Rend. Lincei Mat. Appl. 23 (2012), 137-155
DOI 10.4171/RLM/622

Algebraic Geometry — Toward a geometric construction of fake projective planes,
by JONGHAE KEUM, presented on 11 November 2011 by Fabrizio Catanese.

ABSTRACT. — We give a criterion for a projective surface to become a quotient of a fake projective
plane. We also give a detailed information on the elliptic fibration of a (2, 3)-elliptic surface that is
the minimal resolution of a quotient of a fake projective plane.

KEey worps: Fake projective plane, Q-homology projective plane, surface of general type, prop-
erly elliptic surface.
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It is known that a compact complex manifold of dimension 2 with the same Betti
numbers as the complex projective plane [P is projective (see e.g. [BHPV]). Such
a manifold is called a fake projective plane if it is not isomorphic to 2.

Let X be a fake projective plane. By definition b, (X) = 0, h»(X) = 1, hence
q(X) = py(X) =0, c2(X) =3 and by Noether formula ¢1(X)* =9. In particu-
lar its canonical class Ky or its anti-canonical class — Ky is ample. The latter case
cannot occur sice X is not isomorphic to P2. So a fake projective plane is exactly

a smooth surface X of general type with p,(X) =0 and ¢;(X)* = 3¢,(X) = 9.
By [Au] and [Y], its universal cover is the unit 2-ball B = C* and hence its funda-
mental group 7; (X) is infinite. More precisely, 7;(X) is exactly a discrete torsion-
free cocompact subgroup IT of PU(2,1) having minimal Betti numbers and
finite abelianization. By Mostow’s rigidity theorem [Mos], such a ball quotient
is strongly rigid, i.e., I determines a fake projective plane up to holomorphic or
anti-holomorphic isomorphism. By [KK], no fake projective plane can be anti-
holomorphic to itself. Thus the moduli space of fake projective planes consists
of a finite number of points, and the number is the double of the number of dis-
tinct fundamental groups I1. By Hirzebruch’s proportionality principle [Hir|, IT
has covolume 1 in PU(2,1). Furthermore, Klingler [KI] proved that the discrete
torsion-free cocompact subgroups of PU(2, 1) having minimal Betti numbers are
arithmetic (see also [Ye]).

With these informations, Prasad and Yeung [PY] carried out a classification
of fundamental groups of fake projective planes. They describe the algebraic
group G(k) containing a discrete torsion-free cocompact arithmetic subgroup IT
having minimal Betti numbers and finite abelianization as follows. There is a pair
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(k, 1) of number fields, & is totally real, / a totally complex quadratic extension of
k. There is a central simple algebra D of degree 3 with center / and an involution :
of the second kind on D such that k = /*. The algebraic group G is defined over k
as follows:

Glk) = {z e D|1(z)z = 1}/{r e l|:1(r)t = 1}.

There is one Archimedean place vy of k so that G(k,,) = PU(2,1) and G(k,) is
compact for all other Archimedean places v. The data (k,/, D, v,) determines G
up to k-isomorphism. Using Prasad’s volume formula [P], they were able to elim-
inate most 4-tuples (k,/, D, vy), making a short list of possibilities where such IT’s
might occur, which yields a short list of maximal arithmetic subgroups I' which
might contain such a IT. If such a IT is contained, up to conjugacy, in a unique T,
then the group IT or the fake projective plane B/IT is said to belong to the class
corresponding to the conjugacy class of I'. If IT is contained in two non-conjugate
maximal arithmetic subgroups, then IT or B/II is said to form a class of its own.
They exhibited 28 non-empty classes ([PY], Addendum). It turns out that the
index of sucha ITina I'is 1, 3, 9, or 21, and all such IT’s contained in the same
I class have the same index.

Then Cartwright and Steger [CS] have carried out a computer-based but very
complicated group-theoretic computation, showing that there are exactly 28 non-
empty classes, where 25 of them correspond to conjugacy classes of maximal
arithmetic subgroups and each of the remaining 3 to a Il contained in two non-
conjugate maximal arithmetic subgroups. This yields a complete list of funda-
mental groups of fake projective planes: the moduli space consists of exactly 100
points, corresponding to 50 pairs of complex conjugate fake projective planes.

It is easy to see that the automorphism group Auz(X) of a fake projective
plane X can be given by

Aut(X) = N(m (X)) /m1(X),

where N(7;(X)) is the normalizer of 7;(X) in PU(2,1), hence is contained in
a suitable I'.

THEOREM 0.1 [PY], [CS], [CS2]. For a fake projective plane X,
Aut(X) = {1},C5,C3, or7: 3,

where C, denotes the cyclic group of order n, and 7 : 3 the unique non-abelian group
of order 21. More precisely, Aut(X) = {1} or Cs, when the index of m,(X) in a
maximal arithmetic subgroup is 3, Aut(X) = {1}, C3 or C2, when the index is 9,
Aut(X) = {1}, C3 or 7: 3, when the index is 21.

According to ([CS], [CS2]), 68 of the 100 fake projective planes admit a non-
trivial group of automorphisms.

Let (X, G) be a pair of a fake projective plane X and a non-trivial group G of
automorphisms. In [K08], all possible structures of the quotient surface X /G and
its minimal resolution were classified.
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THEOREM 0.2 [KO08].

(1) If G = Cs, then X /G is a Q-homology projective plane with 3 singular points of
type % (1,2) and its minimal resolution is a minimal surface of general type with
py=0and K* = 3.

(2) If G = C2, then X /G is a Q-homology projective plane with 4 singular points
of type %(l, 2) and its minimal resolution is a minimal surface of general type
with p, = 0 and K*> = 1.

(3) If G = Cy, then X /G is a Q-homology projective plane with 3 singular points of
type $(1,5) and its minimal resolution is a (2,3)-, (2,4)-, or (3,3)-elliptic sur-
face.

(4) If G =17 :3, then X /G is a Q-homology projective plane with 4 singular points,
3 of type 1 (1,2) and one of type 1 (1,5), and its minimal resolution is a (2,3)-,
(2,4)-, or (3, 3)-elliptic surface.

Here, a (-homology projective plane is a normal projective surface with the
same Betti numbers as P2. A fake projective plane is a nonsingular @-homology
projective plane, hence every quotient is again a Q-homology projective plane.
An (a, b)-elliptic surface is a relatively minimal elliptic surface over P! with
¢; = 12 having two multiple fibres of multiplicity a and b respectively. It has
Kodaira dimension 1 if and only if a > 2, > 2,a+ b > 5. It is an Enriques sur-
face iff a = b =2, and it is rational iff a = 1 or b = 1. An (a, b)-elliptic surface
has p, = ¢ =0, and by [D] its fundamental group is the cyclic group of order
the greatest common divisor of ¢ and b. An (a,b)-elliptic surface is called a
Dolgachev surface if a and b are relatively prime integers with a > 2, b > 2.

REMARK 0.3. (1) Since X/G has rational singularities only, X'/G and its mini-
mal resolution have the same fundamental group. Let I' be the maximal arithme-
tic subgroup of PU(2, 1) containing 7 (X ). There is a subgroup G < I' such that

71(X) is normal in G and G = G/, (X). Thus,
X/G~B/G.

It is well known (cf. [Arm]) that

where H is the minimal normal subgroup of G containing all elements acting
non-freely on the 2-ball B. In our situation, it can be shown that H is generated
by torsion elements of G, and Cartwright and Steger have computed, along with
their computation of the fundamental groups, the quotient group G/H for each
pair (X, G).

e [CS] If G = Cj, then

1 (X/G) = {1}, G2, C3, C4, Cs, C7, Ci3, C14, C3, C2 x Cs, S3, Ds or O,
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where S3 is the symmetric group of order 6, and Dg and Qg are the dihedral and
quaternion groups of order 8.
e [CS2]If G= C3 or C; or 7: 3, then

ﬂl(X/G) = {1} or Cz.

This eliminates the possibility of (3, 3)-elliptic surfaces in Theorem 0.2, as
(3, 3)-elliptic surfaces have 7; = Cj.

(2) Tt is interesting to consider all arithmetic ball quotients which have a non-
Galois cover by a fake projective plane. Indeed, Cartwright and Steger have

considered all subgroups G = PU(2,1) such that 7;(X) = G = T for some maxi-
mal arithmetic subgroup I and some fake projective plane X, where 7(X) is
not necessarily normal in G. It turns out [CS2] that, if 71(X) is not normal in
G, then there is another fake projective plane X' such that 7;(X’) is normal
in G, hence B/G ~ X'/G" where G’ = G/mn;(X'). Thus such a general subgroup
G does not produce a new surface.

It is a major step toward a geometric construction of a fake projective plane to
construct a @-homology projective plane satisfying one of the descriptions (1)—(4)
from Theorem 0.2. Suppose that one has such a @-homology projective plane.
Then, can one construct a fake projective plane by taking a suitable cover?
In other words, does the description (1)—(4) from Theorem 0.2 characterize the
quotients of fake projective planes? The answer is affirmative in all cases.

THEOREM 0.4. Let Z be a W-homology projective plane satisfying one of the de-
scriptions (1)—(4) from Theorem 0.2.

(1) If Z is a Q-homology projective plane with 3 singular points of type % (1,2) and
its minimal resolution is a minimal surface of general type with p, =0 and
K? = 3, then there is a Cs-cover X — Z branched exactly at the three singular
points of Z such that X is a fake projective plane.

(2) If Z is a Q-homology projective plane with 4 singular points of type % (1,2) and
its minimal resolution is a minimal surface of general type with p, =0 and
K? =1, then there is a Cs-cover Y — Z branched exactly at three of the four
singular points of Z and a Cs-cover X — Y branched exactly at the three
singular points on Y, the pre-image of the remaining singularity on Z, such
that X is a fake projective plane. Furthermore, the composite map X — Z is a
C%—cover.

(3) If Z is a Q-homology projective plane with 3 singular points of type %(1, 5)
and its minimal resolution is a (2,3)- or (2,4)-elliptic surface, then there is a
Cq-cover X — Z branched exactly at the three singular points of Z such that
X is a fake projective plane.

(4) If Z is a @-homology projective plane with 4 singular points, 3 of type }(1,2)
and one of type 1(1,5), and its minimal resolution is a (2,3)- or (2,4)-elliptic
surface, then there is a Cy-cover Y — Z branched exactly at the three singular
points of type %(1,2) and a Cs-cover X — Y branched exactly at the three
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singular points, the pre-image of the singularity on Z of type > 1(1,5), such that
X is a fake projective plane.

In the case (4), we give a detailed information on the types of singular fibres of
the elliptic fibration on the minimal resolution of Z.

THEOREM 0.5. Let Z be a Q- homology projective plane with 4 singular points, 3
of type 3 1(1,2) and one of type %(1,5). Assume that its minimal resolution Z is a
(2,3)- elllptlc surface. Then

(1) the triple cover Y of Z branched at the three singular poznts of type 3 1(1,2) isa
Q-homology projective plane with 3 singular points of type % (1,5);

(2) the minimal resolution Y of Y is a (2, 3)-elliptic surface, Where every fibre of
the elliptic fibration on Z~ does not split;

(3) the elliptic fibration on Z has 4 singular fibres of type I3, some of which may
have multiplicity 2 or 3;

(4) the elliptic fibration on Y has 4 singular fibres, one of type Iy and 3 of type I,
and each fibre has the same multiplicity as the corresponding fibre on Z.

The case where Z is a (2,4)-elliptic surface was treated in [K11]. The last
two assertions of Theorem 0.5 were given without proof in ([KO08], Corollary
4.12 and 1.4).

NOTATION

® Ky: a canonical (Weil) divisor of a normal projective variety or a complex
manifold X

® b(X):=dim H'(X,Q) the i-th Betti number of a topological space X

® ¢(X): the topological Euler number of a complex variety X

® p,(X):=dim H*(X,0x), q(X):=dimH'(X,0x), where X is a compact
smooth surface

e V9:={ve V|g(v) =vforall g € G}, where a group G acts on V'

e a string of type [n;,n2,...,n/: a string of smooth rational curves of self inter-
section —ny, —ny, ..., —ny

1. PRELIMINARIES
First, we recall the topological and holomorphic Lefschetz fixed point formulas.

ToproLOGICAL LEFSCHETZ FIXED POINT FORMULA. Let M be a compact
complex manifold of dimension m admitting a holomorphic map o: M — M.
Then the Euler number of the fixed locus M is equal to the alternating sum of
the trace of ¢* acting on the cohomology space H'(M,Q), i.e

2m
e(M?) = Z(—l)j Tro*|H/(M,Q).

J=0
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HoromorPHIC LEFSCHETZ FIXED POINT FORMULA ([AS3], p. 567). Let M
be a compact complex manifold of dimension 2 admitting an automorphism o. Let
Pi, ..., p1 be the isolated fixed points of o and Ry, ..., Ry be the 1-dimensional
components of the fixed locus S°. Then

2 /
_1)/ | g 0, ) — - -
;( 1) Tra* | H/(M, Oy) Zdet(l—dc)|ij

where T),, is the tangent space at p;, g(R;) is the genus of R; and &; is the eigenvalue
of the differential do acting on the normal bundle of R; in M
Assume further that o is of finite and prime order p. Then

| —
Sy e e
p— i=1 j=0

p—1 k 1 — ) 1 RZ
_ . g(R)) (r+1) J
=2 +Z{ > T

where r; is the number of isolated fixed points of o of type % (1,i), and

p—1

1 1
K P

J=1

5— 11—
with { = exp (2”‘/_> eg.,ay = 1—21’, a) = Tp, etc.

ProProOSITION 1.1. Let G be a finite group acting on a smooth compact Kdhler
surface M. Let M /G be the quotient surface and Y — M /G a minimal resolution.
Then the following hold true:

(1) 4(¥) = 15y (M/G) = dim H* (M)°.
(2) If in addition there is a G-equivariant blowing-up M’ of M such that M'/G
is isomorphic to a blowing-up of Y, then

py(Y) =dim H*2(M)°.
(3) The additional condition of (2) is always satisfied when |G| < 3.

PrOOF. (1) By the Hodge decomposition theorem, H'(M,C) =~ H*'(M) ®
H“O(M). Thus

bi(M/G) =dimH'(M,R)” = dim(H*' (M) ® H"°(M))¢ = 2dim H*'(M)°.
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Since quotient singularities are rational, van Kampfen’s theorem applies to prove
7Z1(Y) = nl(M/G)7

in particular, b;(Y) = b;(M/G).
(2)

po(Y) = p,(M'/G) = dim H'(M',Q2,,)¢
= dim HO(M, Q2 ) = dim H*?(M)°.

(3) Assume |G| = 3. For a singular point on M /G of type %(1,1), its minimal
resolution can be obtained by first blowing up once the corresponding fixed point
on M and then taking the quotient by the extended action of G. For a singular
point of type % (1,2), first blow up three times the corresponding fixed point on M
so that the action of G extends to the blowing-up, where the resulting 3 excep-
tional curves form a string of type [1,3,1], and then take the quotient by the
extended action of G, to get a string of type [3, 1, 3]. This gives the blowing-up
of Y at the intersection point of the two exceptional curves lying over the singu-
larity. The case with |G| = 2 is more simpler. O

For a compact complex manifold M of dimension 2 with K3, = 3¢,(M) =9,
it is known that

pg(M) = gq(M) <2.

Indeed, such a surface M has y(COy) = 1, p,(M) = gq(M), and is either isomorphic
to P2 or of general type. (No compact complex smooth surface with K? > 8 can
be birationally isomorphic to a ruled surface or an elliptic surface.) By a result of
Miyaoka [Mi], a compact complex smooth surface of general type with K = 3¢,
has ample canonical divisor, and hence by [Y] is a ball-quotient. Furthermore,
compact complex smooth surfaces with ¢, <4 (such as M) cannot be fibred
over a curve of genus > 2 with a general fibre of genus > 2. This can be seen
easily by the Euler number formula for fibred surfaces (see e.g. [BHPV], Pro-
position 11.4). Thus by Castelnuovo-de Franchis theorem p,(M) > 2q(M) — 3,
which implies p,(M) = q(M) < 3. The case of p,(M) = q(M) =3 was elimi-
nated by the classification result of Hacon and Pardini [HP] (see also [Pi] and
[CCM]).

PROPOSITION 1.2. Let M be a complex manifold M of dimension 2 with K3, =
3c2(M) = 9. Then, the following hold true.

(1) If M admits an order T automorphism o with isolated fixed points only, then
bi(M /o)) = bi(M) for i =1,2 and o fixes exactly 3 points, which yield on
the quotient M /{a) either 3 singular points of type % (1,5) or 2 singular points
of type %(1, 2) and 1 singular point of type % (1,0).

(2) If M has py(M) = q(M) = 1 and admits an order 3 automorphism ¢ with iso-
lated fixed points only, then
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(a) bl(M/<a>) =0, bo(M/<a)) =3, and M /{a)y has 6 singular points of

type 5(1,1); or

(b) bl(M/<a>) =0, hy(M/<a)) =5, and M/<a> has 3 singular points of
type 3 L(1,1) and 6 singular points of type 1(1,2); o

(c) bl(M/<0'>) =2, bh(M /o)) =5, and M/<0'> has 3 singular points of
type §(1,2).

PrROOF. Note that M cannot admit an automorphism of finite order acting
freely, because y(()) = 1 not divisible by any integer > 2.
(1) By the Hodge decomposition theorem,

Tro*|H' (M,Z) = Tro* |H'(M,C) = Tro* | (H"' (M) ® H"*(M)).
Note that this number is an integer. Let { = exp (2’“/_)

Assume that p,(M) = g(M) = 2. Let {’ and {/ be the eigenvalues of ¢* acting
on H%!(M). Then

Tro* |H'(M,Z) ="+ + 0+ U,
and this is an integer iff ' = ¢/ = 1. This implies that Tro* | H*' (M) = 2 and
1 J
bi(M/{c)) = dim H'(M,R)‘” = <—kz Tro® |H' (M, R) = 4 = b (M).
By the Topological Lefschetz Fixed Point Formula,
e(M%) = —6+Tro*|H*(M,Z), so6< Tra*|H*(M,Z).

Since by (M) = 1 +4g(M) = 9 and o is of order 7, it follows that Tro* | H*(M, R)
<9 — 7, unless ¢* acts trivially on H?(M, R). Thus

by(M/{c>) = dim H*(M,R)‘” = by(M) and e(M°) = 3.

In particular, ¢* acts trivially on H%?(M) and Tro*|H%?(M) =2. By the
Holomorphic Lefschetz Fixed Point Formula,
1

1=——I‘1-i-l

( brs) 2
6 6 3 Is Te,

1
r )+ 5 3

3(

where r; is the number of isolated fixed points of ¢ of type %(1, i). Since

Zri:e(M”) =3,

we have two solutions:

rmt+rs=3 rn=rn=rn=r=0 rnt+rn=2 rs=1, rn=rn=r;=0.
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In the former case the quotient M /<{g) has 3 singular points of type (1,5), and
m the latter case 2 singular points of type 5 1(1,2) and 1 singular pomt of type
1(1,6).
Assume that p,(M) = g(M) < 1.
H'(M,R)® H*(M,R), and e(M° )
(2) First note that

the same argument, ¢* acts trivially on

bi(M/{cY) <by(M)=2 and by(M/{c) < bs(M) = 5.

Also note that dim ! (M) = 1 + 2¢q(M) = 3. Since ¢* fixes the class of a fibre
of the Albanese fibration M — AIb(M) and the class of Kj;, we have

nv/—1
=)

Tro* |HY ' (M) =2+ ¢F where { = exp(

Let ' and ¢’/ be the eigenvalues of ¢* acting on H* (M) and H?(M), respec-
tively. A ‘
Assume that {* # 1 and {/ # 1. Then

Tro* |H' (M,Z) = Tro* | (H*' (M) @ H"O(M)) =+ (' = —
Tro* | (H*X (M) @ H>' (M) =/ + T/ = —

The latter implies that 7Tro*|H"!'(M) is an integer, hence (¥ =1 and
Tro* |H"“'(M) = 3. Thus

bi(M/<{a)) =0 and by(M/<{a)) =3.
Now by the Topological Lefschetz Fixed Point Formula,
e(M?) =6,
and by the Holomorphic Lefschetz Fixed Point Formula,

L]
Tl T3

where r; is the number of isolated fixed points of ¢ of type %(1, i). Since r; + 1, =
e(M?) = 6, we have a unique solution: r; = 6, r, = 0. This gives (a).
Assume (' # 1 and {/ = 1. Then

Tro*|H'(M,Z) = Tro* | (H"' (M) ®H" (M) =" +{' = —
Tro* |[(H" > (M)® H*' (M) =1+1=2.

The latter implies that Tro* | H"!(M) is an integer, hence Tro* |H"' (M) = 3.
Thus

bi(M/{oY) =0 and by(M/<c)) =>5.
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By the Topological Lefschetz Fixed Point Formula, ¢(M?) =9, and by the
Holomorphic Lefschetz Fixed Point Formula,

1 i 2 S 11

Since 1 +r; =9, we have a unique solution: r; = 3, r, = 6. This gives (b).
Assume that ' = {/ = 1. Then

Tro* | (H" (M) @ H""(M)) = Tro* | (H"*(M) @ H>"(M)) = 2,

Tro*|H"“'(M) =3 and ¢(M?) = 3. By the Holomorphic Lefschetz Fixed Point
Formula,

L]
T T3

Since 1y + r;, = 3, we have a unique solution: r; = 0, r, = 3. This gives (c).
Assume that ' = 1 and {’ # 1. Then

Tro* | (H"'(M)® H""(M)) =2,
Tro* | (H*2(M) @ H*"(M)) = + T/ = -

Tro*|HY!' (M) =3 and ¢(M°) = 0. Thus ¢ acts freely, a contradiction. o

PROPOSITION 1.3. Let M be an abelian surface. Assume that it admits an order 3
automorphism o such that H**(M)” = 0. Then by(M [{c>) = 4 or 2.

PROOF. First note that p,(M) =1 and rank H"! (M) = 4. Let { = exp 2’“/_)

Let ¥ be the eigenvalue of ¢* acting on H%2(M). Since H>*(M)” =0, we
have ¥ # 1, hence

Tro* | (H*?(M) @ H**(M)) = K+ TF = —

It implies that Tro* | H''(M) is an integer, hence is equal to 4, 1 or —2. The last
possibility can be ruled out, as there is a g-invariant ample divisor yielding a
o*-invariant vector in H'!(M). Finally note that by(M /{c) = dim H"' (M)’

i

REMARK 1.4. If in addition H"-°(M)<” = 0, then either

(1) Iy = 0, r — ZRjz = 9, bz(M/<0'>) :4; or
(2) ry = 3, ry — ZR,Z = 3, bQ(M/<O'>) =2.

Here r; is the number of isolated fixed points of type %(l,i), and [JR; is the
I-dimensional fixed locus of a.
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PROPOSITION 1.5. Let M be a surface of general type with p,(M) = q(M) = 2.
Assume that it admits an order 3 automorphism o with isolated fixed points
only such that p,(M/{c)") = q(M [{c)") =0 where M /{c)" is a minimal reso-
lution of M /{a). Let a: M/{a)y — Alb(M)/{c) be the map induced by the
Albanese map a : M — Alb(M). Then a cannot factor through a surjective map
M /{ay — N to a normal projective surface N with Picard number 1.

PROOF. Suppose that a factors through a surjective map M /(o) — N to a
normal projective surface N with Picard number 1, i.e.,

a:M/{c) — N — Alb(M)/<a).

Let b: N — AlIb(M)/<{c) be the second map. Since a normal projective surface
with Picard number 1 cannot be fibred over any curve, the map b is surjective.
Since py(M/<{a)') = q(M/{c)") = 0 and the map M /()" — Alb(M)/{c) is a
surjection, we have

py(Alb(M)/<a)') = q(Alb(M)/{a)") =0,

where Alb(M)/{a)" is a minimal resolution of Alb(M)/{a). Since Alb(M)/{a)’
has p, = ¢ = 0, we have

Pic(Alb(M)/<{c)") = H*(AIb(M)/{c)', 7).

It follows that the Picard number of Alb(M)/{c) is equal to by(Alb(M) /<)),
which is, by Proposition 1.1 and 1.3, equal to 4 or 2. This is a contradiction, as
a normal projective surface with Picard number 1 cannot be mapped surjectively
onto a surface with Picard number > 2. O

Let S be a normal projective surface with quotient singularities and
f:8 =S

be a minimal resolution of S. It is well-known (e.g., [Ka] or [S]) that quotient
singularities are log-terminal singularities. Thus one can write the adjunction
formula,

Ks = ["Ks= > 9,

num
peSing(S)

where 7, =) (aj4;) is an effective Q-divisor with 0 < a; <1 supported on
/1 (p) = U 4; for each singular point p. It implies that

Ki=Ki =Y 92=Ki+> 7,Ks.
P P



148 J. KEUM
The coefficients of the Q-divisor &, can be obtained by solving the equations
Dpd; = —Ksd;j =2+ A}

given by the adjunction formula for each exceptional curve 4; = f~!(p).
The computation of & 1s given in [HK], Lemma 3.6 and 3 7.

2. THE ProOOF OF THEOREM 0.4
2.1. The case: Z has 3 singular points of type 3 1(1,2)

Let pi1, p2, p3 be the three singular points of Z of type % (1,2), and Z — Z be the
minimal resolution.

LeEMMA 2.1. There is a Cs-cover X — Z branched exactly at the three singular
points of Z.

PrROOF. We use a lattice theoretic argument. Consider the cohomology lattice

H*(Z,7),,, = H*(Z,Z)/(torsion)

ree

which is unimodular of signature (1,6) under intersection pairing. Since Z is a
Q-homology projective plane, p, (Z) = q(Z) = 0 and hence Pic(Z) = H*(Z,Z).
Let #; < H*(Z, Z)fe be the sublattice spanned by the numerical classes of the
components 4,1, A of £~ (p;). Consider the sublattice # := #; ® %, ® X5. Its
discriminant group 2%/ is generated by three order 3 elements e, e;, e3, where
e; is the generator of % /%; of the form

Ajn + 24
= —F7—.
’ 3
Since # is of co-rank 1, we see that %/ is a non-zero subgroup of #* /%, where
A is the primitive closure of #. Thus there is an element D € #\Z such that

D = aje; + azer + azez modulo Z.

Since ¢ = —2, none of the g;’s is equal to 0 modulo 3; otherwise D* would not
be an integer. Note that —e; = 2¢; = M
a; = a» = az = 1, hence

modulo #. Thus we may assume that

Ay +24 Ay +24 Az +24
11 12, A 2, A 32

D=
3 3 3

+ R forsome R € Z.

It follows that there is a divisor class L € Pic(Z) such that

3L=B+rt
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for some torsion divisor 7, where B = A| + 2A1, + Ay +2A»n + Az + 243
an integral divisor supported on the six (—2)-curves contracted to the points
p1, P2, p3 by the map Z — Z. ~

If =0, L gives a Cs-cover of Z branched along B and un-ramified outside B,
hence yields a Cs-cover X — Z branched exactly at the three points pi, pa2, p3.
Since the local fundamental group of the punctured germ of p; is cyclic of order
3, the covering of the punctured germ is either trivial or the standard one. Since
the C3-cover X — Z is branched at each p;, the latter case should occur. Thus X
is a nonsingular surface.

If 7 #0, let m denote the order of 7. Write m = 3'm’ with m’ not divisible
by 3. By considering 3(m’'L) = m’'B + m't, and by putting B’ = m’B(modulo 3),
v/ = m't, we may assume that t has order 3’. The torsion bundle 7 gives an
un-ramified cyclic cover of degree 3’

p:V—>Z.

Let g be the corresponding automorphism of V. Pulling 3L = B+ 7 back to V,
we have

3p*L = p*B.

Obviously, g can be linearized on the line bundle p*L, hence gives an automor-
phism of order 3’ of the total space of p*L. Let V' — V be the Cs-cover given
by p*L. We regard V' as a subvariety of the total space of p*L. Since g leaves
invariant the set of local defining equations for V', g restricts to an automor-
phism of V' of order 3. Thus we have a Cs-cover

V'[{gy— Z.

This yields a Cs-cover X — Z branched exactly at the three points pi, p2, ps.
Similarly, X is a nonsingular surface. O

Since Z has only rational double points, the adjunction formula gives K2 =
K> =3. Hence Ky =3K; =9. The smooth part Z° of Z has Euler number
e(Z%) =e(Z) —9 =0,s0e(X) = 3e(Z°) + 3 = 3. This shows that X is a ball quo-
tient with p,(X) = ¢(X). It is known that such a surface has p,(X) = ¢(X) < 2.
(See the paragraph before Proposition 1.2.) In our situation X admits an
order 3 automorphism, and Proposition 1.2 eliminates the possibility of p,(X) =
q(X)=1.

It remains to exclude the possibility of p,(X) = ¢(X)=2. Suppose that
pyg(X) =¢q(X) =2. Consider the Albanese map a: X — Alb(X). It induces a
map a:Z = X/{a) — Alb(X)/{c), where ¢ is the order 3 automorphism of X
corresponding to the C3-cover X — Z. Since Z has Picard number 1 and p,(Z) =
q(Z) = 0, Proposition 1.5 gives a contradiction. Thus, p,(X) = ¢(X) =0 and X
is a fake projective plane.
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2.2. The case: Z has 4 singular points of type %(1,2)

Let pi, pa, p3, ps be the four singular points of Z, and f : Z — Z the minimal
resolution.

LEMMA 2.2. If there is a Cs-cover Y — Z branched exactly at three of the four
singular points of Z, then the minimal resolution Y of Y has K)2~, =3,¢(Y)=9and
pe(Y) =q(Y) =0.

PrOOF. We may assume that the three points are p>, p3, ps. Note that ¥ has 3
singular points of type (1,2), the pre-image of p;. Let Y — Y be the minimal
resolution. It is easy to~see that K)Z, =3,e(Y)=9and p,(Y)=¢(Y).

Suppose that p,(Y)=¢q(Y)=1. Con51der the Albanese fibration Y —
AIb(Y). It induces a fibration ¥ — A/b(Y). Let o be the order 3 automorphism
of Y corresponding to the Ci-cover Y — Z. It induces a fibration ¢ :Z —
AIb(Y)/{c). Since q(Z) = 0, we have AIb(Y)/{c) =~ P!. The eight (—2)-curves
of Z are contained in a union of fibres of ¢. It follows that Z has Picard
number > 8 +2 = 10, a contradiction.

Suppose that p,(Y) = ¢(Y) = 2. The Albanese map a : Y — Alb( ) contracts
the six (—2)-curves of ¥, hence the induced map a: Y /{a) — AIb(Y)/{c) fac-
tors through a surjective map Y/{c¢) — Z, where ¢ is the order 3 automorphism
of Y corresponding to the C3-cover Y — Z. Since Z has Picard number 1 and Z,
belng the minimal resolution of Y /{s), has p,(Z) = ¢(Z) = 0, Proposition 1.5
gives a contradiction. ~ ~

The possibility of p,(Y) =¢(Y) >3 can be ruled out by considering a
Cs-cover X — Y branched at the three singular points of Y. See the paragraph
below Lemma 2.3. O

LeEMMA 2.3. There is a Cs-cover Y — Z branched exactly at three of the four
singular points of Z, and a Cs-cover X — Y branched exactly at the three singular
points of Y. The composite map X — Z is a C3-cover.

ProOOF. The existence of two Cs-covers can be proved by a lattice theoretic
argument. Note that Pic(Z) = H*(Z,Z). We know that H*(Z, 7), free, is a uni-
modular lattice of signature (1,8) under intersection pairing. Let #; < H*(Z, L) fr0e
be the sublattice spanned by the numerical classes of the components A4;;, A
of f~'(p:;). Consider the sublattice Z := %1 ® %, ® R3 @ A4. Its discriminant
group Z* /R is 3- elementary of length 4, generated by four order 3 elements
e1, e, e3, e4, where ¢; is the generator of #;/#; of the form ¢; = % Since
the orthogonal complement %2~ is of rank 1 we see that #/2 is a subgroup of
order 9 of #%/%. As we have seen in the proof of Lemma 2.1, every non-zero
element of /% must be of the form +e¢; + ¢; + ¢;. Thus, up to a permutation
of ¢;’s and modulo %, /2 is generated by the two order 3 elements

er+e3+es and e — ez + ey
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As in the proof of Lemma 2.1, we infer that there are two divisor classes

Ly, L, € Pic(Z) such that
3Li=Bi+71, 3,=B+1n

for some torsion divisors t;, where B; is an integral divisor supported on the six
(—2)-curves contained in (J;; f ~!(p;) and each coefficient in B; is 1 or 2.

By the same argument as in Lemma 2.1, we can take a Cs-cover Y — Z
branched exactly at the three points p,, p3, ps. Then Y has 3 singular points of
type % (1,2), the pre-image of p;. This can be done by using the line bundle L, if
71 = 0. Otherwise, we first take an un-ramified cover p : V' — Z corresponding
to 7, and then lift the covering automorphism g to the Cs-cover V' — ¥V given
by p*L;, then take the quotient V' /{g). ~

Let Y’ be the minimal resolution of the fibred product Y xZ, and
YY" — Z be the Cs-cover corresponding to the Cs-cover Y — Z. Then
Y’ — Y is a resolution, hence it factors through a surjection f’: Y’ — Y. Now

/(W Ly) = /(¥ Ba) + £ (Y7 12)

and f/(*B,) is an integral divisor supported on the exceptional locus of ¥ — Y
with coefficients greater than 0 and less than 3. Now by the same argument as in
the proof of Lemma 2.1, there is a C3-cover X — Y with X nonsingular.

It remains to show that the composite map X — Z is a C3-cover. Let o be
the order 3 automorphism of Y corresponding to the Cs-cover Y — Z. It pre-
serves each of the three divisors, f/(Y"L,), /(Y Ba), f!(¥*12), hence lifts to an
automorphism ¢’ of X, which normalizes the order 3 automorphism u of X cor-
responding to the Cz-cover X — Y. The fixed locus X' is not contained in the
fixed locus X*. Thus u # ¢'3, hence the group generated by ¢’ and u is isomor-
phic to C3. 0

It is easy to see that K =9, e(X) =3 and p,(X) = ¢(X). Such a surface
has p,(X) = ¢q(X) <2. (See the paragraph before Proposition 1.2.) By Prop-
osition 1.1, p,(Y) < py(X) and ¢(Y) < ¢(X), which completes the proof of
Lemma 2.2. ~ R

By Lemma 2.2, p,(Y)=¢(Y)=0, so Y has Picard number 1 and con-
tains three singular points of type %(1,2). Then by the previous subsection,
Py(X) =¢q(X) =0, hence X is a fake projective plane.

2.3. The case: Z has 3 singular points of type % (1,5)

Let p1, pa, p3 be the three singular points of Z of type %(1, 5). Then there is
a C;-cover X — Z branched at the three points. In the case of x;(Z) = {1},
this was proved in [K06], p922. In our general situation, we consider the lattice
Pic(Z)/(torsion), where Z — Z is the minimal resolution. Then by the same lat-
tice theoretic argument as in [K06], there is a divisor class L € Pic(Z) = H*(Z, 7)
such that 7L = B + 7 for some torsion divisor 7, where B is an integral divisor
supported on the exceptional curves of the map Z — Z. Here every coefficient
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of B is not equal to 0 modulo 7. If Z is a (2,4)-elliptic surface and if 7 # 0, then
27 = 0. By considering 7(2L) = 2B, and by putting L’ = 2L and B’ = 2B, we get
7L’ = B’. This implies the existence of a Cy-cover X — Z branched exactly at the
three points p;, p2, p3. As in the proof of Lemma 2.1, it can be shown that X is
nonsingular.

Note that KZ% = 0. So by the adjunction formula, K2 = % It is easy to see that
K3 =9, e(X)=3 and p,(X) = ¢g(X). Such a surface has p,(X) = ¢(X) <2.
(See the paragraph before Proposition 1.2.) Now by Proposition 1.2, p,(X) =
q(X) =0.

2.4. The case: Z has 3 singular points of type 3 1(1,2) and one of type 3 1(1,5)

Let Z — Z be the minimal resolution, which is a (2,3)- or (2,4)-elliptic surface.
It contains 9 exceptional curves whose dual diagram is given as follows:

(=2)-(=2) (2)-(=2) (=2)-(-2) (=2)=(-2)-(=3).

Here the last three smooth rational curves forming a string of type [2,2,3] are
lying over the singular point of type 5 1(1,5). This can be seen by computing the

Hirzebruch-Jung continued fraction of 5,
7 1

l_2_
5 2-

1
3

In particular, Z contains a (—3)-curve. By the canonical bundle formula (see
[BHPV], Theorem 12.1), the canonical class of a (2, 3)- (resp. (2, 4))-elliptic sur-
face is numerically equivalent to 1 F (resp. { F), where F is the class of a fibre.
Thus a (—3)-curve is a 6-section (resp. 4-section) of a (2, 3)- (resp. (2,4))-elliptic
surface.
Let R
¢:7Z— P!

be the elliptic fibration. Note that every (—2)-curve on an elliptic surface is
contained in a fiber. Thus the eight (—2)-curves above are contained in a union
of fibres. Let Z’ — Z be the minimal resolution of the singular point of type
1(1,5). Then ¢ : Z — P! induces an elliptic fibration

¢/:Z/HP1.

LEMMA 2.4 (1) There is a C3-cover Y — Z branched exactly at the three points
of type 3 L(1,2). The cover Y has 3 singular points of type 5 1(1,5).

(2) The mmlmal resolution Y of Y is a (2,3)- or *(2,4)-elliptic surface Every fibre
of Z does not split in Y, and every fibre of Y has the same multiplicity as the
corresponding fibre of Z.

PROOF. We may assume that Z is a (2,3)-elliptic surface. The case of (2,4)-
elliptic surfaces was proved in [K11].
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(1) The existence of the triple cover can be proved in the same way as in [K06],
p920-921. Note that Y has 3 singular points of type (1,5), the pre-image of the
singular point of Z of type 1 (1,5).

(2) Consider the C3-cover Y — Z' branched at the three singular points
of Z'. The elliptic fibration ¢’ : Z' — P! induces an elliptic fibration i : ¥ — P!,
Denote by E the (—3)-curve in Z' lying over the singularity of type 1(1,5).
It does not pass through any of the 3 singular points of Z’, hence it splits in Y to
give three (—3)-curves Ej, E», E3. B

Suppose that a general fibre of Z’ splits into 3 fibres in Y. Since E is a
6-section, each E; will be a 2-section of the elliptic fibration  : ¥ — P}. Thus,
the map from E; to the base curve P! is of degree 2. It implies that ¥ has at
most 2 multiple fibres and the multiplicity of every multiple fibre is 2. Thus each
multiple fibre of Z’ does not split in Y. (Otherwise, it will give 3 multiple fibres
of the same multiplicity, a contradiction.) The fibre with multiplicity 3 in Z’ does
not split, hence it gives a non—muthiple fibre in Y. But the fibre with multiplicity 2
in Z' must split into 3 fibres in Y. This is a contradiction, and we have proved
that every fibre of Z’ does not split in Y. It implies that the multiplicity of a fibre
in Y is the same as that of the corresponding fibre in Z. Thus Y is an elliptic
surface over P! having 2 multiple fibres with multiplicity 2 and 3, resp. Since
Kg =0 and Z’ has only rational double points, the adjunction formula gives

Ké K2 =0. Hence K2 = 3K2, = 0. In particular, Y is minimal. The smooth
part Z° of Z’ has Euler number ¢(Z°) = ¢(Z) —9 =3, s0 e(Y) = 3e(Z2°) +3 =
12. This shows that Y is a (2, 3)-elliptic surface. O

Now by the previous subsection, there is a C7-cover X — Y branched at the
three singular points such that X is a fake projective plane.

3. PrRooF oF THEOREM 0.5

The first two assertions of Theorem 0.5 were proved in Lemma 2.4.

(3) We know that the eight (—2)-curves on Z are contained in a union of
fibres. This is possible only if the union of fibres is one of the following three
cases. Here, each fibre of type I3 may be a multiple fibre with multiplicity
2 or 3.

(a) IV*+I3, (b) IV*-i—IV, (C) L+ L+ 6+ 1.

Recall that every fibre in Z does not split in ¥, and the (—3)-curve in Z is a
6-section. We will eliminate the ﬁrst two cases. Let Z' — Z be the minimal reso-
lution of the singular point of type 4 (1, 5).

Case (a): IV* + ;. In this case, the surface Z has a singular fibre of type
I, which may be multiple. Since the (—3)-curve in Z is a 6-section, it intersects
with multiplicity 2 the central component of the 7V *-fibre. Thus the six compo-
nents of the /V*-fibre except the central component are the six (—2)-curves
contracted by the map Z — Z’, hence both the /3-fibre and the /;-fibre are dis-
joint from the branch points of the Cz-cover Y — Z'. It is easy to see that these
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two fibres will give a Iy-fibre and a Iz-fibre in Y, so Y has Picard number > 12, a
contradiction.

Case (b): IV* 4+ IV. Again, the (—3)-curve intersects with multiplicity 2 the
central component of the 7V *-fibre, hence the six components of the [V *-fibre
except the central component are the six (—2)-curves contracted by the map
Z — Z'. The IV-fibre on Z is disjoint from the branch points of the Cs-cover
Y — Z'. But there is no un-ramified connected triple cover of a I'V-fibre, a con-
tradiction.

Thus Z has four I;-fibres.

(4) If the image in Z’ of a I3-fibre contains a singular point of Z’, then it will
give a [1-fibre in Y. If it does not, then it will give a Iy-fibre in Y. Thus Y has one
Iy-fibre and three I;-fibres.
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