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ABSTRACT. — We study a degenerate elliptic equation, proving the existence of a Wol’1 distribu-
tional solution.
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In the study of elliptic problems, it is quite standard to find solutions belonging
either to BV (Q) or to W15(Q), with s > 1. In this paper we prove the existence
of a WOI"l distributional solution for the following boundary value problem:

di a(x)Vu B 0
() T4

u=2~0 on 0Q.

(1)

Here Q is a bounded, open subset of RY, with N > 2, a(x), b(x) are measurable
functions such that

(2) 0<a<alx)<pf, 0<b(x)<B,
with o, f € RY, B € R and
(3) £(x) belongs to L*(Q).

We are going to prove that problem (1) has a distributional solution u belonging

to the non-reflexive Sobolev space Wol" : (Q).
Problems like (1) have been extensively studied in the past. In [4], existence
and regularity results were obtained for

. ( a(x)Vu .

—div| ——— | =f in Q,
((1 + |u|)0>

u=>~0 on 0Q),

(4)

where 0 < # <1 and f belongs to L”(Q) for some m > 1. A whole range of
existence results was proved, yielding solutions belonging to some Sobolev space
Wol’q(Q), with ¢ = ¢(2,m) < 2 or entropy solutions. In the case where 0 > 1 a
non-existence result for constant sources has been proved in [1].



98 L. BOCCARDO, G. CROCE AND L. ORSINA

As pointed out in [2], existence of solutions can be recovered for any value of
0 > 0, by adding a lower order term of order zero. If we consider the problem

. ¢ a(x)Vu B 0
(5) —le<m)+u—f Q,

u=>0 on 0Q),
with f in L™(Q), then the following results can be proved (see [2] and [5]):
i) if 2 < m < 4, then there exists a distributional solution in W1 2mmE2(0) A
i) 1Lf l(g)m < 2, then there exists an entropy solution in L"(Q) whose gradient

belongs to the Marcinkiewicz space M"/?(Q).

In this paper we deal with the borderline case m = 2, improving the above
results as follows.

THEOREM 1. Assume (2) and (3). Then there exists a distributional solution
uce WOI’I(Q) N L*(Q) to problem (1), in the sense that

/(1 e |Z|¢ / /ﬂ”’

REMARK 2. If the operator is nonlinear with respect to the gradient, existence of
distributional solutions are studied in [3].

for all p € Wy ™ (Q).

PROOF OF THEOREM 1.

Step 1. We begin by approximating our boundary value problem (1) and we
consider a sequence { f,,} of L*(Q) functions such that f, strongly converges to f
in L?(Q), and |f,| < |f| for every n in N. The same technique of [2] assures the
existence of a solution u, in H}(Q) N L*(Q) of

) —div((“(x)vu”)ﬂn—f,, inQ,

1+ b(x)|uy])?
u, =0 on 0Q.

Indeed, let M, = || /ul/;-q) + 1, and consider the problem

a(x)Vw )
(14 b(x)| T, (W)])?
w=0 on 0Q),

(7) —le( +w=f, inQ,

where Tj(s) = max(—k, min(s , k)) for k>0 and s in R. The existence of a
weak solution w in HJ(Q) of (7) follows from Schauder’s theorem. Choosing
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(W] = [|full = (c))+ sgn(w) as a test function we obtain, dropping the nonnegative
first term,

AMWW4mm@nszﬂmm@wmwmm@n

Thus,

ANM_WMUMMW_WMMMLSQ

so that |w| < || full ;) < Mx. Therefore, Ty, (w) = w, and w is a bounded weak
solution of (6).

Step 2. We prove some a priori estimates on the sequence {u,}. Let k > 0,
i >0, and let ¥ ,(s) be the function defined by

0 if 0<s <k,
i(s — k) if k<s<k+1,
Vi) =104 if s>k +1,

Wi k() = = 1 (=s) if 5 <0.
Note that

1 if s>k,
gg;%ng 0 if |s| <k,
i —1 if s < —k.

We choose [u,|V); . (u,) as a test function in (6), and we obtain

a(x)|Viy|? a(x)|Vu)®
/QMWW[’IC(%)'JF/QM)W f,k(“n)un+/Qun|un|%k(un)

= / fn|“n|lpi7k(“n)'
Q

Since lp,.f «(8) =0, we can drop the second term; using (2), and the assumption
[f2] < |f], we have

B\ 7
a/g;(l +b(x)|un|)2 |l/ji,k(u’l>| +‘/Qunu”|¢i,k(uﬂ) < Alf' |Mn| Wz’,k(“n”-

Letting 7 tend to infinity, we thus obtain, by Fatou’s lemma (on the left hand
side) and by Lebesgue’s theorem (on the right hand side, recall that u, belongs
to L*(Q),

|Vu,,|2
® af oy [ s [l
{unl =k} (1 + b(x) [un]) {Jun| =} {Jun| =K}
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Dropping the nonnegative first term in (8) and using Holder’s inequality on the
right hand side, we obtain

1/2 1/2
/ ) < [/ |f|21 V mlﬂ .
{lun| =k} {lun| =k} {lun| =k}

Simplifying equal terms we thus have

(9) / |1/ln|2 < / |f‘2
{Jun| =k} {foan| =k}

For k =0, (9) gives

(10) [ = [

so that {u,} is bounded in L?(Q). This fact implies in particular that

(11) klim meas({|u,| > k}) =0, uniformly with respect to n.
— 40

From (8), written for k = 0, dropping the nonnegative second term and using

that b(x) < B, we have
|Vun| /
o [ B < [ Ul
(1 + Blu,|)?

Hoélder’s inequality on the right hand side then gives

‘), ( ELD A }1/2[/ ] }l/z’

so that, by (10), we infer that

[l e

Step 3. We prove that, up to subsequences, the sequence {u,} strongly con-
verges in L?(Q) to some function u.

From (12) we deduce that v, = log(1 + Blu,|) sgn(u,) is bounded in H}(Q).
Therefore, up to subsequences, it converges to some function v weakly in H{ (Q),
strongly in L?(Q), and almost everywhere in Q. If we define u = e” 1 sgn( ),
then u, converges almost everywhere to « in Q2. Let now E be a measurable subset
of Q; then
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2 2 2
/|un| s/ ] +/ 0
E En{|u,| >k} En{|u,|<k}

< / |/]? + k> meas(E),
{Jun| =k}

where we have used (9) in the last passage. Thanks to (11), we may choose k
large enough so that the first integral is small, uniformly with respect to #;
once k is chosen, we may choose the measure of E small enough such that the
second term is small. Thus, the sequence {u2} is equiintegrable and so, by Vitali’s
theorem, u, strongly converges to u in L?(Q).

Step 4. We prove that, up to subsequences, the sequence {u,} weakly con-
verges to u in WOI’I(Q).

Let again E be a measurable subset of , and let i be in {1,..., N}. Then

|Vu,|
Bty g/wn —/— 1+ Blu,
Liomi= [1wu) = [ 7500+ B
1/2 1)
Vu, |
- /LU [/(1+B|un|)2}
E (1 + Bluy,|) E

1/2 1/2
< E/sz} [2meas(E)+ZBz/E|un|2] ,

where we have used (12) in the last passage. Since the sequence {u, } is compact
in L?(Q), we have that the sequence {d;u,} is equiintegrable. Thus, by Dunford-
Pettis theorem, and up to subsequences, there exists Y; in Ll(Q) such that d;u,
weakly converges to Y; in L' (Q). Since duy, is the distributional derivative of u,,
we have, for every n in N,

/G[un(p = —/ u,0ip, Vo e Ci°(Q).
Q Q

We now pass to the limit in the above identities, using that d;u,, weakly converges
to ¥; in L'(Q), and that u, strongly converges to u in L*(Q); we obtain

/Ymo:—/u@ico, Vo e Cy°(Q),
Q Q

which implies that Y; = d;u, and this result is true for every i. Since Y; belongs
to L'(Q) for every i, u belongs to WOI'I(Q), as desired.

Note now that, since s +— log(1 + Bs) is Lipschitz continuous on R", and u
belongs to Wol" (Q), by the chain rule we have

V{log(1 + Blu|) sgn(u)] = %ZM’ almost everywhere in Q.
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Hence, from the weak convergence of v, to v in H} (Q) we deduce that

Vu, Vu
1 I _
(13) T Bluy| 1+ Blu|’

weakly in (L*(Q))".

Step 5. We now pass to the limit in the approximate problems (6).

Both the lower order term and the right hand side give no problems, due to
the strong convergence of u, to u, and of f; to f, in L*(Q).

For the operator term we can write, if ¢ belongs to Wol’ao(Q),

a(x)Vu, -Vo alx Vu, 1 + Blu,|
(4 /sz<1+b<x>|un|>2_/a T Bl T+ b))

In the last integral, the first term is fixed in L*(Q), the second is weakly con-
vergent in (L2(Q))" by (13), the third is fixed in (L*(Q))", and the fourth is
strongly convergent in L?(Q), since is bounded from above by 1 + Blu,|, which
is compact in L?(Q). Therefore, we can pass to the limit to have that

, a(x)Vu, -Vo a(x)Vu - Vo
0 /g 1+ b))’ /Q (L + b))’

REMARK 3. Note that if b(x) > b > 0 in Q, then we can choose test functions ¢
in H}(Q). Indeed,

as desired.

L+ Blu| _ 1+ Blu|

—_ 2 = 2 = C(B7 b)7
(1 +b()[un)” (1 + blunl)
for some nonnegative constant C(B, b), so that we can rewrite (14) as

a(x)Vuy, - Vo alx Vuy, Vo(l + Bluy|)
[ e [

(1+ b))’ T+ Blu] (14 b(x) )

with the first term fixed in L* (), the second weakly convergent in (L2(Q))",
and the third strongly convergent in the same space by Lebesgue’s theorem.
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