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ABSTRACT. — Let (S, H) be a general primitively polarized K3 surface of genus p and let p,(nH)
be the arithmetic genus of nH. We prove the existence in |0s(nH )| of curves with a triple point and
Aj-singularities. In particular, we show the existence of curves of geometric genus ¢ in |Os(nH)| with
a triple point and nodes as singularities and corresponding to regular points of their equisingular
deformation locus, for every 1 <g¢g < p,(nH)—3 and (p,n) # (4,1). Our result is obtained by
studying the versal deformation space of a non-planar quadruple point.
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1. INTRODUCTION

Let S be a complex smooth projective K3 surface and let H be a very ample line
bundle on S of sectional genus p = p,(H) > 2. The pair (S, H) is called a primi-
tively polarized K3 surface of genus p. 1t is well-known that a (very) general such
pair satisfies Pic S = Z[H]. We denote by 7% s < |Os(nH)| = [nH| the Zariski
closure of the Severi variety of d-nodal curves, defined as the locus of irreducible
and reduced curves with exactly 0 nodes as singularities. The non-emptiness of
these varieties for every < dim(|nH|) = p,(nH), where p,(nH) is the arithmetic
genus of nH has been established in [5]. Like the Severi variety of d-nodal plane
curves, 75 a1 has several good properties. By [20], we know that it is smooth of
expected dimension at every point [C] correspondlng to a 0-nodal curve. This im-
plies that every irreducible component V' of ¥/ H s has codimension ¢ in |nH | and
it is contained in at least one 1rredu01ble component of the Severi Varlety Uy
Moreover, it is also known that 73, a1 coincides with the variety vy < |nH|,
defined as the Zariski closure of the locus of reduced and 1rredu01ble curves of
geometric genus g (cf. [5, Lemma 3.1] and [12, Remark 2.6]). Unlike the Severi
variety of d-nodal plane curves, nothing is known about the irreducibility of
”Vn;?{ s- Classically, the irreducibility problem of Severi varieties is related to the
problem of the description of their boundary (cf. [17]).
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PROBLEM 1. Let V = 4,3 5 be an irreducible component and let V° < V be the
locus of 6-nodal curves. What is inside the boundary V\V°? Does V contain divi-
sors Vi, Vige, Ve and V,, whose general element corresponds to a curve with ¢ + 1
nodes, a tacnode and 6 — 2 nodes, a cusp and 6 — 1 nodes and a triple point and
0 — 3 nodes, respectively?

Because of the literature about Severi varieties of plane curves (cf. [7], [8] and
[10]), the divisors V,,, Vi, V. and V,, of V < S H.5> when non-empty, are ex-
pected to play an important role in the descrlptlon of the Picard group Pic(V)
or, more precisely, of the Picard group of a “good partial compactification” of
the locus V' < V of d-nodal curves. Proving the existence of these four divisors
in every irreducible component Vof v, H s 1s a very difficult problem. The first
progress towards answering the previous question has been made in [12]. In that
paper, the authors prove the existence of irreducible curves in |[nH| of every
allowed genus with a tacnode or a cusp and nodes as further singularities. This
article is devoted to the existence of irreducible curves in |[nH| of geometric genus
1 <g < p,(nH) — 3 with a triple point and nodes as further singularities. Before
introducing our result, we make some observations concerning Problem 1, de-
scribing the type of singularity of V' along Vs Viae, Ve and V,,, whenever these
loci are non-empty. Let us denote by 7/, H g, tac> “/nfl g.c and s g.0r the Zariski
closure of the locus in |nH| of reduced and irreducible curves of geometric genus
g with a tacnode, a cusp and a triple point, respectively, and nodes as further
singularities. Let W be an irreducible component of any of these varieties or of
vy 4—1- Then, by [5, Lemma 3.1], we have that dim( W)=g—1. Thus W is a
divisor in at least one irreducible component ¥ of 7, H = palnH)—g = "/ni, , and,

by using the same arguments as in [6, Section 1], we also know what ¥ looks like
in a neighborhood of the general point of W. If W is an irreducible component of
“/nf, _y, then “/nf, , has an ordinary multiple point of order J + 1 at the general
pomt of W.In partlcular at least in principle, there may not be a unique irreduc-
ible component V' of H containing . On the contrary, if Wis any irreduc-
ible component of 7,3, g tacs vy g OF vy . then W is contained in only one
irreducible component V' of ”an, In partlcular “an, is smooth at the general
point of every irreducible component of v, H g.rac A0d ”/n 7.4, and it looks like the
product of a cuspidal curve and a smooth (g — 1) -dimensional Variety in a neigh-
borhood of the general point of an irreducible component of 7, H g We ﬁnally
observe that, unlikely the case of Severi varieties of plane curves, if V < S i gl i

an irreducible component, a priori, there may exist divisors in V' parametnzmg
curves with worse singularities than an ordinary triple point, a tacnode or a
cusp and nodes. We now describe the results of this paper. Our theorem about
non-emptiness of 7,3 . 18 based on the following local problem.

PROBLEM 2. Let & — A be a smooth family of surfaces with smooth general
fiber Xy and whose special fiber Zy = A U B is reducible, having two irreducible com-
ponents intersecting transversally along a smooth curve E = A n B. What kind of
curve singularities on Xy at a point p € E may be deformed to a triple point on %,?
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In the first part of Section 3, we prove that, if a triple point on % specializes to a
general point p € E along a smooth bisection y of Z — A!, then the limit curve
singularity on %) is a space quadruple point, union of two nodes having one
branch tangent to E. The result is obtained by a very simple argument of limit
linear systems theory, with the same techniques as in [11]. In Lemma 3.2 we find
the analytic type of this quadruple point. This allows us to compute the versal
deformation space of our limit singularity and to prove that, under suitable
hypotheses, it actually deforms to an ordinary triple point singularity on %, see
Theorem 3.9. In the last section, we consider the case that Z; is a general primi-
tively polarized K3 surface and 4 = R; and B = R, are two rational normal
scrolls. In Lemma 4.1, we prove the existence on 2y = R; U R; of suitable curves
with a non-planar quadruple point as above, tacnodes (of suitable multiplicities)
and nodes and that may be deformed to curves in |0y, (nH)| with an ordinary
triple point and nodes as singularities. In particular, this existence result is ob-
tained as a corollary of the following theorem, which is to be considered the
main theorem of this paper.

THEOREM 1.1. Let (S, H) be a general primitively polarized K3 surface of genus
p = pa(H). Then, for every (p,n) # (4,1) and for every (m — 1)-tuple of non-
negative integers d, . .., d,, such that

(1) zm: n(p—2)—3=2nl—2n-3

=2

b

if p = 2l is even, or

m

(2) > (k—1)de =n(p—1) — 4 =2nl -

k=2

if p=21+1is odd, there exist reduced irreducible curves C in the linear system
|nH| on S such that:

e C has an ordinary triple point, p,(nH) — >/ ,(k — 1)di — 4 nodes and dj, singu-
larities of type Aj_1, for every k = 2,...,m, and no further singularities;

e C corresponds to a regular point of the equisingular deformation locus ES(C).
Equivalently, dim(Ti ES(C)) = 0.

Finally, the singularities of C may be smoothed independently. In particular, under
the hypotheses (1) and (2), for every o < dy and for every 6 < dim(|nH|) —
Yoy (k = 1)dy — 4, there exist curves C in the linear system |nH| on S with an
ordinary triple point, oy singularities of type Aj_1, for every k =2,...,m, and o
nodes as further singularities and corresponding to regular points of their equisingu-
lar deformation locus.

By Corollary 4.3, the family in |H| of curves with a triple point and J; singu-
larities of type Aj_; is non-empty if it has expected dimension at least equal to
one or it has expected dimension equal to zero and d, > 1.



298 C. GALATI

ACKNOWLEDGMENTS. I would like to thank M. Giusti for offering to send me personal notes of
[14] during the holiday time of my library. My intention to write this paper became stronger after
a conversation with C. Ciliberto about related topics. I also benefited from conversation with T.
Dedieu and A. L. Knutsen. Finally, I would like to thank the referee for many helpful comments
and corrections.

2. NOTATION AND TERMINOLOGY

Throughout the paper an irreducible curve C will be a reduced and irreducible
projective curve, even if not specified. We will be concerned here only with
reduced and locally complete intersection curves C in a linear system |D| on a
(possibly singular) surface X, having, as singularities, space singularities, plane
ordinary triple points or plane singularities of type A;. We recall that an ordinary
triple point has analytic equation y* = x* while an A;-singularity has analytic
equation y> — x¥*1, Singularities of type 4; are nodes, 4,-singularities are cusps
and an A,,,_1-singularity is a so called m-tacnode. Whenever not specified, a tac-
node will be a 2-tacnode, also named a simple tacnode. For curves with ordinary
plane triple points and plane singularities of type Ay, equisingular deformations
from the analytic point of view coincide with equisingular deformations from the
Zariski point of view (cf. [6, Definition (3.13)]). Because of this, given a curve as
above, we define the equisingular deformation locus ES(C) < |D| as the Zariski
closure of the locus of analytically equisingular deformations of C, without dis-
crepancy with classical terminology. Finally, we recall that, if X is a smooth sur-
face and C has as singularities an ordinary triple point and d, singularities of type
Ay, then the dimension of the tangent space to ES(C) at the point [C] corre-
sponding to the curve C is given by dim(7|qES(C)) > dim|D| —4 -3, dik
(cf. [6]). If equality holds, we say that ES(C) is regular at [C]. The regularity of
ES(C) is a sufficient and necessary condition for the surjectivity of the standard
morphism H(C, N ¢xy) — T/ In this case, we say that the singularities of C may
be smoothed independently, with obvious meaning because of the versality proper-
ties of 7.

3. HOwW TO OBTAIN CURVES WITH A TRIPLE POINT ON A SMOOTH SURFACE

Let Z — A! be a smooth family of projective complex surfaces with smooth gen-
eral fiber Z; and whose special fiber ) = A U B has two irreducible components,
intersecting transversally along a smooth curve E=ANnB. Let D% be a
Cartier divisor and let us set D, = D n%,. We want to find sufficient conditions
for the existence of curves with a triple point in |D;| = |04, (D;)|. We first ask the
following question. Assume that, for general ¢, there exists a reduced and irreduc-
ible divisor C; € |D,| with a triple point. Assume, moreover, that the curve C,
degenerates to a curve Cy € |Dy| = |04, (Dy)| in such a way that the triple point
of C, comes to a general point p € E = A n B. We ask for the type of singularity
of Cy at p. Actually we do not want to find all possible curve singularities at p
that are limit of a triple point on Z;. We only want to find a suitable limit singu-
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larity. We first observe that, since p belongs to the singular locus of 2y and 2 is
smooth at p, there are no sections of Z — A! passing through p. Thus the triple
point of the curve C,, as r — 0, must move along a multisection y’ of Z — A!. In
order to deal with a divisor S in a smooth family of surfaces % — A! with a triple
point at the general point of a section of % — A!, we make a base change of
a — Al

Let % — A! be the smooth family of surfaces

@y — - —

Nl

Al 2 Al

obtained from & — A! after a base change of order two totally ramified at 0 and
by normalizing the achieved family. Now the family % has general fibre %, ~ %
and special fibre %, = 4 U & U B, where, by abusing notation, 4 and B are the
proper transforms of 4 and B in 2 and & is a P!-bundle on E. In particular,
Ané& and BN & are two sections of & isomorphic to E. Denote by F the fibre
& corresponding to the point p € E < %) and let y be a section of % intersecting
F at a general point g. Assume there exists a divisor S < % having a triple point
at the general point of .

Step 1. Let 7y : ¥' — % be the blow-up of % along y with new exceptional
divisor I" and special fibre @é = Au &’ U B, where &' is the blow-up of & at g.
Still denoting by F the proper transform of F < % in %', we have that F has self-

intersection (F)é,, = —1 on &'. Moreover, if S! is the proper transform of S in
%', we have that
(3) S' ~ni(S) - 3T.

We deduce that S'F = —3 and hence F = S'.

Step 2. Let now 7, : %> — %' be the blow-up of %' along F with new excep-
tional divisor ® ~ [F; and new special fibre %7 = A’ U &’ LU O U B’, where A’ and
B’ are the blow-ups of 4 and B at F n 4 and B n F respectively. Denoting again
by F the proper transform of F < %' in %2, we have that F is the (—1)-curve of
®. Moreover, if S? is the proper transform of S' in %2, by (3), we deduce that

4)  S*e ~m3(SY|e — mp®|g ~ —3fo + mp(F + 2fo) ~ (2mp — 3) fo + mypF,

where fp is the fibre of ® and my is the multiplicity of S' along F. Furthermore,
since S2|g is an effective divisor, we have that mp > 2. In particular, if mp = 2
then |S?|g| = |fo + 2F| contains F in the base locus with multiplicity 1. Hence
S?|g = F + L, with L ~ fo + F. Using again that S? is a Cartier divisor, we
find that S?|,, (resp. S?|z ) has two smooth branches intersecting @ N A’ trans-
versally at F n A’ and L~ A’ (resp. F n B’ and L n B’), as in Figure 1.

Now let & < 2 be the image of S. If 7 is a general point of A! and
{t1,n} = v2‘1 (1), then the fibre of ¥ over tis & = S;, U S;,, where S, is the fibre
of S over #; while the special fibre %) = 2(S|, U S|,) of ¥ is the image curve,
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Figure 1 Figure 2

counted with multiplicity 2, of the special fibre S; of S under the contraction of &
(see Figure 2).

REMARK 3.1. The curve S|, U S|z < 2o belongs to the subvariety Q, < |Dy|, de-
fined as the Zariski closure of the locus of curves C = C4 U Cpg, where C4 < A and
Cp < B have a node at p € E = A n B with one branch tangent to E. Notice that
every such curve C has a non-planar quadruple point at p and that Q, is a linear
subspace of |Dy| of codimension at most 5.

LEMMA 3.2. Let [C] € Q, be a point corresponding to a curve C = C4u Cp with
a non-planar quadruple point at p as in the previous remark. Then the analytic
equations of C at p are given by

(y+x—-22)z=0
(5) Xy =t
t=0.
REMARK 3.3. We want to observe that, as for plane curve singularities, the clas-

sification of simple complete intersection space singularities is known, (cf. [14]). The
singularity defined by (5) is not a simple singularity.

Before proving Lemma 3.2, we need to recall a basic result about space curve
singularities. We refer to [14] and use the same notation and terminology.

DEFINITION 3.4. Let Q. be the set of positive rational numbers. A polynomial

p(x) € Clxy,...,x,] is said to be quasi-homogeneous of type (d;ay,...,a,) €
Q4 x Q' if p(x) is a linear combination of monomials x{" ... xj" such that:

n
E a;o; = d.
i=1

The n-tuple a = (ay, . .., ay) is called a system of weights. We shall also say that
p(x) has degree d if every variable x; has weight a;, for every i < n.
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For every fixed system of weights a = (ay,...,a,), we will denote by I'¢ the
induced graduation

Clxt,....xs) = P Gy

d>0
on C[xy,...,x,], where G is the set of quasi-homogeneous polynomials of type
(dyay,...,a,).
DEFINITION 3.5. An element f = (fi,...,[,) € (Clx1,....x,))" is quasi-

homogeneous of type (d,a) = (di,...,dyay,...,a,) if, for every i=1,...,p,
the component f; of f is of type (dsai,...,a,). The (p+ n)-tuple (d,a) =
(di,....dy;ay, ..., ay) is called a system of degrees and weights.

For every fixed system of degrees and weights (d, @), one defines a graduation
@9 on (Clxy,...,x,])” by setting

(C[X], s ’anP = @ G‘(/(_i,g)7
veZ
where G\%¢ = {(g1,--.,9p) € (Clx1,....,xa))" | gi € Gfﬁv}. Moreover, we denote
by v, tdhe valuation naturally associated to I'* and by vy , the valuation associated
to I'“% and defined by

v () = inflvg(h) - di),

for every he (Clxi,...,x,])”. Finally, we recall that, if 7,, denotes the set
of germs of applications f = (fi,...,f,):(C",0) — (C?,0) such (X,0)=
(£71(0),0) is a germ of a complete intersection analytic variety with an isolated
singularity at the origin, then we have the versal deformation space T'(f) = T }(,0
(cf. [15] or [19]) and, by [18], a graduation is naturally induced on -

T () =D T'(f),, where T'(f), = G\¢9 for every v € Z.
veZ

ProrosITION 3.6 (Merle, [14, Proposition 1]). Let fel,, be a quasi-
homogeneous element of type (d,a). Let g € (Clxy,...,x,])" be any element such
that:

Vid,a)(9) > sup(0, ),

where o= Sup, ., {v|T'(f), #0}. Then the germs of singularities
((f +9)7'(0),0) and (f~1(0),0) are analytically equivalent.

Proor oF LEMMA 3.2. Let [C'] € Q, be a point associated to a curve C' =
C/,u Cp, where C, < A and Cy < B have a node at p € E with one branch
tangent to E = AN B. Let (x, y,z,1) be analytic coordinates of 2 at p =0 in
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such a way that 4: x=¢=0 and B: y =t = 0. Then the analytic equations of
C' = & at p are given by

P(XJ;Z) = 07
(6) xy =0,
1=0,

where p(x, y,z) = 0 is the equation of an analytic surface S in A* having a singu-
larity of multiplicity 2 at (0,0, 0). Moreover, the tangent cone of S at p must con-
tain the line x = y = 0. Thus, up to a linear transformation, we may assume that
the analytic equations of C’ = & at p are given by

p(x,y,2) =xz+ yz+ax? +by* + 2 + p3s(x,3,2) =0, xy=0, =0,

where p3(x, y, z) is a polynomial of degree at least 3 with no z3-term. We want to
prove that the complete intersection curve singularity given by (6) is analytically
equivalent to the curve singularity given by the equations (5). We first observe
that the element f = (xz+ yz+ 2% xp) € I, is quasi-homogeneous of type
(3,4;2,2,1). Moreover, every term of the polynomial p(x, y,z) — xz — yz — 2> =
ax® + by* + p3(x, y, z) has degree strictly greater than 3, if the variables (x, y, z)
have weights (2,2, 1). In order to apply Proposition 3.6, we need to compute

T'(f). Let C be a reduced Cartier divisor on Zy = 4 U B having a singularity
of analytical equations given by (5) at p. Then, since C is a local complete
intersection subvariety of 2, we have the following standard exact sequence of
sheaves on C

where @¢ ~ Hom(QC, Oc¢) is the tangent sheaf of C, defined as the dual of the
sheaf of differentials of C, @4| is the tangent sheaf of 2" restricted to C, N ¢z
is the normal bundle of C in 2 and T}/ is the first cotangent sheaf of C, which
is supported at the smgular locus Sing(C) of C and whose stalk T, é at every
singular point ¢ of C is the versal deformation space of the smgularlty We also
recall that the global sections of the image sheaf A7 cjr of o are, by the versality
properties of 7, the infinitesimal deformations of C in 2" preserving singularities
of C and their analytic type. For this reason, .17 cu is called the equisingular
deformation sheaf of C in Z. Now observe that T'(f) = T - In order to com-
pute T/ ,» we use the following standard identifications:

e of the local ring O¢ ), = (pr/fqg,, of C at p with Cix, y,z|/(fi, f2), where

fi(x,,2) = xz+ pz+ 2> and fo(x, y,z) = x,
® of the O¢ ,-module N¢yz , with the free Oy ,-module Home, (.7 ciz p, Oc,p),
generated by morphisms f;* and f,*, defined by

fl.‘*(sl (X, y)Z)fl (X, Vs Z) + SZ(xa Vs Z)fz()(f, y,Z)) = Si(xa Vs Z)v fori= 1a2

and, finally,
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e of the (¢, ,-module
(Oz]c), =0z ,/(Ic) ® O p)
~ {0/0x,0/0y,0/0z,0/0t)¢,. /<00t — x0/dy — y0/dx)
with the free ¢y ,-module generated by the derivatives d/dx, d/dy, 0/0z.

With these identifications, the localization map o, : (Ox[c), = N¢yz,, at p of
the sheaf map o in (7) is defined by

,(0/0x) = (s = s1.f1 + 822 > 05/0x =0, $10f1/0x + $20f2/0x)
and, similarly, for «,(0/dy) and a,(0/0z). In particular, we have that
ap(0/0x) = zfi"(s) + ¥f5°(5),

(8) % (0/0y) = 2fy'(s) +xfy (s) and
0(0/0z) = (x + y + 32%) ;' (5).

It follows that the versal deformation space of the non planar quadruple point of
C at p is the affine space

1 * *
(9) TC,p = @qufl @ @C,pfz /<zfl*+yf2*,zfl*+xf2*,(3zz+x+y)f2*>‘

In particular, Té" »= T'(f) ~ €’ (in accordance with [13, Proposition on p. 165])
and, if we fix affine coordinates (b1, bs, b3, a1, az, a3, as) on T} > then the versal
deformation family %, — Téﬁ = T'(f) has equations

(10) {(y+x—z2)z+a1+a2x+a3y+a4z—F(x,y,z)—0,
Xy + by + byz + b3z* = G(x,y,2z) = 0.

Furthermore, by the equality
F(x,y, 0
(x,,2) _ AW a422
G(x, y, Z) b] sz b3Z

N <a3y+a2x>+ <(y+x—22)z>7
0 Xy

we deduce that the graduation on 7''(f) induced by T'®%221) is given by

0
T'(f)= @ T'(/f),

v=—4

In particular, we obtain that o = sup,.,{v| T'(f), # 0} = 0. By Proposition 3.6,
using that v3 422 1(p(x, y,2) — xz — yz — z3,xp) > 3 > 0 = o we get that the sin-
gularity defined by (6) is analytically equivalent to the singularity of equations
(5), as desired. O
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REMARK 3.7 (Equisingular infinitesimal deformations). Let C = %y be a curve
as in Lemma 3.2. By the proof of the lemma, we may deduce the equations at p of
an equisingular infinitesimal deformation of C in X. Indeed, by the equalities (8),

we have that, if s € ‘/Vé\FI'.pJ then the equations of s at p are given by

(11) {Z(”sz)+e(zux+zuy+(3zz+x+y)uz)=0,

xy + e(xu, + yuy) =0,
where

u= ux(xv y,z)6/8x+uy(x, y,z)8/5y+ uz(x7 y,z)@/@z € (

o)y

Now xy + e(xu, + yuy) =0 is the equation of an infinitesimal deformation %y
vanishing along the singular locus E. By |2, Section 2], we know that these infinites-
imal deformations are the infinitesimal deformations of Xy preserving the singular
locus. Since Xy is the only singular fibre of X', we have that xu, + yu, = 0 in (11).
Since this does not depend on the type of singularity of C at p, we deduce that
HO(C, N{yy) = HY(C, N{\y,). Moreover, we obtain that uy and u, are polyno—
mials with no z"-terms, for every r, and such that u,(0) = u.(0) =0 and no x'-
terms (resp. y'-terms) appear in u, (resp. uy). Thus the equations of s € N Cla,p 4t
p are given by

(12) {z(x + ¥+ 2% +elexul + zyu) + (322 + x + y)(c +ul)) =0,

xy =0,

where we set uy(x,z) = xul(x,z), uy(y, z) = yu, (y, z) and u.(x,y,z)=
c+ul(x,y,z), with ul(0) = 0. Finally, H°(C, JVC/W) HO(C, Nm,) i a linear
space of codimension <4 in |Dy|, contained in the linear system T, of curves
Clyu Cyc Xy, with C'y « A, Cy < B and C!; and Cy tangent to E at p.

We may now provide sufficient conditions for the existence of curves with a
triple point and possibly further singularities in the linear system |D,|.

DErINITION 3.8. Let ' be a family of surfaces as above and let D < % be a
Cartier divisor. Let W), (‘l . < |04(D)] x (A"\{0}) be the locally closed subset de-
fined as follows

%}T)‘ﬁr ={([D'],t) | Z; is smooth, D" ~ %, := D; € |Uy,(D,)| is irreducible

of genus g, with a triple point and nodes as singularities.}

There is a naturally defined rational map 7 : W5 }Aﬁ, — %“ﬂA where #7A is the

relative Hilbert scheme of & — A'. We will denote by 7 j‘A the Zariski closure
of the image of © and we will name it the universal Severl varlety of curves of
genus, g in |D| wzth a triple poznl and nodes. The restriction of this variety
4 Drﬁ, N|D,| =", D’ g0 Where 1 € Al is general, is the Severi variety of genus g
curves in | D,| with a triple point and nodes as singularities.
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We observe that, if V' < ”/ : 4. 18 an irreducible component, then V coincides
with the equisingular deformatlon locus ES(C) < |D,| of the curve C correspond-
ing to the general point [C] € V, defined in Section 2.

THEOREM 3.9. With the notation above, let C = C4 0 Cp = Xy be a reduced
divisor in the linear system |Dy| such that C4 = A and Cg < B have a node at a
general point p of E = A N B with one branch tangent to E. Suppose that C, and
Cp are smooth and they intersect E transversally outside p. Assume, moreover,
that:

1) h'(4,04) = h'(B,0p) = h'(%;,0;) = 0, for every 1,
2) dim(|D,|) = dim(|Dy|), for a general t;
3) K(C, Ne) = dim(|Dol) —

ZIAD .
Then the universal Severi varzety ) ‘ < A is non-empty. More pre-

) 3,
cisely, the point [C] € A" A correspondzng to the curve C belongs to an irreduc-

ible component 2 of the special ﬁbre 10 of ”V?m

=3,
with multiplicity 2. Finally, llA( D)-3.1r IS smoolh at [C] and the irreducible com-

— Al contained in 1

ponent V2 of the general fibre ¥; of V", specializing to 2, has expected dimension
in |Dy|.

PrOOF. We want to obtain curves in the linear system |y (D,)| with a triple
point as deformations of C' = Zy. The scheme parametrizing deformations of C
in 4 is an irreducible component .# of the relative Hilbert scheme #** A" of the
family Z. In particular, by [19, Proposition 4.4.7] and the hypotheses 1) and 2),
we have that # is smooth at the point [C] € # corresponding to C. Now, by
hypothesis, C has a non-planar quadruple point at p, nodes on E\{p} and no
further singularities. Moreover, it is well-known that, no matter how we deform
C to a curve on Z;, the nodes of C on E are smoothed (see, for example, [11, Sec-
tion 2]). We want to prove that C may be deformed to a curve on %; in such a
way that the non-planar quadruple point of C at p is deformed to a triple point.
This will follows from a local analysis. First recall that, by Lemma 3.2, we may
choose analytic coordinates (x, y, z,7) of 2 at p in such a way that the equations
of C at p are given by (5) and the versal deformation family 4, — T , has equa-
tions glven by (10), where (b1,b2,b3,a;1,as,as,as) are the aﬁine coordmates on
T. ~ C’. By versality, denoting by & — # the universal famlly parametrized
by Jf there exist €tale neighborhoods U, of [C] in #, U, of P in  and V), of 0
in TC gandamap ¢, : U, — V), so that the family 9| u, O U ! is isomorphic to the
pull- back of %, |V , w1th respect to ¢,

Gy, Uy xv, 6|y, — Dy nUy — 2

(13) jlp i ¢ \j |

L U, A
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We need to describe the image ¢,(U,) = V),. First we want to prove that
(14) $p(Up 0 [Dol) =T 0 V),
where
I':by=b,=5b;=0.

Obviously, ¢,(U, N |Do|) = T A V). To prove that the equality holds, it is enough
to show that the differential d¢ H(C, N¢,) — Tol is surjective. By stan-
dard deformation theory, by identifymg the versal deformation space of a singu-
larity with its tangent space at 0, the differential of ¢, at [C] can be identified with
the map

ey - H(C, Nejg) = HY(C, Te) — T,

induced by the exact sequence (7). In particular, using that, by Remark 3.7,
H°(C, Newr) = HO(C, N¢\a,) and that the nodes of C on E are necessarily pre-
served when we deform C on %y, we have that

ker df, ., = H'(C, N

Now, again by Remark 3.7, we know that h°(C, A¢,) =h'(C, N¢),) =
d1m(|Do|) 4 = dim(|Dy|) — drm(F) Actually, by the hypothesis 3), we have
that 4°(C, JVC"]) has the expected dimension and hence the equality (14) is
verified. Using that H(C, N¢y,) is a hyperplane in H°(C, A¢4) and that
$,(U, 0 |Do|) = ¢,(U,), this implies, in particular, that ¢,(U,) = V, = T¢ !
subvariety of dimension dim(¢,(U, N [Dol)) +1 =5, smooth at 0. We Want to
determine the equations of tangent space To¢,(U,) = d¢,(H 0(C Newr)). For
this purpose it is enough to find the image by d¢, of the infinitesimal deforma-
tion o € H(C, N¢j2)\H"(C, N ¢jz,) having equatlons

{z(x+y+zz):0
Xy =e.

(15)
The image of ¢ is trivially the vector (1,0, ...,0). We deduce that
Tog,(U,) = dg,(H'(C, Ncyz)) : by = by = 0.

Now we want to prove that the locus in ¢,(U,)\¢,(U, N |Dy|) of points corre-
sponding to curves with an ordinary triple point as singularity is not empty and
its Zariski closure is a smooth curve 7 tangent to I' = ¢,(U, n | Dol) at 0. This
will imply the theorem by versality and by a straightforward dimension count.
Because of smoothness of ¢,(U,) at 0, it is enough to prove that the locus of
points (b1,0,0,a1,...,a4) € Ty$,(U,) with by # 0 and corresponding to a curve
with an ordinary triple point is not empty and its Zariski closure is a smooth
curve 7 tangent to I' = ¢, (U, N | Dyl) at 0.
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Let (b1,0,0,a1,...,a4) € T&p be a point with b; #0. Then the fibre
%(6,,0,0,a1.....as) Of the versal family 4, — Téﬁp has equation

b b
(g(bl,0,0,al,...,m) :Z(Zz +?l+ .V) +a] +a2;1+a3y+a4z = 07 y # 0

or, equivalently,
C0.0.ar.a)  F(0,2) =22y + 20" + biz+ a1y + aoby + asp* + aszy,  y #0.

Now a point (yo,z0) € €(s,,0,0,a,....a,) 15 @ singular point of multiplicity at least
three if and only if

(16) 8F((3;, 2) = ZS + 2y0z0 + ay + 2a3yo + asgzg = 0,
(17) 6Fg’z):3z§yo+y§+b1+a4yo=0,

(18) aFa(i;’ 2 6z0y0 =0,

(19) or @(yyz 2) o2y 424y — 0,

(20) 61;;?22) =320+ 200+ as=0.

By the hypothesis b; # 0 and the equalities (18) and (19), we find that zo = 0. By
substituting zyp = 0 in the equalities (16), (17), (19), (20) and F(yo,0) = 0, we find
that

ay = dy = dz = 0,

Ve + b1+ asyo =0,

zy) = 0,
2y0 + a4 = 0.
Conversely, for every point (b,0,0,a,...,a4) € Té,p such that by #0, a; =

a» = a3 =0 and aj = 4b;, we have that the correspondiglg curve has a triple
point at (—%,0), with tangent cone of equation z((y + %)~ 4 z?) and no further
singularities. The curve

T:aj=a=ay=by=by=0, aj=4ab
is smooth and tangent to I' : by = b, = b3 =0 at 0. O

The following corollary is a straight consequence of the proof of Theorem 3.9.
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COROLLARY 3.10. Let 2 be a family of regular surfaces and D = X a Cartier
divisor as in the statement of Theorem 3.9. Let C' < |Dy| be any reduced curve
with a space quadruple point of equations (5) at a point p € E and possibly further
singularities. Then, using the same notation as in the proof of the previous theorem,
the image H ,ﬁ of the morphism

HO(C/, JVC/‘%) — Tclv,p

is contained in the S5-dimensional plane of equations Hy, : by = by = 0. If H, = ' =H,
then there exist deformations C, € |D,| of C on %, wzzh a triple point, obtazned as
deformation of the singularity of C at p.

4. CURVES WITH A TRIPLE POINT AND NODES ON GENERAL K3 SURFACES

This section is devoted to the proof of Theorem 1.1. We will prove the theorem
by using the very classical degeneration technique introduced in [3]. Let (S, H) be
a general primitively polarized K3 surface of genus p = p,(H) in PP. We will de-
generate S to a union of two rational normal scrolls R = R; U R,. On R we will
prove the existence of suitable curves C € |Og(nH)| with a space quadruple point
given by equations (5), tacnodes and nodes. Finally, we will show that the curves
C deform to curves on S with the desired singularities.

We first explain the degeneration argument, introducing notation. Fix an inte-
ger p>3 and set /:= |}|. Let E = PP be a smooth elliptic normal curve of
degree p + 1. Consider two general line bundles L, L, € Picz(E). We denote by
Ry and R; the (unique) rational normal scrolls of degree p — 1 in PP defined by
Ly and L,, respectively. Notice that R; =~ R, =~ P! x P! >~ F, if p is odd whereas
R = R, = [y if p is even. Moreover, R; and R; intersect transversally along the
curve E which is anticanonical in each R; (cf. [3, Lemma 1]). More precisely,
for odd p, where R; ~ R, ~ P! x P!, we let g; = P! x {pt} and F; = {pt} x P!
on R; be the generators of Pic R;, with i = 1, 2. For even p, where R} =~ R, = [y,
we let g; be the section of negative self-intersection and F; be the class of a fiber.
Then the embedding of R; into PP is given by the line bundle o; + IF;, fori = 1,2.
Let now R := R; U R, and let % be the component of the Hilbert scheme of PP
containing R. Then we have that dim(%,) = p*> + 2p + 19 and, by [3, Theorems 1
and 2], the general point [S] € %, represents a smooth, projective K3 surface S of
degree 2p — 2 in PP such that Pic S = Z[0s(1)] = Z[H]. We denote by ¥ — T
a general deformation of %, = R over a one-dimensional disc 7' contained in
U,. In particular, the general fiber is a smooth projective K3 surface .%; in P’
with Pic ¥, = Z[04(1)]. Now . is smooth except for 16 rational double points
{&1,...,¢16} lying on E. In particular, {&,..., ¢} are the zeroes of the section
of the first cotangent bundle T} of R, determined by the first order embedded
deformation associated to ¥ — T, [3, pp. 644—-647]. By blowing-up % at these
points and by contracting the corresponding exceptional components (all isomor-
phic to Fy) on Ry, we get a smooth family of surfaces 2" — T, such that 2; ~ .9
and Zy = R, U R,, where R, is the blowing-up of R; at the points {&,...,& 6},
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with new exceptional curves Ej, ..., Ejg. We will name {&,..., &6} the special
points of E.

LeEMMA 4.1. Let R= Ry U R, = PP as above. Then, for every n > 1 if p > 5 and

n>2if p=3,4, there exists a one parameter family of curves C = C; U C; €
|Or(nH)| such that:

(1) Cic Riand C; = Cl.1 (URRRNV) C,-”’1 v D; U L;, where C}, D; and L; are smooth
rational curves with:
® C/ ~g;,Di~F,,and L; ~ ;4 (nl — 1)F; if p =21+ 1 is odd,
® C/ ~g;+ F, Di ~ F;and L; ~ 6; + (nl — n)F; if p = 21 is even,
foreveryl < j<n—1landi=1,2;

(2) there exist distinct points p,q,q1,...,qm € E, where p is a general point and
q,q1,- - -, qon are determined by the following relations:
e jfp=2l+1lisodd i=12and 1 < j<n-—1, then

D+ Gon, if nis odd, (resp. if n is even),

21) D nE .DynE)=
1) | O E (resp. D20 E) {p+q2nl,ifniseven,(resp.ifnisodd),

Qoj1+ oy, if J is even (resp. if J is odd),

22) C{nE (resp. CJnE) =
(22) Gl nE(resp. G;NE) {q2/+q2/+2,zfjisodd(resp.ifjiseven)

(23) and LinE = (2nl —3)q +2p + q;;

e fp=2liseven,i=1,2and 1 < j<n-—1, then

(24) DinE (resp. DynE) = p+qa (resp. p+ qan-1),
(25) ClNE=qy 1 +2qy, 1<j<n—1,
(26) CJNE=2qy+qyn, 1<j<n-2,
(27) Cy ' NE=2¢2+qn and

(28) LinE (resp. LonE)=(2nl —2n—2)q+2p + qon—1

(resp. (2nl — 2n — 2)q + 2p + x, where
x=qifn=1and x=q, if n> 1);

(3) the singularities of C on R\E are nodes, C has a quadruple point analytically
equivalent to (5) at p € E and tacnodes and nodes on E\p. In particular, C
has a (2nl — 3)-tacnode at q and nodes at qi,...,qu, if p=21+ 1, C has a
(2nl — 2n — 2)-tacnode at ¢, a simple tacnode at ¢ and nodes at ¢, qon—1
and ¢y, forevery k=1,... n—1,if p=21

Proor. We first consider the case p = 21 + 1 odd. Recall that, in this case, we
have that R; ~ Ry ~ Fy, Og,(H) = Og,(g; + [F;), where |g;| and |F;| are the two

i

rulings on R;, and the linear equivalence class of £ on R; is E ~g, 20; + 2F;,
i=1,2.
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Let p and ¢ be two distinct points of £ = Ry n Ry, = R and let us denote
by W2 mi—3(P,q) < |oi + (nl = 1)F;| the family of divisors tangent to E at
p and ¢ with multiplicity 2 and 2n/ — 3, respectively. Then W2 o3P q) <
lo; + (nl — 1)F;| is a linear system of dimension

dim(W; 5,_3(p,¢)) = dim(|o; + (nl — 1)F;|) = 2nl +1 =0

Moreover, it is very easy to see that the general element of W, ,,, ;(p,q) corre-
sponds to an irreducible and reduced smooth rational curve. By applying [17,
Proposition 2.1], one shows that, in fact, dim(W2 omi—3(P-q)) = 0. We deduce
that the variety W, 5 < |o; + (nl — 1)F;|, parametrizing divisors tangent to £
at two distinct points with multiplicity 2 and 2n/ — 3 respectively, has dimension
2. Furthermore, looking at the tangent space to Wi onl—3 at its general element,
it is easy to prove that, if p and ¢ are two general points of E, then the unique
divisor L; € |g; + (nl — 1)Fj|, tangent to E at p with multiplicity 2 and to ¢ with
multiplicity 2n/ — 3, intersects E transversally at a point ¢; # p, q.

Now let p be a general point of E and let D; = R; be the fibre D; ~ F; passing
through p. Because of the generality of p and the fact that ED; = 2, we may
assume that D; and D, intersect E transversally at a further point. Again by the
generality of p, we may assume that the fibre ]! ~ gy (resp. Cy~! ~ 0,) pass-
ing through the point of D, N E (resp. D| n E), different from p, intersects trans-
versally E at a further point. Let Cy~2 (resp. C['~2) be the fibre of |a| (resp. |a1])
passing through this point. We repeat this argument n — 1 times, getting 2n points
1. --,qm of E and fibres C/ ~ g;, with 1 < j <n— 1, verifying relations (21)
and (22). From what we proved above, by using that

e the family of divisors in |o) + (n/ — 1)F}| tangent to E at p, with multiplicity 2,
and at a further point, with multiplicity 2n/ — 3, has dimension 1;

e the point p is general and the points ¢, ..., g, are determined by p by the
argument above;

we find that there exists a point ¢ such that the unique divisor L; € W2 i3 (P 4)
passes through ¢;. Now D;+ L;+ C1 -+ C ! |(9Rl (nH)| and hence
Dy +Li+Cl+-- -+ C"YE (2nl—3)q+3p+th+ ©+ g € |Op(nH)|.
This implies that there exists on R, a divisor

Ly~oy+ (nl —1)Fs ~ (nH)|p, =Dy — C3 — -+ — C}

cutting on E the divisor (2n/ — 3)q + 2p + ¢». Moreover, L, is uniquely deter-
mined by the equality dim(|Og(o2 + (nl — 1)F>)| = dim(|Og, (02 + (nl — 1)F>)|)
=2nl—1. Now, if C; = Ci1 URRENV) C{"l uD; U L; < R;, then there exist only
finitely many curves like C = C; U C; < R and passing through a fixed general
point p € E. If p varies on E, then the curves C, constructed in this way, move
in a one parameter family of curves # < |Og(n)|. By construction and by
Lemma 3.2, the curve C has a space quadruple point of analytic equations (5)
at p and nodes or tacnodes at points ¢, q1, . . ., g2, as in the statement. It remains
to prove that, if p is general or, equivalently, if [C] € #  is general, then the
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singularities of C on R\E are nodes. Since D;L; = D;C/ =1, for every i and J,
this is equivalent to showing that L; intersects transversally C/, for every i and
j. If n =1 there is nothing to show. Just to fix ideas, we prove the statement for
n = 2. Our argument trivially extends to the general case. Let [C] € #" < |Or(2)|
be a general element. First observe that, since ¥ is contained in the equisingular
deformation locus ES(C) < |Og(2H)| of C, it follows that, if D is the curve
corresponding to a point [D] of the tangent space Tj¢#", then D has at ¢ a
(2nl — 4)-tacnode (cf. [12, Proof of Theorem 3.3]). Now assume that L; intersects
Ci atr < 2/ — 1 points {x;}. Let m; > 1 be the intersection multiplicity of L; with
C| at x;. Then, the analytic equation of C at x; is y*> = x*™ and, by [6, Proposi-
tion (5.6)], the localization at x; of the equisingular deformation ideal of C is
(y,x?™~1). Thus D must be tangent to C| at every point x; with multiplicity
2m; — 1. Similarly, D must contain the intersection point of C| with D;. It fol-
lows that the cardinality of intersection of D[, and C| is given by

Z(zmi—1)+l:2l—l+2mf—r+l>2l, if m; > 2 for some i.

i

We deduce that C] < D| r,- Using again that D passes through every node of C
and that, by Lemma 3.2 and Remark 3. 7, the curve D|, must be tangent to £ at
p, for i = 1,2, we obtain that D contains the points C} N E, C; N D, and p of Dz
Thus, since the intersection number DyDlp, =2, we have that Dy = Dlp,.
follows that the analytic equations of D = & at p are given by (12), where ¢ = 0
and u(x, y,z) = zu!'(x, y,z). In particular, we find that D|, has a node at p with
one branch tangent to £ and the other one tangent to D;. Again, we find that
D|p, contains at least three points of D;, counted with multiplicity, and hence
Dy = D|p,. This implies, by repeating the same argument, that C, I < D r,- Thus,
for every i = 1,2, we have that D|, = Dj v D; U C}, where D! ~ o; + (2] — 1)F,
Dj is tangent to E at p with multiplicity 2 and at ¢ With multiplicity 2l —4 and,
finally, D] contains ¢;. But there is a unique divisor in |o; + (2/ — 1)F;| with these
properties. We deduce that D] = L;, foreveryi = 1,2, D = C and Tioy#" = {[C]},
getting a contradiction. This completes the proof in the case p = 21 4 1.

We now consider the case p = 21, where R| ~ Ry, ~ Fy, Og,(H) = Or,(0; + IF;),
with 62 = —1 and F? =0, and E ~pg, 20; + 3F;, for every i = 1,2. The proof of
the lemma works as in the previous case, except for the construction of the curves
C/ ~ag;+ F;. Let p € E be a general point and let D; ~ F; be the fibre passing
through p, for i = 1,2. Because of the generality of p, the curve D; intersects E
at a further point, say ¢, if i = 1 and ¢,, 1 if i = 2. Now the curves in |o; + F|
passing through ¢, cut out on E, outside ¢2,, a g3 having, because of the gener-
ality of p, four simple ramification points. Let C5~! be one of the four curves
in |0y + F>| passing through ¢, and simply tangent to E at a further point
Gom—2 # @on—1,¢on. Then, denote by C[* ~ g1 + Fy the unique curve tangent
to E at ¢»,_» and let ¢y, 3 be the further intersection point of C/'"? with E.
Now repeat the same argument until you get curves C; /. with i = 1 2 and j =
l,...,n—1, and points ¢, ..., ¢, satisfying relations (24)7(27). Again by the
generality of p, there exists a point ¢ such that the unique (smooth and irreducible)
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divisor L, € |02 + (nl — n)F>|, tangent to E at p with multiplicity 2 and at ¢ with
multiplicity 2n/ — 2n — 2, passes through ¢;. It follows that there exists a unique
(smooth and irreducible) divisor L; € |o| + (n/ — n)F;| passing through ¢,,_; and
tangent to E at p and g with multiplicity 2 an 2n/ — 2n — 2 respectively. The
curve we constructed has tacnodes, nodes and a space quadruple point of
analytic equations (5) on E, as desired. To see that the singularities of this curve
outside E are nodes, argue as in the case p = 21 + 1. |

We may now prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let T} be the first cotangent bundle of R, defined by
the standard exact sequence

(29) 0 — Or — Ops|g — Ngpr — Tg — 0.

Since R is a variety with normal crossings, by [10, Section 2], we know that 7'} is
locally free of rank one. In particular, 7T} ~ NElR, @ NE|R, 15 a degree 16 line
bundle on E. Fix a general divisor &; + - - - + &1 € | T4|. Since the family of curves
constructed in the previous lemma is a one parameter family, we may always
assume that there exists a curve C = C; U C; € |Or(nH)|, with C; = Ci1 URERRV)
Cl-”‘1 U D; U L;, as in the statement of Lemma 4.1, such that ¢», = £; and g; # &,
for every j < 2n — 1 and k < 16. Now, by [3, Corollary 1], we have that the in-
duced map HO(R, Ngpr) — H°(R, T}) is surjective. By [3, Theorems 1 and 2]
and related references (precisely, [10, Remark 2.6] and [16, Section 2]) and
because of the generality of & + --- + &4 € | T}/, it follows that there exists a
deformation . — T of %) = R whose general fiber is a smooth projective K3 sur-
face .%; in PP with Pic(%;) = Z[(04(1)] = Z[H] and such that . is singular exactly
at the points &1, ..., &4 € E. Let Z — T be the smooth family of surfaces obtained
by blowing-up &, ..., &6 and by contracting the corresponding exceptional com-
ponents on R, in such a way that 2y, = R; U Ry, where R; is the blowing-up of
R, at the points {¢;,..., ¢}, with new exceptional curves Ey, ..., Ejs. Let us
denote by C the proper transform of C and by z*(C) = C U E the pull-back
of C with respect to 7 : 2 — . Now n*(C) has one more node at the point
xe E;nC on R\E. We want to prove the existence of irreducible curves
C; € |0y (nH)| with the desired singularities by deforming of the curve 7*(C).
The irreducibility of C, easily follows from the fact that (4, (H) is indivisible.

We first consider the case p = 2/ + 1. In this case the singularities of the curve
n*(C) are given by

® 2(n—1)(nl — 1) nodes y{,..., y(, ), on R\E, arising from the intersection
of the curves C/, for 1 < j <n— 1, with L;, for every i = 1,2;
® anode at x € Ey;

® 21— 2 nodes zi,...,z' |, i=1,2, arising from the intersection of D; with C/,
forevery j<n—1landi=1,2;
e 2n nodes at ¢q1,...,q2, € E, where now ¢z, = E1 N E;

® a (2n/ — 3)-tacnode at ¢ and
e a space quadruple point of analytic equations (5) at p.
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Now, as we already observed in the proof of the previous lemma, the tangent
space Tip-(cES(n*(C)) to the equisingular deformation locus of z*(C) in
|04, (nH)| is contained in the linear system of divisors D = D' U D? € |0, (nH)|
passing through the nodes of 7*(C) on Z,\E (x included); having a (2n/ — 4)-
tacnode at the point ¢ of #*(C) and having local analytic equations given by
(12) at p. This implies that, if D € Ti- () ES(z*(C)), then D|, contains the irre-
ducible component of C passing through x. It follows that E; = D[, and so on,
until, doing the same local analysis of D at p as in the proof of the previous
lemma, we find that

dim(7jz-(c ES(77(C))) = {[=" (C)]}-

Using that the nodes of 7*(C) at the points ¢; are trivially preserved by every sec-
tion of H°(C, Nze(0)z,)> we deduce the injectivity of the standard morphism

O : H(n*(C), Npicya) = T
where

_ 1 1 1 1 1
T= SJB Toc)y; ?9 Toe(0),5 @ Tr(0)x @ T (0).g @ T

In particular, we have that @ has image of dimension
dim(Im(®)) = h°(z*(C), N (o) = 201 + 2 = dim(|O; (nH)|) + 1.

Morever, by Corollary 3.10 and by [12, Corollary 3.6], we know that the image
of the morphism ® must be contained in

1 1 1
T =D Ti0)yy D Tri0 @ T O H, @ Hy < T,
Il Jsl

where H, = T ;*(C% , and H, = T;k(cw are linear spaces of dimension 5 and
2nl — 3 respectively. We first study the map @ in the case that 2n/ — 3 =1 i.e.
forn=2and /=1 or n=1 and / =2. In this case the curve 7n*(C) has a
l-tacnode, i.e. a node, at ¢ € E and H, = T;*(C) ;- Using again that every node
of 7*(C) on E is trivially preserved by every section of H"(7*(C), Nr-(c)2),
we obtain that the induced morphism

Ho(n*(c)’ ‘/‘/HX(CWI) - @ T;*(C)yj’ @ T;*(C),Z/" ® Tnl*(C),x @ HP
Jri g

is injective. In fact this morphism is also surjective by virtue of the equality
2n—1)(nl = 1) +2n =2+ 1+5=2n%1—2nl —2n+2 +2n+4 = 2n’l + 2.

By versality and by the proof of Theorem 3.9, it follows that we may deform
n*(C) to an irreducible curve C; € |0y (nH)| such that T¢, ES(C;) = 0, by pre-
serving all nodes of 7*(C) on 2\ E and by deforming the singularity of z*(C)
at p to an ordinary triple point. Now we study the morphism ® under the
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assumption that 2n/ — 3 > 2. In this case ® is not surjective. More precisely, we
have that

dim(T") =2(n— 1)(nl = 1) +2n—2+1+5+2n —3=2n"1+3

and Im(®) = ®(H(n*(C), N(c)x)) is a hyperplane in 7', containing the
image ®(H(n*(C), Ny (c)z,)) of H'(n*(C), N+(c)z,) as a codimension 1
subspace. Now, using on T nl*(c), » the affine coordinates (by, by, b3, a;,as, as,as)
introduced in the proof of Lemma 3.2, by the proof of Theorem 3.9, by [12,
Proof of Theorem 3.3] and by a straightforward dimension count, we have that
O(H(n*(C), Ny (c)z,)) coincides with the (2n%] + 1)-plane

1 1 1
D Tae(0)yy D Troic) 2 @ Tr o) @ T, @ Ty,
Jsl Js1

where I', c H, < Tnl*(c, is the 4-plane of equations b; = by, = b3 =0 and
'y,cH,cT nl%C% , is the (2n — 4)-plane parametrizing (2n/ — 3)-nodal curves.
In particular, we have that

O(H (n"(C), Npe(cyjr)) = D T;*(C),y; ) T;:*(C),:j" D Ty ®Q,
il ot

where Q is a hyperplane in H, @ H, such that I', ® I'; <= Q. It trivially follows
that the projection maps p,: Q — H, and p,: Q — H, are surjective. Now,
by the proof of Theorem 3.9, we know that the locus of curves with a triple
point in H, is the smooth curve T having equations a; = a = a3 = by = b3 =
4by — aj = 0 and intersecting I', only at 0. Similarly, by [12, proof of Theo-
rem 3.3], for every (m — 1)-tuple of non-negative integers d,...,d, such that
Yook = 1)dy = 2nl — 4, the locus Vyw 5a, 4 = H, of points correspond-
ing to curves with dj singularities of type 4,1, for every k, is a reduced (possibly
reducible) curve intersecting I', only at 0. It follows that, for every (m — 1)-tuple
of non-negative integers da, . .., d,, such that Y, ,(k — 1)d = 2nl — 4, the locus
(T X Vit gts py_yan) N €2 is a reduced (possibly reducible) curve whose paramet-
ric equations may be explicitly computed by arguing exactly as in [1, proof of
Lemma 4.4, p. 381-382]. This proves, by versality, that we may deform 7*(C)
to an irreducible curve C; € |04, (nH)]|, by preserving all nodes of 7*(C) at y/, z;
and x, by deforming the singularity of z*(C) at p to an ordinary triple point and
the (2n/ — 3)-tacnode of 7*(C) to dx > 0 singularities of type Ax_; for every m-
tuple of integers di such that >, ((k — 1)dx) = 2nl — 4. In particular, if k =2
and d» = 2nl — 4, the corresponding curve C; is an elliptic curve in |0y (nH)|
with an ordinary triple point and nodes as singularities. Finally, by the injectivity
of the morphism ®, we have that, if ES(C,) is the equisingular deformation locus
of C; in |0, (nH)|, then dim(7¢ES(C;)) = 0 and this implies that the singular-
ities of C; may be smoothed independently, i.e. that the standard morphism
H°(C;, N¢yz,) — T is surjective. This proves the theorem for p = 21+ 1.
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In the case p = 21 the singularities of the curve z*(C) are given by

® 2(n—1)(nl —n) nodes yi, ..., y(inil)nl, on R\E, arising from the intersection of
the curves C/, for 1 < j <n— 1, with L;, for every i = 1,2;
® anode at x € Ey;

e 2n—2nodes zi,...,z. |, i=1,2, arising from the intersection of D; with C/,
forevery j<m—landi=1,2;
e n — 1 simple tacnodes at ¢», ¢4, ..., ¢2—2 € E and nodes at ¢1,¢s, . .., ¢2n—1, Gons

where now ¢y, = E| N E;
® a (2nl — 2n — 2)-tacnode at g;
e a space quadruple point of analytic equations (5) at p.

With the same argument as above, one may prove that the curve z*(C) may be
deformed to a curve C; € |0z, (nH)|, by preserving all nodes of 7*(C) at y/, z/
and x, by deforming the singularity of z*(C) at p to an ordinary triple point,
every simple tacnode of 7*(C) on E to a node and the (2n/ — 2n — 2)-tacnode of
7*(C) to d, singularity of type A;_; for every m-tuple of non negative integers dj
such that >~ ((k — 1)dy) = 2nl — 2n — 3. The curve C, obtained in this way has
the desired singularities, is a reduced point for the equisingular deformation locus
and its singularities may be smoothed independently. Finally, if we choose k = 2
and d, = 2nl — 2n — 3, then C; is an elliptic irreducible curve with a triple point
and nodes as singularities. O

COROLLARY 4.2. Let (S,H) be a general primitively polarized K3 surface of
genus p = p,(H) as above. Then, for every 1 < g < p,(nH) — 3 and for every
(p,n) # (4,1), there exist reduced and irreducible curves in |nH| of geometric
genus g with an ordinary triple point and nodes as singularities and corresponding
to regular points of their equisingular deformation locus.

In accordance with [4], we do not expect the existence of rational curves in
|Os(nH)| with a triple point. When n =1 and p > 5, Theorem 1.1 implies that
the family in |H| of curves with a triple point and J; singularities of type Ax_; is
non-empty whenever it has expected dimension at least equal to one. The precise
statement is the following.

COROLLARY 4.3. Let (S,H) be a general primitively polarized K3 surface
of genus p = p,(H) > 5. Then, for every (m — 1)-tuple of non-negative integers
do, ..., d, such that

> (k—1)dp = p—5=dim(H|) - 5,
k=2

there exist reduced irreducible curves C in the linear system |H| on S such that:

o C has an ordinary triple point, a node and dy singularities of type Aj_1, for every
k=2,...,m, and no further singularities;
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e C corresponds to a regular point of the equisingular deformation locus ES(C).
Equivalently, dim(TicES(C)) = 0.

Finally, the singularities of C may be smoothed independently.

REMARK 4.4. The case p=4 and n =1 is the only case where the existence of
elliptic curves with a triple point is expected but it is not treated in this paper. In
this case, with the notation above, it is easy to show the existence of a unique curve
C € |Oq,(H)| with a space quadruple point analytically equivalent to (5). Because
of the unicity, the argument we used in the proof of Theorem 1.1 to compute the
dimension of the tangent space to the equisingular deformation locus of C does
not apply. Actually, we expect that dim(Tic)ES(C)) > 0. Nevertheless, it is easy
to prove that C deforms to curves C; € |Oy,(H)| with a triple point as singularity
on the general K3 surface %Z,. But describing the equisingular deformation locus
ES(C,) from the scheme-theoretic point of view seems to us to be a very difficult
problem. The case p =4 and n = 1 will be treated in detail in an upcoming article
on related topics.
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