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Abstract. — Let ðS;HÞ be a general primitively polarized K3 surface of genus p and let paðnHÞ
be the arithmetic genus of nH. We prove the existence in jOSðnHÞj of curves with a triple point and
Ak-singularities. In particular, we show the existence of curves of geometric genus g in jOSðnHÞj with
a triple point and nodes as singularities and corresponding to regular points of their equisingular
deformation locus, for every 1a ga paðnHÞ � 3 and ðp; nÞA ð4; 1Þ. Our result is obtained by

studying the versal deformation space of a non-planar quadruple point.
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1. Introduction

Let S be a complex smooth projective K3 surface and let H be a very ample line
bundle on S of sectional genus p ¼ paðHÞb 2. The pair ðS;HÞ is called a primi-
tively polarized K3 surface of genus p. It is well-known that a (very) general such
pair satisfies PicSGZ½H�. We denote by VS

nH; d H jOSðnHÞj ¼ jnHj the Zariski
closure of the Severi variety of d-nodal curves, defined as the locus of irreducible
and reduced curves with exactly d nodes as singularities. The non-emptiness of
these varieties for every da dimðjnHjÞ ¼ paðnHÞ, where paðnHÞ is the arithmetic
genus of nH, has been established in [5]. Like the Severi variety of d-nodal plane
curves, VS

nH; d has several good properties. By [20], we know that it is smooth of
expected dimension at every point ½C� corresponding to a d-nodal curve. This im-
plies that every irreducible component V of VS

nH; d has codimension d in jnHj and
it is contained in at least one irreducible component of the Severi variety VS

nH; d�1.
Moreover, it is also known that VS

nH; d coincides with the variety VS
nH;g H jnHj,

defined as the Zariski closure of the locus of reduced and irreducible curves of
geometric genus g (cf. [5, Lemma 3.1] and [12, Remark 2.6]). Unlike the Severi
variety of d-nodal plane curves, nothing is known about the irreducibility of
VS

nH; d. Classically, the irreducibility problem of Severi varieties is related to the
problem of the description of their boundary (cf. [17]).
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Problem 1. Let V HVS
nH; d be an irreducible component and let V o HV be the

locus of d-nodal curves. What is inside the boundary VnV o? Does V contain divi-
sors Vn, Vtac, Vc and Vtr whose general element corresponds to a curve with dþ 1
nodes, a tacnode and d� 2 nodes, a cusp and d� 1 nodes and a triple point and
d� 3 nodes, respectively?

Because of the literature about Severi varieties of plane curves (cf. [7], [8] and
[10]), the divisors Vn, Vtac, Vc and Vtr of V HVS

nH; d, when non-empty, are ex-
pected to play an important role in the description of the Picard group PicðVÞ
or, more precisely, of the Picard group of a ‘‘good partial compactification’’ of
the locus V o HV of d-nodal curves. Proving the existence of these four divisors
in every irreducible component V of VS

nH; d is a very di‰cult problem. The first
progress towards answering the previous question has been made in [12]. In that
paper, the authors prove the existence of irreducible curves in jnHj of every
allowed genus with a tacnode or a cusp and nodes as further singularities. This
article is devoted to the existence of irreducible curves in jnHj of geometric genus
1a ga paðnHÞ � 3 with a triple point and nodes as further singularities. Before
introducing our result, we make some observations concerning Problem 1, de-
scribing the type of singularity of V along Vn, Vtac, Vc and Vtr, whenever these
loci are non-empty. Let us denote by VS

nH;g; tac, V
S

nH;g; c and VS
nH;g; tr the Zariski

closure of the locus in jnHj of reduced and irreducible curves of geometric genus
g with a tacnode, a cusp and a triple point, respectively, and nodes as further
singularities. Let W be an irreducible component of any of these varieties or of
VS

nH;g�1. Then, by [5, Lemma 3.1], we have that dimðWÞ ¼ g� 1. Thus W is a
divisor in at least one irreducible component V of VS

nH; d¼paðnHÞ�g ¼VS
nH;g and,

by using the same arguments as in [6, Section 1], we also know what V looks like
in a neighborhood of the general point of W . If W is an irreducible component of
VS

nH;g�1, then VS
nH;g has an ordinary multiple point of order dþ 1 at the general

point of W . In particular, at least in principle, there may not be a unique irreduc-
ible component V of VS

nH;g containing W . On the contrary, if W is any irreduc-
ible component of VS

nH;g; tac, V
S

nH;g; c or V
S

nH;g; tr, then W is contained in only one

irreducible component V of VS
nH;g. In particular, VS

nH;g is smooth at the general
point of every irreducible component of VS

nH;g; tac and VS
nH;g; tr and it looks like the

product of a cuspidal curve and a smooth ðg� 1Þ-dimensional variety in a neigh-
borhood of the general point of an irreducible component of VS

nH;g; c. We finally
observe that, unlikely the case of Severi varieties of plane curves, if V HVS

nH;g is

an irreducible component, a priori, there may exist divisors in V parametrizing
curves with worse singularities than an ordinary triple point, a tacnode or a
cusp and nodes. We now describe the results of this paper. Our theorem about
non-emptiness of VS

nH;g; tr is based on the following local problem.

Problem 2. Let X! A1 be a smooth family of surfaces with smooth general
fiberXt and whose special fiberX0 ¼ AAB is reducible, having two irreducible com-
ponents intersecting transversally along a smooth curve E ¼ ABB. What kind of
curve singularities on X0 at a point p a E may be deformed to a triple point on Xt?
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In the first part of Section 3, we prove that, if a triple point on Xt specializes to a
general point p a E along a smooth bisection g of X! A1, then the limit curve
singularity on X0 is a space quadruple point, union of two nodes having one
branch tangent to E. The result is obtained by a very simple argument of limit
linear systems theory, with the same techniques as in [11]. In Lemma 3.2 we find
the analytic type of this quadruple point. This allows us to compute the versal
deformation space of our limit singularity and to prove that, under suitable
hypotheses, it actually deforms to an ordinary triple point singularity on Xt, see
Theorem 3.9. In the last section, we consider the case that Xt is a general primi-
tively polarized K3 surface and A ¼ R1 and B ¼ R2 are two rational normal
scrolls. In Lemma 4.1, we prove the existence on X0 ¼ R1 AR2 of suitable curves
with a non-planar quadruple point as above, tacnodes (of suitable multiplicities)
and nodes and that may be deformed to curves in jOXt

ðnHÞj with an ordinary
triple point and nodes as singularities. In particular, this existence result is ob-
tained as a corollary of the following theorem, which is to be considered the
main theorem of this paper.

Theorem 1.1. Let ðS;HÞ be a general primitively polarized K3 surface of genus
p ¼ paðHÞ. Then, for every ðp; nÞA ð4; 1Þ and for every ðm� 1Þ-tuple of non-
negative integers d2; . . . ; dm such that

Xm
k¼2
ðk � 1Þdk ¼ nðp� 2Þ � 3 ¼ 2nl� 2n� 3ð1Þ

if p ¼ 2l is even, or

Xm
k¼2
ðk � 1Þdk ¼ nðp� 1Þ � 4 ¼ 2nl� 4;ð2Þ

if p ¼ 2lþ 1 is odd, there exist reduced irreducible curves C in the linear system
jnHj on S such that:

• C has an ordinary triple point, paðnHÞ �
Pm

k¼2ðk � 1Þdk � 4 nodes and dk singu-
larities of type Ak�1, for every k ¼ 2; . . . ;m, and no further singularities;

• C corresponds to a regular point of the equisingular deformation locus ESðCÞ.
Equivalently, dimðT½C�ESðCÞÞ ¼ 0.

Finally, the singularities of C may be smoothed independently. In particular, under
the hypotheses (1) and (2), for every dk a dk and for every da dimðjnHjÞ �Pm

k¼2ðk � 1Þdk � 4, there exist curves C in the linear system jnHj on S with an
ordinary triple point, dk singularities of type Ak�1, for every k ¼ 2; . . . ;m, and d
nodes as further singularities and corresponding to regular points of their equisingu-
lar deformation locus.

By Corollary 4.3, the family in jHj of curves with a triple point and dk singu-
larities of type Ak�1 is non-empty if it has expected dimension at least equal to
one or it has expected dimension equal to zero and d2 b 1.
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2. Notation and terminology

Throughout the paper an irreducible curve C will be a reduced and irreducible
projective curve, even if not specified. We will be concerned here only with
reduced and locally complete intersection curves C in a linear system jDj on a
(possibly singular) surface X , having, as singularities, space singularities, plane
ordinary triple points or plane singularities of type Ak. We recall that an ordinary
triple point has analytic equation y3 ¼ x3 while an Ak-singularity has analytic
equation y2 � xkþ1. Singularities of type A1 are nodes, A2-singularities are cusps
and an A2m�1-singularity is a so called m-tacnode. Whenever not specified, a tac-
node will be a 2-tacnode, also named a simple tacnode. For curves with ordinary
plane triple points and plane singularities of type Ak, equisingular deformations
from the analytic point of view coincide with equisingular deformations from the
Zariski point of view (cf. [6, Definition (3.13)]). Because of this, given a curve as
above, we define the equisingular deformation locus ESðCÞH jDj as the Zariski
closure of the locus of analytically equisingular deformations of C, without dis-
crepancy with classical terminology. Finally, we recall that, if X is a smooth sur-
face and C has as singularities an ordinary triple point and dk singularities of type
Ak, then the dimension of the tangent space to ESðCÞ at the point ½C� corre-
sponding to the curve C is given by dimðT½C�ESðCÞÞb dimjDj � 4�

P
k dkk

(cf. [6]). If equality holds, we say that ESðCÞ is regular at ½C�. The regularity of
ESðCÞ is a su‰cient and necessary condition for the surjectivity of the standard
morphism H 0ðC;NCjX Þ ! T 1

C . In this case, we say that the singularities of C may
be smoothed independently, with obvious meaning because of the versality proper-
ties of T 1

C .

3. How to obtain curves with a triple point on a smooth surface

Let X! A1 be a smooth family of projective complex surfaces with smooth gen-
eral fiber Xt and whose special fiber X0 ¼ AAB has two irreducible components,
intersecting transversally along a smooth curve E ¼ ABB. Let DHX be a
Cartier divisor and let us set Dt ¼ DBXt. We want to find su‰cient conditions
for the existence of curves with a triple point in jDtj ¼ jOXt

ðDtÞj. We first ask the
following question. Assume that, for general t, there exists a reduced and irreduc-
ible divisor Ct a jDtj with a triple point. Assume, moreover, that the curve Ct

degenerates to a curve C0 a jD0j ¼ jOX0
ðD0Þj in such a way that the triple point

of Ct comes to a general point p a E ¼ ABB. We ask for the type of singularity
of C0 at p. Actually we do not want to find all possible curve singularities at p
that are limit of a triple point on Xt. We only want to find a suitable limit singu-
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larity. We first observe that, since p belongs to the singular locus of X0 and X is
smooth at p, there are no sections of X! A1 passing through p. Thus the triple
point of the curve Ct, as t! 0, must move along a multisection g 0 of X! A1. In
order to deal with a divisor S in a smooth family of surfaces Y! A1 with a triple
point at the general point of a section of Y! A1, we make a base change of
X! A1.

Let Y! A1 be the smooth family of surfaces

Y ���! X 0 ���! X???y
???y

A1 ���!n2 A1

 ���
��

obtained from X! A1 after a base change of order two totally ramified at 0 and
by normalizing the achieved family. Now the family Y has general fibre YtUXt

and special fibre Y0 ¼ AAEAB, where, by abusing notation, A and B are the
proper transforms of A and B in X and E is a P1-bundle on E. In particular,
ABE and BBE are two sections of E isomorphic to E. Denote by F the fibre
E corresponding to the point p a EHX0 and let g be a section of Y intersecting
F at a general point q. Assume there exists a divisor SHY having a triple point
at the general point of g.

Step 1. Let p1 : Y
1 ! Y be the blow-up of Y along g with new exceptional

divisor G and special fibre Y1
0 ¼ AAE 0AB, where E 0 is the blow-up of E at q.

Still denoting by F the proper transform of F HY in Y1, we have that F has self-
intersection ðF Þ2E 0 ¼ �1 on E 0. Moreover, if S1 is the proper transform of S in
Y1, we have that

S1 P p�1 ðSÞ � 3G:ð3Þ

We deduce that S1F ¼ �3 and hence F HS1.
Step 2. Let now p2 : Y

2 ! Y1 be the blow-up of Y1 along F with new excep-
tional divisor YUF1 and new special fibre Y2

0 ¼ A 0AE 0AYAB 0, where A 0 and
B 0 are the blow-ups of A and B at F BA and BBF respectively. Denoting again
by F the proper transform of F HY1 in Y2, we have that F is the ð�1Þ-curve of
Y. Moreover, if S2 is the proper transform of S1 in Y2, by (3), we deduce that

S2jY P p�2 ðS1ÞjY �mFYjY P�3fY þmF ðF þ 2fYÞP ð2mF � 3Þ fY þmFF ;ð4Þ

where fY is the fibre of Y and mF is the multiplicity of S1 along F . Furthermore,
since S2jY is an e¤ective divisor, we have that mF b 2. In particular, if mF ¼ 2
then jS2jYj ¼ j fY þ 2F j contains F in the base locus with multiplicity 1. Hence
S2jY ¼ F þ L, with LP fY þ F . Using again that S2 is a Cartier divisor, we
find that S2jA 0 (resp. S2jB 0) has two smooth branches intersecting YBA 0 trans-
versally at F BA 0 and LBA 0 (resp. F BB 0 and LBB 0), as in Figure 1.

Now let SHX be the image of S. If t is a general point of A1 and
ft1; t2g ¼ n�12 ðtÞ, then the fibre of S over t is St ¼ St1 ASt2 , where Sti is the fibre
of S over ti; while the special fibre S0 ¼ 2ðSjA ASjBÞ of S is the image curve,
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counted with multiplicity 2, of the special fibre S0 of S under the contraction of E
(see Figure 2).

Remark 3.1. The curve SjA ASjB HX0 belongs to the subvariety Qp H jD0j, de-
fined as the Zariski closure of the locus of curves C ¼ CA ACB, where CA HA and
CBHB have a node at p a E ¼ ABB with one branch tangent to E. Notice that
every such curve C has a non-planar quadruple point at p and that Qp is a linear
subspace of jD0j of codimension at most 5.

Lemma 3.2. Let ½C� a Qp be a point corresponding to a curve C ¼ CA ACB with
a non-planar quadruple point at p as in the previous remark. Then the analytic
equations of C at p are given by

ðyþ x� z2Þz ¼ 0

xy ¼ t

t ¼ 0:

8><
>:ð5Þ

Remark 3.3. We want to observe that, as for plane curve singularities, the clas-
sification of simple complete intersection space singularities is known, (cf. [14]). The
singularity defined by (5) is not a simple singularity.

Before proving Lemma 3.2, we need to recall a basic result about space curve
singularities. We refer to [14] and use the same notation and terminology.

Definition 3.4. Let Qþ be the set of positive rational numbers. A polynomial
pðxÞ a C½x1; . . . ; xn� is said to be quasi-homogeneous of type ðd; a1; . . . ; anÞ a
Qþ �Qn

þ if pðxÞ is a linear combination of monomials xa1
1 . . . xan

n such that:

Xn

i¼1
aiai ¼ d:

The n-tuple a ¼ ða1; . . . ; anÞ is called a system of weights. We shall also say that
pðxÞ has degree d if every variable xi has weight ai, for every ia n.

Figure 1 Figure 2
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For every fixed system of weights a ¼ ða1; . . . ; anÞ, we will denote by Ga the
induced graduation

C½x1; . . . ; xn� ¼ 0
db0

G
a

d

on C½x1; . . . ; xn�, where G
a

d is the set of quasi-homogeneous polynomials of type
ðd; a1; . . . ; anÞ.

Definition 3.5. An element f ¼ ð f1; . . . ; fpÞ a ðC½x1; . . . ; xn�Þ p is quasi-
homogeneous of type ðd; aÞ ¼ ðd1; . . . ; dp; a1; . . . ; anÞ if, for every i ¼ 1; . . . ; p,
the component fi of f is of type ðdi; a1; . . . ; anÞ. The ðpþ nÞ-tuple ðd; aÞ ¼
ðd1; . . . ; dp; a1; . . . ; anÞ is called a system of degrees and weights.

For every fixed system of degrees and weights ðd; aÞ, one defines a graduation
Gðd;aÞ on ðC½x1; . . . ; xn�Þ p by setting

ðC½x1; . . . ; xn�Þ p ¼0
n AZ

Gðd;aÞn ;

where G
ðd;aÞ
n ¼ fðg1; . . . ; gpÞ a ðC½x1; . . . ; xn�Þ p j gi a G

a

diþng. Moreover, we denote
by na the valuation naturally associated to Ga and by nd;a the valuation associated
to Ga;d and defined by

nd;aðhÞ ¼ inf
i
½naðhiÞ � di�;

for every h a ðC½x1; . . . ; xn�Þ p. Finally, we recall that, if In;p denotes the set
of germs of applications f ¼ ð f1; . . . ; fpÞ : ðCn; 0Þ ! ðC p; 0Þ such ðX ; 0Þ ¼
ð f �1ð0Þ; 0Þ is a germ of a complete intersection analytic variety with an isolated
singularity at the origin, then we have the versal deformation space T 1ð f Þ ¼ T 1

X ;0
(cf. [15] or [19]) and, by [18], a graduation is naturally induced on

T 1ð f Þ ¼0
n AZ

T 1ð f Þn; where T 1ð f Þn HGðd;aÞn for every n a Z:

Proposition 3.6 (Merle, [14, Proposition 1]). Let f a In;p be a quasi-
homogeneous element of type ðd; aÞ. Let g a ðC½x1; . . . ; xn�Þ p be any element such
that:

nðd;aÞðgÞ > supð0; aÞ;

where a ¼ Supn AZfn jT 1ð f ÞnA 0g. Then the germs of singularities
ðð f þ gÞ�1ð0Þ; 0Þ and ð f �1ð0Þ; 0Þ are analytically equivalent.

Proof of Lemma 3.2. Let ½C 0� a Qp be a point associated to a curve C 0 ¼
C 0A AC 0B, where C 0A HA and C 0BHB have a node at p a E with one branch
tangent to E ¼ ABB. Let ðx; y; z; tÞ be analytic coordinates of X at p ¼ 0 in
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such a way that A : x ¼ t ¼ 0 and B : y ¼ t ¼ 0. Then the analytic equations of
C 0HX at p are given by

pðx; y; zÞ ¼ 0;

xy ¼ 0;

t ¼ 0;

8<
:ð6Þ

where pðx; y; zÞ ¼ 0 is the equation of an analytic surface S in A3 having a singu-
larity of multiplicity 2 at ð0; 0; 0Þ. Moreover, the tangent cone of S at p must con-
tain the line x ¼ y ¼ 0. Thus, up to a linear transformation, we may assume that
the analytic equations of C 0HX at p are given by

pðx; y; zÞ ¼ xzþ yzþ ax2 þ by2 þ z3 þ p3ðx; y; zÞ ¼ 0; xy ¼ 0; t ¼ 0;

where p3ðx; y; zÞ is a polynomial of degree at least 3 with no z3-term. We want to
prove that the complete intersection curve singularity given by (6) is analytically
equivalent to the curve singularity given by the equations (5). We first observe
that the element f ¼ ðxzþ yzþ z3; xyÞ a I3;2 is quasi-homogeneous of type
ð3; 4; 2; 2; 1Þ. Moreover, every term of the polynomial pðx; y; zÞ � xz� yz� z3 ¼
ax2 þ by2 þ p3ðx; y; zÞ has degree strictly greater than 3, if the variables ðx; y; zÞ
have weights ð2; 2; 1Þ. In order to apply Proposition 3.6, we need to compute
T 1ð f Þ. Let C be a reduced Cartier divisor on X0 ¼ AAB having a singularity
of analytical equations given by (5) at p. Then, since C is a local complete
intersection subvariety of X, we have the following standard exact sequence of
sheaves on C

0! YC ! YXjC !
a
NCjX ! T 1

C ! 0;ð7Þ

where YC UHomðW1
C ;OCÞ is the tangent sheaf of C, defined as the dual of the

sheaf of di¤erentials of C, YXjC is the tangent sheaf of X restricted to C, NCjX
is the normal bundle of C in X and T 1

C is the first cotangent sheaf of C, which
is supported at the singular locus SingðCÞ of C and whose stalk T 1

C;q at every
singular point q of C is the versal deformation space of the singularity. We also
recall that the global sections of the image sheaf N 0

CjX of a are, by the versality
properties of T 1

C , the infinitesimal deformations of C in X preserving singularities
of C and their analytic type. For this reason, N 0

CjX is called the equisingular

deformation sheaf of C in X. Now observe that T 1ð f Þ ¼ T 1
C;p. In order to com-

pute T 1
C;p we use the following standard identifications:

• of the local ring OC;p ¼ OX;p=ICjX;p of C at p with C½x; y; z�=ð f1; f2Þ, where
f1ðx; y; zÞ ¼ xzþ yzþ z3 and f2ðx; y; zÞ ¼ xy,

• of the OC;p-module NCjX;p with the free OX;p-module HomOX; p
ðICjX;p;OC;pÞ,

generated by morphisms f �1 and f �2 , defined by

f �i ðs1ðx; y; zÞ f1ðx; y; zÞ þ s2ðx; y; zÞ f2ðx; y; zÞÞ ¼ siðx; y; zÞ; for i ¼ 1; 2

and, finally,
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• of the OC;p-module

ðYXjCÞpUYX;p=ðIC;p nYX;pÞ
U3q=qx; q=qy; q=qz; q=qt4OC; p

=3q=qt� xq=qy� yq=qx4

with the free OX;p-module generated by the derivatives q=qx, q=qy, q=qz.

With these identifications, the localization map ap : ðYXjCÞp !NCjX;p at p of
the sheaf map a in (7) is defined by

apðq=qxÞ ¼ ðs ¼ s1 f1 þ s2 f2 q qs=qx ¼OC; p
s1qf1=qxþ s2qf2=qxÞ

and, similarly, for apðq=qyÞ and apðq=qzÞ. In particular, we have that

apðq=qxÞ ¼ zf �1 ðsÞ þ yf �2 ðsÞ;
apðq=qyÞ ¼ zf �1 ðsÞ þ xf �2 ðsÞ and

apðq=qzÞ ¼ ðxþ yþ 3z2Þ f �1 ðsÞ:
ð8Þ

It follows that the versal deformation space of the non planar quadruple point of
C at p is the a‰ne space

T 1
C;pUOC;p f

�
1 aOC;p f

�
2 =3zf �

1
þyf �

2
; zf �

1
þxf �

2
; ð3z2þxþyÞ f �

2
4:ð9Þ

In particular, T 1
C;p ¼ T 1ð f ÞUC7 (in accordance with [13, Proposition on p. 165])

and, if we fix a‰ne coordinates ðb1; b2; b3; a1; a2; a3; a4Þ on T 1
C;p, then the versal

deformation family Cp ! T 1
C;p ¼ T 1ð f Þ has equations

ðyþ x� z2Þzþ a1 þ a2xþ a3yþ a4z ¼ Fðx; y; zÞ ¼ 0;

xyþ b1 þ b2zþ b3z
2 ¼ Gðx; y; zÞ ¼ 0:

�
ð10Þ

Furthermore, by the equality

F ðx; y; zÞ
Gðx; y; zÞ

� �
¼ 0

b1

� �
þ a1

b2z

� �
þ a4z

b3z
2

� �

þ a3yþ a2x

0

� �
þ ðyþ x� z2Þz

xy

� �
;

we deduce that the graduation on T 1ð f Þ induced by Gð3;4;2;2;1Þ is given by

T 1ð f Þ ¼ 0
0

n¼�4
T 1ð f Þn:

In particular, we obtain that a ¼ supn AZfn jT 1ð f ÞnA 0g ¼ 0. By Proposition 3.6,
using that n3;4;2;2;1ðpðx; y; zÞ � xz� yz� z3; xyÞ > 3 > 0 ¼ a we get that the sin-
gularity defined by (6) is analytically equivalent to the singularity of equations
(5), as desired. r
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Remark 3.7 (Equisingular infinitesimal deformations). Let CHX0 be a curve
as in Lemma 3.2. By the proof of the lemma, we may deduce the equations at p of
an equisingular infinitesimal deformation of C in X. Indeed, by the equalities (8),
we have that, if s a N 0

CjX;p, then the equations of s at p are given by

zðxþ yþ z2Þ þ eðzux þ zuy þ ð3z2 þ xþ yÞuzÞ ¼ 0;

xyþ eðxuy þ yuxÞ ¼ 0;

�
ð11Þ

where

u ¼ uxðx; y; zÞq=qxþ uyðx; y; zÞq=qyþ uzðx; y; zÞq=qz a ðYXjCÞp:

Now xyþ eðxuy þ yuxÞ ¼ 0 is the equation of an infinitesimal deformation X0

vanishing along the singular locus E. By [2, Section 2], we know that these infinites-
imal deformations are the infinitesimal deformations of X0 preserving the singular
locus. Since X0 is the only singular fibre of X, we have that xuy þ yux ¼ 0 in (11).
Since this does not depend on the type of singularity of C at p, we deduce that
H 0ðC;N 0

CjXÞ ¼ H 0ðC;N 0
CjX0
Þ. Moreover, we obtain that ux and uy are polyno-

mials with no zr-terms, for every r, and such that uyð0Þ ¼ uxð0Þ ¼ 0 and no xr-
terms (resp. yr-terms) appear in uy (resp. ux). Thus the equations of s a N 0

CjX;p at
p are given by

zðxþ yþ z2Þ þ eðzxu 0x þ zyu 0y þ ð3z2 þ xþ yÞðcþ u 0zÞÞ ¼ 0;

xy ¼ 0;

�
ð12Þ

where we set uxðx; zÞ ¼ xu 0xðx; zÞ, uyðy; zÞ ¼ yu 0yðy; zÞ and uzðx; y; zÞ ¼
cþ u 0zðx; y; zÞ, with u 0zð0Þ ¼ 0. Finally, H 0ðC;N 0

CjXÞ ¼ H 0ðC;N 0
CjX0
Þ is a linear

space of codimensiona 4 in jD0j, contained in the linear system Tp of curves
C 0A AC 0BHX0, with C 0A HA, C 0B HB and C 0A and C 0B tangent to E at p.

We may now provide su‰cient conditions for the existence of curves with a
triple point and possibly further singularities in the linear system jDtj.

Definition 3.8. Let X be a family of surfaces as above and let DHX be a
Cartier divisor. Let W

XjA1

D;g; trH jOXðDÞj � ðA1nf0gÞ be the locally closed subset de-
fined as follows

W
XjA1

D;g; tr ¼ fð½D 0�; tÞ jXt is smooth; D 0BXt :¼ D 0t a jOXt
ðDtÞj is irreducible

of genus g; with a triple point and nodes as singularities:g

There is a naturally defined rational map p : W
XjA1

D;g; tr !HXjA1

, where HXjA1

is the

relative Hilbert scheme of X! A1. We will denote by V
XjA1

D;g; tr the Zariski closure
of the image of p and we will name it the universal Severi variety of curves of
genus g in jDj with a triple point and nodes. The restriction of this variety
V

XjA1

D;g; trB jDtj ¼VXt

Dt;g; tr
, where t a A1 is general, is the Severi variety of genus g

curves in jDtj with a triple point and nodes as singularities.

304 c. galati



We observe that, if V HVXt

Dt;g; tr
is an irreducible component, then V coincides

with the equisingular deformation locus ESðCÞH jDtj of the curve C correspond-
ing to the general point ½C� a V , defined in Section 2.

Theorem 3.9. With the notation above, let C ¼ CA ACBHX0 be a reduced
divisor in the linear system jD0j such that CA HA and CBHB have a node at a
general point p of E ¼ ABB with one branch tangent to E. Suppose that CA and
CB are smooth and they intersect E transversally outside p. Assume, moreover,
that:

1) h1ðA;OAÞ ¼ h1ðB;OBÞ ¼ h1ðXt;OXt
Þ ¼ 0, for every t;

2) dimðjDtjÞ ¼ dimðjD0jÞ, for a general t;
3) h0ðC;N 0

CjXÞ ¼ dimðjD0jÞ � 4.

Then the universal Severi variety V
XjA1

D;paðDÞ�3; trHHXjA1

is non-empty. More pre-

cisely, the point ½C� a HXjA1

corresponding to the curve C belongs to an irreduc-

ible component Q of the special fibre V0 of V
XjA1

D;paðDÞ�3; tr ! A1, contained in V0

with multiplicity 2. Finally, V
XjA1

D;paðDÞ�3; tr is smooth at ½C� and the irreducible com-

ponent V Q
t of the general fibre Vt of V, specializing to Q, has expected dimension

in jDtj.

Proof. We want to obtain curves in the linear system jOXt
ðDtÞj with a triple

point as deformations of CHX0. The scheme parametrizing deformations of C
in X is an irreducible component H of the relative Hilbert scheme HXjA1

of the
family X. In particular, by [19, Proposition 4.4.7] and the hypotheses 1Þ and 2Þ,
we have that H is smooth at the point ½C� a H corresponding to C. Now, by
hypothesis, C has a non-planar quadruple point at p, nodes on Enfpg and no
further singularities. Moreover, it is well-known that, no matter how we deform
C to a curve on Xt, the nodes of C on E are smoothed (see, for example, [11, Sec-
tion 2]). We want to prove that C may be deformed to a curve on Xt in such a
way that the non-planar quadruple point of C at p is deformed to a triple point.
This will follows from a local analysis. First recall that, by Lemma 3.2, we may
choose analytic coordinates ðx; y; z; tÞ of X at p in such a way that the equations
of C at p are given by (5) and the versal deformation family Cp ! T 1

C;p has equa-
tions given by (10), where ðb1; b2; b3; a1; a2; a3; a4Þ are the a‰ne coordinates on
T 1
C;pUC7. By versality, denoting by D!H the universal family parametrized

by H, there exist étale neighborhoods Up of ½C� in H, U 0p of p in D and Vp of 0
in T 1

C;q and a map fp : Up ! Vp so that the family DjUp
BU 0p is isomorphic to the

pull-back of CpjVp
, with respect to fp,

Cp  ��� CpjVp
 ��� Up �Vp

CpjVp
���!U DjUp

BU 0p ���! D???y
???y

???y
???y

T 1
C;p  ��� Vp

fp
Up H:

ð13Þ

 ���������������������� ������! ���
�����

305curves with a triple point on a K3 surface



We need to describe the image fpðUpÞHVp. First we want to prove that

fpðUpB jD0jÞ ¼ GBVp;ð14Þ

where

G : b1 ¼ b2 ¼ b3 ¼ 0:

Obviously, fpðUpB jD0jÞHGBVp. To prove that the equality holds, it is enough
to show that the di¤erential dfp½C� : H

0ðC;NCjX0
Þ ! T0G is surjective. By stan-

dard deformation theory, by identifying the versal deformation space of a singu-
larity with its tangent space at 0, the di¤erential of fp at ½C� can be identified with
the map

dfp½C� : H
0ðC;NCjXÞ ! H 0ðC;T 1

CÞ ! T 1
C;p;

induced by the exact sequence (7). In particular, using that, by Remark 3.7,
H 0ðC;N 0

CjXÞ ¼ H 0ðC;N 0
CjX0
Þ and that the nodes of C on E are necessarily pre-

served when we deform C on X0, we have that

ker dfp½C� ¼ H 0ðC;N 0
CjXÞ:

Now, again by Remark 3.7, we know that h0ðC;N 0
CjXÞ ¼ h0ðC;N 0

CjX0
Þb

dimðjD0jÞ � 4 ¼ dimðjD0jÞ � dimðGÞ. Actually, by the hypothesis 3Þ, we have
that h0ðC;N 0

CjX0
Þ has the expected dimension and hence the equality (14) is

verified. Using that H 0ðC;NCjX0
Þ is a hyperplane in H 0ðC;NCjXÞ and that

fpðUpB jD0jÞH fpðUpÞ, this implies, in particular, that fpðUpÞHVp HT 1
C;p is a

subvariety of dimension dimðfpðUpB jD0jÞÞ þ 1 ¼ 5, smooth at 0. We want to
determine the equations of tangent space T0fpðUpÞ ¼ dfpðH 0ðC;NCjXÞÞ. For
this purpose, it is enough to find the image by dfp of the infinitesimal deforma-
tion s a H 0ðC;NCjXÞnH 0ðC;NCjX0

Þ having equations

zðxþ yþ z2Þ ¼ 0

xy ¼ e:

�
ð15Þ

The image of s is trivially the vector ð1; 0; . . . ; 0Þ. We deduce that

T0fpðUpÞ ¼ dfpðH 0ðC;NCjXÞÞ : b2 ¼ b3 ¼ 0:

Now we want to prove that the locus in fpðUpÞnfpðUpB jD0jÞ of points corre-
sponding to curves with an ordinary triple point as singularity is not empty and
its Zariski closure is a smooth curve T tangent to G ¼ fpðUpB jD0jÞ at 0. This
will imply the theorem by versality and by a straightforward dimension count.
Because of smoothness of fpðUpÞ at 0, it is enough to prove that the locus of
points ðb1; 0; 0; a1; . . . ; a4Þ a T0fpðUpÞ with b1A 0 and corresponding to a curve
with an ordinary triple point is not empty and its Zariski closure is a smooth
curve T tangent to G ¼ fpðUpB jD0jÞ at 0.
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Let ðb1; 0; 0; a1; . . . ; a4Þ a T 1
C;p be a point with b1A 0. Then the fibre

Cðb1;0;0;a1;...;a4Þ of the versal family Cp ! T 1
C;p has equation

Cðb1;0;0;a1;...;a4Þ : z
�
z2 þ b1

y
þ y

�
þ a1 þ a2

b1

y
þ a3yþ a4z ¼ 0; yA 0

or, equivalently,

Cðb1;0;0;a1;...;a4Þ : Fðy; zÞ ¼ z3yþ zy2 þ b1zþ a1yþ a2b1 þ a3y
2 þ a4zy; yA 0:

Now a point ðy0; z0Þ a Cðb1;0;0;a1;...;a4Þ is a singular point of multiplicity at least
three if and only if

qFðy; zÞ
qy

¼ z30 þ 2y0z0 þ a1 þ 2a3y0 þ a4z0 ¼ 0;ð16Þ

qFðy; zÞ
qz

¼ 3z20 y0 þ y20 þ b1 þ a4y0 ¼ 0;ð17Þ

qFðy; zÞ
qz2

¼ 6z0y0 ¼ 0;ð18Þ

qFðy; zÞ
qy2

¼ 2z0 þ 2a3 ¼ 0;ð19Þ

qFðy; zÞ
qyqz

¼ 3z20 þ 2y0 þ a4 ¼ 0:ð20Þ

By the hypothesis b1A 0 and the equalities (18) and (19), we find that z0 ¼ 0. By
substituting z0 ¼ 0 in the equalities (16), (17), (19), (20) and F ðy0; 0Þ ¼ 0, we find
that

a1 ¼ a2 ¼ a3 ¼ 0;

y20 þ b1 þ a4y0 ¼ 0;

z0 ¼ 0;

2y0 þ a4 ¼ 0:

Conversely, for every point ðb1; 0; 0; a1; . . . ; a4Þ a T 1
C;p such that b1A 0, a1 ¼

a2 ¼ a3 ¼ 0 and a24 ¼ 4b1, we have that the corresponding curve has a triple
point at

�
� a4

2 ; 0
�
, with tangent cone of equation z

��
yþ a4

2

�2 þ z2
�
and no further

singularities. The curve

T : a1 ¼ a2 ¼ a3 ¼ b2 ¼ b3 ¼ 0; a24 ¼ 4b1

is smooth and tangent to G : b1 ¼ b2 ¼ b3 ¼ 0 at 0. r

The following corollary is a straight consequence of the proof of Theorem 3.9.
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Corollary 3.10. Let X be a family of regular surfaces and DHX a Cartier
divisor as in the statement of Theorem 3.9. Let C 0H jD0j be any reduced curve
with a space quadruple point of equations (5) at a point p a E and possibly further
singularities. Then, using the same notation as in the proof of the previous theorem,
the image H 0p of the morphism

H 0ðC 0;NC 0 jXÞ ! T 1
C 0;p

is contained in the 5-dimensional plane of equations Hp : b2 ¼ b3 ¼ 0. If H 0p ¼ Hp

then there exist deformations Ct a jDtj of C on Xt with a triple point, obtained as
deformation of the singularity of C at p.

4. Curves with a triple point and nodes on general K3 surfaces

This section is devoted to the proof of Theorem 1.1. We will prove the theorem
by using the very classical degeneration technique introduced in [3]. Let ðS;HÞ be
a general primitively polarized K3 surface of genus p ¼ paðHÞ in Pp. We will de-
generate S to a union of two rational normal scrolls R ¼ R1 AR2. On R we will
prove the existence of suitable curves C a jORðnHÞj with a space quadruple point
given by equations (5), tacnodes and nodes. Finally, we will show that the curves
C deform to curves on S with the desired singularities.

We first explain the degeneration argument, introducing notation. Fix an inte-
ger pb 3 and set l :¼

	p
2



. Let EHPp be a smooth elliptic normal curve of

degree pþ 1. Consider two general line bundles L1;L2 a Pic2ðEÞ. We denote by
R1 and R2 the (unique) rational normal scrolls of degree p� 1 in Pp defined by
L1 and L2, respectively. Notice that R1 GR2 GP1 � P1 G F0 if p is odd whereas
R1 GR2 G F1 if p is even. Moreover, R1 and R2 intersect transversally along the
curve E which is anticanonical in each Ri (cf. [3, Lemma 1]). More precisely,
for odd p, where R1 GR2 GP1 � P1, we let si ¼ P1 � fptg and Fi ¼ fptg � P1

on Ri be the generators of PicRi, with i ¼ 1; 2. For even p, where R1 GR2 G F1,
we let si be the section of negative self-intersection and Fi be the class of a fiber.
Then the embedding of Ri into Pp is given by the line bundle si þ lFi, for i ¼ 1; 2.
Let now R :¼ R1 AR2 and let Up be the component of the Hilbert scheme of Pp

containing R. Then we have that dimðUpÞ ¼ p2 þ 2pþ 19 and, by [3, Theorems 1
and 2], the general point ½S� a Up represents a smooth, projective K3 surface S of
degree 2p� 2 in Pp such that PicSGZ½OSð1Þ� ¼ Z½H�. We denote by S! T
a general deformation of S0 ¼ R over a one-dimensional disc T contained in
Up. In particular, the general fiber is a smooth projective K3 surface St in P p

with PicSt GZ½OSt
ð1Þ�. Now S is smooth except for 16 rational double points

fx1; . . . ; x16g lying on E. In particular, fx1; . . . ; x16g are the zeroes of the section
of the first cotangent bundle T 1

R of R, determined by the first order embedded
deformation associated to S! T , [3, pp. 644–647]. By blowing-up S at these
points and by contracting the corresponding exceptional components (all isomor-
phic to F0) on R2, we get a smooth family of surfaces X! T , such that XtUSt

and X0 ¼ R1 A ~RR2, where ~RR2 is the blowing-up of R2 at the points fx1; . . . ; x16g,
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with new exceptional curves E1; . . . ;E16. We will name fx1; . . . ; x16g the special
points of E.

Lemma 4.1. Let R ¼ R1 AR2 HPp as above. Then, for every nb 1 if pb 5 and
nb 2 if p ¼ 3; 4, there exists a one parameter family of curves C ¼ C1 AC2 a
jORðnHÞj such that:

(1) Ci HRi and Ci ¼ C1
i A � � �ACn�1

i ADi ALi, where C
j
i , Di and Li are smooth

rational curves with:

• C
j
i P si , Di PFi, and Li P si þ ðnl � 1ÞFi if p ¼ 2lþ 1 is odd,

• C
j
i P si þ Fi, Di PFi and Li P si þ ðnl � nÞFi if p ¼ 2l is even,

for every 1a ja n� 1 and i ¼ 1; 2;
(2) there exist distinct points p; q; q1; . . . ; q2n a E, where p is a general point and

q; q1; . . . ; q2n are determined by the following relations:

• if p ¼ 2lþ 1 is odd, i ¼ 1; 2 and 1a ja n� 1, then

D1BE ðresp: D2BEÞ ¼ pþ q2n; if n is odd; ðresp: if n is evenÞ;
pþ q2n�1; if n is even; ðresp: if n is oddÞ;

�
ð21Þ

C
j
1 BE ðresp: C j

2 BEÞ ¼
q2j�1þ q2jþ1; if j is even ðresp: if j is oddÞ;
q2j þ q2jþ2; if j is odd ðresp: if j is evenÞ

�
ð22Þ

and Li BE ¼ ð2nl � 3Þqþ 2pþ qi;ð23Þ

• if p ¼ 2l is even, i ¼ 1; 2 and 1a ja n� 1, then

D1BE ðresp: D2BEÞ ¼ pþ q2n ðresp: pþ q2n�1Þ;ð24Þ

C
j
1 BE ¼ q2j�1 þ 2q2j; 1a ja n� 1;ð25Þ

C
j
2 BE ¼ 2q2j þ q2jþ1; 1a ja n� 2;ð26Þ

Cn�1
2 BE ¼ 2q2n�2 þ q2n andð27Þ

L1BE ðresp: L2BEÞ ¼ ð2nl � 2n� 2Þqþ 2pþ q2n�1ð28Þ
ðresp: ð2nl � 2n� 2Þqþ 2pþ x; where

x ¼ q2 if n ¼ 1 and x ¼ q1 if n > 1Þ;

(3) the singularities of C on RnE are nodes, C has a quadruple point analytically
equivalent to (5) at p a E and tacnodes and nodes on Enp. In particular, C
has a ð2nl � 3Þ-tacnode at q and nodes at q1; . . . ; q2n, if p ¼ 2lþ 1; C has a
ð2nl � 2n� 2Þ-tacnode at q, a simple tacnode at q2k and nodes at q2n, q2n�1
and q2k�1, for every k ¼ 1; . . . ; n� 1, if p ¼ 2l.

Proof. We first consider the case p ¼ 2lþ 1 odd. Recall that, in this case, we
have that R1UR2UF0, ORi

ðHÞ ¼ ORi
ðsi þ lFiÞ, where jsij and jFij are the two

rulings on Ri, and the linear equivalence class of E on Ri is EPRi
2si þ 2Fi,

i ¼ 1; 2.

309curves with a triple point on a K3 surface



Let p and q be two distinct points of E ¼ R1BR2 HR and let us denote
by W i

2;2nl�3ðp; qÞH jsi þ ðnl � 1ÞFij the family of divisors tangent to E at
p and q with multiplicity 2 and 2nl � 3, respectively. Then W i

2;2nl�3ðp; qÞH
jsi þ ðnl � 1ÞFij is a linear system of dimension

dimðW i
2;2nl�3ðp; qÞÞb dimðjsi þ ðnl � 1ÞFijÞ � 2nl þ 1 ¼ 0:

Moreover, it is very easy to see that the general element of W i
2;2nl�3ðp; qÞ corre-

sponds to an irreducible and reduced smooth rational curve. By applying [17,
Proposition 2.1], one shows that, in fact, dimðW i

2;2nl�3ðp; qÞÞ ¼ 0. We deduce
that the variety W i

2;2nl�3 H jsi þ ðnl � 1ÞFij, parametrizing divisors tangent to E
at two distinct points with multiplicity 2 and 2nl � 3 respectively, has dimension
2. Furthermore, looking at the tangent space to W i

2;2nl�3 at its general element,
it is easy to prove that, if p and q are two general points of E, then the unique
divisor Li a jsi þ ðnl � 1ÞFij, tangent to E at p with multiplicity 2 and to q with
multiplicity 2nl � 3, intersects E transversally at a point qi A p; q.

Now let p be a general point of E and let Di HRi be the fibre Di PFi passing
through p. Because of the generality of p and the fact that EDi ¼ 2, we may
assume that D1 and D2 intersect E transversally at a further point. Again by the
generality of p, we may assume that the fibre Cn�1

1 P s1 (resp. Cn�1
2 P s2) pass-

ing through the point of D2BE (resp. D1BE), di¤erent from p, intersects trans-
versally E at a further point. Let Cn�2

2 (resp. Cn�2
1 ) be the fibre of js2j (resp. js1j)

passing through this point. We repeat this argument n� 1 times, getting 2n points
q1; . . . ; q2n of E and fibres C

j
i P si, with 1a ja n� 1, verifying relations (21)

and (22). From what we proved above, by using that

• the family of divisors in js1 þ ðnl � 1ÞF1j tangent to E at p, with multiplicity 2,
and at a further point, with multiplicity 2nl � 3, has dimension 1;

• the point p is general and the points q1; . . . ; q2n are determined by p by the
argument above;

we find that there exists a point q such that the unique divisor L1 a W 1
2;2nl�3ðp; qÞ

passes through q1. Now D1 þ L1 þ C1
1 þ � � � þ Cn�1

1 a jOR1
ðnHÞj and hence

ðD1 þ L1 þ C1
1 þ � � � þ Cn�1

1 ÞE ¼ ð2nl � 3Þq þ 3p þ q1 þ � � � þ q2n a jOEðnHÞj.
This implies that there exists on R2 a divisor

L2 P s2 þ ðnl � 1ÞF2 P ðnHÞjR2
�D2 � C1

2 � � � � � Cn�1
2

cutting on E the divisor ð2nl � 3Þqþ 2pþ q2. Moreover, L2 is uniquely deter-
mined by the equality dimðjOEðs2 þ ðnl � 1ÞF2Þj ¼ dimðjOR2

ðs2 þ ðnl � 1ÞF2ÞjÞ
¼ 2nl � 1. Now, if Ci ¼ C1

i A � � �ACn�1
i ADi ALi HRi, then there exist only

finitely many curves like C ¼ C1 AC2 HR and passing through a fixed general
point p a E. If p varies on E, then the curves C, constructed in this way, move
in a one parameter family of curves WH jORðnÞj. By construction and by
Lemma 3.2, the curve C has a space quadruple point of analytic equations (5)
at p and nodes or tacnodes at points q; q1; . . . ; q2n, as in the statement. It remains
to prove that, if p is general or, equivalently, if ½C� a W is general, then the
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singularities of C on RnE are nodes. Since DiLi ¼ DiC
j
i ¼ 1, for every i and j,

this is equivalent to showing that Li intersects transversally C
j
i , for every i and

j. If n ¼ 1 there is nothing to show. Just to fix ideas, we prove the statement for
n ¼ 2. Our argument trivially extends to the general case. Let ½C� a WH jORð2Þj
be a general element. First observe that, since W is contained in the equisingular
deformation locus ESðCÞH jORð2HÞj of C, it follows that, if D is the curve
corresponding to a point ½D� of the tangent space T½C�W, then D has at q a
ð2nl � 4Þ-tacnode (cf. [12, Proof of Theorem 3.3]). Now assume that L1 intersects
C1

1 at ra 2l � 1 points fxig. Let mi b 1 be the intersection multiplicity of L1 with
C1

1 at xi. Then, the analytic equation of C at xi is y2 ¼ x2mi and, by [6, Proposi-
tion (5.6)], the localization at xi of the equisingular deformation ideal of C is
ðy; x2mi�1Þ. Thus D must be tangent to C1

1 at every point xi with multiplicity
2mi � 1. Similarly, D must contain the intersection point of C1

1 with D1. It fol-
lows that the cardinality of intersection of DjR1

and C1
1 is given byX

i

ð2mi � 1Þ þ 1 ¼ 2l � 1þ
X
i

mi � rþ 1 > 2l; if mi b 2 for some i:

We deduce that C1
1 HDjR1

. Using again that D passes through every node of C
and that, by Lemma 3.2 and Remark 3.7, the curve DjRi

must be tangent to E at
p, for i ¼ 1; 2, we obtain that D contains the points C1

1 BE, C1
2 BD2 and p of D2.

Thus, since the intersection number D2DjR2
¼ 2, we have that D2 HDjR2

. It
follows that the analytic equations of DHX at p are given by (12), where c ¼ 0
and u 0zðx; y; zÞ ¼ zu 00z ðx; y; zÞ. In particular, we find that DjR1

has a node at p with
one branch tangent to E and the other one tangent to D1. Again, we find that
DjR1

contains at least three points of D1, counted with multiplicity, and hence
D1 HDjR1

. This implies, by repeating the same argument, that C1
2 HDjR2

. Thus,
for every i ¼ 1; 2, we have that DjRi

¼ D 0i ADi AC1
i , where D

0
i P si þ ð2l � 1ÞFi,

D 0i is tangent to E at p with multiplicity 2 and at q with multiplicity 2l � 4 and,
finally, D 0i contains qi. But there is a unique divisor in jsi þ ð2l � 1ÞFij with these
properties. We deduce thatD 0i ¼ Li, for every i ¼ 1; 2,D ¼ C and T½C�W ¼ f½C�g,
getting a contradiction. This completes the proof in the case p ¼ 2lþ 1.

We now consider the case p ¼ 2l, where R1UR2UF1, ORi
ðHÞ ¼ ORi

ðsi þ lFiÞ,
with s2

i ¼ �1 and F 2
i ¼ 0, and EPRi

2si þ 3Fi, for every i ¼ 1; 2. The proof of
the lemma works as in the previous case, except for the construction of the curves
C

j
i P si þ Fi. Let p a E be a general point and let Di PFi be the fibre passing

through p, for i ¼ 1; 2. Because of the generality of p, the curve Di intersects E
at a further point, say q2n if i ¼ 1 and q2n�1 if i ¼ 2. Now the curves in js2 þ F2j
passing through q2n cut out on E, outside q2n, a g12 having, because of the gener-
ality of p, four simple ramification points. Let Cn�1

2 be one of the four curves
in js2 þ F2j passing through q2n and simply tangent to E at a further point
q2n�2A q2n�1; q2n. Then, denote by Cn�2

1 P s1 þ F1 the unique curve tangent
to E at q2n�2 and let q2n�3 be the further intersection point of Cn�2

1 with E.
Now repeat the same argument until you get curves C

j
i , with i ¼ 1; 2 and j ¼

1; . . . ; n� 1, and points q1; . . . ; q2n satisfying relations (24)–(27). Again by the
generality of p, there exists a point q such that the unique (smooth and irreducible)
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divisor L2 a js2 þ ðnl � nÞF2j, tangent to E at p with multiplicity 2 and at q with
multiplicity 2nl � 2n� 2, passes through q1. It follows that there exists a unique
(smooth and irreducible) divisor L1 a js1 þ ðnl � nÞF1j passing through q2n�1 and
tangent to E at p and q with multiplicity 2 an 2nl � 2n� 2 respectively. The
curve we constructed has tacnodes, nodes and a space quadruple point of
analytic equations (5) on E, as desired. To see that the singularities of this curve
outside E are nodes, argue as in the case p ¼ 2lþ 1. r

We may now prove Theorem 1.1.

Proof of Theorem 1.1. Let T 1
R be the first cotangent bundle of R, defined by

the standard exact sequence

0! YR ! YPp jR !NRjPp ! T 1
R ! 0:ð29Þ

Since R is a variety with normal crossings, by [10, Section 2], we know that T 1
R is

locally free of rank one. In particular, T 1
RUNEjR1

nNEjR2
is a degree 16 line

bundle on E. Fix a general divisor x1 þ � � � þ x16 a jT 1
Rj. Since the family of curves

constructed in the previous lemma is a one parameter family, we may always
assume that there exists a curve C ¼ C1 AC2 a jORðnHÞj, with Ci ¼ C1

i A � � �A
Cn�1

i ADi ALi, as in the statement of Lemma 4.1, such that q2n ¼ x1 and qj A xk,
for every ja 2n� 1 and ka 16. Now, by [3, Corollary 1], we have that the in-
duced map H 0ðR;NRjPpÞ ! H 0ðR;T 1

RÞ is surjective. By [3, Theorems 1 and 2]
and related references (precisely, [10, Remark 2.6] and [16, Section 2]) and
because of the generality of x1 þ � � � þ x16 a jT 1

Rj, it follows that there exists a
deformationS! T ofS0 ¼ R whose general fiber is a smooth projective K3 sur-
faceSt in Pp with PicðStÞGZ½OSt

ð1Þ�GZ½H� and such thatS is singular exactly
at the points x1; . . . ; x16 a E. LetX! T be the smooth family of surfaces obtained
by blowing-up x1; . . . ; x16 and by contracting the corresponding exceptional com-
ponents on R2, in such a way that X0 ¼ R1 A ~RR2, where ~RR2 is the blowing-up of
R2 at the points fx1; . . . ; x16g, with new exceptional curves E1; . . . ;E16. Let us
denote by ~CC the proper transform of C and by p�ðCÞ ¼ ~CCAE1 the pull-back
of C with respect to p : X!S. Now p�ðCÞ has one more node at the point
x a E1B ~CC on ~RR2nE. We want to prove the existence of irreducible curves
Ct a jOXt

ðnHÞj with the desired singularities by deforming of the curve p�ðCÞ.
The irreducibility of Ct easily follows from the fact that OXt

ðHÞ is indivisible.
We first consider the case p ¼ 2l þ 1. In this case the singularities of the curve

p�ðCÞ are given by

• 2ðn� 1Þðnl � 1Þ nodes yi
1; . . . ; y

i
ðn�1Þnl , on RnE, arising from the intersection

of the curves C j
i , for 1a ja n� 1, with Li, for every i ¼ 1; 2;

• a node at x a E1;

• 2n� 2 nodes zi1; . . . ; z
i
n�1, i ¼ 1; 2, arising from the intersection of Di with C

j
i ,

for every ja n� 1 and i ¼ 1; 2;

• 2n nodes at q1; . . . ; q2n a E, where now q2n ¼ E1BE;

• a ð2nl � 3Þ-tacnode at q and

• a space quadruple point of analytic equations (5) at p.
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Now, as we already observed in the proof of the previous lemma, the tangent
space T½p�ðCÞ�ESðp�ðCÞÞ to the equisingular deformation locus of p�ðCÞ in
jOX0
ðnHÞj is contained in the linear system of divisors D ¼ D1 AD2 a jOX0

ðnHÞj
passing through the nodes of p�ðCÞ on X0nE (x included); having a ð2nl � 4Þ-
tacnode at the point q of p�ðCÞ and having local analytic equations given by
(12) at p. This implies that, if D a T½p�ðCÞ�ESðp�ðCÞÞ, then DjR2

contains the irre-
ducible component of ~CC passing through x. It follows that E1 HDjR2

and so on,
until, doing the same local analysis of D at p as in the proof of the previous
lemma, we find that

dimðT½p�ðCÞ�ESðp�ðCÞÞÞ ¼ f½p�ðCÞ�g:

Using that the nodes of p�ðCÞ at the points qi are trivially preserved by every sec-
tion of H 0ðC;Np�ðCÞjX0

Þ, we deduce the injectivity of the standard morphism

F : H 0ðp�ðCÞ;Np�ðCÞjXÞ ! T ;

where

T ¼0
j; i

T 1
p�ðCÞ;yi

j
0
j; i

T 1
p�ðCÞ; z i

j
aT 1

p�ðCÞ;xaT 1
p�ðCÞ;q aT 1

p �ðCÞ;p:

In particular, we have that F has image of dimension

dimðImðFÞÞ ¼ h0ðp�ðCÞ;Np�ðCÞjXÞ ¼ 2n2l þ 2 ¼ dimðjOXt
ðnHÞjÞ þ 1:

Morever, by Corollary 3.10 and by [12, Corollary 3.6], we know that the image
of the morphism F must be contained in

T 0 ¼0
j; i

T 1
p�ðCÞ;yi

j
0
j; i

T 1
p�ðCÞ; z i

j
aT 1

p�ðCÞ;xaHp aHq HT ;

where Hp HT 1
p�ðCÞ;p and Hq HT 1

p�ðCÞ;q are linear spaces of dimension 5 and
2nl � 3 respectively. We first study the map F in the case that 2nl � 3 ¼ 1 i.e.
for n ¼ 2 and l ¼ 1 or n ¼ 1 and l ¼ 2. In this case the curve p�ðCÞ has a
1-tacnode, i.e. a node, at q a E and Hq ¼ T 1

p�ðCÞ;q. Using again that every node
of p�ðCÞ on E is trivially preserved by every section of H 0ðp�ðCÞ;Np�ðCÞjX0

Þ,
we obtain that the induced morphism

H 0ðp�ðCÞ;Np�ðCÞjXÞ !0
j; i

T 1
p�ðCÞ;yi

j
0
j; i

T 1
p�ðCÞ; z i

j
aT 1

p�ðCÞ;xaHp

is injective. In fact this morphism is also surjective by virtue of the equality

2ðn� 1Þðnl � 1Þ þ 2n� 2þ 1þ 5 ¼ 2n2l � 2nl � 2nþ 2þ 2nþ 4 ¼ 2n2l þ 2:

By versality and by the proof of Theorem 3.9, it follows that we may deform
p�ðCÞ to an irreducible curve Ct a jOXt

ðnHÞj such that TCt
ESðCtÞ ¼ 0, by pre-

serving all nodes of p�ðCÞ on X0nE and by deforming the singularity of p�ðCÞ
at p to an ordinary triple point. Now we study the morphism F under the
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assumption that 2nl � 3b 2. In this case F is not surjective. More precisely, we
have that

dimðT 0Þ ¼ 2ðn� 1Þðnl � 1Þ þ 2n� 2þ 1þ 5þ 2nl � 3 ¼ 2n2l þ 3

and ImðFÞ ¼ FðH 0ðp�ðCÞ;Np�ðCÞjXÞÞ is a hyperplane in T 0, containing the
image FðH 0ðp�ðCÞ;Np�ðCÞjX0

ÞÞ of H 0ðp�ðCÞ;Np �ðCÞjX0
Þ as a codimension 1

subspace. Now, using on T 1
p �ðCÞ;p the a‰ne coordinates ðb1; b2; b3; a1; a2; a3; a4Þ

introduced in the proof of Lemma 3.2, by the proof of Theorem 3.9, by [12,
Proof of Theorem 3.3] and by a straightforward dimension count, we have that
FðH 0ðp�ðCÞ;Np�ðCÞjX0

ÞÞ coincides with the ð2n2l þ 1Þ-plane

0
j; i

T 1
p�ðCÞ;yi

j
0
j; i

T 1
p�ðCÞ; z i

j
aT 1

p�ðCÞ;xaGp aGq;

where Gp HHp HT 1
p�ðCÞ;p is the 4-plane of equations b1 ¼ b2 ¼ b3 ¼ 0 and

Gq HHq HT 1
p�ðCÞ;q is the ð2nl � 4Þ-plane parametrizing ð2nl � 3Þ-nodal curves.

In particular, we have that

FðH 0ðp�ðCÞ;Np�ðCÞjXÞÞ ¼0
j; i

T 1
p�ðCÞ;yi

j
0
j; i

T 1
p�ðCÞ; z i

j
aT 1

p�ðCÞ;xaW;

where W is a hyperplane in Hp aHq such that Gp aGq HW. It trivially follows
that the projection maps rp : W! Hp and rq : W! Hq are surjective. Now,
by the proof of Theorem 3.9, we know that the locus of curves with a triple
point in Hp is the smooth curve T having equations a1 ¼ a2 ¼ a3 ¼ b2 ¼ b3 ¼
4b1 � a24 ¼ 0 and intersecting Gp only at 0. Similarly, by [12, proof of Theo-
rem 3.3], for every ðm� 1Þ-tuple of non-negative integers d2; . . . ; dm such thatPm

k¼2ðk � 1Þdk ¼ 2nl � 4, the locus V1d2 ;2d3 ;...;m�1dm HHq of points correspond-
ing to curves with dk singularities of type Ak�1, for every k, is a reduced (possibly
reducible) curve intersecting Gq only at 0. It follows that, for every ðm� 1Þ-tuple
of non-negative integers d2; . . . ; dm such that

Pm
k¼2ðk � 1Þdk ¼ 2nl � 4, the locus

ðT � V1d2 ;2d3 ;...;m�1dm ÞBW is a reduced (possibly reducible) curve whose paramet-
ric equations may be explicitly computed by arguing exactly as in [1, proof of
Lemma 4.4, p. 381–382]. This proves, by versality, that we may deform p�ðCÞ
to an irreducible curve Ct a jOXt

ðnHÞj, by preserving all nodes of p�ðCÞ at yi
j , z

i
j

and x, by deforming the singularity of p�ðCÞ at p to an ordinary triple point and
the ð2nl � 3Þ-tacnode of p�ðCÞ to dk b 0 singularities of type Ak�1 for every m-
tuple of integers dk such that

Pm
k¼1ððk � 1ÞdkÞ ¼ 2nl � 4. In particular, if k ¼ 2

and d2 ¼ 2nl � 4, the corresponding curve Ct is an elliptic curve in jOXt
ðnHÞj

with an ordinary triple point and nodes as singularities. Finally, by the injectivity
of the morphism F, we have that, if ESðCtÞ is the equisingular deformation locus
of Ct in jOXt

ðnHÞj, then dimðT½Ct�ESðCtÞÞ ¼ 0 and this implies that the singular-
ities of Ct may be smoothed independently, i.e. that the standard morphism
H 0ðCt;NCtjXt

Þ ! T 1
Ct

is surjective. This proves the theorem for p ¼ 2lþ 1.
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In the case p ¼ 2l the singularities of the curve p�ðCÞ are given by

• 2ðn� 1Þðnl � nÞ nodes yi
1; . . . ; y

i
ðn�1Þnl , on RnE, arising from the intersection of

the curves C j
i , for 1a ja n� 1, with Li, for every i ¼ 1; 2;

• a node at x a E1;

• 2n� 2 nodes zi1; . . . ; z
i
n�1, i ¼ 1; 2, arising from the intersection of Di with C

j
i ,

for every ja n� 1 and i ¼ 1; 2;

• n� 1 simple tacnodes at q2; q4; . . . ; q2n�2 a E and nodes at q1; q3; . . . ; q2n�1; q2n,
where now q2n ¼ E1BE;

• a ð2nl � 2n� 2Þ-tacnode at q;
• a space quadruple point of analytic equations (5) at p.

With the same argument as above, one may prove that the curve p�ðCÞ may be
deformed to a curve Ct a jOXt

ðnHÞj, by preserving all nodes of p�ðCÞ at yi
j , z

i
j

and x, by deforming the singularity of p�ðCÞ at p to an ordinary triple point,
every simple tacnode of p�ðCÞ on E to a node and the ð2nl � 2n� 2Þ-tacnode of
p�ðCÞ to dk singularity of type Ak�1 for every m-tuple of non negative integers dk
such that

Pm
k¼1ððk � 1ÞdkÞ ¼ 2nl � 2n� 3. The curve Ct obtained in this way has

the desired singularities, is a reduced point for the equisingular deformation locus
and its singularities may be smoothed independently. Finally, if we choose k ¼ 2
and d2 ¼ 2nl � 2n� 3, then Ct is an elliptic irreducible curve with a triple point
and nodes as singularities. r

Corollary 4.2. Let ðS;HÞ be a general primitively polarized K3 surface of
genus p ¼ paðHÞ as above. Then, for every 1a ga paðnHÞ � 3 and for every
ðp; nÞA ð4; 1Þ, there exist reduced and irreducible curves in jnHj of geometric
genus g with an ordinary triple point and nodes as singularities and corresponding
to regular points of their equisingular deformation locus.

In accordance with [4], we do not expect the existence of rational curves in
jOSðnHÞj with a triple point. When n ¼ 1 and pb 5, Theorem 1.1 implies that
the family in jHj of curves with a triple point and dk singularities of type Ak�1 is
non-empty whenever it has expected dimension at least equal to one. The precise
statement is the following.

Corollary 4.3. Let ðS;HÞ be a general primitively polarized K3 surface
of genus p ¼ paðHÞb 5. Then, for every ðm� 1Þ-tuple of non-negative integers
d2; . . . ; dm such that

Xm
k¼2
ðk � 1Þdk ¼ p� 5 ¼ dimðjHjÞ � 5;

there exist reduced irreducible curves C in the linear system jHj on S such that:

• C has an ordinary triple point, a node and dk singularities of type Ak�1, for every
k ¼ 2; . . . ;m, and no further singularities;
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• C corresponds to a regular point of the equisingular deformation locus ESðCÞ.
Equivalently, dimðT½C�ESðCÞÞ ¼ 0.

Finally, the singularities of C may be smoothed independently.

Remark 4.4. The case p ¼ 4 and n ¼ 1 is the only case where the existence of
elliptic curves with a triple point is expected but it is not treated in this paper. In
this case, with the notation above, it is easy to show the existence of a unique curve
C a jOX0

ðHÞj with a space quadruple point analytically equivalent to (5). Because
of the unicity, the argument we used in the proof of Theorem 1.1 to compute the
dimension of the tangent space to the equisingular deformation locus of C does
not apply. Actually, we expect that dimðT½C�ESðCÞÞ > 0. Nevertheless, it is easy

to prove that C deforms to curves Ct a jOXt
ðHÞj with a triple point as singularity

on the general K3 surface Xt. But describing the equisingular deformation locus
ESðCtÞ from the scheme-theoretic point of view seems to us to be a very di‰cult
problem. The case p ¼ 4 and n ¼ 1 will be treated in detail in an upcoming article
on related topics.
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