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Abstract. — In a recent paper (R. Quintanilla, G. Saccomandi. Quarterly Applied Mathematics,

44, (2006) 547–560.) we investigated the spatial behavior of a linear equation of fourth order which
models several mechanical situations where dispersive e¤ects are taken into account. We proved

a polynomial decay estimate for the solutions of this equation. In the present note we improve this
result and we show a Phragmén-Lindelöf alternative of exponential type.
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1. Introduction and basic equations

It has been pointed out recently [1] that, on studying solitary waves propagating
on the free surface of a constant depth fluid, Boussinesq derived initially a well-
posed equation which contained a mixed fourth order derivative for the dispersion
alongside with the purely spatial fourth order derivative. Then, in an attempt to
find an analytical solution he went on to replace the time derivatives in the mixed
derivative term by purely spatial ones using the ansatz u;t ¼ �cu;x which is true
for steady linear waves propagating with phase speed c. If this unnecessary ansatz
was not applied by Boussinesq the form of his celebrated equation in one spatial
dimension would it be in the linear regime

u;tt � c20u;xx ¼ ðb1u;tt � b2u;xxÞ;xx;ð1:1Þ

where b1; b2 > 0.
The equation we usually denote as the Boussinesq equation (BE) is obtained

from (1.1) considering b1 ¼ 0 and b2 < 0. This is an incorrect equation called for
this reason the bad BE. Here incorrect means that the corresponding initial-value
problem is ill-posed in the sense of Hadamard. To make the coe‰cient b2 positive
we need to add a su‰ciently strong surface tension to the model.

On the other hand Rosenau [8] considering the long-wave-length limit of a
chain of atoms interacting nonlinearly and considering a special expansion in
the discrete-continuum approximation was able to deduce (in the linear regime)
the equation (1.1) with b2 ¼ 0 which is denoted the regularized long-wave (BE)
equation and which is correct in the sense of Hadamard. Several papers have
shown that this approach is interesting and e¤ective to introduce mesoscopic



informations in mathematical models of solid mechanics [2, 4], fluid mechanics [5]
and in the context of the heat conduction equation with two temperatures and
without energy dissipation [6].

For these reasons in [7], we investigated the spatial behavior of the dispersive
fourth-order linear equation

u;tt � esu;tt ¼ asu:ð1:2Þ

Here e and a are two positive constants. We obtained a polynomial decay estimate
for the solutions whenever we assume the decay of solutions. Now, it is clear that
if we assume solutions of (1.2) in the form

uðx; y; tÞ ¼ expð�mxÞ cosðot� nyÞ;

(for the sake of brevity we are considering only two spatial dimensions), it is
easily checked that exponential decaying solutions are possible. In [7] the expo-
nential decay was established also for the harmonic vibration problem in a cylin-
drical domain. It is interesting therefore to improve the result in [7] about the
polynomial decay estimate for the whole class of solutions of (1.2). The aim of
the present note is exactly to show a Phragmén-Lindelöf alternative of exponen-
tial type for the solutions of this equation.

In this article we use the summation and di¤erentiation conventions. Summa-
tion over repeated indexes is assumed and di¤erentiation in the direction xk is
denoted by ; k.

As we want to study the spatial behavior, we will denote by R the cylinder
ð0;lÞ �D, where D is a two dimensional bounded domain such that the bound-
ary qD is smooth enough to apply the divergence theorem. Let DðzÞ be the cross
section of the points in R such that x1 ¼ z, and let RðzÞ be the points of the cyl-
inder such that x1 > z. By Rðz0; zÞ, we denote the points in R such that the first
component is greater than z0 and lower than z. The equations we study here are
determined on the semi-infinite cylinder R. u is constrained to be zero on the lat-
eral sides of the cylinder. Thus, we add to our equation the following conditions

u ¼ 0; x a ½0;lÞ � qD:ð1:3Þ

Moreover, we impose boundary conditions on the finite end of the cylinder. Thus,
we take as assumptions

uð0; x2; x3; tÞ ¼ f ðx2; x3; tÞ; ðx2; x3Þ a D:ð1:4Þ

To have a well determined problem we need to impose initial conditions. Here,
we assume null initial conditions. Thus

uðx; 0Þ ¼ u;tðx; 0Þ ¼ 0; x a R:ð1:5Þ

2. Phragmén-Lindelöf alternative

In this Section we study the spatial asymptotic behavior of the solutions of the
problem determined by equation, boundary conditions, and initial conditions
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proposed previously. In fact, we are going to prove that either the measure on the
solutions Z t

0

Z
Rð0; zÞ

��
j‘uj2 þ a�1u2;s þ

2e

a
j‘u;sj2ð2:1Þ

þ e2

a
ðsu;sÞ2 þ eðsuÞ2

��
dv ds; zb 0;

grows in a exponential way or the function

Eðz; tÞ ¼ 1

2

Z t

0

Z
RðzÞ

��
j‘uj2 þ a�1u2;s þ

2e

a
j‘u;sj2ð2:2Þ

þ e2

a
ðsu;sÞ2 þ eðsuÞ2

��
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decays in a exponential way.
Our analysis starts noting that the following relations

ðu;tu;iÞ;i ¼
1

2

d

dt
ðj‘uj2 þ a�1ðu;t � esu;tÞ2 þ eðsuÞ2Þ;ð2:3Þ

ðu;tu;tiÞ;i ¼ j‘u;tj2 þ u;tsu;t;ð2:4Þ

are satisfied for every solution of the equation (1.2).
We consider the function

Fðz; tÞ ¼ �
Z t

0

Z
DðzÞ

�
ðt� sÞu;su;1 þ

e

a
u;su;s1

�
da ds:ð2:5Þ

Using the divergence theorem and the initial and boundary conditions from (2.5)
we obtain

Fðz; tÞ ¼ Fðz0; tÞð2:6Þ

� 1
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If Fðz; tÞ ! 0 as z ! l, then

Fðz; tÞ ¼ 1

2

Z t
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Moreover, by a simple di¤erentiation,

qF

qz
ðz; tÞ ¼ � 1

2

Z t
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2e

a
j‘u;sj2ð2:8Þ

þ e2

a
ðsu;sÞ2 þ eðsuÞ2

��
da ds:

The next step is to estimate the absolute value of Fðz; tÞ in terms of its spatial
derivative to obtain an inequality of the type

jFðz; tÞja�lðtÞ qF
qz

:ð2:9Þ

Using the Holder inequality it is possible to obtain

jFja t
�Z t

0

Z
D

u2;s da ds
�1=2�Z t

0

Z
D

u2;1 da ds
�1=2

ð2:10Þ

þ e

a

�Z t

0

Z
D
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�1=2�Z t

0

Z
D
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�1=2

:

After the use of the arithmetic-geometric mean inequality we obtain the existence
of two positive constants A, B such that

jFja�ðAtþ BÞ qF
qz

:ð2:11Þ

which is the estimate (2.9). This inequality is well-known and often used in the
study of spatial decay estimates for partial di¤erential equation. This is because
it implies that

Fa�ðAtþ BÞ qF
qz

and �Fa�ðAtþ BÞ qF
qz

;ð2:12Þ

and from these statements we obtain an alternative of Phragmén-Lindelöf type
which states (see [3]) that the solutions either grow exponentially for z su‰ciently
large with the measure given at (2.1) or the function (2.2) decays exponentially in
the form

Eðz; tÞaEð0; tÞ expð�ðAtþ BÞ�1
zÞ :ð2:13Þ

for all zb 0.
In summary the estimates just derived allow to state the following result:

Theorem 2.1. Let u be a solution of the initial-boundary value problem deter-
mined by (1.2), (1.3)–(1.5). Then, either the function (2.1) becomes exponentially
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unbounded when z goes to infinity or the measure (2.2) satisfies the spatial decay
estimate (2.13).

It is important to emphasize that the Phragmén-Lindelöf result here obtained
is quite di¤erent from the one usually obtained in the framework of the classical
hyperbolic problems.

3. The amplitude term

To have a more detailed knowledge and understanding of the decay estimates here
proposed, we give an estimate for the term Eð0; tÞ which is the amplitude term.

Let us assume that uðx; tÞ is a solution of the initial-boundary value problem
satisfying the decay estimate. Let xðx; tÞ be a regular function which satisfies the
boundary conditions and such that tends to zero uniformly (in x2, x3 and t) when
z goes to infinity. We know that

Fð0; tÞ ¼ �
Z t

0

Z
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e

a
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�
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It follows that
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�
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Using the Holder inequality, we see
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Thus, we obtain
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:
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From (3.2) and (3.3) it follows

Fð0; tÞaKðtÞFð0; tÞ1=2
�Z t

0

Z
R

��
ðt� sÞ þ e

a

�
j‘x;sj2ð3:4Þ

þ
�
ðt� sÞ þ e

a

�
jx;sj2

�
dv ds

�1=2
;

where KðtÞ is a calculable function of time1.
This means that

Fð0; tÞa
�
tþ e

a

�
K 2ðtÞ

�Z t

0

Z
R

½j‘x;sj2 þ jx;sj2� dv ds
�
:ð3:5Þ

Let us take the function

xðxi; tÞ ¼ f ðx2; x3; tÞ expð�nx1Þ;ð3:6Þ

where n is an arbitrary positive constant. By simple computations we may derive
that

x;t ¼ f;tðx2; x3; tÞ expð�nx1Þ;
x;1t ¼ �nf;tðx2; x3; tÞ expð�nx1Þ; x;bt ¼ f;btðx2; x3; tÞ expð�nx1Þ;

ð3:7Þ

where b ¼ 2; 3 and

x2;t ¼ f 2;t expð�2nx1Þ; j‘x;tj2 ¼ ðn2f;t f;t þ f;bt f;btÞ expð�2nx1Þ:ð3:8Þ

Because the function x defined in (3.6) is a regular function which as required
satisfies the boundary conditions and converges to zero uniformly when z ! l
in all the remaining independent variables we introduce the following notation

B1 ¼
Z t

0

Z
R

j‘x;sj2 dv ds ¼
1

2n

Z t

0

Z
D

ðn2f;s f;s þ f;bs f;bsÞ da ds

B2 ¼
Z t

0

Z
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x2;s dv ds ¼
1

2n

Z t

0

Z
D

f 2;s da ds;

ð3:9Þ

and we evaluate as

Fð0; tÞa
�
tþ e

a

�
K 2ðtÞðB1 þ B2Þ:ð3:10Þ

This relation is an upper bound for the amplitude term in the estimate (2.13).
We note that the estimate depends on an arbitrary positive constant n which can
be optimized to have the right hand side of (3.10) as small as possible.

1The explicit expression of KðtÞ is easy to be computed but cumbersome. We note that an upper-

bound for such quantity is given by
�
2tþ 1þ 2

e
þ 2te

�1=2
.
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4. Further comments

We point out that our rate of decay depends on time. It is possible to save this
fact by selecting an alternative measure. If we define the function

Foðz; tÞ ¼ �
Z t

0

Z
DðzÞ

expð�2osÞ
�
u;su;1 þ

2oe

a
u;su;s1

�
da ds;ð4:1Þ

where o > 0, we obtain

Foðz; tÞ ¼ Foðz0; tÞð4:2Þ

� 1

2
expð�2otÞ

Z
Rðz0; zÞ

ð½j‘uj2 þ a�1ðu2;s � esu;sÞ2 þ eðsuÞ2�Þ dv

� o

Z t

0

Z
Rðz0; zÞ

expð�2osÞ
��

j‘uj2 þ a�1u2;s þ
2e

a
j‘u;sj2

þ e2

a
ðsu;sÞ2 þ eðsuÞ2

��
dv ds;

for zb z0 b 0: Similar manipulations to the ones proposed previously bring us to
an estimate of the type

jFoðz; tÞja�lðoÞ qFo

qz
:ð4:3Þ

As lðoÞ does not depend on time, we could also obtain a P-L alternative where
the rate of decay depends on o, but it is independent of the time. However, if we
want to obtain a decay estimate for the function E we will have the dependence
on the time in the amplitude term.

We can also recall that in the reference [6], a theory of thermoelasticity with-
out energy dissipation with two temperatures has been proposed. For isotropic
and homogeneous materials the system of equations is

r€uui ¼ mui; jj þ fuj; ji � bð _yy� es _yyÞ; b _uui; i þ cð€yy� es€yyÞ ¼ asy;ð4:4Þ

where ui is the displacement, y is the thermal displacement, r > 0, m > 0, f > 0,
a > 0 and b are constitutive constants. We assume null initial conditions

uiðx; 0Þ ¼ _uuiðx; 0Þ ¼ yðx; 0Þ ¼ _yyðx; 0Þ ¼ 0; x a R;ð4:5Þ

and boundary conditions

uiðx; tÞ ¼ yðx; tÞ ¼ 0; x a ½0;lÞ � qD; tb 0:ð4:6Þ

Moreover, we impose boundary conditions on the finite end of the cylinder. Thus,
we take as assumptions

uið0; x2; x3; tÞ ¼ fiðx2; x3; tÞ; yð0; x2; x3; tÞ ¼ gðx2; x3; tÞ; ðx2; x3Þ a D:ð4:7Þ
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We define the function

Foðz; tÞ ¼ �
Z t

0

Z
DðzÞ

expð�2osÞðmui;1ui þ fuj; ju1 � bðy� esyÞu1ð4:8Þ

þ ay;sy;1 þ 2ocey;sy;s1Þ da ds:

It satisfies the relation

Foðz; tÞ ¼ Foðz0; tÞ � expð�2otÞ
Z
Rðz0; zÞ

M1dvð4:9Þ

� o

Z t

0

Z
Rðz0; zÞ

expð�2osÞM2 dv ds;

where

2M1 ¼ r _uui _uui þ mui; jui; j þ fui; iuj; j þ aj‘yj2 þ cðy2;s � esy;sÞ2 þ eaðsyÞ2;

and

M2 ¼ r _uui _uui þ mui; jui; j þ fui; iuj; j þ aj‘yj2 þ cy2;s

þ 2ecj‘y;sj2 þ e2cðsy;sÞ2 þ eaðsyÞ2:

It is possible to obtain an inequality of the type (4.3) and then an alternative of
P-L type for the solutions of the problem of the thermoelasticity without energy
dissipation with two temperatures. To be precise, we will obtain the exponential
decay of the function

E0ðz; tÞ ¼
Z
RðzÞ

M1 dvþ o

Z t

0

Z
RðzÞ

M2 dv ds:ð4:10Þ

5. Concluding remarks

The present note is a complement to the paper [7]. Here by using the relation (2.4)
we are able to control the term u;t. We note that we had the term

ðu;t � esu;tÞ2

in (2.3) and then we could not control the time derivative of the solution. In [7]
only a polynomial decay result has been provided. It is worth noting that we also
need to control ‘u;t, but we also have this in the RHS of (2.4).

The exponential decay of the solutions of the equation (1.2) is an important
result because dispersive models are connected with the existence of localized
solution (e.g. solitary pulse waves). The linear model here considered and the
results obtained are a first step toward a better understanding of localization
phenomena in many frameworks as, for example, in the study of disturbances
on elastic substrates.
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