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Mechanics — Constrained ephemeral continua, by Gianfranco Capriz, Eliot
Fried and Brian Seguin.

Abstract. — The theory of ephemeral continua was proposed to model bodies for which the basic

tenet of permanence of material elements fails. The goal of the proposal was, principally, to lessen
the impact of critical arguments against the imposition of the principle of material frame-indi¤erence

in continuum mechanics. Those arguments were based on the remark that, in any case, any mathe-
matical model of reality is necessarily observer dependent; however, as it happens, they were urged

on by noticing that some corollaries in the kinetic theory of gases appear to contradict requirements

of frame-indi¤erence. The proposed theory cures that wound via a definition of peculiar velocities
which assures their exact observer independence. Besides, that theory o¤ers a wider base, allowing

one to breed models for bodies where the processes are irremediably influenced by events at a lower
scale, models based so far on a bottom up approach with partly uncertain steps up from the standard

case. Here, we proceed via a top down approach, by introducing progressively stronger constraints.
Largely, earlier results are confirmed, securer ground is given to some interpretations or alternatives

o¤ered. Briefly, the general requirements for any linear constraint to have physical content are stated
and their immediate implications are derived. These requirements are applied to study certain special

cases of the general constraint. Connections are provided between the consequent simplifications and
results available by bottom-up approaches, so to speak—including, in particular, hypocontinua and

Navier–Stokes-ab continua. To show that the value of our general approach transcends the building
of an all-encompassing framework, we conclude by deriving the reduced balance laws consistent

with the most general version of the constraint. These laws open an easy approach to obtaining
potentially useful special cases.
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1. Introduction

A basic tenet of a rigorous account of the classical theory of fields (fully and ele-
gantly provided by Truesdell and Toupin [14] in the homonymous treatise within
the Encyclopaedia of Physics) is the declaration that ‘material elements’ (intended
to be ground constituents of any physical body) are perfectly identifiable. Each
element occupies exclusively at any instant t a place x in Euclidean point space,
its real expanse being ideally collapsed into x.

The alternative to that tenet is pursued by the theory of ephemeral continua
(see Capriz [3]). Bodies are imagined as placed over a fixed network of loculi (or
representative volume elements) e, each so small that, at the gross macroscopic
level, it is confused again with a place x (as each material element above is).



However, at a deeper investigation, each loculus eðxÞ is expanded into a cube of
edge d, say, and a subset of molecules making up the body is seen to transit at
time t through subplaces y within eðxÞ with velocity wðx; y; tÞ. The molecular
numerosity is also specified as depending on subplace y within eðxÞ under the
only condition that the center of mass coincide with the center of the cube. The
molecular subset is not necessarily constrained to obey a sort of allegiance to a
permanent population; rather, its members are allowed to roam later into di¤er-
ent loculi. Then the kinetic fields entering the theory are at each instant t born
out of statistics over eðxÞ: average velocity vðx; tÞ, mesoinertia tensor Y ðx; tÞ,
moment of mesomomentum tensor Kðx; tÞ, and variance tensor Hðx; tÞ. It is
worth emphasizing that we tend to consider the statistical quantities K and H as
members of the kinetic world, though, seeing as how these objects have respective
dimensions of energy per unit mass per unit time and energy per unit mass, there
might be a tendency to view them otherwise. The picture becomes complex lead-
ing to a system of balance laws, which formally have a strong similarity with
those for multipolar bodies, though there are substantial di¤erences in signifi-
cance and detail; besides some foreign terms need to be explained.

Basically, even if, to get nearer to an accord with that theory, a phantom
material element is, in imagination, created, passing through x at time t with ve-
locity vðx; tÞ, we must, at least, attribute it a variable mass with a rate of change,
per unit volume, %s (%, mass density; s ¼ trðL� BÞ, with the usual significance of
L as grad v and B a mesoscale measure of molecular motion at the locular level
so that the standard relation K ¼ YB> applies). Of course, this discrepancy could
be eliminated, at the cost of altering, possibly, the physical picture of events, by
introducing the constraint s ¼ 0 and by adapting the balance laws consequently
to make the constraint acceptable.

In addition to exploring the ramifications of the constraint s ¼ 0, we consider
those of various stronger constraints that incorporate the requirement that the
traces of L and B agree, and, thus, that s ¼ 0. The particular cases we examine
first are addressed just to evidence new prospects conceivable, rather than the fea-
sibility of a confluence. Even if the field v is, in addition, divergence-free, the mass
density need not be constant within a material element (which is here, we insist, a
mental construct rather than, necessarily, a physical reality). Conversely, for that
condition to apply, it is the trace of B, not that of L, which must vanish.

Still, if appropriate constraints are imposed on the macroscopic and meso-
scopic disfigurements, as described, respectively, by L and B, a deeper discrep-
ancy would arise anyway from the essential premise of the theory that, locally,
the movement of molecules is not necessarily exactly that of an a‰ne (or, as
some prefer to call it, pseudorigid) body. Actually the interest centers on the con-
trary circumstances when w di¤ers from vþ By and the random peculiar velocity
c ¼ w� ðvþ ByÞ does not vanish. Otherwise H would vanish also and most of
the peculiarities of ephemerality would be lost.

Another discrepancy is met when the time derivatives of K and H are sought;
local time dependence apart, there is the e¤ect of entrainment, not by the macro-
scopic motion (decided by the field v), but rather by the deeper events so that the
derivative must be of ‘coshaping’ type. This rate hinges on treating each loculus
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as a Euclidean space with local tangent space decided by mesoscopic e¤ects
through a tensor G in analogy with the notion of the usual macroscopic place-
ment gradient F .1 The term ‘coshaping’ was coined in similarity with the more
common ‘corotational.’ However, since the essential features of the rate are not
substantially di¤erent from what has become known as the Truesdell [12] rate,
the introduction of the term ‘coshaping’ might have been avoided. Other con-
straints may lessen or avoid altogether this latter discrepancy and we explore
here some of them.

A comment regarding the balance law for H is appropriate. We argue that
such a balance law is buried usually under the wider shelter o¤ered by the first
principle of thermodynamics. With some courage one could suggest that, at
times, it may, in fact, replace that principle, thus overcoming worrying later re-
strictions to quasistaticity and reversibility; Vilar and Rubi [15] and Reguera,
Rubi and Vilar [11] have advanced a similar suggestion with notable success.

All these remarks tend to clarify points already made, if sometimes only im-
plicitly, in the cited papers. We thought opportune to repeat them here, however,
to avoid possible doubts or misunderstandings. The main topic of the paper is, of
course, the consequence of the introduction of a class of perfect constraints in
ephemeral continua, with the goal being to explore connections with other more
or less established theories. The matter calls for a number of di‰cult choices, the
predominant one regards the definition itself of perfection: it is modeled on the
usual requirement on the power of internal actions, but it invokes also a restric-
tive assumption of independence of global e¤ects (measured by the tensor Z) on
‘collisions’ (measured by H) from L and B, allowing perhaps only an influence of
their gradients. But there are other important and debatable choices in the inter-
pretation of consequences. Already Dunn and Serrin [7] had indicated the need,
in dealing with complex bodies, to introduce interstitial e¤ects and Capriz [2]
showed that terms of that type could be interpreted as the consequences of the
existence of a latent substructure. In the present setting, the matter arises emphat-
ically and calls for discussion. It seemed, from the papers just quoted, that the
need only arose for the insertion of additional active stresses and powers in the
balance laws. Here, we dare to suggest that additions are required also to mea-
sure the intensity of external actions associated with kinetic energy. Were it to

1Capriz [3], followed by Brocato and Capriz [1] and Capriz and Fried [5], suggested obtaining G

by

_GGG�1 þ 1

2
sI ¼ K >Y�1

instead of simply, and, perhaps, more appropriately, by

_GGG�1 ¼ K >Y�1:

(Recall that B ¼ KY�1.) The former suggestion was an attempt to attribute to G responsibility for
changes of volume adequate, when multiplied by %, to account for changes of mass. Rather, the

change of volume must be accounted for by the rate of a ratio involving the determinants of F and
G. Whereas, in the case of the former suggestion, the mesoinertia tensor is defined by Y ¼ d2GG>, in

the case of the alternative suggestion, we have Y ¼ d2 detðGF�1ÞGG>.
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stop at that, the matter would certainly not be gravely contentious; but, then, in
the end, the suggestion would imply that some sort of anisotropic pressure be
classified as an inertial e¤ect rather than as a form of stress! On the other hand,
our proposal is far less radical than that appearing in Truesdell’s [13] paper on
hypoelasticity, where the whole stress is vouchsafed some quality of inertia.

The paper is organized as follows. In Section 2, we introduce essential nota-
tion. In Section 3, we reprise the theory of ephemeral continua, focusing on its
governing balance laws and the most salient of its distinguishing features. In
Section 4, we discuss, in general, linear constraints involving the velocity gradient
L and the mesodistorion rate B. Aside from exploring the algebraic properties of
such constraints, with the goal of providing a complete understanding of the
range of admissible values of L and B allowed, we deduce the ramifications of
frame-indi¤erence. We are led to two alternative, but equivalent, descriptions of
a linear constraint involving L and B, one requiring the provision of two fourth-
order tensors H and K and the other involving the provision of two isotropic
subspaces U and W of the space of second-order tensors and a single isotropic
fourth-order tensor N. In Section 5, we determine the characteristic attributes of
the consequent reactions. In Section 6, we focus on obtaining the reduced forms
of the balance laws corresponding to five particular constraints, each addressed in
a separate subsection. To elucidate aspects of the theory of ephemeral continua
that are independent of su¤usion, these particular constraints forbid that e¤ect.
In each case, the reduction hinges upon eliminating the reactions associated with
terms entering the law expressing moment of mesomomentum balance and our
treatment concludes with the relevant set of balance equations. Unsatisfactory
endpieces, perhaps; however, the goal here is to expose the kinetic quantities
intrinsic to each case, thus deciding limits to fantasy in subsequent attempts to
propose constitutive laws. In Section 7, we use the results of Section 5 to deter-
mine the general forms of the reduced balance laws for any linear constraint
involving L and B. Aside from confirming the endpieces of Section 6, the results
of Section 7 are easily applied to obtain other potentially interesting or illuminat-
ing specializations of the balance laws.

2. Notation

For clarity, we use the following notational scheme:

• Lower-case Greek letters, a; b; . . . ;o, signify scalars.

• Lower-case Latin letters, a; b; . . . ; z, signify vectors.

• Upper-case Latin letters, A;B; . . . ;Z, and those upper-case Greek letters,
G;D; . . . ;W, distinct from upper-case Latin letters signify second-order tensors.

• Lower-case, outlined Latin letters, a; b; . . . ; z, signify third-order tensors.

• Upper-case, outlined Latin letters, A;B; . . . ;Z, signify fourth-order tensors.

The space of second-order tensors is denoted by Lin. Also, the symmetric,
skew, deviatoric, spherical, and symmetric-deviatoric subspaces of Lin are de-
noted by
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Sym ¼ fA a Lin : A> ¼ Ag;
Skw ¼ fA a Lin : A> ¼ �Ag;
Dev ¼ fA a Lin : trA ¼ 0g;
Sph ¼fA a Lin : A ¼ 1

3ðtrAÞIg;

where I denotes the second-order identity tensor, and

SymDev ¼ fA a Lin : A> ¼ A; trA ¼ 0g:

Moreover, the group of rotations is denoted by

Orthþ ¼ fQ a Lin : Q>Q ¼ I ; detQ ¼ 1g:

We make regular use of certain fourth-order tensors. Specifically, the fourth-
order tensors S, W, D, T, and S0 are defined such that, given an element A of
Lin,

SA ¼ 1
2 ðAþ A>Þ; WA ¼ 1

2 ðA� A>Þ; DA ¼ A� 1
3 ðtrAÞI ;

TA ¼ 1
3 ðtrAÞI ; S0A ¼ 1

2 ðAþ A>Þ � 1
3 ðtrAÞI ;

(
ð1Þ

and, thus, map Lin onto Sym, Skw, Dev, Sph, and SymDev, respectively. As easy
consequences of the definitions (1), the fourth-order identity tensor I admits the
decompositions

I ¼ SþW; I ¼ Dþ T; I ¼ S0 þWþ T:ð2Þ

When convenient, we also use symA, skwA, devA, and sphA to denote the
symmetric, skew, deviatoric, and spherical components of an element A of Lin.
Bearing in mind (1), we therefore have the correspondences:

SA ¼ symA; WA ¼ skwA; DA ¼ devA;

TA ¼ sphA; S0A ¼ symðdevAÞ ¼ devðsymAÞ:

�
ð3Þ

Given A and B in Lin, AnB is the fourth-order tensor defined such that, for
any C in Lin,

ðAnBÞC ¼ ðB � CÞA;ð4Þ

As a consequence of (4), the fourth-order tensor T defined in (1)4 admits the
representation

T ¼ 1
3I n I :ð5Þ
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The major transpose A> of A is the fourth-order tensor defined such that

B �A>C ¼ C �ABð6Þ

for all second-order tensors B and C. Further,

A is major-symmetric , A> ¼ A:ð7Þ

Direct calculations then show that each of the fourth-order tensors S, W, D, T,
and S0 defined in (1) is major-symmetric:

S> ¼ S; W> ¼ W; D> ¼ D; T> ¼ T; S>
0 ¼ S0:ð8Þ

A fourth-order tensor A is isotropic if and only if

AðQBQ>Þ ¼ QðABÞQ>;ð9Þ

for all B in Lin and all Q in Orthþ. A standard representation theorem shows
that A is isotropic if and only if there exist scalars l1, l2, and l3 such that

A ¼ l1S0 þ l2Wþ l3T;ð10Þ

in which case S, W, D, T, and S0 are isotropic. Moreover, by (8)2;4;5 and (10), if
a fourth-order tensor is isotropic then it must be major-symmetric:

A is isotropic ) A> ¼ A:ð11Þ

Given a third-order tensor a and a vector b, ab is the element of Lin defined
such that

ðabÞ � ða1 n a2Þ ¼ a � ða1 n a2 n bÞð12Þ

for all vectors a1 and a2. Moreover, the left and right transposes ta and a t of a are
the third-order tensors defined such that

ta � ða1 n a2 n a3Þ ¼ a � ða2 n a1 n a3Þð13Þ

and

a t � ða1 n a2 n a3Þ ¼ a � ða1 n a3 n a2Þð14Þ

for all vectors a1, a2, and a3. Further, given a fourth-order tensor A and a third-
order tensor b, Ab is the third-order tensor defined such that

ðAbÞ � ða1 n a2 n a3Þ ¼ ðA>ða1 n a2ÞÞ � ðba3Þð15Þ

for all vectors a1, a2, and a3.
The spatial gradient and divergence operators are denoted by grad and div,

respectively. The divergence of a third-order tensor field is defined via the diver-
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gence of a field with values in Lin. Specifically, given a third-order tensor field a
its divergence div a is a field with values in Lin defined such that

ðdiv aÞb ¼ divða tbÞð16Þ

for all constant vectors b.

3. Reprise of the theory of ephemeral continua

In Capriz’s [3] theory of ephemeral continua, each place x in the region BðtÞ oc-
cupied by a body at a time t is the mass center of molecules passing through a
loculus eðxÞ of subplaces. Aside from the conventional notions of mass density %
and velocity v, averages with a suitably defined locular number density give rise
to a symmetric and positive-definite mesoinertia tensor Y , an a‰ne mesodistor-
tion tensor G, with an a‰liated mesoscale measure of motion B, a tensor moment
of mesomomentum K, and a symmetric and positive-semidefinite variance H, all
of which may depend on place and time. The spatial fields Y , K , and H are all
measured per unit mass. Since B is assumed a‰ne, B ¼ K >Y�1 or, equivalently,

K ¼ YB>:ð17Þ

Possible discrepancy between the macroscopic and mesoscopic disfigurements
described by the velocity gradient

L ¼ grad vð18Þ

and the mesodistortion rate B is accompanied by su¤usion of matter between
loculi, as characterized by

s ¼ trðL� BÞ:ð19Þ

The theory generates balance laws for mass, moment of mesoinertia, linear mo-
mentum, moment of mesomomentum, and mesofluctuations. In pointwise form,
these balance laws read

_%%þ %div v ¼ s%;

%ð _YY þ sY � YB> � BY Þ ¼ 0;

%ð _vvþ svÞ ¼ %bþ divT ;

%ðY _BB> �HÞ ¼ %M � Aþ divm;

%ð _HH þ sH �HB> � BHÞ ¼ %J � Z þ div j;

8>>>>><
>>>>>:

ð20Þ

where a superposed dot denotes the material time-derivative, T is the familiar
Cauchy stress tensor, A and Z are second-order tensorial internal supply densities
associated, respectively, with the moment of mesomomentum and mesofluctua-
tions, m and j are third-order tensors, the former a hyperstress associated with
the moment of mesomomentum and the latter a measure of power flux, b and
M are applied or noninertial external forces, measured per unit mass, and J is
the mesofluctuation supply, also measured per unit mass.
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When seeking solutions of the system (20), an explicit knowledge of the field Y
is typically indispensable; hence, recourse to equation (20)2 is almost always nec-
essary. It may occur sometimes that the whole field G is required, not only the
symmetric and positive-definite component

ffiffiffiffiffiffiffiffiffiffi
GG>

p
appearing in its polar decom-

position, in which case an evolution equation for G supersedes (20)2. Vice versa,
when deep constraints are imposed such as that leading to hypocontinua, (20)2
simply determines the macroscopic placement gradient F in terms of the macro-
scopic velocity gradient L via the usual relation _FF ¼ LF .

In view of (17) and (20)2, it follows that Y _BB> ¼ _KK þ sK � KB> � BK . The
left-hand side of (20)4 can thus be expressed in a way that involves explicitly the
coshaping rate of K . Hence, the coshaping rate arises in all three of the tensorial
balances (20)2, (20)4, and (20)5 of the theory. In place of the classical requirement
that T be symmetric, stipulating that the power of the internal actions, which in
the theory of ephemeral continua has the form

T � Lþ A> � Bþ tm � gradBþ 1
2 trZ;ð21Þ

be frame-indi¤erent yields the requirement that T and A satisfy

skwT ¼ skwA;ð22Þ

whereas no condition impinges on the deviator of Z. As in the standard reason-
ing, the presumption is that here—and, later, in a di¤erent context—the depen-
dence of the power of the internal actions on L and B occurs only as shown in the
first and second terms of (21).

For a detailed justification of the balance equations (20), see Brocato and
Capriz [1]. In view of the goal of this report, we must, however, provide at least
a cursory intimation of the ideas underlying those equations. Consider a time t
and a place x in BðtÞ. The value vðx; tÞ of the velocity v at that time and place
arises on averaging a mesoscale velocity w over all subplaces in the loculus eðxÞ.
As such, v and w are justly termed filtered and unfiltered velocities. For the
di¤erence w� v, statistical mesofiltering is performed: the average being obvi-
ously null, the mesoinertia tensor Y , the moment of mesomomentum K , and the
variance H are evaluated and their laws of evolution sought. The tensor H is
present to account for the intensity of collisions within each loculus, so that %H
provides a sort of anisotropic pressure—more precisely, its spherical component
1
3 %ðtrHÞI takes the role of pressure while its deviatoric component devð%HÞ ¼
%
�
H � 1

3 ðtrHÞI
�
is a sort of additional stress. Since H is symmetric and positive-

semidefinite, it possesses nonnegative eigenvalues hi, i ¼ 1; 2; 3, and a correspond-
ing othonormal eigenbasis fh1; h2; h3g. Additional insight regarding the nature of
H ensues on expressing it in canonical form

H ¼
X3

i¼1

hihi n hi;ð23Þ
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which provides a caricature of the primitive definition of H, based on averaging,
as the sum of three terms as though the population of molecules, all having
the same mass, were spread between three swarms: within the i-th swarm, all
molecules move along the line spanned by hi with speed hi; each swarm is split
evenly into two subswarms but with opposing velocitiesehihi. Alternatively, one
may imagine all molecules to have not only the same mass but also the same
speed, but with the fraction of those moving along the line spanned by hi being
hi=ðh1 þ h2 þ h3Þ. With this interpretation in mind, it emerges that the square-
root H 1=2 of H regulates the balanced cross-flux of molecules—H 1=2n being a
measure of the flux of molecules through a plane with unit normal n. Thus,
with reference to (20)4, within a loculus, the tensor symA should account for
coherence opposing su¤usion and dispersal, actions promoted, in contrast, by
collisions.

4. Linear constraints

4.1. Basic ideas

Here, our interest is in discerning the influence of constraints involving the veloc-
ity gradient L and the mesodistortion rate B, as described by the zero set,

fðL;BÞ : FðL;BÞ ¼ 0g;ð24Þ

of a mapping F from Lin� Lin into Lin, on the form of the governing equations
(20) of the theory of ephemeral continua.

We confine attention to linear constraints. Consistent with this restriction, the
mapping F entering (24) must obey

FðaL; aBÞ ¼ aFðL;BÞð25Þ

for all scalars a and all L and B in Lin and

FðL1 þ L2;B1 þ B2Þ ¼ FðL1;B1Þ þFðL2;B2Þð26Þ

for all L1, L2, B1, and B2 in Lin. Thus, F is linear and the zero set (24) is simply
the null space NullF of F.

Granted (25) and (26), there exist fourth-order tensors H and K such that

FðL;BÞ ¼ HL�KBð27Þ

for all ðL;BÞ in Lin� Lin and

fðL;BÞ : HL ¼ KBg ¼ NullF:ð28Þ

Observe that the mapping obtained by multiplying F—or, equivalently, H
and K—by any invertible fourth-order tensor has null space identical to that of
F and, thus, delivers a homologous constraint. When exploring the properties
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of the constraint furnished by F, only NullF is relevant. Importantly, the null
spaces NullH and NullK of H and K do not determine NullF unless the ranges
RngH and RngK of H and K share only the zero tensor in common, in which
case:

ðRngHÞB ðRngKÞ ¼ f0g , NullF ¼ ðNullHÞ � ðNullKÞ:ð29Þ

More generally, if RngH and RngK have elements other than the zero tensor in
common, then NullF contains pairs of second-order tensors that are not pro-
vided by NullH and NullK:

ðRngHÞB ðRngKÞA f0g , NullFX ðNullHÞ � ðNullKÞ:ð30Þ

A representation of NullF that a¤ords as much information as possible regard-
ing the implication of the constraint on the range of admissible values for L and
B is therefore needed. Moreover, any ramifications that might be required by
frame-indi¤erence should be deduced. We now address these demands, with the
purpose of establishing the essential features of the constraint.

4.2. Algebraic insights

Given fourth-order tensors H and K, we seek a characterization of NullF. In
view of (28), let U be the subspace of Lin for which there is an element B of Lin
such that

HL ¼ KB:ð31Þ

Suppose that an element L of U is given. If K is invertible, then (31) determines B
uniquely via B ¼ K�1HL. If, more generally, K is not invertible, then there exist
multiple choices of B that satisfy (31); indeed, given B satisfying (31) and a
nontrivial element BN of NullK, then KðBþ BNÞ ¼ KBþKBN ¼ KB, whereby
Bþ BN also satisfies (31). Moreover, any B that satisfies (31) admits a decompo-
sition of the form

B ¼ BN þ B?;ð32Þ

where BN belongs to NullK and where B? is a uniquely determined element of
the orthogonal complement ðNullKÞ? of NullK. Importantly, B? is determined
uniquely for each L in U. To verify this assertion, suppose that, B aside, there
exists another second-order tensor B 0 ¼ B 0

N þ B 0
? that satisfies (31). Then, since

BN and B 0
N belong to NullK, HL ¼ KB ¼ KB? and HL ¼ KB 0 ¼ KB 0

?, from
which it follows that

KðB? � B 0
?Þ ¼ 0:ð33Þ

Since both B? and B 0
? are in ðNullKÞ?, so also is the di¤erence B? � B 0

?, whereby
(33) implies that B 0

? ¼ B?, which verifies that B? is determined uniquely for each
L in U.
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In view of the uniqueness of B?, there exists a unique linear mapping N from
U to ðNullKÞ? such that

B? ¼ NLð34Þ

for each L in U. By (32) and (34), an element ðL;BÞ of Lin� Lin satisfies (31) if
and only if L belongs to U and B has the form

B ¼ BN þNL;ð35Þ

with BN being some element of NullK. Further, since BN belongs to NullK, (31)
and (35) imply that, for any L in U,

HL ¼ KNLð36Þ

and, thus, that ðL;NLÞ satisfies the constraint.
On extending N so that NL ¼ 0 for all L in the orthogonal complement U?

of U, whereby

NL ¼ B? if L a U;

0 if L a U?;

�
ð37Þ

the foregoing result can be summarized as follows: there exists a unique fourth-
order tensor N such that U? and RngN are subsets of NullN and ðNullKÞ?,
respectively, with the property that the constraint (31) holds if and only if L
belongs to U and B ¼ BN þNL for some BN in NullK.

Importantly, the last result possesses a converse of sorts, the proof of which
we omit for brevity: given subspaces U and W of Lin with dimensions dimU
and dimW satisfying

dimUþ dimWb dimLin ¼ 9ð38Þ

and a fourth-order tensor N consistent with

NullNKU? and RngNJW?;ð39Þ

there exist fourth-order tensors H and K, with NullK ¼ W, such that L belongs
to U and B ¼ BN þNL for some BN in W if and only if HL ¼ KB.

4.3. Consequences of frame-indi¤erence

Our application of frame-indi¤erence presumes that, under a change of observer
involving a time-dependent Q in Orthþ and a time-dependent frame spin

W ¼ _QQQ>ð40Þ

in Skw, B transforms like L, so that

L 7! QLQ> þW and B 7! QBQ> þW:ð41Þ
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Faced with the constraint, we stipulate that NullF be frame-indi¤erent
in the sense that if ðL;BÞ belongs to NullF, then, given Q in Orthþ and
W in Skw, ðQLQ> þW;QLQ> þWÞ must also belong to NullF. By (28),
ðQLQ> þW;QLQ> þWÞ belongs to NullF if and only if

HðQLQ>Þ þHW ¼ KðQBQ>Þ þKW:ð42Þ

Bearing in mind that Q and W in (42) can be chosen independently, let Q coincide
with the second-order identity tensor I . Then, since ðL;BÞ belongs to NullF, (42)
becomes

HW ¼ KW:ð43Þ

Since (43) holds for any W in Skw, it follows that fðW;WÞ : W a SkwgHNullF.
More importantly, using (43) in (42) gives

HðQLQ>Þ ¼ KðQBQ>Þ;ð44Þ

which implies that ðQLQ>;QBQ>Þ belongs to NullF whenever ðL;BÞ belongs to
NullF. Since (44) holds for any Q in Orthþ, a result that might have been antici-
pated as a consequence of frame-indi¤erence follows: NullF is an isotropic sub-
space of Lin� Lin. Next, since ðL;BÞ is in NullF, L belongs to U and we may
use (36) in (44) to yield

HðQLQ>Þ ¼ KðQðNLÞQ>Þ:ð45Þ

Reasoning analogously with reference to ðQLQ>;QBQ>Þ, we obtain

HðQLQ>Þ ¼ KNðQLQ>Þ;ð46Þ

which in combination with (45) delivers

KðNðQLQ>Þ �QðNLÞQ>Þ ¼ 0:ð47Þ

Since NðQLQ>Þ and QðNLÞQ> are in ðNullKÞ?, so also is the di¤erence
NðQLQ>Þ �QðNLÞQ>. Hence, (47) holds if and only if

NðQLQ>Þ ¼ QðNLÞQ>:ð48Þ

Bearing in mind that (48) must hold for any choices of L in U and Q in Orthþ

and that, by (37), NL ¼ 0 for any choice of L in U?, we infer that N must be an
isotropic fourth-order tensor. Thus, by (10) and (11), N admits a representation
of the form

N ¼ l1S0 þ l2Wþ l3Tð49Þ

and, thus, is major-symmetric:

N> ¼ N:ð50Þ
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To conclude this section, we mention another noteworthy consequence of
frame-indi¤erence, namely that both NullH and NullK are isotropic subspaces
of Lin. It can also be shown that NullF if frame-indi¤erent if and only if
HW ¼ KW for all W in Skw, N is isotropic, and the subspaces U and NullK are
isotropic. Notice that, contrary to what one might expect, frame-indi¤erence does
not require that H or K be isotropic.

4.4. Synopsis

The results of Sections 4.2 and 4.3 suggest two alternative descriptions of a phys-
ically viable—in the sense that the associated null space is frame-indi¤erent—
linear constraint on the velocity gradient L and the mesodistortion rate B.

One description involves providing fourth-order tensors H and K subject to
two conditions. First, if HL ¼ KB, so that L and B satisfy the constraint, then
H and K must obey

HðQLQ>Þ ¼ KðQBQ>Þð51Þ

for all Q in Orthþ and

HW ¼ KW;ð52Þ

for all W in Skw.
The other, somewhat less exigent, description involves providing isotropic

subspaces U and W of Lin satisfying (38) and an isotropic fourth-order tensor
N consistent with (39). Here, L and B satisfy the constraint if and only if L is
in U and B has the form

B ¼ BW þNL;ð53Þ

where BW is in W.
Granted that W is identified with NullK, these two descriptions of the con-

straint are equivalent.

5. Elementary implications of the constraint

To deduce the implications of a general, frame-indi¤erent, linear constraint on
L and B, we follow the derivations of the theories of hypocontinua and Navier–
Stokes-ab continua provided by Capriz [3] and Capriz and Fried [5]. This
approach rests on considerations involving the power of the internal actions (21).

Following the traditional approach to dealing with constraints, we suppose
that the fields T , A, m, and Z split, additively, into active and reactive compo-
nents,

T ¼ Ta þ Tr; A ¼ Aa þ Ar; m ¼ ma þmr; Z ¼ Za þ Zr;ð54Þ

169constrained ephemeral continua



and we require that the power of the internal actions obey

T � Lþ A> � Bþ tm � gradBþ 1
2 trZð55Þ

¼ Ta � Lþ A>
a � Bþ tma � gradBþ 1

2 trZa;

for all choices of L, B, and gradB consistent with the constraint, so that the reac-
tions Tr, Ar, mr, and Zr are powerless.

Since the power flux j associated with mesofluctuations does not enter the
power of the internal actions (21), it seems reasonable to assume that it does not
react to the imposition of any internal constraint. With this assumption, jr ¼ 0
and

j ¼ ja:ð56Þ

Moreover, since the deviatoric component devZ ¼ Z � 1
3 ðtrZÞI of Z is absent

from (21), it seems reasonable to assume that it cannot include, under internally
constrained circumstances, an additive reactive component. This amounts to
assuming that Zr belongs to Sph:

Zr ¼ 1
3ðtrZrÞI :ð57Þ

To deduce the consequences of requiring that (55) hold for all L, B, and
gradB consistent with the constraint, we rely on the description of the con-
straint involving the provision of isotropic subspaces U and W of Lin satisfy-
ing (38) and an isotropic fourth-order tensor N consistent with NullNKU?

and RngNJW?. Using the decomposition (53) of B and the decompositions
(54) of T , A, m, and Z in (55), while bearing in mind from (50) that N is major-
symmetric, we obtain

ðTr þNA>
r Þ � Lþ A>

r � BW þ tmr � gradBþ 1
2 trZr ¼ 0:ð58Þ

Granted (57) and that Tr, Ar, mr, and trZr are independent of L, B, and gradB,
(58) is satisfied for all choices of L, B, and gradB if and only if

Tr þNA>
r a U?; A>

r a W?; RngmrJW?;

N tmr þ ðN tmrÞ t ¼ 0; Zr ¼ 0;
ð59Þ

where, in reference to (59)3, mr is viewed as a linear mapping from vectors to
second-order tensors. Notice that, by (57) and (59)5,

Z ¼ Za:ð60Þ

A direct calculation shows that if (59)1�5 hold, then (58) is satisfied for all
choices of L, B, and gradB consistent with the constraint. To establish the con-
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verse, note that since L, BW, and gradB can be prescribed consistent with the
constraint and independently at any given point and time, (58) holds for all
choices of L, BW, and gradB only if each of its terms vanish separately:

ðTr þNA>
r Þ � L ¼ 0; A>

r � BW ¼ 0; tmr � gradB ¼ 0; trZr ¼ 0:ð61Þ

Since they must hold for all L in U and all BW in W, (61)1 and (61)2 imply (59)1
and (59)2. Next, by (53), (61)3 becomes

tmr � gradBW þ tmr � gradðNLÞ ¼ 0:ð62Þ

Since BW and NL can be chosen independently, (62) holds if and only if its terms
vanish separately. We must, therefore, have

tmr � gradBW ¼ 0 and tmr � gradðNLÞ ¼ 0;ð63Þ

for all BW in W and all L in U, respectively. Since W is isotropic and, thus, so is
W?, (63)1 holds if and only if

mr � gradBW ¼ 0;ð64Þ

which establishes (59)3. Regarding the second requirement, since N is constant,
isotropic, and, by (50), major-symmetric, (63) yields

tmr � gradðNLÞ ¼ tmr �N gradL ¼ N tmr � gradL ¼ 0;ð65Þ

which, since ðgradLÞ t ¼ ðgrad grad vÞ t ¼ grad grad v ¼ gradL, implies (59)4. Fi-
nally, granted (57), to satisfy (61)4, Zr must vanish, whereby (59)5 holds. The
restrictions (59) are therefore both necessary and su‰cient to ensure that the
reactions Tr, Ar, mr, and Zr are powerless.

6. Constraints that prohibit suffusion

The theory of ephemeral continua is distinguished by its allowance for the
exchange of molecules between material points. To expose other di¤erences and
o¤er some detail regarding remarks already made in the introduction, we explore
the implications of various constraints consistent with the requirement,

s ¼ 0;ð66Þ

that the su¤usion vanish. Though very trivial, the examples we consider are
nevertheless illuminating instances of constraints relevant when a special physical
hypothesis is accepted; more general occurrences will be the theme of another
paper.
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6.1. Purely su¤usionless continua

In view of the definition (19) of s, the weakest possible linear constraint between
L and B that agrees with (66) takes the form

trL ¼ trB:ð67Þ

We refer to media governed by the equations obtained by reducing the balance
laws (20) of the theory of ephemeral continua in accord with (67) as ‘purely suf-
fusionless continua.’’

The constraint defining su¤usionless continua corresponds to imposing (31)
with

H ¼ K ¼ T;ð68Þ

where T, defined via (1)4, is the fourth-order tensor that maps Lin onto Sph.
Since T is isotropic, the choice (68) of H and K is consistent with (51). More-
over, since TW ¼ 1

3 ðtrWÞI ¼ 0 for any W in Skw, the choice (68) of H and K is

consistent with (52). Thus, (67) is frame-indi¤erent.
To determine the reactions Tr, Ar, and mr via (59)1�4, we next recast the con-

straint (67) in terms of isotropic subspaces U and W of Lin satisfying (38) and an
isotropic fourth-order tensor N consistent with NullNKU? and RngNJW?.
Since L in (67) is unrestricted, U must coincide with all of Lin:

U ¼ Lin:ð69Þ

Further, since W can be identified with NullK, (68) implies that W must coin-
cide with the deviatoric subspace Dev of Lin:

W ¼ Dev:ð70Þ

From (69) and (70), we deduce that

U? ¼ f0g and W? ¼ Sph:ð71Þ

In view of (2)3, (4), (67), (70), and (71), we next find that

B ¼ BW þ TL;ð72Þ

which, when compared with (53), allows us to identify N as

N ¼ T:ð73Þ

Since NullT ¼ Dev and RngT ¼ Sph, (71) and (73) imply that NullN ¼
NullT ¼ DevK f0g ¼ U? and RngN ¼ RngT ¼ SphJ Sph ¼ W?. The choice
(73) therefore satisfies (39).
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On using (71) in (59)1�4, we find that

Tr þNA>
r a f0g; A>

r a Sph; Rngmr J Sph; T tmr þ ðT tmrÞ t ¼ 0:ð74Þ

Further, by (74)3,

mr ¼ Tmr ¼ tðTmrÞ ¼ T tmr ¼ tmr;ð75Þ

whereby (74)4 becomes

mr þm t
r ¼ 0:ð76Þ

By (74)–(76), the reactions Tr, Ar, and mr must therefore take the particular
forms:

Tr ¼ �1
3ðtrArÞI ; Ar ¼ 1

3ðtrArÞI ; and mr ¼ 0:ð77Þ

Whereas (77)1 and (77)2 are immediate consequence of (74)1 and (74)2, the re-
maining result (77)3 is a consequence of noting that, by (13) and (14), the only
third-order tensor a that satisfies ta ¼ a ¼ �a t is the zero third-order tensor.

In view of (54)2;3 and (77)2;3, the spherical component of the balance (20)4
of moment of mesomomentum yields an expression for trAr which, by (77)1;2,
determines Tr ¼ �Ar in the form

Tr ¼ �1
3½trð%H þ %M � Aa þ divma � %Y _BB>Þ�I :ð78Þ

By (19) and (67), all terms with factors of s must vanish from (20). Further,
since the spherical component of (20)4 determines the reaction Ar via (78), only
the deviatoric component of that balance survives. Thus, on recalling (56) and
(60), under the constraint (66) characterizing purely su¤usionless continua, the
balance laws (20) for ephemeral continua specialize to

_%%þ % div v ¼ 0;

%ð _YY � YB> � BYÞ ¼ 0;

% _vv� 1
3 grad½%ðY � _BB� trHÞ� ¼ % f þ divTa þ 1

3 grad½trðAa � divmaÞ�;
% devðY _BB> �HÞ ¼ % devM � devAa þ dev divma;

%ð _HH �HB> � BHÞ ¼ %J � Za þ div ja;

8>>>>>><
>>>>>>:

ð79Þ

where L and B must satisfy trL ¼ trB and the e¤ective specific external body
force f entering (79)3 is defined by

f ¼ b� 1
3 grad trM � 1

3ðtrMÞ grad ln %:ð80Þ
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By (77)1;2, the basic relation (22) requires that Ta and Aa satisfy

skwTa ¼ skwAa:ð81Þ

Ostensibly, (79) and (81) allow for the possibility that Ta might not be symmetric.
At the same time, only the deviatoric components of terms enter the law of
moment of mesomomentum balance, whereas the influence of the traces of Y _BB>,
Aa, and ma is transferred to the law of linear momentum balance.

A closer relation between the set of balance laws above and those ruling
multipolar continua, as developed by Green and Rivlin [10], might have been
expected. Such expectation is, however, largely misplaced. The radical di¤erence
explaining much of the discrepancy is in that the molecules belonging at a certain
instant in a loculus are supposed, in a multipolar theory, to lay always within the
same material element, however far they may possibly move later from their
center of mass, without needing any constraint to conform to that discipline.
Another basic di¤erence between the system (79) and the equations governing
multipolar continua is that in (79) the multipolarity is compacted entirely in the
tensor moment K and the variance H.

6.2. Fully-incompressible mesostretch continua

Consistent with but somewhat stronger than the requirement (67) that the su¤u-
sion vanish is the constraint

skwL ¼ skwB; trL ¼ trB ¼ 0;ð82Þ

which, while slaving the mesospin skwB to the macrospin W ¼ skwL, a¤ords
the possibility that the mesostretching symB may evolve independently of the
macrostretching D ¼ symL. Moreover, (82) requires that the macroscopic and
mesoscopic disfigurements be isochoric and, thus, imposes incompressibility at
both levels. This second requirement ensures that no su¤usion occurs. We refer
to media governed by the balance laws obtained by reducing the equations (20)
of the theory of ephemeral continua in accord with (82) as ‘fully-incompressible
mesostretch continua.’

It is not particularly easy to formulate the constraint (82) in terms of fourth-
order tensors H and K. We, therefore, choose the alternative approach involving
isotropic subspaces U of W of Lin satisfying (38) and an isotropic fourth-order
tensor N consistent with NullNKU? and RngNJW?. Specifically, since
trL ¼ 0, U must coincide with the deviatoric subspace Dev of Lin:

U ¼ Dev:ð83Þ

Consistent with (82), we find also that

B ¼ 1
2ðBþ B>Þ � 1

3ðtrBÞI þWB ¼ BW þWL;ð84Þ
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where W, defined via (1)2, is the fourth-order tensor that maps Lin onto Skw. On
comparing (84) to (53), we identify N with W:

N ¼ W:ð85Þ

Further, on the basis of (84), we recognize that

W ¼ SymDev:ð86Þ

From (83) and (86), we deduce that

U? ¼ Sph and W? ¼ ðSymDevÞ? ¼ spanðSkwA SphÞ:ð87Þ

Since NullW ¼ Sym and RngW ¼ Skw, (87) and (85) imply that NullN ¼
NullW ¼ SymK Sph ¼ U? and RngN ¼ RngW ¼ SkwJ spanðSkwA SphÞ ¼
W?. The choice (85) therefore satisfies (39).

On using (87) in (59)1�3, we find that

Tr þNA>
r a Sph; A>

r a spanðSkwA SphÞ; Rngmr J spanðSkwA SphÞ;ð88Þ

and, thus, that

S0Tr ¼ skwAr; S0Ar ¼ 0; S0mr ¼ 0;ð89Þ

where S0, defined via (1)5, is the fourth-order tensor that maps Lin onto SymDev.
Further, by (59)4 and (85), W tmr þ ðW tmrÞ t ¼ 0 or, equivalently,

mr þm t
r ¼ tmr þ ð tmrÞ t:ð90Þ

As an immediate but useful consequence of (89)3, we have

S0 divmr ¼ 0;ð91Þ

while, from (90), we find that

div divðWmrÞ ¼ divðW divmrÞ ¼ 0:ð92Þ

In view of (54)2;3 and (89)2;3, the spherical and skew components of the
balance (20)4 of moment of mesomomentum specialize to

% trðY _BB> �HÞ ¼ % trM � trðAa þ ArÞ þ tr divðma þmrÞð93Þ

and, bearing in mind that H is in Sym,

% skwðY _BB>Þ ¼ % skwM � skwðAa þ ArÞ þ skwdivðma þmrÞ;ð94Þ

the first of which determines a gauge relation for trðAr � divmrÞ and the second
of which, by (89)1, determines Tr ¼ skwAr þ 1

3 ðtrTrÞI in the form

Tr ¼ �$I þ % skwM � % skwðY _BB>Þ � skwAa þ skwdivðma þmrÞ;ð95Þ
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where we have introduced the reactive pressure

$ ¼ �1
3ðtrTrÞI :ð96Þ

By (19) and (82)2, the su¤usion vanishes for the constraint under consider-
ation and all terms with factors of s drop out of (20). Further, since the symmet-
ric, deviatoric component (94) of (20)4 determines the reaction Ar via (78), only
the skew component of (20)4 survives. Thus, on recalling (56) and (60) while
bearing in mind (91) and (92), under the constraint (82) characterizing fully-
incompressible mesostretch continua, the balance laws (20) for ephemeral con-
tinua specialize to

_%% ¼ 0;

%ð _YY � YB> � BYÞ ¼ 0;

% _vvþ div½% skwðY _BB>Þ� ¼ % f � grad$þ divðsymTa þ skwdivmaÞ;
% sym½devðY _BB> �HÞ� ¼ % symðdevMÞ � symðdevAaÞ þ symðdev divmaÞ;
%ð _HH �HB> � BHÞ ¼ %J � Za þ div ja;

8>>>>><
>>>>>:

ð97Þ

where L and B must satisfy skwL ¼ skwB and trL ¼ trB ¼ 0 and the e¤ective
specific external body force f entering (97)3 is defined by

f ¼ bþ divðskwMÞ þ ðskwMÞ grad ln %:ð98Þ

By (22), (54)1, and (89)1;2, the basic relation (22) requires that Ta and Aa satisfy

skwTa ¼ skwAa:ð99Þ

As was the case for purely su¤usionless continua, (97) and (99) seem to allow for
the possibility that Ta might not be symmetric. However, since Aa enters (97)
only through its symmetric and deviatoric component, generality would not be
lost by insisting that Aa be symmetric and traceless, in which case (99) would
yield skwTa ¼ 0 or, equivalently,

Ta ¼ T >
a :ð100Þ

The mass balance (97)1 requires the mass density % to be constant along particle
trajectories. For homogeneous fluids, this requirement is tantamount to the stip-
ulation that the mass density be constant.

Consistent with the assertion about the preponderance of the constraint (82)
defining the class of fully incompressible mesostretch continua relative to the
constraint (67) defining purely su¤usionless continua, the linear momentum bal-
ance (97)3 is more strongly influenced by terms associated with the moment of
mesomomentum balance than is its counterpart (79)3. Moreover, whereas the
terms entering the moment of mesomomentum balance (79)4 take values in Dev,
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an 8-dimensional subspace of Lin, those entering (97)4 take values in the
5-dimensional subspace SymDev. E¤ects associated with moments of mesomo-
menta are therefore somewhat more easily characterized for fully incompressible
mesostretch continua than for purely su¤usionless continua.

6.3. Mesospin continua

Another constraint that is consistent with the requirement (66) that the su¤usion
vanish but somewhat stronger than not only (67) but also (82) is the constraint

symL ¼ symB;ð101Þ

which, while slaving the mesostretching symB to the macrostretching D ¼ symL,
a¤ords the possibility that the mesospin skwB may evolve independently of the
macrospin W ¼ skwL. We refer to media governed by the equations obtained by
reducing the balance laws (20) of the theory of ephemeral continua in accord with
(101) as ‘mesospin continua.’

The constraint defining mesospin continua corresponds to imposing (31) with

K ¼ H ¼ S;ð102Þ

where S, defined via (1)1, is the fourth-order tensor that maps Lin onto Sym.
Since S is isotropic, the choice (102) of H and K is consistent with (51). More-
over, since SW ¼ 0 for any W in Skw, the choice (68) of H and K is consistent
with (52). Thus, (101) is frame-indi¤erent.

To determine the reactions Tr, Ar, and mr via (59)1�4, we next recast the con-
straint (101) in terms of isotropic subspacesU andW of Lin satisfying (38) and an
isotropic fourth-order tensor N consistent with NullNKU? and RngNJW?.
Since L in (101) is unrestricted, U must coincide with all of Lin:

U ¼ Lin:ð103Þ

Further, since W can be identified with NullK, (102) implies that W must coin-
cide with the skew subspace Skw of Lin:

W ¼ Skw:ð104Þ

From (103) and (104), we deduce that

U? ¼ f0g and W? ¼ Sym:ð105Þ

In view of (3)1, (101), (104), and (105), we next find that

B ¼ BW þ SL;ð106Þ

which, when compared with (53), allows us to identify N as

N ¼ S:ð107Þ
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Since NullS ¼ Skw and RngS ¼ Sym, (105)1 and (107) imply that NullN ¼
NullS ¼ SkwK f0g ¼ U? and RngN ¼ RngS ¼ SymJ Sym ¼ W?. The
choice (107) therefore satisfies (39).

On using (105) in (59)1�3, we find that

Tr þNA>
r a f0g; A>

r a Sym; Rngmr J Sym;ð108Þ

and, thus, that

Tr ¼ �Ar; Ar ¼ symAr; mr ¼ tmr:ð109Þ

Notice that (109)2 has been used to simplify the direct result Tr ¼ �symAr of
(108)1 to the form Tr ¼ �Ar appearing in (109)2. Further, by (59)4, (107), and
(109)3,

m t
r ¼ �mr;ð110Þ

from which it follows that div divmr ¼ �div divðmt
rÞ ¼ �div divmr and, thus,

that

div divmr ¼ 0:ð111Þ

In view of (54)2;3 and (109)2;3, the symmetric and skew components of the
balance (20)4 of moment of mesomomentum specialize to

% symðY _BB> �HÞ ¼ % symM � symðAa þ ArÞ þ symdivðma þmrÞð112Þ

and

% skwðY _BB>Þ ¼ % skwM � skwAa þ skwdivma;ð113Þ

the first of which, by (109)1, determines Tr ¼ �Ar in the form

Tr ¼ % symðY _BB> �HÞ � % symM þ symAa � symdivðma þmrÞ:ð114Þ

By (19) and (101), the su¤usion vanishes for the constraint under consider-
ation and all terms with factors of s drop out of (20). Further, since the symmet-
ric component (112) of (20)4 determines the reaction Ar via (114), only the skew
component (113) of that balance survives. Thus, on recalling (56) and (60) while
bearing in mind (111) and that H is symmetric, under the constraint (101) char-
acterizing mesospin continua, the balance laws (20) for ephemeral continua spe-
cialize to

_%%þ % div v ¼ 0;

%ð _YY � YB> � BYÞ ¼ 0;

% _vv� div½%ðsymðY _BB>Þ �HÞ� ¼ % f þ divðsymTa þ Aa � symdivmaÞ;
% skwðY _BB>Þ ¼ % skwM � skwAa þ skwdivma;

%ð _HH �HB> � BHÞ ¼ %J � Za þ div ja;

8>>>>><
>>>>>:

ð115Þ
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where L and B must satisfy symL ¼ symB and the e¤ective specific external
body force f entering (115)3 is defined by

f ¼ b� divðsymMÞ � ðsymMÞ grad ln %:ð116Þ

In view of (106), given a second-order tensor field U , the rate

_UU �UB> � BU ¼ _UU �UL> � LU þ ðW � skwBÞU �UðW � skwBÞð117Þ

is the sum of the Oldroyd rate _UU �UL> � LU of U and ‘corotational’ terms
involving the di¤erence between the macrospin W and the mesospin skwB. By
(54)1 and (109)1;2, the basic relation (22) requires that Ta and Aa satisfy

skwTa ¼ skwAa:ð118Þ

Only the symmetric part of Ta þ Aa, which might be viewed as an e¤ective mea-
sure of stress at the macroscale, appears in the linear momentum balance (115)3.

Observations analogous to those appearing the final paragraph of the previous
section apply here as well: the linear momentum balance (115)3 is more strongly
influenced by terms associated with the moment of mesomomentum balance than
is its counterpart (97)3 and, since the terms entering the momentum of mesomo-
mentum balance (115)3 take values in the 3-dimensional subpace Skw of Lin, the
associated e¤ects are more easily characterized for mesospin continua than for
either fully incompressible mesostretch continua or purely su¤usionless continua.

6.4. Hypocontinua

The strongest linear constraint between the velocity gradient L and mesodistor-
tion rate B that forbids su¤usion slaves the latter to the former, so that

L ¼ B:ð119Þ

Following Capriz [4], we refer to media governed by the equations obtained by
reducing the balance laws (20) of the theory of ephemeral continua in accord
with (119) as ‘hypocontinua.’

Regardless of which of the two alternative evolution equations for obtaining
G mentioned in Footnote 1 is used, the constraint (119) implies that _GG ¼ LG.
Since the macroscopic deformation gradient F obeys _FF ¼ LF , provided that G
and F agree initially, it follows that G ¼ F thereafter.2 Under these circum-
stances, Y ¼ d2GG> ¼ d2FF >, where d is the locular edge length, from which,
bearing in mind (119), it follows that

_YY � YB> � BY ¼ d2ð _FF � LFÞF > þ d2F ð _FF � LF Þ> ¼ 0:ð120Þ

2Since (119) rules out su¤usion and _FF ¼ LF , the alternatives in Footnote 1 both give _GG ¼ LG.

Moreover, since G ¼ F , detðGF�1Þ ¼ 1 and Y ¼ d2GG> ¼ d2FF > for either alternative.
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For hypocontinua, the mesoinertia balance (20)2 is thus simply an embodiment
of the kinematical identity _FF ¼ LF . Our discussion of hypocontinua therefore
makes no further mention of that balance.

The constraint defining hypocontinua corresponds to imposing (31) with

H ¼ K ¼ I:ð121Þ

That the choice (121) of H and K satisfies (51) and (52) follows immediately.
To determine the reactions Tr, Ar, and mr via (59)1�4, we next recast the con-

straint (119) in terms of isotropic subspacesU andW of Lin satisfying (38) and an
isotropic fourth-order tensor N consistent with NullNKU? and RngNJW?.
Since L in (119) is unrestricted, U must coincide with all of Lin:

U ¼ Lin:ð122Þ

Further, since W can be identified with NullK, (121) implies that W must coin-
cide with the subspace f0g of Lin:

W ¼ f0g:ð123Þ

From (122) and (123), we deduce that

U? ¼ f0g and W? ¼ Lin:ð124Þ

Next, (119) allows us to immediately identify N as

N ¼ I:ð125Þ

Since Null I ¼ f0g and Rng I ¼ Lin, (124) and (125) imply that NullN ¼
Null I ¼ f0gK f0g ¼ U? and RngN ¼ Rng I ¼ LinJLin ¼ W?. Thus, the
choice (125) satisfies (39).

On using (124) in (59)1�3, we conclude that

Tr þNA>
r a f0g; A>

r a Lin; Rngmr JLin;ð126Þ

the first of which gives

Tr ¼ �A>
rð127Þ

and the second and third of which leave Ar and mr unrestricted. By (59)4 and
(125),

tmr þ ð tmrÞ t ¼ 0;ð128Þ

from which it follows that

div½ðdivmrÞ>� ¼ div divð tmrÞ ¼ 0:ð129Þ
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In view of (54)2;3, (119), and (127), the transpose of the balance (20)4 of meso-
momentum determines Tr ¼ �A>

r in the form

Tr ¼ %ð _LLY �HÞ � %M > þ A>
a � ½divðma þmrÞ�>:ð130Þ

By (19) and (119), the su¤usion vanishes for the constraint under consider-
ation and all terms with factors of s drop out of (20). Further, aside from deter-
mining the reaction Tr via (130), the balance (20)4 is irrelevant to the theory.
Thus, on recalling (56) and (60) while bearing in mind the discussion in the
paragraph including (120) and the identity (129), under the constraint (119) char-
acterizing hypocontinua, the balance laws (20) for ephemeral continua special-
ize to

_%%þ % div v ¼ 0;

% _vv� div½%ð _LLY �HÞ� ¼ % f þ div½symðTa þ AaÞ � ðdivmaÞ>�;
%ð _HH �HL> � LHÞ ¼ %J � Za þ div ja;

8><
>:ð131Þ

where the e¤ective specific external body force f entering (131)2 is defined by

f ¼ b� divðM >Þ �M >grad ln %:ð132Þ

By (54)1 and (127), the basic relation (22) requires that Ta and Aa satisfy

skwTa ¼ skwAa:ð133Þ

Perhaps unsuprisingly, under the constraint (119), B is completely absent from
the final balance laws (131) and the e¤ects of Y _BB>, Aa, and ma are transferred to
influence the law of linear momentum balance. As was the case for mesospin con-
tinua, only the symmetric part of the erstwhile e¤ective measure of stress at the
macroscale Ta þ Aa appears in the linear momentum balance (131)2. Notice that
the Oldroyd rate appears in (131)3 and, thus, emerges naturally in the theory of
hypocontinua.

6.5. Compressible Navier–Stokes-ab continua

In contrast to the previously considered reductions of the balances (20) for
ephemeral continua, the moment of mesomomentum balance does not appear
among the balance laws (131) governing hypocontinua. Interestingly, (119) is
not the only constraint with this property. To illustrate this point, we consider
the consequences of insisting that velocity gradient L and the mesodistortion
rate B obey the constraint

skwLþ 1
3ðtrLÞI ¼ B;ð134Þ

which is somewhat weaker than (119). Following Capriz and Fried [5], we refer
to media governed by equations obtained by reducing the balance laws (20) of the
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theory of ephemeral continua in accord with (134) as ‘compressible Navier–
Stokes-ab continua.’

The constraint defining compressible Navier–Stokes-ab continua corresponds
to imposing (31) with

H ¼ Wþ T and K ¼ I:ð135Þ

Since I, W, and T are isotropic, the choice (135) of H and K is consistent with
(51). Moreover, since ðWþ TÞW ¼ W ¼ IW for any W in Skw, the choice (135)
of H and K is consistent with (52). Thus, (135) is frame-indi¤erent.

To determine the reactions Tr, Ar, and mr via (59)1�4, we next recast the
constraint (134) in terms of isotropic subspaces U and W of Lin satisfying
(38) and an isotropic fourth-order tensor N consistent with NullNKU? and
RngNJW?. Since L in (134) is unrestricted, U must coincide with all of Lin:

U ¼ Lin:ð136Þ

Further, since W can be identified with NullK, (135) implies that W must coin-
cide with the subspace f0g of Lin:

W ¼ f0g:ð137Þ

From (103) and (104), we deduce that

U? ¼ f0g and W? ¼ Lin:ð138Þ

In view of (3)4, (134), (137), and (138), we next find that

B ¼ ðWþ TÞL;ð139Þ

which, when compared with (53), allows us to identify N as

N ¼ Wþ T:ð140Þ

Since NullðWþ TÞ ¼ SymDev and RngðWþ TÞ ¼ spanðSkwA SphÞ, (138) and
(140) imply that NullN ¼ NullðWþ TÞ ¼ SymDevK f0g ¼ U? and RngN ¼
RngðWþ TÞ ¼ spanðSkwA SphÞJLin ¼ W?. The choice (140) therefore satis-
fies (39).

On using (138) in (59)1�3, we find that

Tr þNA>
r a f0g; A>

r a Lin; Rngmr JLin;ð141Þ

the first of which gives

Tr ¼ skwAr � 1
3ðtrArÞIð142Þ
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and, in a repetition of what occurs in the case of hypocontinua, the second and
third of which leave Ar and mr unrestricted. Observe that, as consequences of
(142), Tr and Ar must obey

skwTr ¼ skwAr and trTr ¼ �trAr;ð143Þ

whereby (142) can be expressed as

Tr ¼ skwTr þ 1
3ðtrTrÞI :ð144Þ

Also, by (59)4 and (140), ðWþ TÞ tmr þ ½ðWþ TÞ tmr� t ¼ 0, whereby

div½ðT�WÞ divmr� ¼ 0:ð145Þ

Next, we use (54)2;3 and (134) to specialize the balance (20)4 of mesomomen-
tum. We then extract the symmetric and deviatoric, skew, and spherical compo-
nents of the resulting equation. The first of these components determines a gauge
relation,

% sym½devðY _BB> �HÞ� ¼ % symðdevMÞ � symðdevAaÞð146Þ
� symðdevArÞ þ sym½dev divðma þmrÞ�;

for sym½devðAr � divmrÞ�. With (143), the second and third components yield
expressions,

skwTr ¼ �% skwðY _BB>Þ þ % skwM � skwAa þ skw divðma þmrÞ;ð147Þ

and

trTr ¼ % skwðY _BB>Þ � % skwM þ skwAa � skw divðma þmrÞ;ð148Þ

which, when used in (144), determine Tr.
Thus, as in the theory of hypocontinua, apart from determining Tr, the mo-

ment of mesomomentum balance is irrelevant in the theory of compressible
Navier–Stokes-ab continua. In view of this observation, recalling (56) and (60),
while making use of (144), (145), (147), and (148), we find that, under the con-
straint (134) characterizing Navier–Stokes-ab continua, the balance laws (20)
for ephemeral continua specialize to

_%%þ %div v ¼ 0;

%
�
_YY þ YW �WY � 2

3 ðdiv vÞY
�
¼ 0;

% _vv� div½%ðskwðY _WW Þ� þ 1
3 grad½ð

_div vdiv vÞ trY þ trH�
¼ % f þ divðsymTa þ skwdivmaÞ þ 1

3 grad½trðAa � divmaÞ�;
%
�
_HH þHW �WH � 2

3 ðdiv vÞW
�
¼ %J � Za þ div ja;

8>>>>>><
>>>>>>:

ð149Þ
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where we have used conventional notation,

D ¼ symL and W ¼ skwL;ð150Þ

for the symmetric and skew components of L and the trivial identity trL ¼ div v
and where the e¤ective specific external body force f entering (149)3 is defined by

f ¼ bþ %ðdivðskwMÞ � 1
3 grad trMÞ þ %ðskwM � 1

3ðtrMÞIÞ grad ln %;ð151Þ

and, as with hypocontinua, Ta and Aa must satisfy (133). While it is unsurprising
that the constraint (119) leads to final balance laws that do not involve B, it is
somewhat surprising that the same holds true for (134)—a constraint that leaves
the symmetric and deviatoric part of B indeterminate. Consistent with results of
Capriz and Fried [5], the corotational rate (adjusted to accommodate compressi-
bility) enters (149)2;4 (and, by (17) and (20)2, implicitly in (149)3) emerges as the
preferred frame-indi¤erent rate in the theory of compressible Navier–Stokes-ab
continua.

7. General corollaries of the constraint

When discussing constraints and their implications in Sections 4 and 5, a general
approach was adopted, with some formal complexities which might seem largely
avoidable if interest were restricted to relatively simple occurrences of the type
discussed in Section 6. Actually, the events contemplated there were furnished to
evidence features, curious or crucial, typical of the theory and to establish links
with more standard theories. To show that the opening generality o¤ers much
more than a formal backdrop, we now tender an all-inclusive analysis of the con-
sequences of linear constraints involving the velocity gradient L and the mesodis-
tortion rate B, opening an easy approach to desired choices.

7.1. Reduction of the balance laws

Consider isotropic subspaces U and W of Lin satisfying (38) and an isotropic
fourth-order tensor

N ¼ l1S0 þ l2Wþ l3Tð152Þ

consistent with (39). Let PU and PW denote the projectors onto U and W, re-
spectively. Suppose that ðL;BÞ satisfies the constraint described by U, W, and
N. Then, since

L ¼ PUL and BW ¼ PWB;ð153Þ
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(19) and (53) can be used to show that any su¤usion permitted under the con-
straint must be given by

s ¼ trðPUL� PWB�NLÞ:ð154Þ

As isotropic fourth-order tensors, PU and PW must admit representations of
the form

PU ¼ aUS0 þ bUWþ gUTð155Þ

and

PW ¼ aWS0 þ bWWþ gWT:ð156Þ

Additionally, as projectors, PU and PW must obey P2
U ¼ PU and P2

W ¼ PW,
which with (155) and (156) yield

a2U ¼ aU; b2
U ¼ bU; g2U ¼ gU;

a2U ¼ aU; b2
U ¼ bU; g2U ¼ gU:

(
ð157Þ

As a consequence of (157) each coe‰cient in the list aU, bU, gU, aW, bW, and gW
must equal either zero or unity. The projectors P?

U and P?
W onto the orthogonal

complements U? and W? of U and W can be expressed via

P?
U ¼ I� PU and P?

W ¼ I� PW:ð158Þ

Notice that, when specialized according to (152), (155), and (156), the relation
(154) for any su¤usion allowed under the constraint takes the form

s ¼ ðgU � l3Þ trL� gW trB;ð159Þ

from which it follows that the constraint described by U, W, and N rules out suf-
fusion if and only if the coe‰cients l3, gU, and gW entering the representations
(152), (155), and (156) of N, PU, and PW obey gU ¼ l3 and gW ¼ 0.

The representations (155) and (156) can be used to show that U and W obey
(38) if and only if

aU þ aW þ 5ðbU þ bWÞ þ 3ðgU þ gWÞb 9:ð160Þ

Similarly, the representations (152) and (155)–(156) can be used to show that N
obeys (39)1 and (39)2 if and only if

ðaU ¼ 0 ) l1 ¼ 0Þ , aUl1 ¼ l1;

ðbU ¼ 0 ) l2 ¼ 0Þ , bUl2 ¼ l2;

ðgU ¼ 0 ) l3 ¼ 0Þ , gUl3 ¼ l3;

8><
>:ð161Þ
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and

ðaW ¼ 1 ) l1 ¼ 0Þ , ð1� aWÞl1 ¼ l1;

ðbW ¼ 1 ) l2 ¼ 0Þ , ð1� bWÞl2 ¼ l2;

ðgW ¼ 1 ) l3 ¼ 0Þ , ð1� gWÞl3 ¼ l3;

8><
>:ð162Þ

respectively.
Notice that, with the definitions (155) and (156), the general requirements

(59)1�4 that the reactions Tr, Ar, and mr must satisfy are equivalent to

PUðTr þNA>
r Þ ¼ 0; PWA>

r ¼ 0; PWmr ¼ 0; N tmr þ ðN tmrÞ t ¼ 0:ð163Þ

By (54)1, (155), (158)1, and (163)1,

skwT ¼ skwTa þ bUl2 skwAr þ ð1� bUÞ skwTr;ð164Þ

while, by (54)2, (156), (158)2, and (163)2,

skwA ¼ skwAa þ ð1� bWÞ skwAr:ð165Þ

On combining (22), (161), and (164)–(165), we obtain

T ¼ symTa þ skwAa þ ½ð1� aUÞS0 þ ð1� gUÞT�Trð166Þ
� ðl1S0 � ð1� bWÞWþ l3TÞAr:

Next, by (158)2 and (163)3,

P?
W divmr ¼ divmr;ð167Þ

while, by (163)4,

div divðN tmrÞ ¼ 0:ð168Þ

Next, isolating the components of the moment of mesomomentum balance
(20)4 belonging to SymDev, Skw, and Sph, defining

S ¼ %ðY _BB> �HÞ � %M þ Aa � divma;ð169Þ

a lengthy but straightforward calculation allows us to rewrite (166) in the form

T ¼ symTa þ skwAa þ ðl1S0 �Wþ l3TÞSð170Þ
þ ½ð1� aUÞS0 þ ð1� gUÞT�Tr

þ ð1� bW � l2ÞWdivmr �N divð tmrÞ:
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Bearing in mind (168) and (169), we use (170) to write the linear momentum
balance (20)3 as

%ð _vvþ svÞ ¼ %bþ divðsymTa þ skwAa þ ðl1S0 �Wþ l3TÞSÞð171Þ
þ div½ð1� aUÞS0Tr þ ð1� gUÞTTr

þ ð1� bW � l2ÞWdivmr�:

Moreover, the only potentially nontrivial component of the moment of mesomo-
mentum balance (20)4 is that involving terms with values in W, which, in view of
(156) and (169), can be expressed as

PWS ¼ 0:ð172Þ

At first glance, (171) and (172) appear to be deficient to the extent that they con-
tain the reactions Tr and mr. However, a multitude of constraints, as described by
particular choices of U, W, and N, can be read o¤ from (171) and (172). Thus,
(171) and (172) provide a platform for developing a broad range of theories for
constrained ephemeral continua. For simplicity, we have not indicated the gen-
eral form of the e¤ective specific body force germane to (171).

7.2. Mesospin continua revisited

The general results (159), (171), and (172) may be easily used to specialize the
balance laws (20) of ephemeral continua in accord with the particular constraints
considered in Section 6.

Consider, for example, the constraint (102) giving rise to mesospin continua.
In this case, (103) and (104) yield PU ¼ I and PW ¼ W. Thus, since, by (107),
N ¼ S, (152), (155), and (156) imply that

l1 ¼ l3 ¼ 1; l2 ¼ 0; aU ¼ bU ¼ gU ¼ 1; aW ¼ gW ¼ 0; bW ¼ 1:ð173Þ

Since gU ¼ l3 ¼ 1 and gW ¼ 0, (159) yields s ¼ 0, confirming that mesospin con-
tinua cannot support su¤usion and, moreover, that the terms in (20) that have s
as a coe‰cient must be absent from the evolution equations for mesospin con-
tinua. Thus, recalling (56) and (60), the balances (20)1;2;3 coincide with (115)1;2;5
and it remains only to show that (171)–(172) specialize to (115)3�4. Since l1 ¼
l3 ¼ 1, we next find that l1S0 �Wþ l3T ¼ S0 þ T�W ¼ S�W, which, on
invoking the definition (169) of S and the symmetry of H, delivers

symTa þ skwAa þ ðaS0 �Wþ gTÞSð174Þ
¼ symðTa þ AaÞ þ %ð _BBY �HÞ � %M > � ðdivmaÞ>:

Since aU ¼ gU ¼ bW ¼ 1 and l2 ¼ 0, we have

ð1� aUÞS0Tr þ ð1� gUÞTTr þ ð1� bW � l2ÞWdivmr ¼ 0:ð175Þ
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On using (174) and (175) in the general linear momentum balance (171), we
obtain

% _vv� div½%ð _BBY �HÞ� ¼ %bþ divðsymðTa þ AaÞ � %M > � ðdivmaÞ>Þ:ð176Þ

Further, since PW ¼ W for a mesospin continuum, we obtain

% skwðY _BB>Þ ¼ % skwM � skwAa þ skwdivma;ð177Þ

which is the momemt of mesomomentum balance (115)4 for a mesospin contin-
uum.

To establish the consistency between (176) and the previously obtained ver-
sion (115)3 the balance of linear momentum for a mesospin continuum, notice
that, by (177),

div½% skwðY _BB>Þ� ¼ divð% skwM � skwAa þ skwdivmaÞ;ð178Þ

which when added to (176) yields

% _vv� div½%ðsymðY _BB>Þ �HÞ� ¼ % f þ divðsymTa þ Aa � symdivmaÞð179Þ

which, with the definition (116) of the specific external body force f , is precisely
(115)3.

The remaining cases considered in Section 6 can be treated similarly.

7.3. Deviatoric hypocontinua

We now utilize the general results (159), (171), and (172) to explore the implica-
tions of slightly weakening the constraint (119) leading to the theory of hypocon-
tinua by choosing

U ¼ Lin; W ¼ f0g; N ¼ S0 þW;ð180Þ

whereby

PU ¼ I and PW ¼ 0:ð181Þ

We refer to media governed by equations obtained by reducing the balance
laws (20) of the theory of ephemeral continua in accord with (187) as ‘deviatoric
hypocontinua.’

Of these choices involved in (180), only that involving N di¤ers from the
choice N ¼ I arising in the theory of hypocontinua. By (53) and (180)2;3, we have

devL ¼ B;ð182Þ

which should be compared with the condition L ¼ B upon which the theory of
hypocontinua is based.
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By (152), (155), (156), (180)3, and (181), the coe‰cients entering (159), (171),
and (172) are

l1 ¼ l2 ¼ 1; l3 ¼ 0; aU ¼ bU ¼ gU ¼ 1; aW ¼ bW ¼ gW ¼ 0:ð183Þ

Since gU ¼ 1, l3 ¼ 0, and gW ¼ 0, (159) gives

s ¼ trL ¼ div v;ð184Þ

from which it follows that, in contrast to (119), the constraint (182) allows for
su¤usion as determined by the macroscopic rate of dilation. Since PW ¼ 0, the
moment of mesomomentum balance is, as in the theories for hypocontinua and
compressible Navier–Stokes-ab continua, inconsequential to the theory. Since B
is fully determined by (182), this outcome is, perhaps, not too surprising. On us-
ing (183) to specialize the linear momentum balance (171) and bearing in mind
(184), we find that, under the constraint (182) characterizing deviatoric hypocon-
tinua, the balance laws (20) for ephemeral continua specialize to

_%% ¼ 0;

%
�
_YY � YL> � LY þ 1

3 ðdiv vÞY
�
¼ 0;

%ð _vvþ ðdiv vÞvÞ � div
�
% devð _LLY �HÞ � 1

3 %ð
_div vdiv vÞ devY

�
¼ % f þ divðsymTa þ symdevAa � devðdivmaÞ>Þ

%
�
_HH �HL> � LH þ 1

3 ðdiv vÞH
�
¼ %J � Za þ div ja;

8>>>>>><
>>>>>>:

ð185Þ

where the e¤ective specific external body force f entering (185)3 is defined by

f ¼ b� divðM > � 1
3ðtrMÞIÞ � ðM > � 1

3ðtrMÞIÞ grad log %:ð186Þ

The reduced mass balance (185)1 shows, in contrast to what occurs for hypocon-
tinua, during the motion of a deviatoric hypocontinua, the mass density must be
preserved along particle trajectories.

7.4. Fully-incompressible continua without mesostretch. Navier–Stokes-ab
equations for an incompressible fluid

As a final illustration of the general results (159), (171), and (172), we consider
the constraint described by choosing

U ¼ Dev; W ¼ Skw; and N ¼ 0;ð187Þ

whereby

PU ¼ S0 þW and PW ¼ W:ð188Þ
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We refer to media governed by equations obtained by reducing the balance
laws (20) of the theory of ephemeral continua in accord with (187) as ‘fully-
incompressible continua without mesostretch.’

By (53) and (188)2;3, we have

symB ¼ 0 and trL ¼ 0:ð189Þ

Further, by (152), (155), (156), (187)3, and (188),

l1 ¼ l2 ¼ l3 ¼ 0; aU ¼ bU ¼ 1; gU ¼ 0; aW ¼ 0; bW ¼ 1; gW ¼ 0:ð190Þ

Since gU ¼ l3 ¼ 0 and gW ¼ 0, (159) yields s ¼ 0. Thus, purely incompressible
continua without mesostretch cannot support su¤usion. This and (189)1 imply
that, for the constraint described by (187), the coshaping rate of an element U
of Lin reduces in accord with:

_UU þ sU �UB> � BU ¼ _UU þUB� BU :ð191Þ

Bearing in mind (171), (172), (188)1, and (190), we find that, under the con-
straint (189) characterizing fully-incompressible continua without mesostretch,
the balance laws (20) for ephemeral continua specialize to

_%% ¼ 0;

%ð _YY þ YB� BY Þ ¼ 0;

% _vv ¼ %b� grad jþ divðsymTa þ skwAaÞ;
% skwðY _BBÞ ¼ �% skwM þ skwAa � skwdivma;

%ð _HH þHB� BHÞ ¼ %J � Za þ div ja;

8>>>>><
>>>>>:

ð192Þ

where L and B must satisfy trL ¼ 0 and symB ¼ 0, and where

j ¼ �1
3ðtrTrÞI :ð193Þ

is a reactive pressure. Mass balance and linear momentum balance aside, the
foregoing balances are identical to their counterparts, (115)2;4;5, from the theory
of mesospin continua. Using (192)4 to eliminate skwAa from (192)3 yields a
version,

% _vv� div½% skwðY _BBÞ� ¼ % f þ divðsymTa þ skwdivmaÞ;ð194Þ

of the linear momentum balance that is more easily contrasted with its counter-
part, (115)3, from the theory for mesospin continua. Perhaps most significantly,
the variance H enters (115)3 but not (194). Additionally, whereas (194) includes
a reactive pressure term needed to ensure that the portion of the constraint asso-
ciated with incompressibility is met, (115)3 does not. Notice, also, that the e¤ec-
tive specific external body force f entering (194) is defined by

f ¼ bþ divðskwMÞ þ ðskwMÞ grad ln %;ð195Þ
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which di¤ers substantially from the expression, (116), arising in the theory of
mesospin continua.

The mass balance (192)1 requires the mass density % to be constant along
particle trajectories. Hereafter, we restrict attention to homogeneous fluids, in
which case

% ¼ constant:ð196Þ

Observe that the moment of mesoinertia balance (192)2 admits a solution of the
form

Y ¼ a2I ; a ¼ constant:ð197Þ

On the basis of this observation, we specialize the balance laws (192) for fully-
incompressible continua without mesostretch in accord with the assumption that
the moment of mesoinertia tensor is isotropic. Moreover, motivated by the ab-
sence of a term involving H in the moment of mesomomentum balance (192)4,
we forego further consideration of the mesofluctuation balance (192)5. Since
each term of (192)4 is skew, we define vectors u, m, and a by

u� ¼ B ¼ skwB; m� ¼ �skwM; and a� ¼ �skwAa;ð198Þ

where, given a vector c, c� is the element of Skw defined such that ðc�Þd ¼ c� d
for any vector d, and an element S of Lin by

S� ¼ �1
2ðma � tmaÞ;ð199Þ

where, given U in Lin, U� is the third-order tensor defined such that ðU�Þc ¼
ðUcÞ� for any vector c. Bearing in mind (197)–(199), the identities

divða�Þ ¼ �curl a; divðS�Þ ¼ ðdivSÞ�;ð200Þ

and that (192)5 has been dropped from consideration, the balance laws (192) spe-
cialize to

% _vv ¼ %b� grad jþ divðsymTaÞ þ curl a;

%a2 _uu ¼ %m� aþ divS:

�
ð201Þ

Alternatively, on solving (201)2 for a and replacing the resulting expression in
(201)1 and using (196), we have the system

%ð _vvþ a2 curl _uuÞ ¼ % f � grad jþ divðsymTaÞ þ curl divS;

%a2 _uu ¼ %m� aþ divS;

�
ð202Þ

where the e¤ective specific external body force f is now defined by

f ¼ bþ curlm:ð203Þ
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If we formally neglect moment of mesoinertia by setting %a2 _uu ¼ 0, (202) yield

% _vv ¼ % f � grad jþ divðsymTaÞ þ curl divS;ð204Þ

which, setting aside notational conventions, coincides with the balance upon
which Fried and Gurtin [8, 9] based their derivation of the Navier–Stokes-ab
equations for an incompressible fluid. Specifically, with the choices

symTa ¼ 2%ðnDþ a2D
�
Þ and S ¼ 2%nb2 skwðgrad curl vÞ;ð205Þ

where a and b carry dimensions of length, (204) specializes to

% _vv� 2%a2 divD
�
¼ % f � grad$þ %nð1� b24Þsv;ð206Þ

where a superposed circle denotes the corotational rate, so that, for any element
U of Lin,

U
�
¼ _UU þWU �UW ;ð207Þ

and the e¤ective pressure $ is given by

$ ¼ jþ a2 trðL2Þ:ð208Þ

Capriz and Fried [5] argue that the term 2%a2 divD
�
entering the Navier–Stokes-

ab equation (206) should stem from higher-order inertial e¤ects. However, the
steps leading from (204) to (206) identify that term as kinetic and thereby intro-
duce some doubt about the physical legitimacy of the foregoing derivation.

An alternative derivation of (206), stemming directly from the system (202), is
nevertheless possible. To achieve this, we first record the commutator identity

curl _uu� _curl ucurl u ¼ div½ðu�ÞL>�ð209Þ

distinguishing the di¤erence between the curl of the material time-derivative of
u and the material time-derivative of the curl of u. Next, we assume that the
vector expression u for the mesodistorion rate B ¼ skwB is equal to the vorticity
curl v:

u ¼ curl v:ð210Þ

Then, since

ðcurl vÞ� ¼ 2W ¼ L� L>ð211Þ

and, by (189)2,

curl curl v ¼ grad div v�sv ¼ �sv;ð212Þ
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(209) yields, after a tedious but straightforward calculation,

curl _vv ¼ � _svsv� divðLL>Þ þ divðL>L>Þð213Þ

¼ � _svsv� divðLL>Þ þ 1

2
grad trðL2Þ

¼ �2 div _WW

¼ �2 divD
�
þ grad trðL2Þ:

Thus, granted that u is determined by v by (210), the linear momentum balance
(202)1 specializes to

%ð _vv� a2 divD
�
Þ ¼ % f � grad jþ divðsymTaÞ þ curl divS;ð214Þ

which on assuming that, instead of being given by (205)1, symTa, which, with ref-
erence to Dunn and Fosdick [6], is recognized as the generic expression for the
extra stress of a non-Newtonian fluid of second grade, is given by the Newtonian
relation

symTa ¼ 2%nDð215Þ

and that ma is, as previously, given by (205)2, yields the Navier–Stokes-ab equa-
tion (206).

The relation (210) between u and v is perhaps most aptly viewed as a con-
straint. Since, by (198)1, u� ¼ B ¼ skwB and ðcurl vÞ� ¼ 2W , this amounts to
the requirement that

B ¼ 2W :ð216Þ

Thus, when supplemented by (210), the constraint described by (187) di¤ers from
that imposed by Capriz and Fried [5] by only a factor of 2 arising in the link
between L and B.

8. Criticism and outlook

In many ways our paper opens more questions than it answers. A comprehensive
study of the kinematics of ephemeral continua and the illustration of simple
possible flows seems essential. Constitutive laws adequate to represent the behav-
ior of some classes of continua must be proposed and justified, be it by exploring
the underlying physical motives which suggest them, or be it by pro¤ering some
ensuing simple flows. In general, an accurate study of appropriate initial and
boundary conditions must still be performed; the presence of inertial terms in-
volving spatial gradients is provocative and, no doubt, behavior at the boundary
requires again constitutive decisions. The physical chemistry of surfaces is a
vast field, heavily conditioned by the ubiquitous impositions of the divergence
theorem. Even here the proposed form of the balance laws prejudices, partly,
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the issue. However, in deriving consequences of that structure, an essential role is
played by Euler cuts, imaginary macro actions which sever a portion of the body
from the rest. They can be imagined as smooth as convenient; even so, the ques-
tion arises here about the consequences at the meso level: going through a macro
point they divide also the loculus! So, the interplay between the two scales must
be transferred in some modelling repercussions, perhaps simply reflected in a
smart choice of constitutive laws. Setting aside imaginary internal boundaries,
the matter is distinctly di¤erent for an actual physical boundary. Smoothness
may not be assured; besides, part of each loculus there belongs to the exterior
and the external half might not belong to the same tribe of continua and its
reactions might be foreign. An analysis of boundary constitutive laws, involv-
ing perhaps also deep geometrical properties, down to the meso level, besides
physical instances, might be required. One needs only recall the standard addi-
tion of surface tension, absent in bulk, at the boundary between liquid and
vapour and the complexities at the border between austenitic and martensitic
phases in some solids. The panorama is extraordinarily rich; we hope that it will
inspire interest.
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