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ABSTRACT. — The frictionless contact problems for two interacting hemitropic solids with different
elastic properties is investigated under the condition of natural impenetrability of one medium into
the other. We consider two cases, the so-called coercive case (when elastic media are fixed along
some parts of their boundaries), and the semicoercive case (the boundaries of the interacting elastic
media are not fixed). Using the potential theory we reduce the problems to the boundary variational
inequalities and analyse the existence and uniqueness of weak solutions. In the semicoercive case, the
necessary and sufficient conditions of solvability of the corresponding contact problems are written
out explicitly.
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equality.
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INTRODUCTION

In the present work we consider a frictionless contact of two elastic hemitropic
media with different physical properties under the condition of natural impene-
trability. Here we consider the model of the theory of elasticity in which, unlike
the classical theory, an elementary particle of a body along with displacements
undergoes rotation, and hence the condition of mechanical equilibrium of the
body is described by means of the three-component displacement vector and
three-component micro-rotation vector.

The origin of the rational theories of polar continua goes back to brothers
E. and F. Cosserat [CCl1], [CC2], who gave a development of the mechanics of
continuous media in which each material point has the six degrees of freedom de-
fined by 3 displacement components and 3 micro-rotation components (for the
history of the problem see [Minl], [Nowl], [KGBBI1], [Dyl], and the references
therein).

A micropolar continua which is not isotropic with respect to inversion is
called hemitropic, noncentrosymmetric, or chiral. Materials may exhibit chirality
on the atomic scale, as in quartz and in biological molecules—DNA, as well as
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on a large scale, as in composites with helical or screw—shaped inclusions, certain
types of nanotubes, bone, fabricated structures such as foams, chiral sculptured
thin films and twisted fibers. For more details and applications see the references
[Erl], [HZ1], [Sh1], [Rol], [Lal], [Mul], [Mu2], [Nowl], [Dyl], [YL1], [LBI]
[CC1].

Refined mathematical models describing the hemitropic properties of elastic
materials have been proposed by Aero and Kuvshinski [AK1], [AK2]. In the
mathematical theory of hemitropic elasticity there are introduced the asymmetric
force stress tensor and couple stress tensor, which are kinematically related with
the asymmetric strain tensor and torsion (curvature) tensor via the constitutive
equations. All these quantities are expressed in terms of the components of the
displacement and micro-rotation vectors. In turn, the displacement and micro-
rotation vectors satisfy a coupled complex system of second order partial differ-
ential equations. We note that the governing equations in this model become very
involved and generate 6 x 6 matrix partial differential operator of second order.
Evidently, the corresponding 6 x 6 matrix boundary differential operators de-
scribing the force stress and couple stress vectors have also an involved structure
in comparison with the classical case.

In [NGS1], [NGZ1], [NS1], [NGGSI1] the fundamental matrices of the associ-
ated systems of partial differential equations of statics and steady state oscilla-
tions have been constructed explicitly in terms of elementary functions and the
basic boundary value and transmission problems of hemitropic elasticity have
been studied by the potential method for smooth and non-smooth Lipschitz do-
mains. Particular problems of the elasticity theory of hemitropic continuum have
been considered in [EL1], [Lal], [LB1], [LVV1], [LVV2], [Nowl], [Now2], [NN1],
[Wel]. Unilateral boundary value problems for hemitropic elastic solids have
been studied in [GGNI1], while the contact problems were treated in [GaGaNal ]
with the help of spatial variational inequality technique.

The main goal of the present paper is the study of frictionless contact prob-
lems for hemitropic elastic solids, their mathematical modelling as transmission-
boundary value problems with natural impenetrability conditions and their anal-
ysis with the help of the boundary variational inequality technique based on
properties of the corresponding potential operators. This approach reduces
the dimension of the problem by one which is important for numerical realiza-
tions.

Similar unilateral problems of the classical linear elasticity theory with various
modifications have been considered in many monographs and papers (see, e.g.,
[DuLil], [Fil], [Fi2], [GaNal], [HHNLI1], [KiOd1], [Kil], [Rod1], and the refer-
ences therein). More general problems, including the unilateral problems of non-
linear classical elasticity, are studied in [BBGT].

The work consists of five sections and is organized as follows. First, in Section
1, we collect the basic field equations of statics of the theory of elasticity for hemi-
tropic media in vector and matrix forms, introduce the generalized stress operator
and the potential energy quadratic form. Then, in Sections 2 and 3, we formulate
the contact problem for two elastic homogeneous hemitropic continua with dif-
ferent elastic properties under the condition of natural impenetrability of one
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body into the other. We consider the coercive case when the interacting bodies
are fixed along some parts of their boundaries. With the help of the potential
method the problem is reduced equivalently to the boundary variational inequal-
ity. In Section 4, we present a detailed analysis of these inequalities and investi-
gate existence and uniqueness of a weak solution of the original contact problem.
Finally, in Section 5, we consider a semicoercive case when the contacting bodies
are not fixed along their boundaries. In this case, the corresponding mathematical
problem is not solvable, in general. We derive the necessary conditions of solv-
ability and formulate also some sufficient conditions of solvability in explicit
form.

1. BASIC FIELD EQUATIONS

Let Q € R? be a bounded simply connected domain with a piecewise smooth
boundary S = 0Q, Q = QU S. We assume that Q is occupied by a homogeneous
hemitropic elastic material. Denote by u = (ul,uz,ug)T and w = (wl,wz,w3)T
the displacement vector and the micro-rotation vector, respectively; here and in
what follows the symbol (-)T denotes transposition.

In the hemitropic elasticity theory we have the following constitutive equa-
tions for the force stress tensor {t,,} and the couple stress tensor {p,,} [AKI1],
[NGSI1]:

(1.1) Tpg = Tpg(U) := (14 00)puy + (pt — ) Ogty + A0pg div u + 06, divew
+ (% +v)0pg + (% — v)dyw) — 208,400,

(1.2) Mg = Mg (U) := 06,4 divu + (% + v) [Optty — epgkr] + fopg divew
+ (¢ = )[Oqup — egpor] + (7 + &) pewg + (y — €)0gp,

where U = (u, )", d,, is the Kronecker delta, d = (0,02, 33) with d; = 8/dx;,
&pgi 18 the permutation (Levi-Civitd) symbol, and «, f, y, 6, 4, i, v, %, and ¢ are
the material constants. Throughout the paper summation over repeated indexes is
meant from one to three if not otherwise stated.
The components of the force stress vector 7(") = ( f"),rén),rgn))T and the
(n) _ n n) n)\T . .
couple stress vector u") = (u,"’, 15 ', 113 '), acting on a surface element with a

normal vector n = (ny, ny,n3), read as

(13) TLS}") = qunlﬂ lu;n) = Mpqnp7 q = 17 27 3.

Denote by 7(0,n) the generalized 6 x 6 matrix differential stress operator
[NGSI]

(14)  T(d,n) = j=1,4,

0
) T, = |T; y s
T5(0,n) T4(0,n) ¢y 7= Tipglss
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where
T1pg(0,n) = (pt + %)0pgOn + (1t — 2)1g0p + Any0y,
(1.5) Tpy(0,n) = (% + v)0pgOn + (% — v)n40p + 01,0y — 208 g,
' T3,4(0,1) = (% 4 v)0pg0n + (% — v)ny0, + dnyd,,
Tupy(0,1) = (y + €)0py0n + (y — €)1y0, + fny04 — 2vEpginy.

Here 0, = d/dn denotes the usual normal derivative.
From formulas (1.1), (1.2) and (1.3) it can be easily checked that

(", )" = T(0,mU

The equilibrium equations of statics in the theory of hemitropic elasticity read as
[NGSI]

aprpq(x)""QFq(x):Oa q= 17273a

ap,upq(x) + gqerlr(x) + QMt](x) = 07 q= 1727 37
where o is the mass density of the elastic material, and F = (Fl,Fz,F3)T and
M = (M, M,, M3)" are the body force and body couple vectors.

Using the constitutive equations (1.1) and (1.2) we can rewrite the equilibrium
equations in terms of the displacement and micro-rotation vectors,

(u+ a)Au(x) + (A + p — o) grad divu(x) + (x + v)Aw(x)
+ (0 + % — v) grad div w(x) + 2acurl o(x) 4+ oF(x) = 0,
(1.6) (% + v)Au(x) + (0 + » — v) grad div u(x) + 2a curl u(x)
+ (y+e)Aw(x)+ (f+y—¢) graddivw(x) + 4vcurl o(x)
—dow(x) + oM(x) =0,
where A = 07 + 7 + 03 is the Laplace operator.

Let us introduce the matrix differential operator generated by the left hand
side expressions of the system (1.6):

[ Li(0)  La(0)
(17) Lo)= Lm Li(0) Lxﬁ’
where
Li(0) := (u+ )AL + (A + p— 2)Q(0),
(1.8) L2(8) = Ls(9) := (% + V)AL + (6 + % — v)O(8) + 2aR(9),

L4(0) :=[(y + )A — 4oll3 + (f + 7 — £) Q(0) + 4vR(0).

Here and in the sequel [; stands for the k& x k unit matrix and

0(0) = [0k0jl3.3,  R(0) := [—ewu0il3,5-
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It is easy to see that R(0)u = curlu and Q(0)u = grad div u.
Equations (1.6) can be written in matrix form as

LOYU(x)+%(x) =0 with U := (u,w)", % := (oF, oM)".
Note that the operator L(9) is formally self-adjoint, i.e., L(d) = [L(—2)] .
1.1. Green’s formulas

For real-valued vector functions U = (u, )" and U’ = («',»')" from the class
[C2(Q)]° the following Green formula holds [NGS1]

(1.9) /Q[Lw)U U+ E(U, U dx—/{T WUY - (U} ds,

where {-}" denotes the trace operator on S from Q, while E(-,-) is the bilinear
form defined by the equality:

(1.10) E(U,U') = E(U",U)
= {(u+ oy ity + (1t — )ty gy + (% + V) (U, 0pg + @, tpg)
+ (2 = V) (U, 0gp + @p igp) + (7 + )0, @pg + (7 — ) Dy
+ 0(Uy, g + @ ) + Ity gy + S, 4y}

where u,, and w,, are the so called strain and torsion (curvature) tensors for hemi-
tropic bodies,

(1.11) Upg = Oplly — Epgk Wk, Wpg = Opy, p,q =1,2,3.
Here and in what follows the central dot a - » denotes the usual scalar product of

two vectors a,b € R": a-b = a;b;.
From formulas (1.10) and (1.11) we get

(1.12) E(U,U") = 3)+2ﬂ<dlvu+35 2

div ) (div u' + 30+ 2% div w’)

3%+ 2u 34+ 2u
Ll (36 + 2%\, .. o,

2
+ (a — —) curlw - curl o’
o

+ oc(curlu + Yeurlw — 2a)) . (curlu’ + Y eule' — 2a)'>
o o
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The potential energy density function E(U, U) is a positive definite quadratic
form with respect to the variables u,, and w,,, i.e., there exists a positive constant
¢o > 0 depending only on the material parameters, such that

(1.13) E(U,U) > ¢ Z w, +w,
P,q=1

The necessary and sufficient conditions for the quadratic form E(U, U) to be pos-
itive definite are the following inequalities (see [AK2], [Dyl], [GGN1)])

u>0, >0, >0, >0, A4+2u>0, u—x»>>0oac—1v>>0,
G+m)(B+7)—@+#)°>0, (344203 +2) — (30+22)7 >0,
U4 (B +7) = O+ %)+ (+ p)(uy — %) >0,
u[(3A+2u) (3B + 2p) — (30 + 2)] + (B4 + 2u) (uy — ) > 0.
Let us note that, if the condition 34 + 2u > 0 is fulfilled, which is very natural in

the classical elasticity, then the above conditions are equivalent to the following
simultaneous inequalities

u>0, a>0, >0, >0, 32+2u>0, uy—x>>0,

(1.14) ae—v2 >0, (u+a)(y+e) —(c+v)?>0,
(344 2u) (38 +2y) — (30 + 2%)* > 0.

The following assertion describes the null space of the energy quadratic form
E(U,U) (see [NGS1)).
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LEMMA 1.1. Let U = (u,0)" € [CY(Q)]® and E(U, U) = 0 in Q. Then
u(x)=laxx]+b, wkx)=a xeQ,

where a and b are arbitrary three-dimensional constant vectors and symbol |- x -]
denotes the cross product of two vectors.

Vectors of type ([a x x] + b,a) are called generalized rigid displacement vec-
tors. Note that a generalized rigid displacement vector vanishes identically if it
is zero at a single point.

Throughout the paper L,(Q) with 1 < p < co and H*(Q) = H5(Q) withs € R
denote Lebesgue and Bessel potential spaces (see, e.g., [LiMal], [Trl]). The cor-
responding norms we denote by symbols || - [ ) and || - [| .- Denote by Z(Q)
the class of C*(Q) functions with support in the domain Q. If S* is an open
proper part of the manifold 0Q, i.e., S* = 0Q, S* # 0Q, then by H*(S*) we de-
note the restriction of the space H*(dQ) onto S*,

H*(S™) :={rs-p:pe H(0Q)},
where rg- denotes the restriction operator onto the set S*. Further, let
HY(S*) := {p e H(6Q) : suppp = S*}.

From the positive definiteness of the energy form E(-,-) with respect to the vari-
ables (1.11) (see (1.13)) it follows that

(1.15) B(U,U) = / E(U, U)dx >0,
Q

Moreover, there exist positive constants ¢; and ¢, depending only on the mate-
rial parameters, such that the inequality

3 3
{ Z [(apuq) + (0 a)q |+ u + }
=1

p,q=1 q

B(U,U) > cl/

Q

—Cz/Zu —|—ca

holds for an arbitrary real-valued vector function U e [C! (S_Z)] By standard
limiting arguments we easily conclude that for any U e [H' (Q)] the following
Korn’s type inequality holds (cf. [Fil], Part I, §12)

(1.16) B(U,U) = e[| Ull 3y — UG, @

REMARK 1.1. If U € [H'(Q)]° and the trace {U}" vanishes on some open sub-
surface S* of the boundary 0Q, i.e., rs-{U}" = 0, then we have the strict Korn’s
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inequality
2
B(U,U) > cHU||[H1(Q)]6

with some positive constant ¢ > 0 which does not depend on the vector U.
The constant ¢ depends on the material parameters and on the geometry of the
domain Q. This follows from (1.15), (1.16) and the fact that in this case
B(U,U) > 0 for U # 0 (see, e.g., [Nel], [Mcl], Ch. 2, Exercise 2.17).

REMARK 1.2. By standard limiting arguments Green’s formula (1 9) can be
extended to Llpschltz domalns and to vector functions U e [H'(Q)]® with
L(0)U € [L,(Q)]° and U’ € [H'(Q)]° (see, [Nel], [LiMal]),

(1.17) /Q[L(a)U U+ E(U, U dx = {T0,n)UY"  {U'} Daq,

where (-, Y denotes the duality between the spaces [H~/2(0Q)]° and
[H'/2(0Q)]°, which generalizes the usual [L,(0Q)]° inner product. By this relation
the generalized trace of the stress operator {7'(,n)U}" on the boundary 0Q is
correctly determined and {7(0,n)U}" € [H 1/2(69)}6. Note that for arbitrary
real valued vector functions V', V' € [L,(0€Q)]® we have

<V, V,>5Q :/ V- V/dS
0Q

2. STATEMENT OF THE PROBLEMS AND UNIQUENESS RESULTS

Let Q, € R*, ¢=1,2, be simply connected bounded Lipschitz domains with
piecewise smooth, simply connected boundaries S, := 0Q,. Further, let Q; and
), be filled with hemitropic materials possessing different elastic properties. The
elastic constants corresponding to the elastic medium occupying the domain Q,
are denoted by 0@, @ @ 5@ /1(”>, w @ v@ 5@ and ¢, g =1,2. Analo-

gously, u@ = (u?, ué T and 0@ = (07, cogq),ca3 )" denote the displace-
ment and micro-rotation vectors in the domain Q,, E' )(U @) @) designates
the corresponding potential energy density, L) (8) and 79 (,n(@)) are the corre-
sponding differential operators given by formulas (1.7), (1.8) and (1.4), (1.5) re-
spectively.

Let the boundaries S, := 0€Q, fall into three mutually disjoint open portlons
SpP, S and S, such that SunSNuS =S, S nS.=0and S. e C>*, o' €
(0 1) "Denote by n@(x) the unit, outward with respect to Q,, normal at the
point x € S, (see Fig. 1). We assume that the elastic hemitropic solids occupy-
ing the domains Q; and Q, are fixed along the subsurfaces S and S?, along
the subsurfaces SV and S&¥ there are prescribed some stresses, while the two
bodies under consideration are in frictionless contact along the subsurface S, :=
S 1N Sz.
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Figure 1. Geometry of the contacting solids

Below we describe mathematically this contact problem by means of the usual
mixed Dirichlet-Neumann type boundary conditions on the sub-manifolds S”
and SV, while on S, the frictionless contact is modeled with the help of the so
called natural non-penetration conditions.

2.1. Formulation of the problem

Consider the equation in the domain Q,, ¢ = 1,2,
2.1) LO@UY +99D =0, %9 .= ((WFW o@p@)T ¢ [LZ(Qq)]67

where U = (19, 0@)" are the unknown vectors, L(9)(9) is the matrix differ-
ential operator given by formulas (1.7) and (1.8), 0(? are the mass densities of
the elastic materials under consideration, F@ = (F1<‘7>,F2<"),F3<"))T and M@ =
(Ml("), Mz(q), M3("))T are the corresponding body force and body couple vectors.
In the sequel, we will be concerned with weak solutions of the corresponding
differential equations. By definition, the vector function U = (u@) »@)" €
[H 1(Qq)]6 is called a weak solution of equation (2.1) in the domain Q,, if for
every @ € [@(Qq)]6

BO(UW @) :/ 49D . ddx, ¢q=1,2,
Q,
where the bilinear form B (U9, @) is defined by the formula

BO(UW), ) ::/ ED(UD, d)dx

Q

with E(@ (U@ ®) given by (1.12).
Below, for the force and couple stress vectors we use the notation

Fg@Oy@ — Tl(’Du(q) + Téq)a)@, HWDOU@ — T;q)u(tﬂ + T;‘I)w(w’
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where the boundary operators 7, (I), k=1,2,3,4,1=1,2, are given by formulas

(1.5). For the normal and tangential components of the force stress vector we will
use, respectively, the following notation

Let

v = () e (B (s))]

v = (e ) e [HTASNP, =12,
and consider the following boundary-contact problem.

PROBLEM (A): Find vector functions U@ = (u9, ©@)" e [H'(Q,)]%, ¢ = 1,2,
which are weak solutions of equations (2.1) and satisfy:

(i) the Dirichlet type conditions
rep{UP} =0 onSP, g=1.2
(i) the Neumann type conditions
rS[;v{T(‘f)(@,n<q))U(‘1)}+ = rSév‘I’(‘” on S;V, qg=12;

(iii) the frictionless non-penetration conditions on the contact subsurface S,
rsAuV - nW +u® . 0P}y <0 ons,
VS(_{(cgv(l) U(l>)n(1)}+ = I'_S‘L,{(g’(z)U(2))n(z)}+ <0 on SC,
<rs,{(9‘(1>U<1))n<l>}+,rs(.{u(l) a4 y@ .n(Z)}+>SC =0 onS,,

rs (7 WUD) YT =0 onS, ¢=1,2,
re{ M DU =0 onS. g¢=1,2.

To reduce this problem to a boundary variational inequality we need first to
reduce the nonhomogeneous equation (2.1) to the homogeneous one. To this
purpose consider the following auxiliary mixed boundary value problem: Find
a vector-function UO(") = (Ltoq>,a)((f’>)T e [H'(Q,)]® which is a weak solution of
equation (2.1) and satisfies the following mixed boundary conditions:

(2.2) VS(]D{U()((I)}+ =0, Vsq\ﬁ{T(q)(a’n(q))U()(q)}+ —0.

This problem possesses a unique solution (see [NGS1]). Clearly, if W e
[H'(Q,)]® is a solution of the Problem (4) and UY = (ul, 0" e [H'(Q,)]°
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is a solution of the above auxiliary mixed boundary value problem (2.2), then the
difference U@ = w(@) — Uo(q> will solve the following problem.

PROBLEM (A4): Find vector functions U@ = (u@, @) " e [H'(Q,)]°, ¢ =1,2,
which are weak solutions of the equations

(2.3) LY@ UY =0 inQ,

and satisfy the following boundary and contact conditions:
rS‘;){U@}+ =0 on Sf, qg=1,2,
rop{TW(0,n Y UDY = rgx¥@ onSY, ¢=1,2,
rs{u® 00 4 4@ . 1) <o on S,

rs (T OUW), 0} =rs {(T7PUP),0}T <0 ons,
s {T VUMY, refu® a4 4@ n @) _ g5 =0 on S,
rsA(TDUN YT =0 onS, ¢=1,2,

10)  rg {MDPUDNTY =0 onS., q=1,2,

where ¥ is the same as in the formulation of Problem (4) and
(2.11) oo = —rs{ul"” - nD + ul? @y,

Below we will investigate the Problem (A4,). Clearly, if a pair (U, U@)" solves
the Problem (Ay), the sum (WO w@) T .= (u® + UO(I)7 U+ U0<2))T solves
then the Problem (A4).

2.2. Uniqueness theorem

Here we prove the following uniqueness theorem.
THEOREM 2.1. Problem (Ay) has at most one solution.

PrOOF. Let U= (UMW, U®)" with U® = (u@, @) and W = (W), w@)T
with W@ = (v(@ w@)T be two distinct solutions of Problem (Ay). Then the dif-
ference U = (UM, UP)" := U — W will satisfy the conditions (2.3), (2.4), (2.9),
(2.10), and the condition (2.5) with Y9 = 0. From condition (2.7) we have

rs{(ZW0N),0} = s {(T7P0),0}"

Using Green’s formula (1.17) and taking into account the above conditions, we
have
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- Z HTD(0,n DY TDYT, {f](q)}+>sq

2
— Z s {(TOTD), A rs fa'? DY g

q=1
= <VS<'{(‘9-(1) U(U)n(])}-‘r’ rS{{a(l ( ) + M }+>S
= s {(TVUD), 0} —rs (7 W )n<1>}+,

re{uV - n® — M x4 3@ 5@ _ ) .n(2>}+>5(
= s {(ZWUD), 0} s {7 VWD),
VSC{u(l) W 44 g
—rs oW M 4 @ AT 4 P0Ds,
— —<rs(‘{(<7(”U(l))n(l)}ﬂrs“{v(l) a4 0(2) . (2>}+ —0pDs,
- <VS(-{(=7(1) W(l))n<1>}+v"sz-{”(l nt +u }+ —pprs. < 0.

Bearing in mind that the quadratic form E@ (U@ U) is positive definite (see
(1.13)), we have

EW(09, 0wy =0, ¢=1,2.

By Lemma 1.1

U@ — ([a(q) X x| _,_b(q),a(q))T’ qg=1,2.

Since Vqu{U<q)}+ =0 we conclude a9 = p@ = 0. Thus U® =0, ¢ = 1,2. |

2.3. Reduction of Problem (Ay) to the boundary variational inequality

To reduce Problem (A) to the boundary variational 1nequa11ty equivalently we
recall that a solution vector U@ = (19, 0@)" e [H HQ, )] to equation (2.3)
satisfying the Dirichlet boundary condition

(U = p@

with 7@ e [HY/ 2(Sq)]é, can be uniquely represented as a single layer potential
(see [NGSI1])

U(")(x) — V(q)([%(w]*lh(q))(x) _/ l"(‘f)(x— y)([%(")]’lh(‘”)(y)dyS,
S,

q
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where T'@ is the matrix of fundamental solutions of the operator L4 (d) and
A9 is the boundary integral operator generated by the single layer potential on
the boundary S, (see the explicit expression for ' in [GGN1], [NGS1)):

HONI) = lim /S Tz = p)hD(1)d,S = { VO (hD)}.
q 3277 4J Sy

Note that the single layer potential operator ¥4 and the integral operator # 4
have the following mapping properties (see [NGS1]):
Ve [H(S,))° — [H'(Q))]°

(2.12) #9 L HV(S,) — [HYA(S,)°,

These operators are continuous. Moreover, the operator #? is continuously in-
vertible and

(2.13) [ D) [HYR (S — [HV(S,))"

For arbitrary 1@ e [H~1/2(S, )]° there hold the following jump relations
(2.14) {TD@,n DV D(RONW = (=27 + 4 hD onS,, ¢=1,2,
where # 9 is a singular integral operator,

%-(q)h(Q)(x) ::/ [T(q)(a,n(‘f))l“@(x— y)]h(q>(y)dyS.
S,

q

Note that the operator
(2.15) 2 g+ O [HOVA(S,)) — [H(S,)

is a continuous singular integral operator of normal type with zero index (for de-
tails see [NGS1]).

Further, let us introduce the so-called Green’s operator for the Dirichlet
problem

G+ [H'P(5,))° — [H'(9,))°
defined by the formula
(2.16) GOp@) — V(q>([%(q)}—1h(q))_

It is clear that L (0)(GWh(@) = 0in Q, and {GWh@}" = 1@ on S,. From the
properties of the trace operator and mapping properties of the single layer poten-
tial operator it follows that there exist positive numbers C; and C; such that for
all 19 e [H'2(S,)]°

(2.17) ClWl(q)||[111/2(5,1)]6 = HG(q)h(q)H[Hl = CZHh Y | [H1/2(S,

Q)]



280 A. GACHECHILADZE, R. GACHECHILADZE AND D. NATROSHVILI

Now we introduce the generalized Steklov-Poincaré type operator

(2.18) A DR = (T (5, n D) (GO
= {TD(0,n D)V D) ([ D] p@))) T
= (=27'"Is + #' D)D) @)

Denote by A¥ (Sy) the set of restrictions on S, of rigid displacement vectors,
(2.19) AD(S) = {7 D(x) = ([d'9 x x] + bP,aD)T x e S,},

where a9 and b9 are arbitrary three-dimensional constant vectors. With the help
of Green’s formula (1.17) with Q = Q, and U = U’ = U@ = y@([# @] 1h@),
the relations (2.14), (2.18), (2.19) and the uniqueness theorem for the Dirichlet
BVP, we infer that ker.o/(? = A%(S,). The properties of the Steklov-Poincaré
operator is described by the following lemma.

LEMMA 2.1. Let h,nye [H'*(S,))® and g € [I:Il/z(Sq*)]é, where Sy is an open
proper part of the boundary S, = 0. Then

(a) </ Dhynys, = <oty I,

(b) 7@ [HI/Z(S ¢ — [H_I/Z(Sq)]6 is a continuous operator,

© <A Dy, > Colllgns o — Coll,

() (A9,9)5, = C||9H[H1/z(5q)]67

(€) <t Vhyhys, = Cllh = Phl|fys s 0
where P is the orthogonal projection (in the sense of L»(S,)) of the space
[H'/2(S,)]° onto the space A(S,); the positive constants C, Cy and C, depend

on the material parameters and on the geometry of the surface S, and do not de-
pend on h and g.

PROOF. Let h,ne [H 2(Sq)]é. Taking into account that the vector G'9 solves
the homogeneous equation L9 (9)G“Wh = 0, from Green’s formula (1.17) we get:

(A Dh s, = (TP 0,0 D) (G IR} G Wn} s,
= BY(GDh,G\Vy) = BO(GWy, GDh)
= {T9(0,n ) (G )} AG DRy s, = (ot Wy, b,

whence the item (a) follows.

The item (b) is evident, since .#(? is the composition of the continuous oper-
ators [#9] ™" and —27 I + #'@ (see (2.14) and (2.15)).

To prove the item (c) we proceed as follows. For arbitrary /& € [H ‘/2(5,,)]6
with the help of (1.16) we derive
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(A D hyg = BOVD ([ D) h), v O (29" h))
= | VOA D) g 0 = eall VA D)) g

By formulas (2.16) and (2.17) we have

17D A W10 = Collbllgegs -

On the other hand, since [L,(S,)]° is compactly embedded into [H~'/3(S,)]°, by
virtue of continuity of the operators (2.12) and (2.13) we have:

||V(‘1)([]f( ] )||[L e < Cl ||[ ]_th [H-3/2(S,)]°
< Gl gg-gs, e < CillAll g,

with some positive constants C;', C; and C; independent of /. So, finally we ob-
tain that

(A O, hys, = er G s e — e2(CAIE s

which proves the item (c).
Now the item (e) follows from (c) and the nonnegativity property of the oper-
ator .9 while (d) follows from (e). The lemma is proved. O

Further, we introduce the vector function space H’ and the convex set of vec-
tor functions KK, :

H = {g=(9",9")": g( = (p )" e [H ’(S )]6 g=12}, leR,
Kp, = {g € H'Z 15090 = 0,r5. {0V - 0V 492 n@}T < gy},
where 0 is defined by formula (2.11). It is clear that the set [, is convex and
closed in the space H'/2. On the convex closed set I<,, we consider the following

variational inequality: Find ho = (h ', h; )T € [K,,, such that the boundary vari-
ational inequality

2
(2.20) Z

is fulfilled for all 1 = (), h?)T e K

rsN‘P VS7\ h(q>—h(()q))>sqrv

HMI\J

Po-

3. EQUIVALENCE OF PROBLEM (A4)) AND VARIATIONAL INEQUALITY (2.20)

In this section we prove the equivalence of the boundary variational inequality
(2.20) and contact problem (Ay).
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THEOREM 3.1. Ifhy = (h 1), h(()z)) € K,/,O isa solutzon ofthe boundary variational
inequality (2.20), then U = (UY) U@\ with U @Dhg (4) e[H 1(Qq)]6 is a so-
lution of Problem (Ay), and vice versa, lf U= (U(1>, U(z))T is a solution of Prob-
lem (Ay), then hy = (h(l),h( )" with h = {UDY" is a solution of the boundary
variational inequality (2.20).

PROOF. Let iy = (h",h?)" € I, with A = (97, yS?)" be a solution of the
variational inequality (2. 20) We can show that then the vector-function U =
(U, @y’ Where U @p q, is a solution of Problem (A,). Here the
Green operator G? is deﬁned by formula (2.16). Taking into account the defini-
tion of the operator G'? it is not difficult to show that the conditions (2.3), (2.4),
and (2.6) are fulfilled. Let

S= 0O e (ST X [HP(S)°
be an arbitrary vector and substitute /2y + f instead of / in (2.20) to obtain:
2 2
Z <r SN x4 (q)h(()q), F sgf<q)>sl;v = Z <r S,;VlP(q)y r S,;Vf(q)>S,;V :
q=1 q=1
Whence the equallity
,,Sé\,ﬂ(mh((]‘l) - rsév{T(q)((?,n(‘]))(G@héq))F - quN\IJ(‘I)

almost everywhere on S;V follows, i.e., conditions (2.5) are fulfilled. Therefore we
can rewrite (2.20) as follows:

2
G Y s Dy rs, (0D~ h{)>s,
q=1

2
= s AT DUDY rs (99 — 7)),

q=1

+ s {MDUDY rg (Y@ — zp((f’ )
Vh = (hD, h@)" e Ko WD = (9@ @)
Let h= ("), A0 = 5"y, +9)", (932%%2))1 where ¢ e
[H'/2(S,)]” is an arbitrary vector-function. Clearly, & € [,,, and from (3.1) we
find
s L VUDY g>s, =0 Vg e [H(S)],
ie., rs {.#W UM} = 0. Analogously, we find that the equality

rs{MPUDYT =0
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is fulfilled which together with the latter one results in (2.10). Taking into account
the above equalities, we can rewrite (3.1) as

N

2
. Z (rs {9 (q)U(q)}+,rS(,(l9(‘]> _ 3&‘”)}5( >0
. q=1

Vi =W, hPH T e K,
Let now 1 = (hW, h@)" e H'/? be such that 4@ = (99 y@)T
PO =y g1, 9O = g? g0 = g0

and 9,(1) = 98) + ¢, where ¢ € [H'/ 2(SC)]3 is again an arbitrary vector function.

Clearly, i € [,,, and (3.2) yields

rs{(7WUW) 1 =0.
Quite analogously, we find that the equality
rs{(7PU) ) =0

is fulfilled, and hence the validity of condition (2.9) is proved.
Further, let ¢ € H'/?(S,) be an arbitrary scalar function and choose & =
(W, h®)" e H'/? as follows
h4) — (3(‘1)’¢(()11))T7 g=1.2,
9 =g 4 My 9@ = g2 _ 2y
Then it can be easily seen that /1 € [, and from (3.2) it follows that
s {7V} = s {(T DU, 0} rspds 20 Vo e HUX(S,).
Whence we can conclude that the first condition in (2.7) is fulfilled.
Let now y9 = x//éq), g=1,2,9% = .9(()2) and 9V . n(1) = .9(()1) -nY) 4 ¢, where
@ € H'/?(S,) is an arbitrary scalar function satisfying the condition ¢ < 0. Then
h € K, and
s {7 VU0 rs0ds, 20 Vpe H(S), ¢<0,
i.e., conditions (2.7) are fulfilled completely.

It remains to prove the condition (2.8). Taking into account all the above ob-
tained relations, from (3.2) it follows that for all / € [,

(33) s AT VUt s (30 = 87 a0 4+ (8% = %) nP]s 2 0.
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Let now h=(hW K@) e H'? @ =99 yNT e [HV2(S))® ¢=1,2
rs, 81 n) = gy and r5 9% - n@ = 0. Then (3.3) implies that

(34) s {(TVUD)0Y e - rs (9 0+ 87 0@y >0,
Analogously, if 2@ = (39 )T e [H/2(S,)]%, ¢ =1,2, and

re, 80 . n(M) = 2rS(‘9(§1) 1V — gy, rs 8@ . n® = 27’3{1982) -n®,
then (3.3) yields
3.5 s {(TOUD) 03 s (90 D+ 98 0@y — gy > 0.

The inequalities (3.4) and (3.5) are equivalent to the condition (2.8). Conse-
quently, the first part of Theorem 3.1 is proved.

Assume now that U@ = (u@ o@)" e [H'(Q,)]°, ¢=1,2, and U=
(UM, UD)T is a solution of Problem (A4,). We set

B = () = U, g =12,
ie., 9(()") = {ul9}* and np = {w@}*. Then since U = (U, U(z))T is a solution
of Problem (Ay), by virtue of conditions (2.4) and (2.6) it is clear that Ay =

(h(()l),héz)) € I<,, and due to the definition of the operator G'9 (see (2.16)) the
solution U in Q, can be represented uniquely by the formula

U =Gopl?  4=1,2.

Taking into account the boundary conditions of Problem (A ) and the definition
e

of the Steklov-Poincaré operator, for every i = (h(! )) e [K,, with h9) =
(99 YT g =1,2, we have

2
Z <L$Z{(q)h(()‘1), ho _ h(()q)>sq
q=1

2
— Z <{T<q>(5’n(q))G<q>h(<)q)}+’h(q) _ hé")>sq
=1
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2
=3 sy PO s (B~ hi)

+3 s (T OUD) 0} s (87 0@ = 90

2
= Z <rS(}w‘{’(‘1), sy (h9) — h(()q>)>s,;v
q=1

+ <VS({(9—(1)U(l))n(l)}ﬂr&_(g(l) a4 92 .n<2>) —00)s,
_ 1 2
— s (T U0 s (95 M + 97 n@) — gy,

2
=3 sy rgp (D = h) D
q=1

+ <Fsc.{(=7(l) U(l))n<1>}+, rs(,(S(l) a4 9@ .n(Z)) — s,

Since /1 = (k") k)" € IK,, and the condition (2.7) is fulfilled, the second term of
the last equality is nonnegative, and hence

2
Z@?f(q)h(()q)a >S = Z<VSNT ”S*(h )>SV
q=1

This completes the proof of the theorem. O

4. EXISTENCE RESULTS
Here we show the existence of a solution to the boundary variational inequality
(2.20). To this end, on the convex closed set [, we consider the functional

1 2 2

J(h) = _Z (et D), h(q)>sq _ Z <rS‘;~«‘P<’1), ,,&}Vh<q)>sév
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It can be easily shown that in view of the symmetry property of the operator .o/ %
(see Lemma 2.1(a)), the existence of solutions of the variational inequality (2.20)
is equivalent to the existence of the minimizing element in the set [<, of the func-
tional (4.1), i.e., the variational inequality (2.20) is equivalent to the following
minimizing problem: Find A € [, such that

(4.2) J(ho) = inf J(h).

hely,

The functional (4.1) is continuous and convex. Let us prove that the functional J
is coercive on the set I, , i.e., J(h) — +o0, when i € [, and

2
2 2
e S L e

Since the operator .7\ is coercive on the set I, (see Lemma 2.1(d)), the coer-
civeness of the functional J in the above mentioned sense follows from the follow-
ing obvious estimate

2
J(h) > CZHh(l])H[ZHl/z CIZ”h [H/2(S,
q=1

= (W, 1T e K,,,

where the positive constants C and C; do not depend on /.

The general theory of variational inequalities (see [GLT1], [Fil]) makes it pos-
sible to conclude that the problem (4.2) is uniquely solvable. Finally, we arrive at
the following assertion.

THEOREM 4.1. Let ¥ [H 1/Z(SN)] q = 1,2. Then the variational inequality

(2.20) has a unique solution h e [H 1/2(S N°, and U@ = G(q)héq) will be a unique
solution of Problem (Ay).

REMARK 4.1. Let W@ e [HV2(SY)|° and 99 e [Ly(Q,)]°, q=1,2. Then
Problem (A4) has a unique solution representable in the form (U (0 + U, ()
v + UO(Z))T, where a pair (U1, U®)" is a unique solution of Problem (Ao)
and Uo(q), g = 1,2, are solutions of the auxiliary problems (2.2).

5. THE SEMICOERCIVE CASE

5.1. Formulation of the problem

Let SP =0, SN US. =S,, 4 e [L1(Q,)]° and ¥ e [H'2(S))]°, g =1,2,
Consider the so -called semicoercive contact problem.
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PROBLEM (B): Find a pair of vector-functions U = (UM, U®)" € H! with
%) being a weak solution of the equation

(5.1) LO@UYW +49 =0, ¢=1,2,

in the domain Q,, and satisfying the boundary conditions on S;V
,,SqN{T(q)(&,1(4))(](!1)}+ — quNlP(q)a g=1,2,

and the contact conditions on S,:

rs {u - nM 4@ @3 < 07
rs{(7WUD),0} = rs {(7PUD), } <0,
<VSL.{(=7(1>U< )n<1>}+7rsf{u VoW 4 u® .l }+ ’s, =0
rs{(Z7WUW) )T =0, ¢=12,
rs{MDUDNNT =0, ¢g=1,2.
To reduce this problem to a boundary variational inequality, we have to re-

duce the inhomogeneous equation (5.1) to the homogeneous one. To this end,
let us consider the auxiliary problem: Find a pair of vector-functions Uy =

(Uom, U(§2>)T e H! with Uéq) = (u(()q),w(()q>)T being a weak solution of equation
(5.1) and satisfying the boundary conditions:

rop AT (@ UFY =0, rs {u a9} =0,

(5.2)
s {(Z7OUN NV =0, rs {4OUDY =0, g=1,2.

It is known that this problem has a unique solution when S., a part of the
boundary Sy, 1s nelther rotational nor ruled surface (see [GGNI]) Then, if the
pair W = (WO w@)T with w@ e [HY(Q, )¢, ¢ = 1,2, is a solution of Prob-
lem (B) and UO([D is a solution of the auxiliary problem (5.2), then the difference
U =w@ — UO(") will be a solution of the following problem.

PROBLEM (B): Find vector-functions U e [H'(©,)]°, ¢ = 1,2, which are
weak solutions of the homogeneous equations

LO@UYD =0 inQ,, g=1,2,
and satisfy the boundary conditions on S;V
,,S{;V{T(q)(a’n(q))U(q)}+ = VS(;V\{M)’ g=1,2,

and the contact conditions on S,
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rs{u - nM 40 }+ <0,
rs{(7 WUl )n(l)}+ + % =rs{(7PUD) o} + goéz) <0,
<ré‘f{(9‘(l>UU))nm}+ + 60(()1),”5({“(1) M 4y ~n(2>}+>s =0

rs{(Z7WUD) =0, q=1,2,
rs{MDUDY =0, ¢g=1,2,

where
o =rs {7V}, g=1.2.
Consider a convex closed set
A = {h= (h(l),h(2))T e HY? . pl@ — (g(tI),l//(q))T’
rs {90 . n) 4 9@ . @1 <0}
and formulate the following boundary variational inequality:

Find hy = (h(gl), héz))T € A such that the inequality

(5.3) (A OnD 1D — hyg > Z sy P, rgx (9 — hi) >

q

<
Il &}
N

_ <¢o 7VS{{3 ) pl@) _ 96‘1) .n(q)}>sﬂ]

is fulfilled for all A = (), h@)" € #". As in the coercive case, one can show that
inequality (5.3) is equivalent to Problem (By).

THEOREM 5.1. Let h (hél),h(()z)) € A" be a solution of the variational in-
equality (5.3) and GY denote zhe Green operator for the Dirichlet problem in €.
Then U = (U(l) UNT with U4 @hy ) solves Problem (By), and vice versa,
if U = (U< ) U( N s a solulzon of Problem (By), then hy = (hél),h(()z))T with
h( ={Uu }+ solves the variational inequality (5.3).

The proof of this theorem is quite similar to that of Theorem 3.1 and we omit

it here. To prove the existence of a solution to the variational inequality (5.3) we
proceed as follows. Let

A== 0" )T 29 e AV(S) (9= 1,2)},
where A9 (S,) is defined by (2.19), and let

R=H A
={xeA:(aV xx]+bM) -0V + ([a® x x] +b?) . n® <0 forx e S,}.
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Since n!) = —n® at the points of S., we have
A={0=0G", N eA: @V -a?)xx]+bD —p@).n1) <0, xe 8.}

Let now Ay = (hél), hé”)T e A be a solution of inequality (5.3). Clearly,
hy + x € A for y € A. Substitute hy + y into (5.3) instead of /2 and take into ac-
count that ker .79 = A(’f)(Sq). We get the inequality

2
Z[(rsq,v‘P rSN)(">S\ —<g00 rsAla® x x]+ b9} 0@y ] <0

g=1

which should hold for all y € #. Thus we have obtained that (5.4) is the necessary
condition for the existence of a solution of the variational inequality (5.3). Fur-
ther, let

A ={yreA:((aV-a?)xx]+bD —p@). 1) =0,xe 8.}
and assume that inequality (5.4) is fulfilled in a strong sense, i.e., equality (5.4)
holds if and only if y € #*. Due to the general theory of variational inequalities

(see [Fil], [GLT1]), the condition (5.4) becomes sufficient for the solvability of in-
equality (5.3). Consider the uniqueness question of a solution of (5.3). Suppose

that sy = (h, (1 hé )) e A and hy = (h 1),7182))T € A are two solutions of the
variational inequahty (5.3). Then

2 2
Z SIS Z<r5w11 sy (g = )

_ <¢0‘1 ,l’sc{l%q) p@ 33‘1) .n(q)}>S[]

and

B 2
PIREALILN L Z Crsy P9, rg (hy" hé’”)>SqN
=1 a=1

_ <¢0‘1 ’rsl{go‘l) @ gé‘ﬁ .n(q)}>SC]_

Adding the above inequalities and taking into account the positive definiteness of
the operators .79, ¢ = 1,2, we obtain

@/(q)(h(()q) _ ilé‘”),hé’” _ izé‘”}s —0, g=1,.

q

Whence we can write

_ ilé‘I) = 4@ (x)

Il
—
N

X
Rad
+

=
=
u—i

w

m
12
=
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since ker.o/9) = A<‘1)(Sq). Consequently, in view of the symmetry property of
the operator .o/ @ (see Lemma 2.1(a)), we have <&/(")héq), )((q>>5q =0 and
& <")h(()q), DAL s, = 0. Therefore from (5.5) and (5.6) we conclude that

M)

[<VS4V‘P(’I)7VS§VX((])>5§ _ <¢(()4>7VS(([a(q) x x| + 59 a D) . n 5] >0

—

&

and
2
Z[<VS[]N‘P<CI)7 VS(;VX(q) >SqN - <(P(gq)7 rSc([a(q) X X] + b(q)va(q)) : n(q)>S,] < 07
1

&

1.e.

2

(5.7) ZK”S}"P@);VS}'X(q)>sqN _ <¢(()q)7,,s(’([a(q) x x| +bD,a W) . n @Dy ] =0.
q=1

Thus we arrive at the following

THEOREM 5.2. Let SqD =0 and P\ ¢ [ﬁ’l/z(SéN)]6, q = 1,2. Then the inequal-
ity (5.4) is the necessary condition for the existence of a solution of Problem (B).
If the condition (5.4) is fulfilled in a strong sense, i.e., the equality (5.4) holds true if
and only if y € R, then Problem (By) is solvable. Two solutions of Problem (By)
may differ from each other by a vector of rigid displacement for which the condition
(5.7) is fulfilled. Solutions of Problem (B) with %\7 e [Lz(Qq)]6, q=1,2, are rep-
resented then in the form (U + Uél), U? + UO(Z))T, where a pair (UM, U is
a solution of Problem (By) and Ué”, q = 1,2, are solutions of the auxiliary prob-
lems (5.2).
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