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Functional Analysis — A spectral Schwarz lemma, II, by EDOARDO VESENTINI.

ABSTRACT. — The spectral Schwarz lemma holding for any operator-valued holomorphic map of
the open unit disc A = C into the algebra of all continuous linear operators acting on a complex
Banach space is extended to other scalar- and vector-valued gauges of continuous linear operators,
with particular attention to the numerical range and the numerical radius of any continuous linear
mapping acting on a complex Banach space.
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The main results of [12], devoted to establishing a spectral version of the classical
Schwarz inequality holding for a holomorphic operator-valued function of a
complex variable, are based on the fact that, given a complex Banach space &,
and the unital Banach algebra # (&) of all linear operators X € Z(&), the spec-
tral radius X — p(X) is (a logarithmic-plurisubharmonic function and therefore)
a plurisubharmonic function of X.

This short addendum to [12] will develop a similar analysis, for some other
gauges associated to X—with special attention to the numerical range W (X)
and the numerical radius v(X) when & is a complex Hilbert space and to their
extensions—due to G. Lumer [6], and to B. B. Bonsall and J. Duncan [1]—to
the case in which & is any complex Banach space.

1

Let B= B; be the open unit ball of a complex Banach space &, and let
¢ : B—[0,1] be a plurisubharmonic function on B such that ¢(0) = 0. For any
u € 0B the function ¢, : A — [0, 1] defined on z € A by ¢,(z) = ¢(zu) is subhar-
monic on A, and ¢,(0) = 0.

According to Lemma 1 in [12], if f is any scalar-valued holomorphic func-
tion on A such that f(0) =0 and f(A) = A, then ¢,(f(z)) < |z| for all ze A
and ¢,(f7(0)) < 1; if either ¢,(f'(0)) =1 or there is z € A\{0} for which
¢,(f(2)) = |z|, then this latter equality holds for all z € A.

Since u € 0B is arbitrary, the following lemma holds (in which || ||, is the
norm in &):

! Throughout the following, all normed spaces will be assumed to be complete.
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LeEMMA 1. If F : B — B is a holomorphic map such that F(0) = 0, then
P(F(x)) < |lxlls VxeB

and
#((dF(0))v) <1 Yve dB.

If either ¢(dF(0)v) =1 for some v e dB or there is x € B\{0} for which
HF()) = x|, then §(F(zx)) = =) | x| for all = € A

The first candidate to the role of ¢ is the norm in &, for which Lemma 1 holds
with ¢ = || [

But also the Carathéodory pseudodistance (see, e.g. [2], pp. 84-85) plays a
role, as the following example will show.

Let E be a domain in &. It was shown in [10] (pp. 212-217; see also Theorem
1.4, pp. 480—482, and Theorem 1.10, p. 488, in [11]) that the Carathéodory pseu-
dodistance cg(x, y) between any two points x, y in E is a (logarithmic) plurisub-
harmonic function of x and y.

Let the domain E contain the open unit ball B of &, and let G: E — E be a
holomorphic map such that G(0) = 0 and G(B) < B.

Letting ¢(x) = ¢g(0, x) for any x € E, then

$(G(x)) = c£(0, G(x)) = c(G(0), G(x)) < ce(0,x) = ¢(x) VxeE.
Since, if x € B,
$(x) = ce(0,x) < cp(0,x) = [[x[[4,
then

H(G()) = c£(0, G(x)) = c&(G(0), G(x)) < cx(0,x)
= p(x) < |xl; VxeB.

As was mentioned at the beginning, the case in which & is an associative unital
Banach algebra .7 with no non-zero topologically nilpotent element, and the
plurisubharmonic function ¢ is the spectral radius p in .o7 has been considered
in [12], showing that,

p(F(x)) <|lxll, VxeB,

and that, if either p(F(x¢)) = ||xo0||.,, or p(dF(0)(xo)) = ||x0]|,, for some xq €
B\{0}, then

p(F(zx0)) = |2[ [[xoll, Vz €A

If the Banach space & is a complex Hilbert space # with inner product ( | ),
norm || ||, and if X € £ (), the numerical range W (X) < C and the numeri-
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cal radius w(X) € R; of X are defined by (see, e.g.: [8], p. 130; [3], pp. 108—113.
160-161, 317-321):

W(X) ={(X<|<)y: € By}

and

w(X) = sup{[(] : L e W(X)}.

Let now f be a holomorphic map of the open unit disc A of C into £ (). It
was shown in [9] (Theorem 4.4 and Corollary 4.5; see also [12], Theorem 2) that
the function A3z +— w(f(z)) is (logarithmically subharmonic, hence) subhar-
monic on A: which implies that, the numerical radius w(X) of any X € L (#) is
a plurisubharmonic function of X. As a consequence of this fact, the following
proposition holds:

PROPOSITION 1. If F is a holomorphic map of By into itself and if F(0) = 0,
then

w(F(X)) <[ X[lgn) VX € Bor)
and

If w((dF(0))(X)) = 1 or if there exists X € By»)\{0} for which w(F (X)) =
| X1 ¢(r)> then w(F(zX)) = |z[ [| X || (4 for all z € A.

2

Thanks to the work of G. Lumer [6] and B. B. Bonsall and J. Duncan [1], the
notions of numerical range and numerical radius have found extensions from
Hilbert spaces to Banach spaces.

We will briefly review now these extensions in order to show how Proposition
1 can be re-formulated when the Hilbert space & is replaced by the Banach
space &.

Let ./ be an associative unital Banach algebra, let .o/’ be the topological dual
of o/, B= B(/) and let B = 0B(.</) the open unit ball and the unit sphere in .«7.

By the Hahn—Banach theorem, for any x € dB(.<7), the set

D(o/,x)={%ed :{x,9=1=|9,} =

is not empty.
Letting, for ¢ € o7 and x € 0B(.+/),

V(e a,x)={{ax,3) : € D(/,x)}
={¢ax, 9> :xe 0B, Y e /', {x,9) =1=9,},
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the set
V(et,a) = | J{V(,a,x): x e 0B}
= J{Kax, 9 : x e 0B, 9 € o' {x, 9> =1 = [|9],},
and the real number
v(a) =sup{|¢|: L € V(,a)}
=sup{[<ax,$|: x€ B, 9e /' {x, 3 =1=|9,} =0

are called in [1] the numerical range and the numerical radius of a.
Since, for any x € 0B,

Sup{|<ax7 lg>| tde *52{/7 <X, 9> = ||‘9||d' = 1} < ||a||,,<%7

then 0 < v(a) < ||a||,,.
For any choice of a,b € .o/, o, € C,

V(e aa+ pb) = aV (L, a) + BV (L, b),
and
V(et, ol + Bb) = a+ BV (L, b),
V(e a,1,)={a, y: e D(Z, 1)}
Since
D(t1y)={3e A" : 1,8 =1=|9],}
={8e o : {1y, =12[9],1},

D(</,1,) is a convex subset of .o/’

For any ae o/, V(</,a,1,) is the image of D(</,1,) by the weak"*-
continuous map 9+ <a, 3y, and is therefore a compact subset of C. That
proves, [1]:

THEOREM 1. Foreach a € </, V(</,a) is a compact, convex set in C.

Let f : A — .o/ be a holomorphic map such that f(0) =0, || f(z)||,, < 1 for all
z € A, and therefore

o(f(z)) <1 VzeA.
LEMMA 2. The function vo f : A>z — v(f(z)) is logarithmically subharmonic.
PrOOEF. The proof amounts to showing that for any « € C, the function
Asz e [e¥|o(f(2)) = sup{[{] : (€ V(,e*/(2))}

is subharmonic on A ([7]).
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Let zg € A, let ¢ and ¢’ be positive constants for which
le™|o(f(z0)) < ' < ¢
and let ¢ be such that

0<e<c —[e™

v(f(20))-

There exists 0 >0 for which, whenever z e A satisfies the inequality
|z — zo| < 0, then

e u(f(2)) — ™ o(f (20))] <&,

and therefore, if |z — 29| < 0,

e u(f ()| < [le*o(f ()] = " o(f (20))] | + [e**v(f (20))]
< le*o(f(2)) — e 0(f(20))] + [e* v (f (20))]

)
<e+e™u(f(z0)) < ' <.

For o = 0, that shows, in particular, that the map z — v(f(z)) is upper semi-
continuous. O

Choosing ¢ = v in Lemma 1 of [12] yields
THEOREM 2. If f(0) =0 and v(f(z)) < 1 for all z € A, then

o(f(z)) <l|z|] VzeA, and v(f'(0) <]l.

If v(f'(0)) = 1 or if there is z € A\{0} such that v(f(z)) = |z|, this latter equal-
ity holds for all z € A, and the (non-empty) intersection V(</, f(z))/{z}) n0A is
independent of z € A\{0}.

COROLLARY 1. The numerical radius
o/ 3avw v(a)
is a logarithmically plurisubharmonic function of a.

Letting B = B., be now the open unit ball of .o/, Lemma 1 yields the following
“Schwarz lemma” for v:

LEMMA 3. If F maps holomorphically B into B and F(0) = 0, then
o(F(x)) < Ixll., Vxe By
and

o((dF(0))(w) <1 Vw e 0B.,.
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If either v((dF(0))w) = 1 for some w € 0B, or if there is w € B,;\{0} for which
v(F(w)) = ||wl| . then v(F(zw)) = |z| ||wl|,, for all z € A.

Let now X be a continuous linear operator acting on a complex Banach
space &. As was noted in [1], a more natural numerical range of X—denoted by
V(X) and called spatial numerical range of X—can be defined directly in terms of
& and X without involving the algebra £ (&):

VX)) ={Xx; 8 :xed,9e 6, {x,9) =1= x|, =9}
Since ([1], Theorem 3, pp. 83-84) its closed convex hull is
co(V(X)) = V(Z(6),X),
then
sup{[{] : (e V(X)} = o(X).

A definition of the numerical range closer to the original one due to Toeplitz
and Hausdorff in the case of Hilbert spaces, can be given in terms of the semi-
inner-products introduced in [6] by G. Lumer, according to whom a semi-inner-
product space is a mapping x, y — [x, y] of & x & into C such that the mapping
& 3 x+— [x, y] is linear for all y € &;

[x,x] >0 Vxe&\{0}
|[X,y]|2 < [xax][yyy] Vx,y € é.

By Theorem 2 of [6] (p. 31), the function & 3 x — [x, x] 1/2 s a norm on & and
there is a semi-inner-product [, ] (in general, infinitely many semi-inner-products)
in & such that

(1) Il = [x.x] Vxeé.

Thus, by the Hahn—Banach theorem, every normed linear space can be made
into a semi-inner-product space.

The relationship between semi-inner-products and inner products is clarified
by Theorem 3 in [6], according to which a semi-inner-product is an inner product
if, and only if, the norm defined by (1) satisfies the parallelogram law; a Hilbert
space can be made into a semi-inner-product-space in a unique way.

Given a semi-inner-product [, | satisfying (1), the numerical range W ;(X) of
X € Z(&) is defined by

(2) Wi (X) = {[Xx,x] : x € &,[x,x] = 1}.
It turns out ([1], Theorem 8, p. 86) that

W (X) e V(X)
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and, in fact, V(X) is the union of the family #7(X) of the numerical ranges
W (X) represented by (2) for all semi-inner-products [, | satisfying (1).

Furthermore, if the semi-inner product [, ] satisfies (1), then

v(X) = sup{|{| : C e W(X)} = sup{[(]: { e W (X))}
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