Rend. Lincei Mat. Appl. 23 (2012), 89–95 DOI 10.4171/RLM/618

Functional Analysis — A spectral Schwarz lemma, II, by EDOARDO VESENTINI.

ABSTRACT. — The spectral Schwarz lemma holding for any operator-valued holomorphic map of the open unit disc $\Delta \subset \mathbb{C}$ into the algebra of all continuous linear operators acting on a complex Banach space is extended to other scalar- and vector-valued gauges of continuous linear operators, with particular attention to the numerical range and the numerical radius of any continuous linear mapping acting on a complex Banach space.

KEY WORDS: Banach algebra, subharmonic function, spectrum, mumerical range.

MATHEMATICS SUBJECT CLASSIFICATION (2000): Primary 30E25.

The main results of [12], devoted to establishing a spectral version of the classical Schwarz inequality holding for a holomorphic operator-valued function of a complex variable, are based on the fact that, given a complex Banach space \mathscr{E}^1 , and the unital Banach algebra $\mathscr{L}(\mathscr{E})$ of all linear operators $X \in \mathscr{L}(\mathscr{E})$, the spectral radius $X \mapsto \rho(X)$ is (a logarithmic-plurisubharmonic function and therefore) a plurisubharmonic function of X.

This short *addendum* to [12] will develop a similar analysis, for some other gauges associated to X—with special attention to the numerical range W(X) and the numerical radius v(X) when \mathscr{E} is a complex Hilbert space and to their extensions—due to G. Lumer [6], and to B. B. Bonsall and J. Duncan [1]—to the case in which \mathscr{E} is any complex Banach space.

1

Let $B = B_{\mathscr{E}}$ be the open unit ball of a complex Banach space \mathscr{E} , and let $\phi: B \to [0,1]$ be a plurisubharmonic function on *B* such that $\phi(0) = 0$. For any $u \in \partial B$ the function $\varphi_u: \Delta \to [0,1]$ defined on $z \in \Delta$ by $\varphi_u(z) = \phi(zu)$ is subharmonic on Δ , and $\varphi_u(0) = 0$.

According to Lemma 1 in [12], if f is any scalar-valued holomorphic function on Δ such that f(0) = 0 and $f(\Delta) \subset \Delta$, then $\varphi_u(f(z)) \leq |z|$ for all $z \in \Delta$ and $\varphi_u(f'(0)) \leq 1$; if either $\varphi_u(f'(0)) = 1$ or there is $z \in \Delta \setminus \{0\}$ for which $\varphi_u(f(z)) = |z|$, then this latter equality holds for all $z \in \Delta$.

Since $u \in \partial B$ is arbitrary, the following lemma holds (in which $\| \|_{\mathscr{E}}$ is the norm in \mathscr{E}):

¹Throughout the following, all normed spaces will be assumed to be complete.

LEMMA 1. If $F : B \to B$ is a holomorphic map such that F(0) = 0, then

$$\phi(F(x)) \le \|x\|_{\mathscr{E}} \quad \forall x \in B$$

and

$$\phi((dF(0))v) \le 1 \quad \forall v \in \partial B.$$

If either $\phi(dF(0)v) = 1$ for some $v \in \partial B$ or there is $x \in B \setminus \{0\}$ for which $\phi(F(x)) = ||x||_{\mathscr{E}}$, then $\phi(F(zx)) = |z| ||x||_{\mathscr{E}}$ for all $z \in \Delta$.

The first candidate to the role of ϕ is the norm in \mathscr{E} , for which Lemma 1 holds with $\phi = \| \|_{\mathscr{E}}$.

But also the Carathéodory pseudodistance (see, e.g. [2], pp. 84–85) plays a role, as the following example will show.

Let *E* be a domain in \mathscr{E} . It was shown in [10] (pp. 212–217; see also Theorem 1.4, pp. 480–482, and Theorem 1.10, p. 488, in [11]) that the Carathéodory pseudodistance $c_E(x, y)$ between any two points *x*, *y* in *E* is a (logarithmic) plurisub-harmonic function of *x* and *y*.

Let the domain *E* contain the open unit ball *B* of \mathscr{E} , and let $G : E \to E$ be a holomorphic map such that G(0) = 0 and $G(B) \subset B$.

Letting $\phi(x) = c_E(0, x)$ for any $x \in E$, then

$$\phi(G(x)) = c_E(0, G(x)) = c_E(G(0), G(x)) \le c_E(0, x) = \phi(x) \quad \forall x \in E.$$

Since, if $x \in B$,

$$\phi(x) = c_E(0, x) \le c_B(0, x) = \|x\|_{\mathscr{E}},$$

then

$$\phi(G(x)) = c_E(0, G(x)) = c_E(G(0), G(x)) \le c_E(0, x)$$
$$= \phi(x) \le ||x||_{\mathscr{E}} \quad \forall x \in B.$$

As was mentioned at the beginning, the case in which \mathscr{E} is an associative unital Banach algebra \mathscr{A} with no non-zero topologically nilpotent element, and the plurisubharmonic function ϕ is the spectral radius ρ in \mathscr{A} has been considered in [12], showing that,

$$\rho(F(x)) \le \|x\|_{\mathscr{A}} \quad \forall x \in B,$$

and that, if either $\rho(F(x_0)) = ||x_0||_{\mathscr{A}}$ or $\rho(dF(0)(x_0)) = ||x_0||_{\mathscr{A}}$ for some $x_0 \in B \setminus \{0\}$, then

$$\rho(F(zx_0)) = |z| \|x_0\|_{\mathscr{A}} \quad \forall z \in \Delta.$$

If the Banach space \mathscr{E} is a complex Hilbert space \mathscr{H} with inner product $(|)_{\mathscr{H}}$, norm $|| ||_{\mathscr{H}}$, and if $X \in \mathscr{L}(\mathscr{H})$, the numerical range $W(X) \subset \mathbb{C}$ and the numeri-

cal radius $w(X) \in \mathbb{R}_+$ of X are defined by (see, e.g.: [8], p. 130; [3], pp. 108–113. 160–161, 317–321):

$$W(X) = \{ (X\xi \,|\, \xi)_{\mathscr{H}} : \xi \in \partial B_{\mathscr{H}} \}$$

and

$$w(X) = \sup\{|\zeta| : \zeta \in W(X)\}.$$

Let now f be a holomorphic map of the open unit disc Δ of \mathbb{C} into $\mathscr{L}(\mathscr{H})$. It was shown in [9] (Theorem 4.4 and Corollary 4.5; see also [12], Theorem 2) that the function $\Delta \ni z \mapsto w(f(z))$ is (logarithmically subharmonic, hence) subharmonic on Δ : which implies that, the numerical radius w(X) of any $X \in \mathscr{L}(\mathscr{H})$ is a plurisubharmonic function of X. As a consequence of this fact, the following proposition holds:

PROPOSITION 1. If F is a holomorphic map of $B_{\mathscr{L}(\mathscr{H})}$ into itself and if F(0) = 0, then

$$w(F(X)) \le \|X\|_{\mathscr{L}(\mathscr{H})} \quad \forall X \in B_{\mathscr{L}(\mathscr{H})}$$

and

$$w((dF(0))(X)) \le 1 \quad \forall X \in B_{\mathscr{L}(\mathscr{H})}.$$

If w((dF(0))(X)) = 1 or if there exists $X \in B_{\mathscr{L}(\mathscr{H})} \setminus \{0\}$ for which $w(F(X)) = ||X||_{\mathscr{L}(\mathscr{H})}$, then $w(F(zX)) = |z| ||X||_{\mathscr{L}(\mathscr{H})}$ for all $z \in \Delta$.

2

Thanks to the work of G. Lumer [6] and B. B. Bonsall and J. Duncan [1], the notions of numerical range and numerical radius have found extensions from Hilbert spaces to Banach spaces.

We will briefly review now these extensions in order to show how Proposition 1 can be re-formulated when the Hilbert space \mathscr{H} is replaced by the Banach space \mathscr{E} .

Let \mathscr{A} be an associative unital Banach algebra, let \mathscr{A}' be the topological dual of \mathscr{A} , $B = B(\mathscr{A})$ and let $\partial B = \partial B(\mathscr{A})$ the open unit ball and the unit sphere in \mathscr{A} .

By the Hahn–Banach theorem, for any $x \in \partial B(\mathscr{A})$, the set

$$D(\mathscr{A}, x) := \{ \vartheta \in \mathscr{A}' : \langle x, \vartheta \rangle = 1 = \|\vartheta\|_{\mathscr{A}} \} \subset \mathscr{A}'$$

is not empty.

Letting, for $a \in \mathscr{A}$ and $x \in \partial B(\mathscr{A})$,

$$V(\mathscr{A}, a, x) = \{ \langle ax, \vartheta \rangle : \vartheta \in D(\mathscr{A}, x) \} \\ = \{ \langle ax, \vartheta \rangle : x \in \partial B, \vartheta \in \mathscr{A}', \langle x, \vartheta \rangle = 1 = \|\vartheta\|_{\mathscr{A}} \},$$

the set

$$V(\mathscr{A}, a) = \bigcup \{ V(\mathscr{A}, a, x) : x \in \partial B \}$$

= $\bigcup \{ \langle ax, \vartheta \rangle : x \in \partial B, \vartheta \in \mathscr{A}', \langle x, \vartheta \rangle = 1 = \|\vartheta\|_{\mathscr{A}'} \},$

and the real number

$$\begin{aligned} v(a) &= \sup\{|\zeta| : \zeta \in V(\mathscr{A}, a)\} \\ &= \sup\{|\langle ax, \vartheta \rangle| : x \in \partial B, \vartheta \in \mathscr{A}', \langle x, \vartheta \rangle = 1 = \|\vartheta\|_{\mathscr{A}'}\} \ge 0 \end{aligned}$$

are called in [1] the *numerical range* and the *numerical radius* of *a*. Since, for any $x \in \partial B$,

$$\sup\{|\langle ax,\vartheta\rangle|:\vartheta\in\mathscr{A}',\langle x,\vartheta\rangle=\|\vartheta\|_{\mathscr{A}'}=1\}\leq\|a\|_{\mathscr{A}},$$

then $0 \le v(a) \le ||a||_{\mathscr{A}}$.

For any choice of $a, b \in \mathcal{A}, \alpha, \beta \in \mathbb{C}$,

$$V(\mathscr{A}, \alpha a + \beta b) = \alpha V(\mathscr{A}, a) + \beta V(\mathscr{A}, b),$$

and

$$V(\mathscr{A}, \alpha 1_{\mathscr{A}} + \beta b) = \alpha + \beta V(\mathscr{A}, b),$$
$$V(\mathscr{A}, a, 1_{\mathscr{A}}) = \{ \langle a, \lambda \rangle : \lambda \in D(\mathscr{A}, 1_{\mathscr{A}}) \}.$$

Since

$$D(\mathscr{A}, 1_{\mathscr{A}}) = \{ \vartheta \in \mathscr{A}' : \langle 1_{\mathscr{A}}, \vartheta \rangle = 1 = \|\vartheta\|_{\mathscr{A}} \}$$
$$= \{ \vartheta \in \mathscr{A}' : \langle 1_{\mathscr{A}}, \vartheta \rangle = 1 \ge \|\vartheta\|_{\mathscr{A}} \},$$

 $D(\mathscr{A}, 1_{\mathscr{A}})$ is a convex subset of \mathscr{A}' .

For any $a \in \mathcal{A}$, $V(\mathcal{A}, a, 1_{\mathcal{A}})$ is the image of $D(\mathcal{A}, 1_{\mathcal{A}})$ by the weak^{*}-continuous map $\vartheta \mapsto \langle a, \vartheta \rangle$, and is therefore a compact subset of \mathbb{C} . That proves, [1]:

THEOREM 1. For each $a \in \mathcal{A}$, $V(\mathcal{A}, a)$ is a compact, convex set in \mathbb{C} .

Let $f : \Delta \to \mathscr{A}$ be a holomorphic map such that f(0) = 0, $||f(z)||_{\mathscr{A}} \le 1$ for all $z \in \Delta$, and therefore

$$v(f(z)) \le 1 \quad \forall z \in \Delta.$$

LEMMA 2. The function $v \circ f : \Delta \ni z \mapsto v(f(z))$ is logarithmically subharmonic.

PROOF. The proof amounts to showing that for any $\alpha \in \mathbb{C}$, the function

$$\Delta \ni z \mapsto |\mathbf{e}^{\alpha z}| v(f(z)) = \sup\{|\zeta| : \zeta \in V(\mathscr{A}, \mathbf{e}^{\alpha z}f(z))\}$$

is subharmonic on Δ ([7]).

Let $z_0 \in \Delta$, let *c* and *c'* be positive constants for which

$$|\mathsf{e}^{\alpha z_0}| v(f(z_0)) < c' < c$$

and let ε be such that

$$0 < \varepsilon < c' - |\mathbf{e}^{\alpha z_0}| v(f(z_0)).$$

There exists $\delta > 0$ for which, whenever $z \in \Delta$ satisfies the inequality $|z - z_0| < \delta$, then

$$|\mathbf{e}^{\alpha z}v(f(z)) - \mathbf{e}^{\alpha z_0}v(f(z_0))| < \varepsilon,$$

and therefore, if $|z - z_0| < \delta$,

$$\begin{aligned} |e^{\alpha z}v(f(z))| &\leq ||e^{\alpha z}v(f(z))| - |e^{\alpha z_0}v(f(z_0))|| + |e^{\alpha z_0}v(f(z_0))| \\ &\leq |e^{\alpha z}v(f(z)) - e^{\alpha z_0}v(f(z_0))| + |e^{\alpha z_0}v(f(z_0))| \\ &< \varepsilon + |e^{\alpha z_0}v(f(z_0))| < c' < c. \end{aligned}$$

For $\alpha = 0$, that shows, in particular, that the map $z \mapsto v(f(z))$ is upper semicontinuous.

Choosing $\mu = v$ in Lemma 1 of [12] yields

THEOREM 2. If f(0) = 0 and $v(f(z)) \le 1$ for all $z \in \Delta$, then

$$v(f(z)) \le |z| \quad \forall z \in \Delta, \quad and \quad v(f'(0)) \le 1.$$

If v(f'(0)) = 1 or if there is $z \in \Delta \setminus \{0\}$ such that v(f(z)) = |z|, this latter equality holds for all $z \in \Delta$, and the (non-empty) intersection $V(\mathscr{A}, f(z))/\{z\}) \cap \partial \Delta$ is independent of $z \in \Delta \setminus \{0\}$.

COROLLARY 1. The numerical radius

$$\mathscr{A} \ni a \mapsto v(a)$$

is a logarithmically plurisubharmonic function of a.

Letting $B = B_{\mathscr{A}}$ be now the open unit ball of \mathscr{A} , Lemma 1 yields the following "Schwarz lemma" for v:

LEMMA 3. If F maps holomorphically B into \overline{B} and F(0) = 0, then

$$v(F(x)) \le \|x\|_{\mathscr{A}} \quad \forall x \in B_{\mathscr{A}}$$

and

$$v((dF(0))(w) \le 1 \quad \forall w \in \partial B_{\mathscr{A}}.$$

If either v((dF(0))w) = 1 for some $w \in \partial B_{\mathscr{A}}$ or if there is $w \in B_{\mathscr{A}} \setminus \{0\}$ for which $v(F(w)) = ||w||_{\mathscr{A}}$, then $v(F(zw)) = |z| ||w||_{\mathscr{A}}$ for all $z \in \Delta$.

Let now X be a continuous linear operator acting on a complex Banach space \mathscr{E} . As was noted in [1], a more natural numerical range of X—denoted by V(X) and called *spatial numerical range* of X—can be defined directly in terms of \mathscr{E} and X without involving the algebra $\mathscr{L}(\mathscr{E})$:

$$V(X) = \{ \langle Xx; \vartheta \rangle : x \in \mathscr{E}, \vartheta \in \mathscr{E}', \langle x, \vartheta \rangle = 1 = \|x\|_{\mathscr{E}} = \|\vartheta\|_{\mathscr{E}'} \}.$$

Since ([1], Theorem 3, pp. 83–84) its closed convex hull is

$$\overline{co}(V(X)) = V(\mathscr{L}(\mathscr{E}), X),$$

then

$$\sup\{|\zeta|:\zeta\in V(X)\}=v(X).$$

A definition of the numerical range closer to the original one due to Toeplitz and Hausdorff in the case of Hilbert spaces, can be given in terms of the *semi-inner-products* introduced in [6] by G. Lumer, according to whom a semi-innerproduct space is a mapping $x, y \mapsto [x, y]$ of $\mathscr{E} \times \mathscr{E}$ into \mathbb{C} such that the mapping $\mathscr{E} \ni x \mapsto [x, y]$ is linear for all $y \in \mathscr{E}$;

$$[x, x] > 0 \quad \forall x \in \mathscr{E} \setminus \{0\}$$
$$|[x, y]|^2 \le [x, x][y, y] \quad \forall x, y \in \mathscr{E}.$$

By Theorem 2 of [6] (p. 31), the function $\mathscr{E} \ni x \mapsto [x, x]^{1/2}$ is a norm on \mathscr{E} and there is a semi-inner-product [,] (in general, infinitely many semi-inner-products) in \mathscr{E} such that

(1)
$$||x||_{\mathscr{E}}^2 = [x, x] \quad \forall x \in \mathscr{E}.$$

Thus, by the Hahn–Banach theorem, every normed linear space can be made into a semi-inner-product space.

The relationship between semi-inner-products and inner products is clarified by Theorem 3 in [6], according to which a semi-inner-product is an inner product if, and only if, the norm defined by (1) satisfies the parallelogram law; a Hilbert space can be made into a semi-inner-product-space in a unique way.

Given a semi-inner-product [,] satisfying (1), the numerical range $W_{[,]}(X)$ of $X \in \mathscr{L}(\mathscr{E})$ is defined by

(2)
$$W_{[,]}(X) = \{ [Xx, x] : x \in \mathscr{E}, [x, x] = 1 \}.$$

It turns out ([1], Theorem 8, p. 86) that

$$W_{[,]}(X) \subset V(X)$$

and, in fact, V(X) is the union of the family $\mathcal{W}(X)$ of the numerical ranges $W_{[.]}(X)$ represented by (2) for all semi-inner-products [,] satisfying (1).

Furthermore, if the semi-inner product [,] satisfies (1), then

$$v(X) = \sup\{|\zeta| : \zeta \in W(X)\} = \sup\{|\zeta| : \zeta \in W_{[,]}(X)\}.$$

References

- B. B. BONSALL J. DUNCAN, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Mathematical Society Lecture Note Series, 2, Cambridge University Press, London, 1971.
- [2] T. FRANZONI E. VESENTINI, *Holomorphic maps and invariant distances*, North-Holland, Amsterdam–New York–Oxford, 1980.
- [3] P. R. HALMOS, A Hilbert space problem book, Van Nostrand, Princeton N.J., 1967.
- [4] M. JARNICKI P. PFLUG, *Invariant distances and metrics in complex analysis*, de Gruyter, Berlin, 1993.
- [5] S. KOBAYASHI, *Hyperbolic complex spaces*, Springer-Verlag, Berlin Heidelberg New York, 1998.
- [6] G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961), 29-43.
- [7] T. RADO, Subharmonic functions, Ergebnisse der Math. und ihrer Grenzgebiete, Springer, Berlin, 1937.
- [8] M. H. STONE, *Linear transformations in Hilbert space and their applications to analysis*, American Mathematical Society Colloquium Publications, Vol. XV, American Mathematical Society, Providence, Rhode Island, 1932.
- [9] E. VESENTINI, Maximum theorems for vector valued holomorphic functions, Rend. Sem. Mat. Fis. Milano, 40 (1970), 1–34.
- [10] E. VESENTINI, *Complex geodesics and holomorphic maps*, Sympos. Math. 26 (1982), 211–230.
- [11] E. VESENTINI, Semigroups of holomorphic isometries, Complex Potential Theory, P. M. Gauthier, G. Sabidussi (eds.), Kluwer Academic Publishers, Dordrecht/Boston/ London, 1994, 475–548.
- [12] E. VESENTINI, A spectral Schwarz lemma, Rend. Lincei Mat. Appl. 19 (2008), 309–323.

Received 25 July 2011, and in revised form 29 July 2011.

> Politecnico di Torino Dipartimento di Matematica Corso Duca degli Abruzzi 24 10129 Torino Italy vesentini@lincei.it