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Number Theory — Some remarks concerning the rank of mapping tori and ascend-
ing HNN-extensions of abelian groups. Nota di Francesco Amoroso and
Umberto Zannier, presented on 16 December 2011 by Umberto Zannier.

Abstract. — Let A be a matrix in GLdðZÞ of infinite order. In a recent paper, G. Levitt and

V. Metaftsis prove that for any su‰ciently large integer n the matrix An is not conjugated to a
companion matrix. We first prove a local version of this theorem. Then, we give an e¤ective state-

ment, using diophantine methods. We also discuss several related problems.
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Riassunto. — Qualche osservazione sul rango dei mapping tori e sulle catene HNN-ascendenti di

gruppi abeliani. Sia A una matrice di GLdðZÞ di ordine infinito. In un recente articolo, G. Levitt e
V. Metaftsis dimostrano che per ogni intero n su‰cientemente grande, la matrice An non è coniu-

gata ad una matrice compagna. In questo lavoro dimostriamo prima una versione locale di tale
risultato, quindi una versione e¤ettiva, utilizzando metodi diofantei. Ci occupiamo infine di varie

questioni connesse.

1. Introduction

The present paper considers certain diophantine issues arising from the study of
the rank of the so-called mapping tori groups. These groups have been studied in a
number of papers. For more on this, we referred to the article [6] of Levitt and
Metaftsis who in fact pointed out to us the question which we now analyze.

Let A a GLdðZÞ. The natural action v 7! Av induces a semidirect product

G ¼ Zd zA Z ¼ 3Zd ; t j tvt�1 ¼ Av4

where we identify the generator 1 of Z with A. Let ORðAÞ be the minimum
number of vectors whose A-orbits generate Zd and let rankðGÞ be the minimum
number of generators of G. In [6] the Authors shows that

Theorem 1.1 (Levitt-Metaftsis).

rankðGÞ ¼ 1þORðAÞ:

In particular, G can be generated by two elements if and only if A is conjugate in
GLdðZÞ to a companion matrix.



We recall that a companion matrix is one of the shape

0 �
1 0 �

. .
. . .

.
�

1 0 �
1 �

0
BBBBBB@

1
CCCCCCA
:

See also the end of this section for equivalent properties.
Since the conjugacy problem is decidable in GLdðZÞ (cf. [5]), one can decide

whether G has rank 2 or not.
Motivated by a topological result of J. Souto [8], they then prove:

Theorem 1.2 (Levitt-Metaftsis). Let A a GLdðZÞ be of infinite order. Consider
the family of finitely generated groups Gn ¼ Zd zAn Z. Then there exists n0 ¼ n0ðAÞ
such that rankðGnÞ > 2 for nb n0. In other words, for nb n0 the matrix An is not
conjugate to a companion matrix in GLdðZÞ.

Their proof is based on the Skolem-Mahler-Lech Theorem on linear recur-
rence sequences. An alternative approach to this last result follows from a local
argument in Zp which amount to reduction modulo p, using equations in S-units.
This approach actually shows a bit more, upon excluding the matrices all of
whose eigenvalues are roots of unity. Namely, under the assumption that some
complex eigenvalue of A a GLdðZÞ has infinite order, we shall prove the finite-
ness of the set of n a Z such that An is conjugate to a companion matrix in
GLdðFpÞ for all primes p outside a prescribed (but arbitrary) finite set S. In
section 2 we prove:

Theorem 1.3. Let S be a finite set of prime numbers and let A a MdðZÞ. Suppose
that A has two nonzero eigenvalues whose ratio is not a root of unity. Then there
are only finitely many integers n such that for all primes p B S the reduction modulo
p of the matrix An is conjugate to a companion matrix in GLdðFpÞ.

Let us pause for some remarks on this statement.

Remark 1.4.

i) Assume A a GLdðZÞ. If the ratio of any two eigenvalues of A is a root of
unity, then in fact all the eigenvalues must be roots of unity, because their
product is detA ¼e1.

ii) We remark that the assumption on the eigenvalues is necessary here, and
(if SA j) cannot be replaced with the weaker one that A a GLdðZÞ has not
finite order. This is shown by examples like S ¼ flg,

A ¼ 1 1

0 1

� �
:
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We notice that A has infinite order, nevertheless each of the powers Alm ,
m a N, is conjugate to a companion matrix over Fp, for all pA l, and actu-
ally over the ring Z½1=l�.

On the other hand, we note that in the special case S ¼ j, the conclusion of
the Theorem holds even if A a GLdðZÞ has all eigenvalues roots of unity, but it
is not of not finite order, see Proposition 2.1 in section 2.

iii) We also remark that for d > 1 there are integral unimodular matrices which
are conjugate to a companion matrix in GL2ðFpÞ for all p (and indeed in
SL2ðZpÞ for all p) but not conjugate to a companion matrix over Z. Thus
Hasse principle does not hold in the present situation. We provide an explicit
example at the end of section 2. This shows that, even in the case S ¼ j, the
finiteness predicted by the Theorem is a priori a stronger assertion than the
finiteness of the set of integers n such that An is conjugate to a companion
matrix over Z.

We give other complements to the results of [6]. In section 3 we prove the fol-
lowing e¤ective version of Theorem 1.2:

Theorem 1.5. Let A a GLdðZÞ be a matrix of infinite order. Let Z be the set of
positive integers n such that An is conjugate in GLdðZÞ to a companion matrix.
Then there exists an e¤ective absolute constant c > 0 such that

maxZa cd 6ðlog dÞ2:

We could ask for a strong version of Theorem 1.2. Let A a GLdðZÞ of in-
finite order. It is true that there exists n0 ¼ n0ðAÞ such that ORðGnÞ is ‘‘large’’
for nb n0? Levitt and Metaftsis give a simple counterexample to this state-
ment. It is enough to choose integers h; k > 1 such that k þ h ¼ d and matrices
A1 a GLkðZÞ, A2 a GLhðZÞ with A1 of infinite order and with A2 conjugate to a
companion matrix of finite order m. The matrix

A ¼ A1 0

0 A2

� �

is then of infinite order, but ORðAnÞa k þ 1 for nC 1 modm. In section 4 we
investigate more closely this problem. We formulate a conjecture which predicts
that for a ‘‘generic’’ matrix A we would have ORðAnÞ ¼ 2 for infinitely many
integers n. We shall relate this conjecture to another one concerning algebraic
numbers and we shall give some evidence for it.

In section 5, we partially answer another question posed in [6]. Let A a MdðZÞ
be nonsingular and consider the so-called ascending HNN-extension

Zd�A ¼ 3Zd ; t j tvt�1 ¼ Av4:

By this notation it is meant that Zd�A is generated by Zd and t subject to the
relations written on the right. We remark that Zd�A is a semidirect product if
and only if A a GLdðZÞ.
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Levitt and Metaftsis ask if one can generalize Theorem 1.1 to such groups.
We generalize the method of [6], characterizing the rank of Zd�A in terms of the
A-orbits. Then we give a positive answer to their question for 2� 2 matrices.

Notations. Let O be a ring and let A a MdðOÞ be a d � d matrix with coe‰-
cient in O. We denote by OROðAÞ the minimum number of elements needed, such

that their A-orbits generate Od .

Let k be a field and let A a MdðkÞ. Then it is well known that ORkðAÞ is equal
to the number of invariant factors of A. In particular, ORkðAÞ ¼ 1 if and only if
A is conjugate in GLdðkÞ to a companion matrix. This is in turn equivalent to
require that the eigenspace of A relative to any eigenvalue has dimension 1. It is
also equivalent to the fact that the minimal polynomial of A has degree d.

In what follows we shall consider matrices A a MdðZÞ. We simply write ORðAÞ
for ORZðAÞ.

2. An alternative proof using equations in S-units

In this section we first state and prove a Proposition which shows special cases in
which the conclusion of Theorem 1.3 holds, with di¤erent assumptions. Then we
prove Theorem 1.3 and we give some further remarks.

Proposition 2.1. Let A a MdðZÞ and assume that A has at least one eigenvalue
counted with multiplicity at least 2. Then, for all integers n > 1 and for all primes
p j n, the matrix An is not conjugate to a companion matrix in GLdðFpÞ.

In particular, if all the eigenvalues of A are roots of unity and A has infinite
order, then for n > 1 there exists a prime p such that the matrix An is not conjugate
to a companion matrix in GLdðFpÞ.

Proof. By assumption the characteristic polynomial f ðtÞ a Z½t� of A has a mul-
tiple factor, and we may write f ðtÞ ¼ g2ðtÞhðtÞ for suitable monic polynomials
g; h a Z½t�, with deg gb 1.

Take n > 1 and choose p to be any prime divisor of n. If An was conjugate to
a companion matrix over Fp, its minimal polynomial over Fp would have degree
d, and the same would hold for Ap (because An a Fp½Ap�). However gðApÞhðApÞ
C g pðAÞh pðAÞ ¼ ðg p�2ðAÞh p�1ðAÞÞ f ðAÞ ¼ 0 ðmod pÞ. But deg gðtÞhðtÞ < d, a
contradiction.

Concerning the last assertion of the Proposition, note that if all the eigen-
values of A are roots of unity and A has infinite order, then A has at least one
eigenvalue counted with multiplicity at least 2; for otherwise A would be diago-
nalizable (over Q) and hence of finite order. It is now su‰cient to choose p as any
prime divisor of n and to apply the previous part. r

Before proving Theorem 1.3 we briefly recall some facts concerning the places
of a number field K . For more details, see [2], chapter 1, section 2. Any absolute
value of K induces a topology on K . Two absolute values j � j1, j � j2 on K are
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said to be equivalent if they induce the same topology. It may be proved that this
happens if and only if there exists l > 0 such that jxj1 ¼ jxj l2 for all x a K . An
equivalence class of absolute values is called a place. We say that a place is non-
archimedean (or finite) if the corresponding absolute values satisfy the ultrametric
inequality jxþ yjamaxðjxj; jyjÞ. In this case, the restriction of j j to Q is a p-
adic absolute value for some rational prime p. Let v be a finite place and let j j
be one of the corresponding absolute value. Then Rv ¼ fx a K ; j jxja 1g is a lo-
cal ring. Let KðvÞ be its residue field. Let a a K . If a a Rv we call reduction of a
(at v) the image amod v of a in KðvÞ; otherwise we say that the reduction of a is
not defined.

Proof of Theorem 1.3. By assumption we may pick nonzero complex eigen-
values l, x of A, such that their ratio is not a root of unity (so in particular lAx).
Consider the number field K ¼ Qðl; xÞ and let xl, xx be respective eigenvectors
of A in Kdnf0g.

We let S be the set of places of K obtained as the union of the following sets:

(a) the set of archimedean places and the set of places above primes in S;
(b) the set of those places at which either l or x is not a unit;
(c) the set of those places at which the reductions of l and x coincide;
(d) the set of those places at which the reductions of xl or xx are not defined or

are linearly dependent.

Then S is a finite set of places of K .
Suppose now that n is an integer such that An is conjugate to a companion

matrix over Fp, for every prime p B S. Fix v B S and denote with a tilde the reduc-
tion modulo v.

We contend that ~llnA ~xxn. In fact, assuming the contrary we deduce that ~AAn

has the linearly independent eigenvectors ~xxl, ~xxx relative to the same eigenvalue
~lln. But then, in view of the characterization recalled at the end of section 1, ~AAn

cannot be conjugate to a companion matrix over the residue field of v. On the
other hand if this residue field has characteristic p, we have p B S (because v B S);
so An is conjugate to a companion matrix over Fp; this is a contradiction which
proves the claim.

This conclusion may be reformulated as the assertion that hn :¼ ln � xn is a
S-unit for such an integer n; on the other hand both ln, xn are S-units, due to
our choice of S (see property (b)). So each relevant integer n provides a solution
ðhn=ln; xn=lnÞ to the S-unit equation X þ Y ¼ 1 (i.e. to be solved in S-units X , Y
of K). But this equation has only finitely many solutions, due to a well-known
(rather deep) Theorem in the theory of diophantine equations (see [2], chapter 5).
Hence ðx=lÞn can take only finitely many values. Since x=l is neither zero nor a
root of unity, this proves that n too takes values in a finite set. This proves the
Theorem. r

We remark that the above equation in S-units is of special type, and this al-
lows an entirely elementary treatment in special cases (that is, without relying
on the deep result alluded to in the proof ).
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We also remark that Baker’s theory of linear forms in logarithms allows to
find e¤ectively the finite set of relevant integers n, provided A and S are given
e¤ectively. This shall be implicit in the e¤ective treatment in the next section.

Before going ahead with such e¤ective analysis, we give the example promised
in Remark 1.4, iii).

Example 2.2. Let A be the 2� 2 unimodular matrix

A :¼ 196 3617

11 203

� �
:

Then A is conjugate in SL2ðZpÞ to a companion matrix for all p, but it is not con-
jugate to a companion matrix in GL2ðZÞ.

Proof. It is of course possible that there are simpler numerical examples, espe-
cially if we replace SL2ðZpÞ by GL2ðZpÞ; we have not pursued in the task of find-
ing one.

To say that A is conjugate to a companion matrix over a ring O means that
there is a vector z a O2 such that z, Az form an O-basis of O2; in turn, this just
means that detðz;AzÞ belongs to the group O� of invertible elements in O. If actu-
ally detðz;AzÞ ¼ 1, then A is conjugate to a companion matrix in SL2ðOÞ.

If we write z ¼ ðt; uÞ with coordinates t; u a O, this may be rephrased saying
that detðz;AzÞ ¼ 11t2 þ 7tu� 3617u2 a O� (resp. 11t2 þ 7tu� 3617u2 ¼ 1 in the
case of SL2ðOÞ).

Consider then the quadratic form QðT ;UÞ ¼ 11T 2 þ 7TU � 3617U 2 of dis-
criminant D ¼ 72 þ 4 � 11 � 3617 ¼ 397 � 401 (where 397; 401 are primes). We
have 44QðT ;UÞ ¼ ð22T þ 7UÞ2 � DU 2. It is easily checked that QðT ;UÞ repre-
sents 1 over any Zp. Indeed, by the usual Hensel’s principle (see [7], II.2.2) we
have only to pay attention to the special cases p ¼ 2; 11; 397; 401 and prove the
solvability of the corresponding congruences (i.e. modulo 8; 11; 397; 401). For
p ¼ 2, use Qð1; 1ÞC 1 ðmod8Þ. In the remaining three cases, use respectively
that Qð�3;�1ÞC 1 ðmod11Þ and that 44 is a quadratic residue modulo 397 and
modulo 401.

We conclude that A is conjugate to a companion matrix in SL2ðZpÞ for all
primes p.

On the other hand, suppose that Qða; bÞ ¼ e a f1;�1g ¼ Z� for some
integers a; b a Z. Then we would have ð22aþ 7bÞ2 � Db2 ¼ 44e. Consider the
unit o :¼ ð399þ

ffiffiffiffi
D

p
Þ=2 of the ring of integers OD of Qð

ffiffiffiffi
D

p
Þ. Let also x ¼

ð22aþ 7bþ b
ffiffiffiffi
D

p
Þ=2 which is again in OD since 22aþ 7b and b have the same

parity. Then xx 0 ¼ 11e, where a dash denotes conjugation in Qð
ffiffiffiffi
D

p
Þ.

We could then find an integer m so that
ffiffiffiffiffiffiffiffiffiffiffi
11=o

p
a jxomj <

ffiffiffiffiffiffiffiffiffi
11o

p
. Putting

r :¼ xom we find jrr 0j ¼ 11, whence the above inequalities yield
ffiffiffiffiffiffiffiffiffiffiffi
11=o

p
<

jr 0ja
ffiffiffiffiffiffiffiffiffi
11o

p
. In turn, this gives jr� r 0j < 2

ffiffiffiffiffiffiffiffiffi
11o

p
. Finally,

ðr�r 0Þffiffiffi
D

p is an integer in Z

bounded in absolute value by 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11o=D

p
, which is < 1. Therefore r ¼ r 0, so

r a Z. But this is impossible since 11 is not a square, proving the claim. r
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3. An effective bound

In this section we prove the e¤ective version of Theorem 1.2 announced in the
introduction.

Proof of Theorem 1.5. We first remark that, by Proposition 2.1 in section 2,
we may assume that A has distinct eigenvalues l1; . . . ; ld and that at least one of
these eigenvalues is not a root of unity.

We now recall some arguments from [6]. Define, as in the proof of Proposition
5.3 of op. cit., the linear recurrence sequences m 7! u

ðkÞ
m (0a ka d � 1) by

Am ¼ uð0Þm A0 þ � � � þ uðd�1Þ
m Ad�1:

These sequences form a basis of the Q-vector space V of linear recurrence
sequences associated to the characteristic polynomial of A. Let DnðAÞ be the
determinant of the matrix ðuðkÞnm Þ0am;kad�1. Let n a N and v0 a Zd . Then

detðv0;Anv0; . . . ;A
ðd�1Þnv0Þ ¼ DnðAÞ detðv0;Av0; . . . ;Aðd�1Þv0Þ:

Let, as in the statement of the theorem, Z be the set of positive integers n such
that An is conjugate in GLdðZÞ to a companion matrix. Thus n a Z if and only
if Zd is generated by the An-orbit of a vector v0, which in turn implies that Zd is
generated by the A-orbit of v0. Thus, if n a Z then there exists v0 a Zd such that

jdetðv0;Anv0; . . . ;A
ðd�1Þnv0Þj ¼ jdetðv0;Av0; . . . ;Aðd�1Þv0Þj ¼ 1:

Hence jDnðAÞj ¼ 1. On the other hand, let us assume jDnðAÞj ¼ 1. We may
assume that the set Z is not empty, otherwise the conclusion of the theorem is
trivial. Hence there exists v0 a Zd such that detðv0;Av0; . . . ;Aðd�1Þv0Þ ¼e1. Thus
detðv0;Anv0; . . . ;A

ðd�1Þnv0Þ ¼e1 which shows that n a Z.
The previous discussion proves that n a Z if and only if jDnðAÞj ¼ 1. Let

DnðAÞ be the Vandermonde determinant DnðAÞ ¼ detðlnm
kþ1Þ0am;kad�1. Since the

recurrence sequences m 7! lm
kþ1 (0a ka d � 1) give rise to another basis of V ,

we see that DnðAÞ ¼ detðCÞDnðAÞ for some C a GLdðQÞ. Thus n a Z if and
only if jDnðAÞj ¼ jD1ðAÞj (remark that D1ðAÞ ¼ 1).

Let n a Z. We shall obtain a bound for n from a lower bound for jDnðAÞj and
from an upper bound for jD1ðAÞj. First we recall some definitions. Given two
monic polynomials f ; g a Z½t� we denote by discð f Þ the discriminant of f and
by resð f ; gÞ the resultant of f and g. We let Mð f Þb 1 its Mahler’s measure, i.e.
the absolute value of the product of the roots of f lying outside the unit circle.
We also denote by f ½n� the polynomial whose roots are the n-th powers of the
roots of f .

Let f ðtÞ be the characteristic polynomial of A. We factorize f over Z as
f ¼ f1 . . . fs. We let dj ¼ degð fjÞ. Then

jDnðAÞj2 ¼
Ys
i¼1

jdiscð f ½n�i Þj �
Y

1ai; jas

jresð f ½n�i ; f
½n�
j Þjb

Ys
i¼1

jdiscð f ½n�i Þj:ð3:1Þ

203some remarks concerning the rank



Observe that f
½n�
j has only simple roots (since otherwise DnðAÞ ¼ 0AD1ðAÞ) thus

it is of degree dj. By the main result of [4] (which rests on lower bounds in linear
forms in two logarithms), there exists an absolute positive constant c0 such that

jdiscð f ½n�j ÞjbMð fjÞðdj�1Þðn�c0d
6
j
log dj log nÞ:

We remark that Mð fjÞdj�1
bMð fjÞ. This is clear if dj b 2. If dj ¼ 1 then fj ¼

xe 1 (A a GLðn;ZÞ implies f ð0Þ ¼e1) thus Mð fjÞ ¼ 1, and again Mð fjÞdj�1 ¼
1 ¼ Mð fjÞ. Assume n > c0d

6 log d log n (otherwise our claim is satisfied). By the
remark above

jdiscð f ½n�j ÞjbMð fjÞn�c0d
6 log d log n:ð3:2Þ

By (3.1), (3.2) and by the multiplicativity of Mahler’s measure we obtain

jDnðAÞj2 bMð f Þn�c0d
6 log d log n:

By Hadamard’s inequality:

jD1ðAÞjaMð f Þd�1
d r2

1
þ���þr2

k aMð f Þd�1
d d 2

:

Thus jDnðAÞj ¼ jD1ðAÞj implies

ðn� c0d
6 log d log n� 2d þ 2Þ logMð f Þa 2d 2 log d:ð3:3Þ

Since at least one of the eigenvalues of A is not a root of unity, f is not a prod-
uct of cyclotomic polynomials. By a Theorem of Dobrowolski [3], there exists an
absolute positive constant c1 such that

logMð f Þb c1ðlog dÞ�3:ð3:4Þ

Assume n > c0d
6 log d log nþ 2d � 2 (otherwise our claim is again satisfied).

From (3.3) and (3.4) we have

na 2c�1
1 d 2ðlog dÞ4 þ c0d

6 log d log nþ 2d � 2

from which we easily get log na c2 log d and then

na cd 6ðlog dÞ2

for some absolute positive constant c. r

4. The rank > 2 problem

Let db 3. As recalled in the introduction, Levitt and Metaftsis provide a family
of examples of matrices A a MdðZÞ of infinite order and such that ORðAnÞ ¼ 2
for infinitely many n. One can choose

A ¼ a 0

0 B

� �
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with aAe1 and B a Md�1ðZÞ conjugate to a companion matrix of finite order.
Note however that this forces A B GLdðZÞ. See Remark 4.4, iv) for an example
of a matrix A a GL3ðZÞ such that ORðAnÞ ¼ 2 for infinitely many n.

One could ask if for a ‘‘generic’’ matrix A a MdðZÞ it is true that ORðAnÞ ¼ 2
infinitely often. Let us discuss a bit this problem.

Most of our results are local. Thus it is convenient to introduce the
following notations. Let A a MdðZÞ. Given a prime number p we let ORpðAÞ ¼
ORFpðAmod pÞ. We define ORlocðAÞ as the maximum of ORpðAÞ for p a prime.
We remark that ORlocðAÞaORðAÞ.

It seems that it happens only in very special cases that ORlocðAnÞ is maximal
(¼ d) for all large n.

For instance, using Fermat’s little Theorem as in the proof of Proposition 2.1,
it is easy to prove the following.

Remark 4.1. Let A a MdðZÞ. Assume that A has only one eigenvalue. Let

cðdÞ ¼
Y
qad

q:

for q running over the prime powersa d (we recall that logcðdÞP d by the Prime
Number Theorem). Then ORðAnÞ ¼ ORlocðAnÞ ¼ d for n > cðdÞ.

Proof. Let f ðtÞ ¼ ðt� aÞd be the characteristic polynomial of A. Let n > cðdÞ.
Thus there exists a power q of a prime p, such that q j n and q > d. Then
Aq � aC ðA� aÞq mod p. Since q > d we have AqC a mod p. Since q j n we also
have AnC an=q mod p. Thus the minimal polynomial of An mod p is linear, which
implies ORpðAnÞ ¼ d. Thus ORlocðAnÞ ¼ d. Since ORlocðAnÞaORðAnÞa d we
also have ORðAnÞ ¼ d. r

Similarly, the method of the proof of Theorem 1.3 shows:

Remark 4.2. Let A a MdðZÞ. Assume that A has two nonzero eigenvalues whose
ratio is not a root of unity. Let r be the sum of the dimensions of their eigenspaces.
Then ORðAnÞbORlocðAnÞb r for nbcðdÞ.

On the opposite side, we generalize a conjecture of Ailon and Rudnick [1]
which would imply that for a ‘‘generic’’ A a MdðZÞ we had ORlocðAnÞ ¼ 2 infi-
nitely often.

Conjecture 4.3. Let K be a number field and let a1; . . . ; ad a OK be non-zero
algebraic integers of K. Let us assume:

1) a1; . . . ; ad do not satisfy non-trivial multiplicative relations of zero degree.
(Namely, am1

1 . . . amd

d A 1 for integers m1; . . . ;md not all zero but with
m1 þ � � � þmd ¼ 0.)

2) There are no finite places v of K such that three distinct aj have the same reduc-
tion mod v.
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Then for infinitely many n there are no finite places v of K such that three dis-
tinct an

j have the same reduction mod v.

Remark 4.4. i) In the special case a ¼ ð1; a; bÞ with a; b a Z multiplicatively
independent and such that gcdða� 1; b� 1Þ ¼ 1, Conjecture 4.3 reduces to con-
jecture A of [1]. As for this special case, we have a numerical evidence for it.
Moreover, its analogous in function fields should be a consequence of a result of
Lang, as in op.cit.

ii) Note that condition 2) is obviously necessary, but not condition 1), as
already remarked in [1]. Take for instance a be a non-zero integer, aAe1 and
let, as in op.cit, a ¼ ð1; a;�aÞ which trivially satisfies the conclusion of Conjec-
ture 4.3 but not assertion 1). More generally, we are confronted with this curious
phenomenon. All the examples of algebraic numbers for which we can prove that
they satisfy the conclusion of Conjecture 4.3, do not satisfy assertion 1).

iii) Here is another example, which comes from a linear recurrence se-
quence suggested by C. Ballot. Let un ¼ �1þ Fnþ1, where Fn is Fibonacci’s
sequence. Then un satisfies the linear recurrence sequence associated to the
polynomial f ðtÞ ¼ t3 � 2t2 þ 1 ¼ ðt� 1Þðt2 � t� 1Þ with roots 1, a and b. Let
n be an odd integer not divisible by 3. Then there are no finite places v
of OQðaÞ such that 1, an and bn have the same reduction mod v. Indeed, f ½n�ðtÞ :¼
ðt� 1Þðt� anÞðt� bnÞ ¼ ðt� 1Þðt2 � Lntþ ð�1ÞnÞ, where Ln is Lucas’ sequence
L0 ¼ 2, L1 ¼ 1, Ln ¼ Ln�1 þ Ln�2. Thus for n odd f ½n�mod p has 1 as triple root
if and only if p ¼ 2 and Ln is even. In turn, Ln is even if and only if 3 j n.

iv) The above linear recurrence sequence provides an example of a companion
matrix A a GL3ðZÞ such that ORðAnÞ ¼ 2 infinitely often. Let

A ¼
0 0 �1

1 0 0

0 1 2

0
B@

1
CA

be the companion matrix of f ðtÞ ¼ t3 � 2t2 þ 1. Let v ¼ ð0; 1; 0Þ and let un ¼
�1þ Fnþ1 as before. Then it easily see that Anv ¼ ð�un;�un�1; unþ1Þ. Thus
ZvaZAnv is primitive if and only if gcdðun; unþ1Þ ¼ 1. This proves

gcdðun; unþ1Þ ¼ 1 ) ORðAnÞa 2:

An exercise on Fibonacci’s number shows that, for n odd not divisible by 3,
gcdðun; unþ1Þ ¼ 1. Thus for these integers, ORðAnÞa 2. Since A has infinite
order, by Theorem 1.2 we have ORðAnÞ ¼ 2 infinitely often.

The Conjecture 4.3 immediately implies:

Conjecture 4.5. Let A a MdðZÞ be nonsingular with characteristic polynomial
f . Let us assume:

1) The roots of the f do not satisfy non-trivial multiplicative relations of zero
degree.
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2) For all prime number p the polynomial f mod p do not have irreducible factors
of multiplicityb 3.

Then ORlocðAnÞa 2 for infinitely many n.

Proof of Conjecture 4.3 ) Conjecture 4.5. Let f ðtÞ ¼
Qd

j¼1ðt� ajÞ be
the characteristic polynomial of A. Thus the characteristic polynomial f ½n� of An is
f ½n�ðtÞ ¼

Qd
j¼1ðt� an

j Þ. Let us assume Conjecture 4.3. Then for infinitely many n
and for p prime the polynomial f ½n�mod p has no irreducible factors of multi-
plicityb 3. Since ORpðAnÞ is equal to the number of invariant factors of An, we
deduce that ORpðAnÞa 2. Thus ORlocðAnÞa 2 infinitely often. r

We remark that if A a GLdðZÞ, condition 1) of Conjecture 4.5 forces the roots
of f to be di¤erent from roots of unity.

5. Ascending HNN-extensions

Let G be a finitely generated abelian group and let j be an injective endomor-
phism of G. We consider the ascending HNN-extension

G�j ¼ 3G; t j tgt�1 ¼ jðgÞ4:

Define OR 0ðjÞ as the least positive integer k such that there exist g1; . . . ; gk a G
and N a N for which ImðjNÞ is contained in the subgroup generated by the
j-orbits of g1; . . . ; gk. Remark that OR 0ðjÞ ¼ ORðjÞ for j a AutðGÞ. The follow-
ing theorem generalizes the first statement of [6], Corollary 2.4.

Theorem 5.1. Let j be an injective endomorphism of the finitely abelian group
G. Let G 0 be the ascending HNN-extension G�j. Then

rankðG 0Þ ¼ OR 0ðjÞ þ 1:

Before proving this result, we make some simple remarks on ascending HNN-
extensions. Some of them will be needed in the proof of the theorem.

For y a G 0 we denote by Fy the inner automorphism of G 0 defined by FyðxÞ ¼
yxy�1. Thus j is the restriction of Ft to G.

Remark 5.2. i) Since G is abelian, for g; g1 a G we have Fgtðg1Þ ¼ gjðg1Þg�1 ¼
jðg1Þ.

ii) We note that every x a G 0 may be written as x ¼ t�agtb, with g a G and
a; bb 0. Even if this form is not unique, t�agtb 7! b� a defines a morphism
w : G 0 ! Z.

iii) Let G 0
þ ¼ fgtb j g a G; bb 0g. Then G 0

þ is a monoid. More precisely, for
g1; . . . ; gr a G and b1; . . . ; br b 0 we have g1t

b1 . . . grt
br ¼ gtb1þ���þbr for some

g a G.
iv) Let g a G and let bb 0. Then ðgt�bÞ�1 ¼ jbðgÞ�1

tb a G 0
þ.
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v) Let x ¼ t�agtb a G 0 (g a G, a; bb 0) and let nb a. Then F n
t ðxÞ ¼

tn�agt�nþb ¼ jn�aðgÞtb�a. If bb a, we have F n
t ðxÞ a G 0

þ. Assume b < a. Then,
by Remark 5.2 iv), F n

t ðxÞ
�1 a G 0

þ.

vi) Let x1 ¼ g1t
b1 , x2 ¼ g2t

b2 a G 0
þ (gi a G, bi b 0) and write the euclidean

division b2 ¼ qb1 þ r (qb 0, 0a r < b1). Since qb 0, by Remark 5.2 iii) we
have xq

1 ¼ g 0
1t

qb1 for some g 0
1 a G. Thus

x 0
2 :¼ x2x

�q
1 ¼ g2t

rðg 0
1Þ

�1 ¼ g2j
rðg 0

1Þ
�1
tr ¼ g 0

2t
r

with g 0
2 a G. We have 3x1; x24 ¼ 3x1; x 0

24. By Euclid’s algorithm we deduce that
there exist x a G 0

þ and g a G such that 3x1; x24 ¼ 3g; x4. More generally, if
x1; . . . ; xkþ1 a G 0

þ, then

3x1; . . . ; xkþ14 ¼ 3g1; . . . ; gk; g0t
b4

with gi a G and bb 0.
vii) Assume now that G 0 can be generated by k þ 1 elements, say x1; . . . ; xkþ1.

By Remark 5.2 v) we can find nb 0 and si a fe1g such that F n
t ðxiÞ

si a G 0
þ for

i ¼ 1; . . . ; k þ 1. Since Ft is an automorphism, F n
t ðx1Þ

s1 ; . . . ;F n
t ðxkþ1Þskþ1 gener-

ate again G 0. By Remark 5.2 vi) there exist g0; . . . ; gk a G and bb 0 such that
G 0 ¼ 3g1; . . . ; gk; g0tb4. Since t a G 0, by Remark 5.2 ii) we have 1 ¼ wðtÞ a bZ
which implies b ¼ 1.

Proof of Theorem 5.1. We first show that rankðG 0ÞaOR 0ðjÞ þ 1. Let
k ¼ OR 0ðjÞ. Thus there exist g1; . . . ; gk a G and N a N for which ImðjNÞ
is contained in the subgroup generated by the j-orbits of g1; . . . ; gk. Let
g a G. Then tNgt�N ¼ jNðgÞ a 3g1; . . . ; gk; t4. Thus g a 3g1; . . . ; gk; t4 and G 0 ¼
3g1; . . . ; gk; t4.

We now show that OR 0ðjÞ þ 1a rankðG 0Þ. Let rankðG 0Þ ¼ k þ 1. By Remark
5.2 vii) there exist g0; . . . ; gk a G such that G 0 ¼ 3g1; . . . ; gk; g0t4. Let g a G.
Then there exist i1; . . . ; il a f1; . . . ; kg, l1; . . . ; ll a Z and m1; . . . ; ml a Z such that

g ¼ ðg0tÞl1gm1
i1
. . . ðg0tÞll gml

il
¼ F r1ðgi1Þ

m1 . . .F rl ðgil Þ
ml ðg0tÞrl

where F ¼ Fg0t is the inner automorphism x 7! ðg0tÞxðg0tÞ�1 and where ri ¼
l1 þ � � � þ li (i ¼ 1; . . . ; l). Let Ng b 0 such that mi :¼ ri þNg b 0 for i ¼
1; . . . ; l. Then, by Remark 5.2 i),

jNgðgÞ ¼ F NgðgÞ ¼ F m1ðgi1Þ
m1 . . .F ml ðgil Þ

ml ðg0tÞrl

¼ jm1ðgi1Þ
m1 . . . jml ðgil Þ

ml ðg0tÞrl :

By Remark 5.2 ii) we have 0 ¼ wðjNgðgÞÞ ¼ wððg0tÞrl Þ ¼ rl . Thus j
NgðgÞ is in the

subgroup generated by the j-orbits of g1; . . . ; gl . It is now enough to choose
N ¼ maxg Ng for g running over a finite system of generators of G. r

From now on we fix G ¼ Zd . We translate the assertion OR 0ðjÞ ¼ 1 in term
of local conditions. Given a prime p we denote by j : Fd

p ! Fd
p the reduc-
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tion mod p of j. For v a Zd we let Lv be the subgroup generated by
v; jðvÞ; . . . ; jd�1ðvÞ and we denote by Lv its reduction mod p.

Let K be a field and let c be an endomorphism of a d-dimensional K-vector
space V . We recall that dim Imðc jÞ ¼ dim ImðcdÞ for jb d.

Theorem 5.3. Let j : Zd ! Zd be an injective morphism. Then OR 0ðjÞ ¼ 1 if
and only if there exists a vector v a Zd such that for all prime p

dim ImðjdÞ ¼ dim jdðLvÞ:ð5:5Þ

Remark. Let detðLvÞ :¼ ½Z2 : detðLvÞ�. Condition (5.5) is obviously satisfied if
pF detðLvÞ. If p j detðLvÞ then dimðLvÞa d � 1 and condition (5.5) is equivalent
to dim ImðjdÞ ¼ dim jd�1ðLvÞ.

Proof. Assume first OR 0ðjÞ ¼ 1. Then by definition, there exist a vector v a Zd

and N a N such that ImðjNÞJLv. Then ImðjNþdÞJ jdðLvÞ. Let p be a prime.
By the remark preceding the theorem,

dim ImðjdÞ ¼ dim ImðjNþdÞa dim jdðLvÞ:

Assume now that there exists v a Zd such that (5.5) holds for every prime p.
Let p be a prime. Since jdðLvÞJ ImðjdÞ and since these Fp-vector spaces have
the same dimension,

ImðjdÞ ¼ jdðLvÞJLv:

Let b be the product of the primes dividing detðLvÞ. By Bezout’s identity we
easily see that

ImðjdÞJLv þ bZd :

By induction we deduce

ImðjdNÞJLv þ bNZd

for N a N. We chose for N a natural number such that detðLvÞ divides bN . Then

ImðjdNÞJLv þ bNZd JLv þ detðLvÞZd JLv: r

We consider the following even special case: G ¼ Z2, j a M2ðZÞ non-singular.
In this case, the assertion (5.5) is equivalent to the following two statements:

1) p j detðLvÞ ) p j detðjÞ.
2) jðvÞC 0 mod p ) p j trðjÞ.

Indeed, assume that p satisfies (5.5). Let p j detðLvÞ. Then dim Imðj2Þ ¼
dim j2ðLvÞ < 2. Thus j is not injective and p j detðjÞ. Moreover, if jðvÞC
0 mod p then jðLvÞ ¼ 0, thus dim Imðj2Þ ¼ dim j2ðLvÞ ¼ 0 and j is nilpotent
mod p which in turn implies p j trðjÞ.
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Conversely, let p be a prime satisfying 1) and 2). We have already remarked
that (5.5) is trivially satisfied if pF detðLvÞ. Assume that p j detðLvÞ. By 1),
p j detðjÞ. Thus dim Imðj2Þa 1. Assume first jðvÞ2 0 mod p. Since p j detðLvÞ,
we must have jðvÞC lv mod p with l2 0 mod p. Hence Lv ¼ 3v4Fp and

j2ðLvÞ ¼ 3l2v4Fp . Thus dim j2ðLvÞ ¼ 1b dim Imðj2Þ. If jðvÞC 0 mod p, then,
by 2), j is nilpotent mod p, and again dim j2ðLvÞ ¼ dim Imðj2Þ ¼ 0.

We write v ¼ ðx; yÞ. Then detðLvÞ ¼ Qðx; yÞ with QðX ;YÞ a quadratic form.
Thus the existence of a vector v a Z2 which satisfies conditions 1) and 2) above
translate into the following statements on Q. There exist x; y a Z such that for p
prime we have:

p jQðx; yÞ ) p j detðjÞ
jðx; yÞC 0 mod p ) p j trðjÞ:

This last requirement amounts to certain finitely many congruence conditions,
depending explicitly only on j.

It is now a well-known matter to decide about the existence of x; y a Z sat-
isfying these congruences and moreover such that Qðx; yÞ is composed only of
primes dividing detðjÞ (and one can also calculate such x, y if there exist any).
Thus:

Corollary 5.4. Let j : Z2 ! Z2 be an injective morphism. Then one can com-
pute rankðZ2�jÞ.

We have not made any particular e¤ort to generalize this statement to higher
dimension.

We finally remark that the analogous of Theorem 1.2 still holds in ascending
HNN-extensions and it is indeed an easy corollary of Theorem 1.3.

Corollary 5.5. Let A a MdðZÞ be a nonsingular matrix of infinite order. Sup-
pose that A has two eigenvalues whose ratio is not a root of unity. Consider the
family of ascending HNN-extensions Gn ¼ Zd�An. Then there exists n0 ¼ n0ðAÞ
such that rankðGnÞ > 2 for nb n0.

Proof. Let S be the set of primes dividing the discriminant of A. By Theorem
1.3 there exists n0 ¼ n0ðAÞ such that for all nb n0 the matrix An is not conju-
gate in GLdðFpÞ to a companion matrix for all p B S. Let nb n0 and assume
OR 0ðAnÞ ¼ 1. Let p B S. Then, by the choice of S, the matrix A is in GLdðFpÞ.
Thus ORðAnÞ ¼ OR 0ðAnÞ ¼ 1 and An is conjugate to a companion matrix in
GLdðFpÞ, contradiction. Thus for nb n0 we have OR 0ðAnÞ > 1 and, by Proposi-
tion 5.1, rankðGnÞ > 2. r
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