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ABSTRACT. — An estimate of the Wiman-Valiron type for a maximum modulus on a polydisk of
an entire function of several complex variables is obtained. The estimate contains a weight function
involved also in the calculation of the radius of the admissible ball.
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INTRODUCTION

Let o = (o1,...,%,) be a multi-index with o; >0 and let z = (z,...,z,) be a
point of the n-dimensional complex space C". We consider the entire function

(0.1) @)= a,z"

For any r = (ry,...,r,) with r; > 0 we introduce the maximum modulus and the
maximum term of f:

(0.2) My (r) = x| f @) my(r) = max fay[r*.
ziz —Ij o
Clearly, by the Cauchy formula for the coefficients a,,

my(r) < My(r).

For n = 1 the first result on the comparison between M (r) and my(r) is due to
A. Wiman [W] who showed that for any r( there is an » > ry such that

(0.3) My (r) < (logmy () "> “my (r)
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with any ¢ > 0. Moreover, if 4 is the set of > 0 such that (0.3) holds, then

/ I
< .
A

Wiman’s proof was essentially simplified by G. Valiron [V].
The following generalization of inequality (0.3) is due to P. C. Rosenbloom
[R].

THEOREM 1. Let ¢ be a positive nondecreasing function on (0, o) such that

(0.4) H(z) = /w (/Tt(/)(s) ds>_1/2 dt < oo

for all T > 0. Given any point ry with nonnegative coordinates, the ball
(0.5) {r:|logr—logry| < v/nH(log My(ro))}

contains at least one point r such that

(0.6) My (r) < Cmy (r)(p(log M (1))"?,

where C is a positive constant and logr = (logry, ..., logr,).

The article [R] contains a proof of this assertion for functions of one variable
and outlines the argument in the general case.

REMARK. An example of a function ¢ for which the condition (0.4) holds is a
function given for large positive s by

o(s) = s(logs)?(loglogs)? ... (log...logs)*™

with an ¢ > 0.

1. MAIN RESULT
The aim of this note is the proof of the following generalization of Theorem 1.

THEOREM 2. Let ¢ and H be the same function as in Theorem 1. Further, let h be
a positive continuous increasing function such that

(1.1) h(2x) < ch(x)

with a constant ¢ > 1. For any point ry with nonnegative coordinates, far away from
the origin, the ball

(1.2) {r:|logr —logro| < R}
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with the radius defined by the equation
Rl 172
(1.3) / (h(3l10zrol + 7)) dr = ev/an log My(r)
0
contains at least one point r such that
(1.4) My (r) < Cmg (r)(h([log r|)p(log My (r)))"?,

where C is a positive constant.

Proor. We may replace a, by |a,| in the definition of f since my(r) won’t
change and M/(r) does not decrease. Following [R], we introduce a random
vector & = (&y,...,¢&,) with probability distribution

Pél=ua)= ;?iix) , xeR™

Let E\¢ and D, ¢ stand for the mathematical expectation and the dispersion of ¢&.
We introduce the notation

F(x) = log f(¢").

Clearly
1 X
(1.5) VF(x) :vaf(e ).
Furthermore,
v VEG) — LA e (Ve ()
(1.6) AF(x) = divVF( )_f(ex)Axf( ) G

By the definition of the expectation,

E(&) = aP(¢ =)

and

E(&%) = Zoc2P(§ = ).

This together with (1.5) gives

1

Ex(é) = f(ex)

Z aaye™ = VF(x).
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Further, the definition of the dispersion

Di& = E((¢%) — (Ex(¢))?

gives
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_ Cae™ — ! oae™ ’
Dxé—f(ex); o (f(e’c))z (Z o ) .

o

Combining this with
we see that

Now, by (1.6)
D.¢ = AF(x).
By the Chebyshev inequality,
R e o e A
we have
(1.7) P{|E —VF(x)| = MAF(x)V*Y <272, i>1.

The probability on the left-hand side is equal to

1 -
(1.8) 7 Z a,e

with the sum taken over all multiindices « such that

|0 — VF(x)| > A(AF(x))"2.
Let 3" stand for summation over o for which
o — VF(x)| < A(AF(x))">.

By inequalities (1.7) and (1.8) we have

1 " P )
1 —— ae™ < A°.
f(ex) Z
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Hence

fle)<(1-2)'S e,
Therefore,

Loamntr n2
(1.9) f(e')éizilmde“)(AF(X)) :

Let R be defined by (1.3) and let |xo| > 4R. If AF(x) < h(|x|)H(F(x)) in the ball
Br = {x:|x—xo| < R},

the result follows.
Suppose that the opposite inequality

AF(x) > h(|x|)H (F(x))
holds in the ball Bg. Since, clearly,
x| > [xol — ¥ = xol = [ — xo| + ol /2,
the following inequality holds in the ball Bg as well
AF (x) > h(|x — xo| + |xo0|/2)H(F(x)).
Consider the equation
(1.10) Au(x) = h(|x — xo| + |xo[ /2) H (u(x))
in Bg. By the maximum principle for the Laplace operator, the inequality
F(x) < u(x)

with x € 0By implies the same inequality on the whole By.
Suppose that

(1.11) ulsp, = max F(x).

x€dBr

The solution of the Dirichlet problem (1.10)—(1.11) is unique, therefore, u de-
pends only on p = |x — xo|. Hence u satisfies the boundary value problem

(1.12) (p" ")), = p" h(p + |x0l /2)H (u(p)),
(1.13) u(R) = max F(x), u/(0)=0.

This implies

(1.14) u'(p) =pt" /Oph(s+ |X0|/2)s"VH (u(s)) ds.
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Clearly, the function H, given by (0.4) is decreasing. Combining this with the
monotonicity of the functions /4, we obtain

(1.15) u'(p) < hip+ [xol/2) H (u(p))n~"p.
By the equation (1.12),

n—1

u"(p) = h(p + |xol/2)H (u(p)) — u'(p).

This and (1.15) lead to the ordinary differential unequality

(1.16) u"(p) = n" h(p +|x0|/2)H (u(p))
for all p € [0, R].
Let us show that the number R satisfies the inequality

R
(1.17) /0 (h(p +[x0l/2))"* dp < ev2nH (u(|x0])).

Having proved (1.17), the result follows from the estimate u(|xo|) > F(xp) and
the monotonicity of H.
Since /i increases, by (1.16) we have

(1.18) () = (B )

for p € [R%lx"‘ , R] We multiply (1.18) by u'(p) > 0 and integrate the result over
[M—'xo‘,R} to obtain

2
W () (u,(R +2|xOI))2 . gh<R +2|xo|> /u(“(”) H(s) ds.

n (R+[x0])/2)

Using u'(p) > 0 once more, we arrive at

(/u::}ixo) /) H(s) ds)ﬂ/zu’(p) > %(h (R +2|xO|> ) 12

Integrating this inequality over the interval [R/2, R], we see that

(1.19) i (B0 jz_nR(h(R )

By (1.1),

[0 B5) o e [M () = (a0
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Combining this with (1.19), we find

H(u(R +2|x0| cm/ |x0|))1/2dp

Since u is nondecreasing (see (1.14)), we have

u(|xol) < u(%'xd)

By (0.5) the function H does not increase which implies

H (u(|xo|)) C\/Zﬁ |x0|))1/zdp

The proof is complete.
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