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ABSTRACT. — The paper mainly concerns the results by N. Grachev and the author in the har-
monic potential theory for polyhedra. Pointwise estimates for kernels of inverse operators are pre-
sented which imply the invertibility of the integral operator generated by the double layer potential
in the space of continuous functions and in L,. Auxiliary pointwise estimates for Green’s kernel of
the Neumann problem are proved.
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1. SURVEY OF RESULTS ON THE INVERTIBILITY OF
BOUNDARY INTEGRAL OPERATORS

To begin with, I mention some results by N. Grachev and the author on integral
equations of the potential theory on smooth surfaces with isolated conic vertices
obtained in [GM1], [GM3], [GM4], where, as in [M1] (see also [M2]), the study
of integral equations is reduced to the study of certain auxiliary boundary value
problems. We found representations for inverse operators of these equations in
terms of inverse operators of the interior and exterior Dirichlet and Neumann
problems. Using estimates for the fundamental solutions of these boundary value
problems, we arrived at estimates for kernels of inverse operators of integral
equations. Such estimates lead to theorems on the invertibility of integral equa-
tions in various function spaces. In particular, the solvability in the space of
continuous functions C for the integral equation associated with the Dirichlet
problem could be stated without any assumptions on openings of the cones with
smooth generatrices.

For a fairly large class of surfaces, the solvability of the boundary integral
equation in the space C was proved by Burago and Maz’ya [BM] and Kral [K],
whose approach requires that the essential norm | 7| of the double layer potential
T is less than 1. This condition can be formulated in geometrical terms. However,
it does not hold even for all cones with smooth generatrices. Angell, Kleinman,
Kral [AKK] and Kral and Wendland [KW] succeeded in compelling the
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inequality |7'| < 1 to hold by replacing the usual norm in C with some equivalent
weighted norm. The polyhedral surfaces considered in [KW] are formed by a
finite number of rectangles parallel to the coordinate planes.

Since in the papers [GM1], [GM4] the solvability of the above mentioned in-
tegral equation on surfaces with a finite number of conic vertices in the space C
was proved without any additional geometric assumptions, it became plausible
that the use of the essential norm has been unnecessary and appeared only in
the method of proof. We [GM6], and independently Rathsfeld [R], extended the
result in [GM4] to arbitrary polyhedra using different methods. In [R], a proof
based on the Mellin transform was used. By the same approach, Elschner [E]
studied the invertibility and the Fredholm property of a similar integral operator
with a complex parameter on a polyhedral surface in certain weighted L,-Sobolev
spaces.

Now I pass to a description of results obtained by Grachev and the author in
[GM6]. We denote by T the boundary of a compact polyhedron in R®. By G*
we denote the interior of the polyhedron and by G~ its exterior. Consider two
problems for the Laplace operator

(1.1) Au=00onG", u=fonT,
(1.2) Av=0on G, dv/0n=gonT\M.

Here M is the set of singularities of the polyhedron, i.e. the union of edges and
vertices, and 0/0n stands for the derivative in the direction of the outer normal to
M.

Let Oy, 0,,..., 0, be the vertices of the polyhedron, let M, M>, ..., M be
the edges and let

ri(x) =dist(x, M;) =, r(x) = lmjnk ri(x),
<i<

pi(x) = dist(x,0)) p(x) = min p,(x).

1<i<m

By w;, i =1,2,...,k we denote the opening of the dihedral angle with the edge
M; coinciding with G near M; and let
M =nlw, A7 =n/2rn—w;), A=min{i, i }.

Let K;, i = 1,2,...,m, be the cone with the vertex O; which coincides with G*
near the point O;. The open set that the cone K; cuts from the unit sphere S>
centered at O; is denoted by Q™ and the set S*\Q™ is denoted by Q.

Let 0; and v; be positive numbers such that d;(d; + 1) and v;(v; + 1) are the first

positive eigenvalues of the Dirichlet problem in Q" and the Neumann problem in
Q" for the Laplace-Beltrami operator on S. We also set

X = min{é,-, Vi, 1}
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Let W denote the classical double layer potential with the density :

W) =3 [ o (=g W@ xect

We are looking for a solution of the equation (1.1) in the form of a double poten-
tial. It is known that the density i/ satisfies the integral equation

(1.3) (1+ Ty =2f.

Here T is the operator on I' defined by the equation

(TY)(x) = 2Woy(x) + (1 = d(x))(x),
where d(x) =1 for x e Q\M, d(x) = w;/n for x € M;, d(x) = measQ." /2x for
x € O;, and Wy is the direct value on I" of the double layer potential.
Now we formulate the main result for the integral equation associated with

the Dirichlet problem.

THEOREM 1. Let » = min %;, A = min A;. If
1 1

(1.4) p>2/(1+x), p>1/i
then the integral operator
14+T7T:L,(I') — L,(T')
and the operator
1+7:C(T) — C(I)
perform the isomorphisms. The inverse operator admits the representation
(1.5) (1+T) Y =0+L+M)f,
where L and M are integral operators on T with the kernels ¥ (x, y) and 4 (x, y)

admiting the following estimates:
If M is the nearest edge to the point y and O; is the nearest vertex to y, then

The kernel ¥ (x, y) is different from zero only if the point x lies near the point y.
Suppose that x and y lie in a neighbourhood of a vertex O;,i = 1,2,...,m and this
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neighbourhood contains no vertices of the polyhedron other than O;. If M; and M,
are the nearest edges to y and x, then

17 1zl 2 (0) T e -
M)y )y
) o)

Jor p(x)/2 < p(y) < 2p(x), and

(18) 12(x.0)] = epl) o) + (o)) (P BRI YT 2y

in the opposite case. Here ¢ is any small positive number.

REMARK 1. A similar theorem holds for the integral equation
(1.9) (1+ T = —2g,

associated with the Neumann problem, where 7 is the operator formally adjoint
to T. In that case it is sufficient to replace (1.4) by the estimates

1<p<2/(l—x), p<1/(1-2)

and to replace x by y and vice versa in the estimates (1.6)—(1.8). However, the
invertibility in the space C(I") should not be mentioned.

Here is a brief description of our method. First we consider the interior
Dirichlet problem and the exterior Neumann problem in some weighted Holder
spaces with the weight p#r7, where  and y are real. It is known (see [MP1]), that
there exists a unique solution satisfying (1.1) and that the representation

(1.10) ux) = [ 270 1ds:

holds with derivatives of the kernel 2% (x, ¢) admiting the following estimates:
Suppose that the points x and ¢ lie in a neighbourhood of a vertex O;,
i=1,2,...,m, and M; and M, are the nearest edges to x and ¢. If either

2p(&) < p(x) or p(¢) > 2p(x), then

1070:2% (x,€)] < ¢,ep(x) (&) (p(x) + p(&)

in{p(x), p(E)} \or—¢ 7 r(x) \—lol=¢ 7 p(&) \ulel-1-¢
X<mn(x/;+ /()@ ) (p(i)) (@) :
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In the zone p(&) < 2p(x) < 4p(&), the estimates have the form

02052 (x, )| < cg,ofx — &) 21N

r(x) A=lol—e (&) A=1-|t]—e
X(r(x)+)|cx—f|) (r(é)+|x—f|) :

In the case x € U;, ¢ € U, where U; and U, are small neighbourhoods of the
vertices O; and O, with i # ¢, the estimates take the form

0707 (x,€)| < cgﬁfp<x>ms,)<mfe</%yf—'“"&‘(%)*"“‘“.

Here ¢ and 7 are arbitrary multi-indices, ¢ is a sufficiently small positive number.
A similar representation

(1.11) ) = [ 2 (v gl d

holds for the solution of the Neumann problem (1.2) and the kernel 27 (x,¢&)
obeys the following relations (see [GM4] and Part 2 of the book [MR]):

Suppose that the points x and ¢ lie in a neighbourhood of the vertex O;,
i=1,2,...,m, and M; and M, are the nearest edges to x and . If either

2p(x) < p(&) or p(x) > 2p(&), then

27 (x,8) =27°(0,8) + 2 (x, &) for 2p(x) < p(&),
27(x,8) = 27(x,0) + % (&, x) for 2p(&) < p(x),

where
27(0,8) = 27(¢,0) =q; [p(&) +b; +d (&), a; =1/measQ; .

For #(x,&) and d; () one has the estimates

|agdi_ (é)| < C(,p(x) Vi_U—‘E‘(/%))'m)

A () < capl) T p(O) (P ) ()

In the intermediate zone p(x) < 2p(&) < 4p(x), the estimate takes the form

TAT 5 — Cot }’(X) A I"(é) Al
07052 (x,9)| < x_awﬂf(r(x)ﬂx_f') (r(f)+|x—f|) .
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In the case x € U;, ¢ € U,, where U; and U, are small neighbourhoods of the
vertices O; and O, with i # ¢, we have
r(x

090527 (x,8)| < cg’fp(x)vmip(é)vgg (p(x>ﬂ’ (;(é)))u

~—

Here we use the notation
A =min{0,2; — |o| — e}, AL =min{0,% — |t| — &},

vl =min{0,v; — |o| — &}, v¢ =min{0,v, — |7 — &}.
One can show that the representation

Lo o,
(1.12) (1+7) 1:5(1—Q %P)

for the inverse operator of the integral equation associated with the Dirichlet
problem holds in the space of traces on I" of functions from the weighted Holder
space mentioned above. Here P* and Q™ are the integral operators defined by
the equalities (1.10) and (1.11).

The estimates for derivatives of the kernels 27 (x, &), 27 (x, ¢) and the equality
(1.12) allow to establish the representation (1.5) in Holder spaces and to obtain
estimates (1.6)—(1.8) for the kernels #(x, y) and .#(x, y). With the help of these
estimates one can show that the operator (1 + T)_1 is continuous in the space of
continuous functions as well as in an appropriate L, space and can extend the
representation (1.5) to these spaces.

REMARK 2. The inverse to the integral operator in (1.9) has the form

1+7) " = % (1 - a—anP+Q—).

2. PROPERTIES OF THE NEUMANN PROBLEM IN A POLYHEDRAL CONE

The results in this section are borrowed from preprint [GMS5]. We consider the
Neumann problem in a polyhedral cone. Its solvability in certain weighted Holder
and Sobolev spaces is shown and estimates for the fundamental solution are ob-
tained. In Subsection 2.1 the problem is studied in some weighted Hilbert spaces.
Subsection 2.2 is devoted to a generalization of previous results to the L, norm
with p > 2 which enables one to prove the existence of Green’s function and to
obtain estimates both for this function and its derivatives (Subsection 2.3). With
the help of such estimates, the solvability of the Neumann problem in various
function spaces is proved in Subsection 2.4.

Our estimates for Green’s function of the Neumann problem are similar to
those obtained in the case of the Dirichlet problem in [MP1]. The Neumann and
mixed boundary value problems for a class of elliptic systems are treated in Part 2
of the book [MR].
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2.1. Solvability of the Neumann problem in a polyhedral cone.
The case of weighted Hilbert spaces

1. Function spaces. Let K be an open polyhedral cone in R* with the vertex O and
the edges M;, j =1,2,... k. The faces 0K;, j = 1,2,...,k, of the cone are plane
sectors. By M we denote the set of singularities of K, ie. M =J,_ <1 M,
and by w; the opening of the dihedral angle coinciding with K in a neighbour-
hood of int M;. Suppose that O is the origin of some Cartesian system.

Let feR, 1< p< oo, let /| be integer, / >0, and let 0 be a vector
(01,02,...,0k), 6; € R. We introduce the space Wﬁljg(K) of functions u in K with
the finite norm '

/ k 1
—I+i 5 P
gy = (3 [ 10 T Wi )
' i=1 J=i

Here r;(x) = dist(x, M;) and V; = {87 /dx] 0x3>0x3°}.

In what follows by Lj ;(K) we denote the space Wﬁ({ 2(K). 1

We also need the space of traces on JK; for functions from Wﬂ:(’; (K) denoted
by Wﬁl}l/” P(0K;). Let Wﬁlf&l/””’ (0K) refer to the space of functions u on 0K
whose restrictions u; on 0K; belong to Wﬁl}l/ PP(9K;) and let

k
el ooy = D= Wl

2. The model boundary value problem in a plane infinite sector. By Q we denote
an infinite sector with opening @ and the vertex O. Let 0Q* be the sides of this
sector and let 0Q be the boundary of Q, i.e. 0Q = Q" U dQ~ L {0}.

Given any 6 € R and any nonnegative integer /, we introduce the space W}(Q)
of functions in Q for which the norm

! 1/2
2
Hu”WJ/(Q) = ( E 0: ||’”5Vj“||L2(Q)>
=

is finite. Here r = r(x) is the distance from the point x to the vertex O.

The space of traces on 0Q* of functions from W/(Q) will be denoted by
W(;H/z(@Qi). It is well-known (see [MP1]) that the norm in W(;H/z(@Qi) can
be defined by the formula

-1
2 5 ()12
100y = D 14 1L 002
=0

+/ rz‘jdr/ 2"V (i + 1) — u D () d.
0 0
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Furthermore, for any positive 7, we introduce the norm ||u|| w01 defined by

/

1/2
2
o = (D 2NVl )

J=0

Similarly, one can define the norm depending on a positive parameter ¢ in the
space of traces on 0Q*:

/-1

2(1=j)=111,.6,,(j) 112
||M|| / 1/2 (80%,1) Z[ =) ||r u(])HLz(aQi)
Jj=0

o0 r
+ / %0 dr/ r‘2|u(1_1)(r +1)— u(l_l)(r)|2dr.
0 0

Consider the boundary value problem depending on the complex parameter y

Pu u . ou
(2.1) 32+ﬁ+yu_me’ %—gonaQ\O,

where d/0n is the derivative in the direction of outer normal.

LemMma 1 [ZS], [GM2]. Let o/ (y) be the operator of the problem (2.1). If
0<1—-0<min{l,n/w},

then the operator

(1) WEQ) — W(Q) x [ w;*(00%)

performs an isomorphism.

LEMMA 2. Suppose that 0 < 1—0 <min{l,n/w}. If y belongs to the line
Rey = cy, then there exists a posmve number ¢, such that the problem (2.1)
has the umque solutlon ue WZ(Q,y|) for every y with |Imy| > ¢, and for any
fewd0), gt e W (00, |y\) The solution admits the estimate

+
(2.2) HuHW;(Q, ) = C(||f||m;)(g) + ; lg ||%1/2(5Q¢7‘y|)),

where the constant ¢ > 0 is the same for all y with |Imy| > ¢; and f € WQ(Q),
g* e W, (007, ).

PROOF. Lety=a+ib, —oo < b < oo. It suffices to consider the case « = 0. We
introduce the function v(x) = u(|b|x). Then the existence of the solution of (2.1)
and the estimate (2.2) follow from Lemma 1 applied to the function v.
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3. The Neumann problem in a cone. Let Q be a spherical polygon, i.e. Q =
K n §?, where S? is the unit sphere centered at O. We introduce the notation

Ej=M;nS? 0Q;=0KnS?

Since K is a polyhedral cone, it follows that in a neighbourhood U; of each point
E;, j=1,2,... k, there exists a diffeomorphism »; mapping U; into a plane sec-
tor Q;. Suppose that the differential of x; is identical at E;. We define the space
Wi(Q), d = (61,63,...,0r). We say that a function u on Q w1th support in U; be-
longs to this space if xju € W} (Qj) If a function u vanishes near all angle pomts

then u € W}(Q) if and only ifue W1(Q). The case of a function with arbitrary
support is cons1dered in a standard manner with the help of partition of unity.
The space of traces on 0€2; of functlons from W/} (Q), I > 1, will be denoted by
l 1/2 (0Q;). We say that uce W (69) if the restriction u; of u to every
component 0Q; is in Wl 1/2 (092;) and

[ull 12 Z [2all 1172 2

Further, replacing W(si- (Q)) by W(SI/_ (0}, 1) in the definition of the W}(Q)-norm, we
introduce the norm ||u||W1 o,y for any positive 7. Similarly, one can define the
norm ||u| W (00,1 also dependlng on the parameter .

Consider the Neumann problem

(2.3) Au=finK, %: @ on 0K\ M.
n

We assume that f € L2 s(K), pe Wl/z( K). We are looking for a set of indices
B, é for which the problem (2.1) 1s solvable in W ( ). Let p = |x| and let A’ be
the Lapalace-Beltrami operator on S%. We rewrlte the problem (2.3) in the form

pON2 0 N 2. ou R
(2.4) ((ap) +pp—|—A>u—pf1nK, = — pp on GQ\E,
where E = Uj U;. Using the Mellin transform

a(y,) = (2n)"2 /0 "y (. dp,

we can formally write the system (2.4) as the following system with the complex
parameter y

(2.5) (P +y+A)a=FinQ, ? = ® on 0Q,
n

where F = f(y ~2),®(y) = ¢(y — 1).
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Let 2(y) stand for the operator of the problem (2.5).

THEOREM 2. Suppose that

is not an eigenvalue of the operator pencil W(y). Let 0 < 6; < 1 and 1 —6; < n/w;.
Then

Given f e L? 4(K) and ¢ € Wl/ *(0K), there exists a unique solution u €
p.0 B,0

Wﬁ2 52 (K) satisfying the problem (2.3) and there is a positive constant ¢ depend-

ing only on K such that

(2.6) ||”||Wﬂ2_=§(1<) = c(HfHL/iJ(K) + ||‘P||W/}1~/;(5K))-
(i) Let
1/2 1 2
feL}s(K)n Ly 5(K), ge W5 (0K)n W,/ (0K),

where " € R and 8" is a vector with components 6;, 0 < 1 — 5; < min{l,7/w},
j=1,2,... k. Suppose that the numbers '

1 K | A
5—/3—25]« and 5~ —Zaj
J=1 J=1
are not eigenvalues of W(y) and that the eigenvalues v, ...,y, of the operator

pencil A(y) lie in the interval

1

k k
1
5—/3—5 5j<yj<§—ﬁ’—§ J;.
J=1 j=1

If u is a solution of the problem (2.3) from the space W;‘f(K), then

(27) Z Z C,]}’ J(”t/ ( )

i=1 j=

Here ¢y, j=1,....k; are ezgenfunclzons of the Laplace-Beltrami operator A’
corresponding to Zhe eigenvalues y? + 75 Cy are certain constants, and R is a
solution of the problem (2.3) from the space W ( ).

PrOOF. Let .%(y) denote the operator of the problem (2.1) in the sector Q; and
let ;(y) stand for the transformation of A(y ) under the diffeomorphism »x;. Let
11, be a smooth function identically equal to 1 in the ball B, of radius ¢ with center
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at the vertex of the sector Q; and vanishing outside the ball B,.. From (2.5) it
follows that the norm of the operator

Mﬂﬂtwmvm%M%W@QXHWWWJm

is small for small ¢ and large |y|. Hence, by Lemma 2, the solvability of the prob-
lem (2.5) in W7 (Qj, [y]) and the estimate

llwyicn o < CCF i + 1017 1)

are established by a standard argument (see [AV]).
The properties of the Mellin transform imply the equalities

~112 2
Lo e =l
Rey=I—p=Y;_16,=3/2 p.o

~2 2
/ ) ||¢||Wf’l/2(89.\7\) dy = HMHWF}/Z"Z(&K)'
Rey=i—p-3 ' o-32 o L o

Hence the function

(2.8) wmo—@mlﬂ/ P () [F, 3] dy

Rey=1/2-p-Y 9,

belongs to W (K ), satisfies the problem (2.3) and obeys the estimate (2. 6)
Replacing the line of integration in (2.8) by the line Rey = 1/2 — ' — Z] | j,
we arrive at (2.7) (see [Ko]).

2.2. Solvability of the Neumann problem in a polyhedral cone.
The case of weighted Sobolev spaces

1. The Neumann problem in a dihedral angle. Let D be an open dihedral angle
in R with opening w € (0,27), @ # 7, and let 0D+ be its sides. By L/ (D) we
denote the completion of Cj°(D) in the norm

n 1
(Ir°Vull] oy + Nl )7

Here r(x) is the distance from the point x to the edge M of D, B is a ball with
radius 1, B = D.
Let L[l7 1/ (0D*) stand for the space of traces on dD* of functions from

Ll 4(D) and L[l, ﬁl /p (0D) for the space of functions u whose restrictions u* to dD*
are in Ll 1/”(6D+) We set

lull) "7 (0D) = §jnu+w 5 /7(0D%).
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Consider the Neumann problem

0

8_: =gpon JdD\M.

The following result is well known (see [GM2], [ZS]).

(29) Au = f in D7

THEOREM 3. Let 0 <1 —f <min{l/2,n/w}. Then
() The operator of the Neumann problem (2.9) performs an isomorphism
L3 (D) ~ LY 4(D) x L,/ (0D).

(ii) Let p>1,0> —=2/p, let | be an integer, | >0, 0 <[/ —0+2—2/p <7m/w,
and let f € L2 s(D),pe LIJrl ‘/P(aD). Ifuell 5 5(D) is a solution of the prob-

lem (2.9), then u € Ll+2( ) and the exists a positive constant ¢ depending only
on D such that

lell 20 < €CQF it oy + M@l ooy + el 2 )

By Wp’_’ (D) we denote the space of functions u with the finite norm

leellws o (Z 19} )

We also introduce the space Wl 1p (0D) whose definition is obtained from the
definition of the space L ﬁl /b (6D) after replacing L by W.
Theorem 3 leads dlrectly to the following assertion.

LEMMA 3. Let 0 and { be functions from Cy° (D) such that 0 = 0. Suppose that
0<1—-pg<min{l,n/w}andé > -2/p,0<1—0+2—-2/p < n/ow.

If u is a solution of the problem (2.9) and {f € Wl s(D), {p € WIJrl 1/1’(61))
and {u € W} (D), then Ou e W’*z( ) and there exists a positive constant ¢ inde-
pendent of f and ¢ such that

||9”|\W;;2(D) = C(||Cf||wp{d(o) + ||C¢||W;;1’l/”<5D) + ||Cu||w22_ﬁ(0))~
2. The Neumann problem in a cone. We prove the following theorem.

THEOREM 4. Let | be a nonnegative integer, p > 2, and let the components J; of
a vector 0 satisfy the inequalities

(@) 0;>1-=2/p, 0<I+2—-6;—-2/p <mn/wj.
(b) Assume that the number

k
[4+2=3/p—F= 5
j=1

is not an eigenvalue of W(y). Then
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() The operator of the problem (2.9) performs an isomorphism

, : I+1-1/p,
Wi (K) ~ Wyb(K) x Wi~V (oK),

(1) Suppose that

/ U'p' I+1-1/p, I'+1-1/p'.p’
[ e Wih(K) a Wy hi(K), pe Wy, PP @K) w1 (oK),

where B, 8', ', and p’ satisfy the conditions (a) (b), and suppose that the closed
interval with end points

k k
[42-3/p—p=> 06 and I'+2-3/p'—p' = 5

j=1 J=1
contains no eigenvalues of A(y).
If u is a solution of the problem (2.3) from the space Wﬁlf;z’” (K), then
I'+2,p’ ’
ue Wy (K).

~ First we prove an auxiliary assertion. We introduce the sets U; = {x € K :
277V < |x| < 2/*1}, j=+1,..., and by %> ¥; we denote the functions in the class
Cg (R?) such that

(1) suppy; = {x: 2771 < x| < 271, suppy; = {x: 2772 < x| < 2772}
(2) % () (x) = (x), D _x(x) =1 forallx e K\0
J
(3) \x|‘°“]8“)gj(x)| < Cy, |x||“‘(3”'lpj(x)\ < ¢, for all multindices a.

LEMMA 4. Let p>2 and let [5, & satisfy the conditions (a), (b). If ¢ =0,
fe Wéf; (K) and supp f < U,, then there exists a solution of the problem (2.3)

such that yu € Wﬂlj;z’p(K) forall j =0,+1,... and the estimate

) N —eln—j|
”)(/unwﬁ"tj“(]() <c2 ”f” Wﬁ’;ﬂ]{)
holds, where ¢ and ¢ are positive constants.

PROOF. By y we denote the vector with components y; = {0; — 1 +2/p} +
1 — 2/p, where {x} stands for the fractional part of x. We set

k k
S =y —1+2/p+v, B=B+> 0—1-2+3/p=> 5 +1/2+p

=1 =1

Here v is a positive number such that 5/{ < 1 and p is so small that the closed in-
terval with end points ‘

k
[42-3/p—F=> 6 Fu
J=1
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contains no poles of the operator-function 2" (y). We assume that x is positive
for n < j and negative otherwise.
We introduce the function /i defined by i(x) = f(2”x). By Hardy’s inequality,
there is a positive constant ¢ such that
||h||W/§{‘:(K) =< c”hHWﬂ’:g’(K)

for all & supported in U,. Returning to the function f, we obtain

k
(2.10) 1 gy < €21 oy 1=

J=1

By Hoélder’s inequality,

k
1~ B~y
P

j=1

(VAP

iR J’

k
<|/ 1177
j=1

The choice of the indices J; shows that the second factor on the right-hand side is
bounded. Besides, clearly, this norm is equal to ¢/2”(*~?). From this and (2.10) we
conclude that f € W ( ) and

(2.11) 1 oz gy < 2 1F

L,(K) Loy p-2)(Un)

By Lemma 4, there is a constant ¢ such that
(2.12) ol 2t < U Nty + 2 sl )

forall j=0,+2,....
Theorem 2 implies

(2.13) Hlpju”W;;;/(K) < CH”HW;;;,(K) < c”f”W;;;,(K)-
By inequalities (2.11)—(2.13),
llull W2 (K) < 24D £l W k)

We made use of the fact that the first term on the right-hand side of (2.12) van-
ishes for |n — j| > 2. The lemma is proved.

PrOOF OF THEOREM 4. Let ¢ = 0. 1) The existence of a solution u € W[+2 T(K)
of the problem (2.3) and the estimate

Hu”W/J{;Z»P(K) < chHWﬁ'_’g’(K)

follow directly from Lemma 4 and from Lemma 1.1 in [MP2].
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Now we prove the uniqueness of the solution. Let v € WZ+2 P(K) be a solution

of (2.3) for f = 0. Consider the function v, g defined by v, g = (1 — #,)nzv, where
n.(x) = n(|x|/¢) and 5 is a function of the class Cy(R*) which is equal to 1 on
{t:0 < t<1/2} and vanishing on {t 1= 1}. The argument used in the proof
of estimate (2.11) shows that v, g € W ( ) for

k
S =0 —1+2/p)+v, f=p+> (6-6)—1-3/2+3/p
-

and that there is a positive constant ¢, independent of ¢ and R, such that

”U&RHW“ (K) SCHUHW’“"’(K)'

We pass to the limit in the last inequality as ¢ — 0 and R — oo. Thus,
veE W ( ) and hence v = 0 by Theorem 3.

2) The arguments in the part 1) show that the inclusions

(2.14) Wy (K) = WEAK), WP (K) < Wii(K)
hold for
k

yi={0] —1+2/p}+v, s'=p +Z =) =1 =3/2+3/p.

From the first inclusion in (2.14) we have u € W}, 2( ). Hence, by Theorem 2,
ue WY T 2 (K). By part 1) of this theorem, the problem (2.3) is uniquely solvable

in the spaces WJ,J;, » (K) and W2 2( K). Thus, the second inclusion in (2.14) leads
to the second assertlon of the theorem.

To obtain the result for any ¢ it is sufficient to refer to the following theorem.

THEOREM 5. Let | and 0;, i = 1,... k, satisfy the conditions (a) in Theorem 4.
If pe W/Jrl YPr (oK), then there exists a function u e Wﬂltsz”’(l() such that
ou/dn = go on 0K\M and '

ol 20y < €l
One can choose the operator ¢ — u independent of p, 0, and .

PRrROOF. Let suppp = {x € 0K : 1/2 < |x| <2}. By Theorem 3, there exists a
function

we WP (K), suppuc {xe K:1/4<|x| <4}

satisfying the conditions of the present theorem.
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The case suppg = {x € 0K : 277! < |x| < 2/"'} can be reduces to the case
considered above using the transformation x — 2/x.

Let ¢ be an arbitrary function from W/+1 PP (3K). By u; we denote func-
tions from W1+2”( K) with suppu; c {x € K 2/72 < |x| < 2/*?} and such that
du;/on =y, and

Hu/H WI;SZp(K) < CHX/¢|| W/:‘J;lfl/ﬂﬂ(a[()'

Here y; are the functions introduced before Lemma 4. Thus, the function
u=>"_u; is the required one.

2.3. Estimates for Green’s function of the Neumann problem

1. Auxiliary assertions. From Theorem 4, in a standard manner (see [MP2],
[GM2]), we obtain the following local estimates.

LEMMA 5. Let p > 0 and let | be integer, | > 0. Suppose that f and o satisfy the
conditions (a) and (b) of Theorem 4. By 0 and { we denote functions with compact
support in R3 such that 00 = 0. If u is a function satisfving the homogeneous equa-
tion (2.3) on K nsupp( and {u € Ly(K), then Qu € Wﬁl;Z,p (K) and the estimate

HHMHWI;EZ'”(K) < CH(”HLZ
holds.

LEMMA 6. Letuce Wl+2 P(K). The derivatives of u of order |«| < [ — 3/p admit
the poitwise estimates

k
x| T 1] < cllull s
J=1 |

where

k k
Y =Y 6+ ol — 1+ 3/p,

=1 =1
= max{0,0,+ o] — 1 +3/p}, &+ la] — 1+ 3/p £0,

and r(x) = dist(x, M).

ProOF. First we, consider a function u defined in the interior D of a dihedral
angle. Let u e W P(D) and let suppu = {x: r(x) < 1/2}. It is well-known that
for any wu there exists a function # € Wl o (R3\M) such that #=u on D,
supput < {x:r(x) <1} and

||ﬁ|| W/}"”([R?\M) < CHu” W;v/’(D)'
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In what follows we assume that the function u is defined on R*\M and that
suppu < {x: r(x) < 1}. By K, we denote the rotational cone with the opening
7/2 whose axis is orthogonal to the edge M.

By the Sobolev integral representation,

(2.15) 0%u(x)| < ¢ /||VZ” »)ldy

3—/+|al

1/p
< c(/K r(y)p5|V/u|pdy)

X

o (/ dy )1/q
qo (3+]a|—1 ’
{yeK,:|x—y|<1} V(y) ‘X |

Using spherical coordinates with center at x, we obtain that the second factor in
the right-hand side of (2.15) does not exceed

1
(2.16) c(/ pdp ‘)l/q
o PO D)+ )

1 r(x) 2 d 1 2 1/
< C( p-ap n pdp ‘ ) q
roo(x) Jo  pBiFl=Da " [y pB-IFl+)a

er(x)! 7103y =6 = 3/p <0
<1, [—|a|—0—-3/p>0
c|logr(x)|, [—lo|—d0—-3/p=0.

Suppose that u € Wﬁ" (K) By B, we denote the ball of radius |x|/2 with
center at x. The estimates (2.15) and (2.16) imply

k

[T lo%u(x |<cZ/ Hr"‘S ) [Vau()|? dy

Jj=1 KnB, j—

for all x with |x| = 1.

Let |x| = p. We introduce the function v by v(y) = u(py), y = x/p. Applying
the last inequality to v and returning to the function u, we arrive at the desired
estimate. The lemma is proved.

Consider the Neumann problem in the dihedral angle D of opening w with the
edge M

(2.17) Au= fin D, ?:Oon OD\M.
n

The next assertion is borrowed from [ZS].
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THEOREM 6. There exists Green's function 9(x,y) of the problem (2.17), i.e. a
unique solution of the boundary value problem

Axg(xa y) :5()6_ y)v X,V € D7
(2.18)

66 4(x,y)=0, xedD\M, yeD
Ny

such that the function x — (1 —n(|x — y|/r(y))%(x, ) is in the space L3 4(D),
0<1—p<min{l/2,n/w} for every fixed y € D. Here n € C*[0,0), n(t) =1
Jor 0 <t <1/2,5(t) =0 fort > 1, and r(x) = dist(x, M).

Equation (2.18) is understood in the sense that

v(y) = /Dg(x, V)Av(x)ds — /‘:D 9(x, y)g—:;(x) ds

for all v € C;°(D). Green’s function ¢4 admits the estimates

0307 9(x, )| < eaplx — y| 7
if |x — y| <r(x)/2 and

xA0y —1—|a|—|o r(x) Vo r(y) Vae
03074, )| < eaalx = 5177 |‘(lx—y|) (\x—y|>

in the opposite case. Here
Vee = min{0,7/w — & — ||}, Ve = min{0, /w0 — ¢ — |0},

and ¢ is a sufficiently small positive number.
2. Green’s function of the problem (2.3). Let 5 be the function from Theorem 6.

THEOREM 7. Ifthe interval (cy,c) contains no points of the spectrum of the pencil
A(y) corresponding to the problem (2.5), then

(i) There exists a unique solution G(x, y) of the boundary problem (2.17), i.e. a
solution of the problem

(2.19) AG(x,y)=0(x,y) x,yek,

§7G(x,y):0 xedK\M, ye K

such that the function x — (1 —n(|x — y|/r(»)))G(x, y), for any fixed y € K,
belongs to the space W[){f&z’p([() with [ =0,1,...,

6 >1-2/p, 0<I+2-0;—-2/p<n/w,

k
cl<l+2—25j—ﬁ—3/p<cz.

J=1
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(ii) The function G is infinitely differentiable with respect to x,y € K\M, x # y.
If x| < |yl < 2|x], then

(2.20) 0207 G(x, ¥)| < Caolx — y|—1—\a|—\a\

Sfor |x — y| < r(x)/2 and

(221) [0207G(x, y)| < Cualx — y| 771" \J\H( (x) >"< ri(») )Vé

=/ Ny =yl
in the opposite case. Here r;(x) = dist(x, M;), r(x) = dist(x, M),
=min{0,7/w; —&—|o|}, vl =min{0,n/w; — & — |o|}

and ¢ is a sufficiently small positive number.
(iii) The function G is a unique solution of the boundary value problem

(222) A)/G(x7 y) :5(X, y)7 va € K7
a—G(x,y):O y€eK\M, xe K
on,

such that the function x — (1 —n(|x — y|/r(y)))G(x, y) belongs to the space
Wy 5 (K),

/ !/ ! / !
0;>1=2/p", 0<l'+2-0;,-2/p" <n/uwy,
k
1+ ¢ </>’/+Z5_;—l'—2—|—3/p'<l—l—cz,
=1
1=0,1,..., for any fixed x € K.

Equations (2.19) and (2.22) should be understood in the sense that

(2.23) v(y) = /KG(X, y)Av(x) dx — [K G(x, y)%(x) dsy;
e2)  wi= [ G ns)d - [ G S0 ds

Jor any v,w e C(K\0).

ProOOF. (i) The uniqueness of G(x, y) follows from Theorem 4, Since the opera-
tors in (1.3.5) are homogeneous, we have the relation G(zx,ty) = t~'G(x, y) for
every positive 7. Therefore, without loss of generality we may assume that |y| = 1.
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We prove the existence of G(x, y). let y be a fixed point in K with |y| = 1. By
M, we denote the edge nearest to the point y and by D, the dihedral angle which
coincides with K in a neighbourhood of int M,. By Theorem 6, there exists
Green’s function %(x, y) of the problem (2.17) for D,

We define the function G by the equality

(2.25) G(x,y) = n(lx = yl/0)%(x, y) = R(x, y),

where # is the same as in Theorem 6, t is a small positive number such that
supp#(|x — y|/7) n (M\M,) = 0 and R is a solution of the Dirichlet problem

R
(2.26) AR = 2VaV% + GAgin K, R =4 on o\ M
ony ony
from the space WI+2 "’(K). The existence of G is proved.

(i1) The smoothness of G(x, y) for x # y, x, y € K\M and the estimates (2.20),
(2.21) follow directly from the construction of G(x, y), Theorem 4 and the homo-
geneity of G(x, y).

(iii) Since the space Cj°(K\0) is dense in W ( ), it follows that the equa-
tion (2.23) holds for all v € W2 2 5(K).

By (2.5) we have that both y and 1 — y belong to the spectrum of the pencil
%(y). Let B, 6 and B’, &' satisfy the conditions (i) and (iii) of the theorem for
I=0,p=2and for!’ =0, p’ =2. Let

k k
B+B+> 0+Y 6=2
j=1 j=1

Let H(x, y) stand for the solution of the problem (2.22) which exists by the first
part of the theorem and let H,(x,z) be the mean value of H(x,z) with respect to
the variable z over the ball of radius 7. We substitute the function

o(z) = (n(]x = YI/R) = n(|x — z|/)) H (x, 2) + He(x, 2)n(|x — 2| /)

into (2.23) and then pass to the limit as R — oo and 7 — 0. We have ¢ > 0 so
small that the ball {¢ : | — x| < 2¢} lies in K and does not contain the point y.
Hence we arrive at the equality H(x, y) = G(x, y). The theorem is proved.

COROLLARY 1. The solution u € Wl+2 P (K) of the problem (2.3) admits the rep-
resentation

u(x) = /K G, y)f () dy - / Gl p)ol) ds,

THEOREM 8. Let the interval (ci,c;) contain no points of the spectrum of the
operator pencil 9(y) corresponding to the problem (2.5).
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() I |x| < [yl/2, then

0307 G, < ey P 1 (5 )%(w) )V;S,

|y|02+1+‘0‘78 1 |X| |y|

where
vb{g =min{0,7/w; — & — |a|}, v{;g =min{0,7/w; — & — |a|},

and ¢ is a sufficiently small positive number.
(ii) If |x| > 2| y|, then

LT s m—  (C R

e U] Uy
PrOOF. (i) Let |y| =2, |x| < 1. Consider the function
v(&) =n(4¢ - x)o,G(&, y).
Lemmas 5 and 6 imply
227) | Hr“f Glx. )l = [ @i - xloree nlac)

where

k k
Z+Zﬂj:ﬁ+25j+|o€|—l—2+3/p, ;>0 + ol —1—243/p, 1i; > 0.

= =1
We introduce the solution w € Wl+2 P(K) of the Neumann problem
- ow
Aw(z) = 07G(x, y)n(2[x —z]), zeK, 6_(2) =0, zedK\M.
n

By Lemmas 5 and 6,

i

k
(2.28) H r/u/ )|0-w(z

J=1

e [reE-serae) "

where p/ > 0; + |o| — 1 —2+3/p, i = 0. The right-hand side of (2.28) does not
exceed

, 12
ol < o [ 20z = 5DIog6(e P dz)
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Here

k
1/2<q <1, ¢ < 1/2—Zq,—s<c'2.
=1

The left-hand side is equal to

k

1170 [ 1076e. ) Pnczle =) de.

=1
Therefore, (2.28) leads to the estimate

LI 12
l’;’(y)(/KWfG(f, y)|277(2|f—x|)d§) < const.

j=1

From this and (2.27) we get
/ 1 Y

' TTr orl (v)16205Gx, )| < const.

1

|x

k
j=

Setting

k
0j=14+2-2/p—nj/w; +¢/2, ﬁ+25j:l+2—3/p+cz+s, p>2/e,
=1

we have

J .
Vag v J

k
oANG C— || =& }" X e
10205 G (x, ¥)| < calx| ||(—’( )) ().

s I

Using the homogeneity of 0707 G(x, y), we arrive at the desired estimate for all
y € K in the case |x| < |y|/2.

(2) Considering the problem (2.22) instead of (2.19), we arrive at the estimate
for 0707 G(x, y) in the case |x| > |y|/2. The theorem is proved.

COROLLARY 2. Let y, be the first positive eigenvalue of WA(y), ie. y, =
(=14 +/1+411/2, where Ay is the first positive eigenvalue of the Neumann prob-
lem on Q for the spherical part of the Laplace operator.

Let G(x,y) denote Green’s function from Theorem 8, where ¢; = —1, ¢; = 0.
Then G(x,y) = G(y,x) and

1

G - 4R
(x,») a0 |y|+ (x,¥)
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Sor |x| < |y|/2, where R is a function satisfying the estimate

yno e 17 K () N () V'

(2.29) 10207 R(x, )| Scm|y|1+yl+al_£j1}( = ) ( o ) .
Here

vég =min{0, 7/w; — |o| — &}, vgg = min{0, 7/w; — |o| — &},

and ¢ is a sufficiently small positive number.

PRrROOF. The equality G(x, y) = G(y, x) is an immediate corollary of part (iii) of
Theorem 7 and the uniqueness of G(x, y).

Let Gj(x,y) be Green’s function from Theorem 8 with ¢; =0, ¢, = y,. By
(2.25) and (2.7) for solutions of (2.26),

G(x,y) = G(0, y) + Gi(x, y).

Since by Theorem 8 the estimate (2.29) for G(x, y) holds for |x| < |y|/2, it re-
mains to prove the equality

G(0, y) = —(meas Q| y) .
We fix y € K and set the function
o(x) = n(x)we(x) + (1 = n(x))|x| ™

into (2.23). Here w.(x) is the mean value of |x| ' over the ball of radius z, 7 is a
cut-off function such that 7 = 1 near the origin and #(y) = 0. Then

0v(x) ds..
n

(2.30) ! /K G(x, y)Av(x) dx — / G(x, 7)

|yl B 0K

Let B, be the ball of radius ¢ centered at 0 and let Q, = 6B, n K, I', = B, n oK.
Using Green’s formula, we rewrite (2.29) in the form

I 0v(x) oG
_/Qg G(X, J/) on (x) de—/QHa—nx(x, y)v(x) de

ov(x)
_ /P . G(x,y) n (x) dsy + /K " G(x, y)Av(x) dx.

Passing to the limit as 7 — 0, we get

1 1 1 oG
L ——Z/Q Gl p)ds— [ ST s

To complete the proof we pass to the limit as ¢ — 0.
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2.4. Solvability in weighted Holder and Sobolev spaces

Here we prove the solvability of the problem (2.3) in certain weighted Holder
spaces and formulate a similar result wor weighted Sobolev spaces.

1. Function spaces in the cone. Consider the cone K as the union of sets
Ui <<k Kj» where K; = {x € K :1;(x) <2r(x)}, r(x) = minj<;<x rj(x). Let [ be
a nonnegative 1nteger let « € (0,1), f € R, and let y be a vector (y,75,---, %),
7; € R. We introduce the space Cy L ;‘(K ) of functions u in K with the finite norm

1+oc
||“||c/;:; j‘EJEHV/ Kr\B (r/2,x)

|/f+H>'II*V,- [u] 4o~y

+ max sup |x KnB(p/2,x)

{j:1<j<k,
I+a—y, >O} YEK

x)1”
+ max sup |x|#HPI=1 [ i )} |u(x).
l<]<kxeK |X|

Here

g = sup > [x =y I0%ulx) — oyu(y)l,

%€k |g=p]

[p] is the integer part of p, B(r, x) is the open ball in R* of radius r with center at
X, ||V|| > 7 0 =max{0,y; — [ —a}.

y Gy b 5 (0K;) we mean the space of traces on K; of functions from Cy b (K.
We say that u belongs to C (5K ) if and only if the restriction u; to each compo-
nent 0K; belongs to Cl “(GK ) We introduce the norm

”uHC/;:;(K) = Z HujHClﬁ::(OK)
J

2. The Neumann problem in the dihedral angle. Let D be the interior of a dihe-
dral angle of opening w. By dD* and 0D~ we denote the sides of the dihedral
angle. Let M stand for the edge and 0D for the boundary of D, i.e. dD = 0D v
oD~ U M.

We introduce the space N;-*“(D) with the norm

I+

y—I-
a1y = SUD 1) 1] 5515y + S0P ()7 ()
! xeD xeD

and the space C/*(D) with the norm

I+o
”u”q{“(n) = sug r(x)y[u}thB(r/Z,x) + ||“Hc1+x—ﬁ(5)-

Here C*(D) is the Holder space and r(x) = dist(x, M).
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For y > [ + o we denote Ny”(D) by Cy”(D)

In addition, let C"*(0D%*) refer to the space of traces on DT of functions in
C;{’“(D), that is a function u belongs to Cy’*“(éD) if and only if the restriction u*
to each side 0D* is in C)*(0D*). We shall use the norm

+
”u”Cf'“(f’/D) - Z ”WHC,’-“(aDi)'

The following assertion was proved in [ZS].

THEOREM 9. Let 0 and { denote functions from Ci° (D) such that 0, = 0. Suppose
thaty > 0,0 </ +2+4 o —y < zn/w, and o. — y is not integer.

If u is a solution of the Neumann problem (2.9) and (f € Cyl'f“(D), lpe
C;{“’“((?D), then Ou € Cy”z*“(D) and there is a positive constant ¢, independent of
f and o, such that

||0u||c_'{+2~*(D) < C(”Zf“q{ﬂ(p) + ||C(ﬂ||c_'{+1~*(ap) + Sug |C(x)u(x)|>
Xe

3. The Neumann problem in a cone.

THEOREM 10. Let [ be a nonnegative integer and let the components o; of the
vector 0 satisfy the conditions

(a) C$j>0, 0<1+2+O€—5j<7'[/60j,
k
(b) I+24+a—pf— Zéj is not an eigenvalue of the pencil A(y).
=1

j=
Then

(1) The operator of the problem (2.9) performs an isomorphism
Cl+2,ac(K) ~ C/,OC(K) % Cl+l,a(aK)
p.o ~ ¥po B.o )

(ii) Suppose that f € Cy3(K) 0 Cy%(K) and g e Cyl*(0K) n Cy '™ (0K),
where ', 6', I', and o' satisfy the conditions (a) and (b). Suppose also that the

closed interval with endpoints

k k
I'+o +2-p =0 and I+a+2-p-) 5

J=1 J=1

contains no poles of the holomorphic operator function QI_l(y). If u is a solu-

tion of the problem (2.3) from the space Cﬂ]t;z’“(K), then u € Cﬁlij’“/(K).
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First we prove auxiliary assertions. Let G(x, y) be Green’s function in Theo-
rem 8, where ¢; and ¢, are numbers such that

k k
ST AN IEEI S o
J=1 =1

and the interval (cj, ¢;) contains no points of the spectrum of the pencil 2(y) of
the problem (2.5). By u we denote the same function as in Corollary 1, i.e.

(2.31) u(x) = /K Glx, ) () dy - / Gl y)ol) ds,

LEMMA 7. If u is a function defined by (2.31), then

ko)1 A
sup|x\”|u<x>|<c(sup|x|”“H[’f(—>] £+ sup |x|”“H[ ﬂ |¢<x>\>
xekK xekK j=1

|X| xedkK j=1 |X|
with0 < 2; < 1,¢1 < —p < co.

Proor. Clearly, the function

wy = /K G(x,y)f(y)dy.
satisfies

()]
(2.32) ()] < sup |z|”*2H[—|} £

< [ 1661y |‘”H[V' ] d.

To estimate the integral on the right-hand side of (2.32), we represent it as the sum
of three integrals I; over the sets K;, i = 1,2,3, where K} = {y € K : |x] < |y|/2},
Ky={yeK:|y|/2<|x|}, K3 ={y e K :|x| >2|y|}. By Theorem 8§,

|X|C2—8 5 —1-7;
I < c/ — |y [ ] dy < c|x| ™
K |yt H |yl

forall0 < 4; <1, u> —c; +¢and

6118

S ZH{

forall0 < A <1, u< —c —e.

14y
} dy < c|x]™*
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Similarly, the estimate of G(x, y) in the intermediate zone given by Theorem 7
leads to the same inaquality for I, for all 0 < 4; < 1.
The function

o — / Gl o) ds,

can be treated in a similar way. The lemma is proved.

LEMMA 8. Let 6; > 0 and let

k
0<1+2+O€_5j<7£/wj, C1 <l+2+0€—25j<62.
=

If u admits the representation (2.31) and f € Cﬂ]‘l;(K), pE CE;’“(@K), then u €

C/étsz’“(K ) and there exists a positive constant c, independent of f and ¢, such that

H“”cﬁ“(m < C(”f”c/j:;(]() + ||¢||c/§31-“(aK))-

PROOF. Let y; and y; be the functions defined before Lemma 4. By Theorem 9,

Izl 2ox) < (11 ey + 110l ey + 59D W (D)u()] ).

Using the dilation x — 2/x, we arrive at

; +2, 0 S : H Lo H LA 2jA )7
Izl etz = (137 ey + I3 ctamy + 27 sup o (o)

where s = f# + Z}‘:léj — 1 —2—o. Thus,
. 2
leles22hy < (1 ety + Noll ey + sup o)1)

By Corollary 1, the function u € W/i’(sz(K) admits the representation (2.31). To
complete the proof, we refer Lemma 7.

PROOF OF THEOREM 10. It is clear that the operator of the problem (2.3) is a
continuous mapping:

Cﬁ’;“(K) - Cézg(K) x Clﬁj;*“(aK).

We prove the existence of a solution of the Neumann problem (2.3). Let
fe Cé:g(K), pe cﬁ’f;“(aK). Consider the functions f/* and ¢* defined by the

equalities /" = fn, f~=on, f~=f—f1, ¢~ = ¢ — ¢", where 5 is a function
introduced in Theorem 6.
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By 4 we denote a vector with components (41, 42, ..., A), Where 4; = 0; — o —
[ —1+¢,and ¢ > 0 is so small that 4; < 1. Further, let

k
F=B+> (6 —A)—3/2—atd,
=1
where ¢ > 0 is such that

k
< 1/2—ﬂi—z;{j<6’2.
=

One verifies directly that
Jre Wik(K), ote W1+/2’2(6K).

Theorem 2 and Corollary 1 imply the ex1stence of the solutions u* € W (K ) to
the problem (2.3) with the data f/* and ¢p=:

u+<x>—/KG<x DY) dy - /@KG(" Vo) ds,.
By Lemma 8, u € C/é_t;z’“(K) and

||u||Cﬁ/'+‘;z‘x<K) < C(Hf”c/?;(K) + HCDHC;B}-’@K))-

It remains to prove the uniqueness of the solution of (2.3).

Letue Cﬂ[ﬁ;z’“(K) be a solution of (2.3) with /' =0, ¢ = 0. We introduce two
functions ™ = uy and u= = u — u*. Clearly, u* Wﬁzi’_zl(K). By Corollary 1,
+

w0 = [ G s dy - [ 60 G () ds,

oK
Thus,

u(x) = /K G(x, y)Auly) dy - /K G, ) 22 () ds, = 0.

(i) The second part of the theorem follows from Lemma 8 and the fact that
the solution admits the representation (2.31). The theorem is proved.

Applying the argument similar to that used in the proof of Theorem 10, we
arrive at the following assertion on the solvability of (2.3) in weighted Sobolev
spaces.

THEOREM 11. Let p > 1, [ be a nonnegative integer, and let the components 6; of
a vector 0 satisfy the conditions

(a) 5j>0, 0<l+2+0€-5j<7l'/60j,

k
(b) I+24a—p— Zéj is not an eigenvalue of the pencil A(y).
=1
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Then

(1)

(i)

[AV]

The operator of the problem (2.9) performs the isomorphism

42, lo I+1-1/p,
Wyl (K) = Wis(K) x Wy PP(3K).

Suppose that

1, Ip' I+1-1/p, I'+1-1/p'.p'
[ e Wih(K)aWyhi(K), ge Wi ey n ey (6K),
where B, 6', I, and p' satisfy the conditions (a) and (b). Suppose also that the
closed interval with the endpoints

k

k
[42-3/p—p=> 06 and I'+2-3/p'—p = 5

j=1 Jj=1
contains no poles of the operator holomorphic function ‘21_1(;)). If u is a solu-
tion of the problem (2.3) from the space Wﬂ{;z"” (K), then u € W/;,j:;’p (K).
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