB or there is x a Bnf0g for which
fðFðxÞÞ ¼ kxkE, then fðF ðzxÞÞ ¼ jzj kxkE for all z a D.

The first candidate to the role of f is the norm in E, for which Lemma 1 holds
with f ¼ k kE.

But also the Carathéodory pseudodistance (see, e.g. [2], pp. 84–85) plays a
role, as the following example will show.

Let E be a domain in E. It was shown in [10] (pp. 212–217; see also Theorem
1.4, pp. 480–482, and Theorem 1.10, p. 488, in [11]) that the Carathéodory pseu-
dodistance cEðx; yÞ between any two points x, y in E is a (logarithmic) plurisub-
harmonic function of x and y.

Let the domain E contain the open unit ball B of E, and let G : E ! E be a
holomorphic map such that Gð0Þ ¼ 0 and GðBÞHB.

Letting fðxÞ ¼ cEð0; xÞ for any x a E, then

fðGðxÞÞ ¼ cEð0;GðxÞÞ ¼ cEðGð0Þ;GðxÞÞa cEð0; xÞ ¼ fðxÞ Ex a E:

Since, if x a B,

fðxÞ ¼ cEð0; xÞa cBð0; xÞ ¼ kxkE;

then

fðGðxÞÞ ¼ cEð0;GðxÞÞ ¼ cEðGð0Þ;GðxÞÞa cEð0; xÞ
¼ fðxÞa kxkE Ex a B:

As was mentioned at the beginning, the case in which E is an associative unital
Banach algebra A with no non-zero topologically nilpotent element, and the
plurisubharmonic function f is the spectral radius r in A has been considered
in [12], showing that,

rðF ðxÞÞa kxkA Ex a B;

and that, if either rðF ðx0ÞÞ ¼ kx0kA or rðdF ð0Þðx0ÞÞ ¼ kx0kA for some x0 a
Bnf0g, then

rðF ðzx0ÞÞ ¼ jzj kx0kA Ez a D:

If the Banach space E is a complex Hilbert space H with inner product ð j ÞH,
norm k kH, and if X a LðHÞ, the numerical range WðX ÞHC and the numeri-
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cal radius wðX Þ a Rþ of X are defined by (see, e.g.: [8], p. 130; [3], pp. 108–113.
160–161, 317–321):

WðX Þ ¼ fðXx j xÞH : x a qBHg

and

wðXÞ ¼ supfjzj : z a WðX Þg:

Let now f be a holomorphic map of the open unit disc D of C into LðHÞ. It
was shown in [9] (Theorem 4.4 and Corollary 4.5; see also [12], Theorem 2) that
the function D C z 7! wð f ðzÞÞ is (logarithmically subharmonic, hence) subhar-
monic on D: which implies that, the numerical radius wðXÞ of any X a LðHÞ is
a plurisubharmonic function of X . As a consequence of this fact, the following
proposition holds:

Proposition 1. If F is a holomorphic map of BLðHÞ into itself and if F ð0Þ ¼ 0,
then

wðF ðXÞÞa kXkLðHÞ EX a BLðHÞ

and

wððdF ð0ÞÞðXÞÞa 1 EX a BLðHÞ:

If wððdF ð0ÞÞðX ÞÞ ¼ 1 or if there exists X a BLðHÞnf0g for which wðF ðXÞÞ ¼
kXkLðHÞ, then wðF ðzXÞÞ ¼ jzj kXkLðHÞ for all z a D.

2

Thanks to the work of G. Lumer [6] and B. B. Bonsall and J. Duncan [1], the
notions of numerical range and numerical radius have found extensions from
Hilbert spaces to Banach spaces.

We will briefly review now these extensions in order to show how Proposition
1 can be re-formulated when the Hilbert space H is replaced by the Banach
space E.

Let A be an associative unital Banach algebra, let A 0 be the topological dual
ofA, B ¼ BðAÞ and let qB ¼ qBðAÞ the open unit ball and the unit sphere in A.

By the Hahn–Banach theorem, for any x a qBðAÞ, the set

DðA; xÞ :¼ fQ a A 0 : 3x; Q4 ¼ 1 ¼ kQkAgHA 0

is not empty.
Letting, for a a A and x a qBðAÞ,

VðA; a; xÞ ¼ f3ax; Q4 : Q a DðA; xÞg
¼ f3ax; Q4 : x a qB; Q a A 0; 3x; Q4 ¼ 1 ¼ kQkAg;
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the set

VðA; aÞ ¼
[

fVðA; a; xÞ : x a qBg

¼
[

f3ax; Q4 : x a qB; Q a A 0; 3x; Q4 ¼ 1 ¼ kQkA 0 g;

and the real number

vðaÞ ¼ supfjzj : z a VðA; aÞg
¼ supfj3ax; Q4j : x a qB; Q a A 0; 3x; Q4 ¼ 1 ¼ kQkA 0gb 0

are called in [1] the numerical range and the numerical radius of a.
Since, for any x a qB;

supfj3ax; Q4j : Q a A 0; 3x; Q4 ¼ kQkA 0 ¼ 1ga kakA;

then 0a vðaÞa kakA.
For any choice of a; b a A, a; b a C,

VðA; aaþ bbÞ ¼ aVðA; aÞ þ bVðA; bÞ;

and

VðA; a1A þ bbÞ ¼ aþ bVðA; bÞ;
VðA; a; 1AÞ ¼ f3a; l4 : l a DðA; 1AÞg:

Since

DðA; 1AÞ ¼ fQ a A 0 : 31A; Q4 ¼ 1 ¼ kQkAg
¼ fQ a A 0 : 31A; Q4 ¼ 1b kQkAg;

DðA; 1AÞ is a convex subset of A 0.
For any a a A, VðA; a; 1AÞ is the image of DðA; 1AÞ by the weak�-

continuous map Q 7! 3a; Q4, and is therefore a compact subset of C. That
proves, [1]:

Theorem 1. For each a a A, VðA; aÞ is a compact, convex set in C.

Let f : D ! A be a holomorphic map such that f ð0Þ ¼ 0, k f ðzÞkAa 1 for all
z a D, and therefore

vð f ðzÞÞa 1 Ez a D:

Lemma 2. The function v � f : D C z 7! vð f ðzÞÞ is logarithmically subharmonic.

Proof. The proof amounts to showing that for any a a C, the function

D C z 7! jeazjvð f ðzÞÞ ¼ supfjzj : z a VðA; eazf ðzÞÞg

is subharmonic on D ([7]).
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Let z0 a D, let c and c 0 be positive constants for which

jeaz0 jvð f ðz0ÞÞ < c 0 < c

and let e be such that

0 < e < c 0 � jeaz0 jvð f ðz0ÞÞ:

There exists d > 0 for which, whenever z a D satisfies the inequality
jz� z0j < d, then

jeazvð f ðzÞÞ � eaz0vð f ðz0ÞÞj < e;

and therefore, if jz� z0j < d,

jeazvð f ðzÞÞja j jeazvð f ðzÞÞj � jeaz0vð f ðz0ÞÞj j þ jeaz0vð f ðz0ÞÞj
a jeazvð f ðzÞÞ � eaz0vð f ðz0ÞÞj þ jeaz0vð f ðz0ÞÞj
< eþ jeaz0vð f ðz0ÞÞj < c 0 < c:

For a ¼ 0, that shows, in particular, that the map z 7! vð f ðzÞÞ is upper semi-
continuous. r

Choosing m ¼ v in Lemma 1 of [12] yields

Theorem 2. If f ð0Þ ¼ 0 and vð f ðzÞÞa 1 for all z a D, then

vð f ðzÞÞa jzj Ez a D; and vð f 0ð0ÞÞa 1:

If vð f 0ð0ÞÞ ¼ 1 or if there is z a Dnf0g such that vð f ðzÞÞ ¼ jzj, this latter equal-
ity holds for all z a D, and the (non-empty) intersection VðA; f ðzÞÞ=fzgÞB qD is
independent of z a Dnf0g.

Corollary 1. The numerical radius

A C a 7! vðaÞ

is a logarithmically plurisubharmonic function of a.

Letting B ¼ BA be now the open unit ball of A, Lemma 1 yields the following
‘‘Schwarz lemma’’ for v:

Lemma 3. If F maps holomorphically B into B and F ð0Þ ¼ 0, then

vðF ðxÞÞa kxkA Ex a BA

and

vððdFð0ÞÞðwÞa 1 Ew a qBA:
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If either vððdF ð0ÞÞwÞ ¼ 1 for some w a qBA or if there is w a BAnf0g for which
vðFðwÞÞ ¼ kwkA, then vðFðzwÞÞ ¼ jzj kwkA for all z a D.

Let now X be a continuous linear operator acting on a complex Banach
space E. As was noted in [1], a more natural numerical range of X—denoted by
VðXÞ and called spatial numerical range of X—can be defined directly in terms of
E and X without involving the algebra LðEÞ:

VðX Þ ¼ f3Xx; Q4 : x a E; Q a E 0; 3x; Q4 ¼ 1 ¼ kxkE ¼ kQkE 0g:

Since ([1], Theorem 3, pp. 83–84) its closed convex hull is

coðVðXÞÞ ¼ VðLðEÞ;XÞ;

then

supfjzj : z a VðXÞg ¼ vðXÞ:

A definition of the numerical range closer to the original one due to Toeplitz
and Hausdor¤ in the case of Hilbert spaces, can be given in terms of the semi-
inner-products introduced in [6] by G. Lumer, according to whom a semi-inner-
product space is a mapping x; y 7! ½x; y� of E� E into C such that the mapping
E C x 7! ½x; y� is linear for all y a E;

½x; x� > 0 Ex a Enf0g
j½x; y�j2 a ½x; x�½y; y� Ex; y a E:

By Theorem 2 of [6] (p. 31), the function E C x 7! ½x; x�1=2 is a norm on E and
there is a semi-inner-product ½ ; � (in general, infinitely many semi-inner-products)
in E such that

kxk2E ¼ ½x; x� Ex a E:ð1Þ

Thus, by the Hahn–Banach theorem, every normed linear space can be made
into a semi-inner-product space.

The relationship between semi-inner-products and inner products is clarified
by Theorem 3 in [6], according to which a semi-inner-product is an inner product
if, and only if, the norm defined by (1) satisfies the parallelogram law; a Hilbert
space can be made into a semi-inner-product-space in a unique way.

Given a semi-inner-product ½ ; � satisfying (1), the numerical range W½ ; �ðXÞ of
X a LðEÞ is defined by

W½ ; �ðX Þ ¼ f½Xx; x� : x a E; ½x; x� ¼ 1g:ð2Þ

It turns out ([1], Theorem 8, p. 86) that

W½ ; �ðX ÞHVðXÞ
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and, in fact, VðX Þ is the union of the family WðXÞ of the numerical ranges
W½ ; �ðXÞ represented by (2) for all semi-inner-products ½ ; � satisfying (1).

Furthermore, if the semi-inner product ½ ; � satisfies (1), then

vðX Þ ¼ supfjzj : z a WðXÞg ¼ supfjzj : z a W½ ; �ðXÞg:
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